A new method to restore tectonically beheaded valleys

Adrien Moulin¹, Matthieu Ribot², and SIGURJÓN JÓNSSON¹

¹King Abdullah University of Science and Technology ²Kind Abdullah University of Science and Technology

March 04, 2024

Abstract

Tectonically beheaded valleys represent strain markers that can be used to constrain the geometry and kinematics of dip-slip faults. Quantifying the cumulative deformation they have recorded requires introducing several assumptions that are difficult to test, which limits their practical utility. Here we present a new method which eliminates some of these assumptions by focusing on pairs of beheaded valleys and analyzing them in the chi (horizontal channel coordinate normalized by drainage area) – elevation space. This approach allows tectonic deformation to be retrieved without using any information from the lost upstream catchment, and has therefore the potential of reducing uncertainties associated to the tectonic reconstruction of beheaded valleys. We demonstrate the power of this method by applying it to an outstanding beheaded stream network preserved across the Wadi-al-Akhdar Graben (NW Saudi Arabia). This methodological contribution is expected to revive the use of beheaded valleys by morpho-tectonic studies, and stimulate the exploration of its potential for long-term tectonic reconstructions

Hosted file

Moulinetal_Manuscript.docx available at https://authorea.com/users/745322/articles/717433-a-new-method-to-restore-tectonically-beheaded-valleys

Hosted file

Moulinetal_SupportingInformation.docx available at https://authorea.com/users/745322/ articles/717433-a-new-method-to-restore-tectonically-beheaded-valleys

1 A new method to restore tectonically beheaded valleys

3 Adrien Moulin¹, Matthieu Ribot¹, Sigurjón Jónsson¹

4 ¹King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

- C

KEY POINTS

9 A new method is developed to restore tectonically beheaded drainages using chi-elevation distribution

10 The method is successfully applied to the Wadi-al-Akhdar Graben, Saudi Arabia

- --

14 ABSTRACT

Tectonically beheaded valleys represent strain markers that can be used to constrain the geometry and kinematics of dip-slip faults. Quantifying the cumulative deformation they have recorded requires introducing several assumptions that are difficult to test, which limits their practical utility. Here we present a new method which eliminates some of these assumptions by focusing on pairs of beheaded valleys and analyzing them in the χ (horizontal channel coordinate normalized by drainage area) – elevation space. This approach allows tectonic deformation to be retrieved without using any information from the lost upstream catchment, and has therefore the potential of reducing uncertainties associated to the tectonic reconstruction of beheaded valleys. We demonstrate the power of this method by applying it to an outstanding beheaded stream network preserved across the Wadi-al-Akhdar Graben (NW Saudi Arabia). This methodological contribution is expected to revive the use of beheaded valleys by morpho-tectonic studies, and stimulate the exploration of its potential for long-term tectonic reconstructions

36 1. INTRODUCTION

Drainage capture and beheading represent extreme cases of divide mobility, during which large fractions of 37 38 drainage areas are gained or lost suddenly. These events occur in both tectonically active and inactive environments as drainage networks evolve towards stable topologies (Bonnet et al., 2009; Giachetta and 39 Willett, 2018; Menier et et al., 2017; Struth et al., 2020). Because a loss of drainage area is equivalent to a 40 41 base-level rise (Willett et al., 2014), subsequent erosion of beheaded valleys is usually limited. Drainage 42 beheading is also accompanied by reduced water and sediment discharge, such that it takes long, if ever, for this base-level rise to be compensated by sedimentary infill. As a consequence, beheaded valleys represent 43 44 transient topographic states which can persist in the landscape over very long time periods (Jaiswara et al., 45 2019; Yang et al., 2015).

46 On the other hand, in building topographic barriers across pre-existing landscapes, displacement on dip-slip faults is an efficient driver of stream beheading (Burbank et al., 1996) (Fig. 1a). Beheaded streams can be 47 used to quantify cumulative displacements on these faults (Moulin et al., 2016), determine the rate and sense 48 49 of fault propagation (Kleber et al., 2021), and eventually constrain fault slip-rates when they contain datable material (Benedetti et al., 2000). Nevertheless, using these strain markers to reconstruct tectonic deformation 50 is not straightforward. The reason for this is that they are restricted to only one fault compartment, and hence 51 that their formation leaves no durable piercing-point at the surface of the opposite fault-block (Fig. 1a). This 52 53 difficulty is usually tackled by modeling the pre-deformation profile as an extension of the still active upstream reach (Benedetti et al., 2000; Burbank et al., 1996; Jaiswara et al., 2019). This strategy is 54 55 underlain by two main assumptions: (1) the pre-deformation profile was at steady-state at the time of 56 beheading, and (2) the beheading event did not significantly modify the upstream profile. These assumptions, 57 which are very difficult to test in practice, challenge the use of beheaded valleys as robust strain markers. For the same reason, their long theoretical lifetime remains little exploited, despite the fact that it offers an 58 opportunity to quantify tectonic deformation over time-spans that are difficult to reach with other methods. 59

In this study, we propose a new approach, based on drainage-normalized stream profiles, which allows getting rid of assumption (1) provided that assumption (2) is true. This solution is expected to revive the use of beheaded valleys by morpho-tectonic studies, and stimulate the exploration of its potential for long-term tectonic reconstructions. We first describe the theory of the approach, and then present a method to apply it on natural prototypes using the Wadi-al-Akhdar graben in NW Saudi Arabia.

65

66

2. THEORY

67 Catchment loss quantification is best studied from χ -elevation plots (Struth et al., 2020; Whipple et al., 68 2017a). χ is a transformed stream channel coordinate, which describes the variation of drainage area in such 69 a way that steady-state channels align along a straight line in the (χ -elevation) space (Perron and Royden, 70 2013):

71
$$\chi(x) = \int_{x_b}^x \left(\frac{A_0}{A(x)}\right)^{\frac{m}{n}} dx$$
 (Equation 1)

where x is the distance along the stream channel, A(x) is the drainage area at distance x, x_b is the xcoordinate of the stream outlet, A_0 is a reference drainage area, and m/n is the concavity index (equation valid provided that the ratio of the tectonic uplift to the bedrock erodibility is invariant in the x dimension) assuming the streams follow a stream-power model (Whipple and Tucker, 1999). 76 When beheading occurs, the affected stream channel is instantaneously shifted far away from its steady-state 77 (Willet et al., 2014). This is expressed in terms of γ as:

78
$$\chi(x) = \int_{x_b}^x \left(\frac{A_0}{A(x) - A_{lost}}\right)^{\frac{m}{n}} dx$$
 (Equation 2)

where A_{lost} represents the lost catchment area, and A(x) represents the pre-beheading drainage area (same as in Equation 1). Modification of χ following a beheading event is thus sensitive to the ratio $A(x)/(A(x)-A_{lost})$ (Struth et al., 2020), which tends toward infinity when approaching the beheading point. As a result, χ elevation plots of beheaded streams are pulled towards ever-increasing values of χ when moving upstream. Graphically, this translates into the well-known downward bending of the χ -elevation plot, hereafter referred to as "convex-up profiles" (dotted lines in Fig. 1b).

- In terms of stream dynamics, a loss of drainage surface is equivalent to a base-level rise (Willett et al., 2014; Yang et al., 2015). A major implication is that the convex-up sections of χ -plot are prone to preservation over long time periods (Whipple et al., 2017b). This property implies that they broadly behave as structural datum that record vertical deformation, as long as they remain "below" the steady-state χ -elevation profile (Jaiswara et al., 2019; Whipple et al., 2017a). The (χ -elevation) encoding of tectonically behaved streams is thus a combination of instantaneous downward bending and continuous tectonic warping (Fig. 1b).
- 91 Our objective is to extract the tectonic signal from this combined encoding. To do so, we focus on pairs of points located at the same distance from the fault but along two different downward branching beheaded 92 93 channels (Fig. 1c). On the one hand, beheading causes the two points of each pair to be shifted differently in the χ dimension depending on their ratio A(x)/(A(x)-A_{lost}) (Struth et al., 2020) (Fig. 1b). On the other hand, 94 95 their displacements in the vertical dimension are assumed to be consistent (i.e., the two points share the same post-beheading tectonic history: hereafter referred to as the "co-tectonic condition") (Fig. 1b). This latter 96 97 assumption means that the method is applicable to channels that are geographically close to each other, and which have a beheading age difference that is small compared to the duration of the tectonic regime (in 98 99 addition to the assumption that pre-beheading profiles are at steady-state).
- Pairs of co-tectonic elements define co-tectonic lines (black lines in Fig. 1c and 1d) that rotate away from the steady-state elevation/ χ slope as a function of their reconstructed ratio A(x)/(A(x)-A_{lost}). The key point here is that co-tectonic lines will become increasingly tangent to the steady-state profile as catchment loss corrections applied to χ approach the actual A_{lost} values (Fig. 1c and 1d). Therefore, a possible strategy to retrieve the initial unstrained geometry is to (1) explore the space of loss catchments solutions, (2) analyze the distribution of co-tectonic lines for each solution, and (3) evaluate its consistency with respect to steadystate conditions.
- 107

1083. THE WADI AL-AKHDAR GRABEN : GEOMORPHIC SETTING OF THE NATURAL109PROTOTYPE

We employed this approach using the Wadi al-Akhdar Graben (WAG, NW Saudi Arabia) as a case study. The WAG belongs to a series of narrow grabens that run sub-parallel to, and 200 km away from, the Northern Red Sea axis. The chronology of these grabens is poorly constrained. On the one hand, crustal extension associated to the opening of the Red Sea is considered to have concentrated near axis after 15Ma (Szymanski et al., 2016), suggesting these outboard structures have long been inactive. GPS velocities consistently suggest negligible present-day crustal deformation within the interiors of Saudi Arabia (Viltres et al., 2022). On the other hand, the spatial distribution of these grabens is closely associated to the Harrat 117 Uwayrid volcanic field (extending over the crest of highest elevation in the map of Fig. 2a), which has been 118 (and perhaps still remains) active well beyond this chronologic limit (reported dates are as young as 340 ka ~ 119 50 km SW of the WAG: Altherr et al., 2019). This, as well as the occurrence of a sequence of shallow (3.2 120 km) earthquakes (M<=5.1) with NE-SW focal mechanisms about 20 km from the WAG (Xu et al., 2015), 121 suggest that the upper crust of this area might continue to deform at small rates.

122 In any case, these grabens have a prominent geomorphic expression, marked by sharp normal fault 123 escarpments and prominent evidence of drainage network disruption (Fig. 2). The WAG in particular consists of a 50-km-long 1-km-wide 100-150-m-deep depression bounded on either side normal fault scarps of up to 124 ~ 100 m, and hosts intermittent water flow of the NW-flowing Wadi-al-Akhdar (Fig. 2). The geometry of the 125 drainage basins on either side of the WAG clearly shows that displacement on the constitutive normal faults 126 has sliced a pre-existing SW-NE-oriented stream network, and led to capture of the upstream catchments by 127 128 the modern Wadi al-Akdhar (Fig. 2b and inset of Fig. 2a). Preservation of this geometry might result from the local climate aridity (annual rainfall of 80-100 m over the contributing catchments), which would have 129 fossilized a >15-Ma-old stream network. Conversely, it might indicate that the WAG is much younger than 130 15Ma. Addressing this question is beyond the scope of the present study. The key point here is that the WAG 131 constitutes an exceptionally well-preserved example of a tectonically beheaded stream network, with a series 132 of wind-gaps preserved on the footwall of the NE border fault (Fig. 2b). 133

Quantification of post-beheading tectonic deformation using the traditional method (i.e., across-fault extrapolation of the still active upstream channel profile) yields vertical displacement around 55 m for about 3-4 km from the fault (Fig. 3). How would this estimate get modified by employing the strategy described in the previous section ?

138 To answer that question, we focused on the pair of beheaded valleys (labelled V1 and V2 in Fig. 2b) that are the most unequivocally interpreted in terms of catchment area loss. These two streams are ~1.6 km apart at 139 their intersection with the escarpment of the NE border fault, and branch downstream at ~3 km from the 140 141 fault. At distances >1km from the fault, the valley floors are 40-m-wide in average and entrenched by ~40-60 m within the massive sandstone beds of the Tabuk Formation (Geologic Map of the Shaghab Quadrangle, 142 143 Sheet 27B, Kingdom of Saudi Arabia). The valley morphology changes when approaching the tectonic escarpment. At about 1 km from the fault, V1 becomes wider (up to ~100 m) and flatter in cross-section, and 144 145 fine-grained sediments become abundant on the valley floor. Farther upstream, a reversal of the valley slope is observed at about 500 m from the fault, and marks the regressive erosion of a short stream channeled to the 146 147 base of the NE border fault (Fig. 2b). Similar enlargement and infill by fine-grained sediments are observed along V2 at less than ~1km from the fault, but there is no evidence of slope reversal or regressive erosion. 148 These distinctive characters occur in the very upper part of the modern catchments ($\sim 1 \text{km}^2$), where it is well 149 known that the morphology is largely controlled by hillslope processes (Struth et al., 2020). These valley 150 151 sections will thus be ignored in the following analysis. Looking at the upstream catchments, it seems obvious that V1 used to drain catchment A, whereas V2 was the downstream reach of catchment B (Fig. 2b; see also 152 inset of Fig. 2a). 153

154 155

4. RESULTS

156 Drainage area and χ have been computed from a 2-m-resolution DEM constructed from stereo SPOT6 157 satellite imagery (see Supporting Information Text S1) and using the TopoToolBox functions (Schwanghart 158 et al., 2014). χ was calculated using typical values of 0.45 for the concavity index and 1km² for A₀ 159 (Equations 1 and 2). We focused on the system composed by V1 and V2 and the main trunk below their 160 confluence. The χ -elevation plot reveals a downstream section which is very slightly convex upward, and a steepened upstream section that extends from ~600m upstream from the confluence up to the end of the profile (Fig. 4). Clearly, the convex-up morphology expected from the loss of drainage area is at least not obvious, which indicates that they also contain a vertical deformation signal.

Our analysis assumes that the stream profiles just before beheading were at steady-state and in equilibrium with a spatially invariant ratio of the tectonic uplift to the bedrock erodibility (i.e., the chi-plots were initially straight: see Fig. 1b). This assumption implies that the time interval separating the onset of faulting from the beheading event was short enough for the pre-beheading stream profiles to remain essentially controlled by the pre-faulting forcing (i.e., uplift-rate equal to zero or to any other spatially invariant value at the scale of the analyzed drainages). The impact of this assumption is discussed in the last section of the article.

- We have explored the space of catchment loss solutions by varying two parameters. On one hand, the total lost area (streams 1+2) was varied from 0 to 300km^2 (i.e., approximately twice the value estimated from the observed basin geometries; see inset of Fig. 2a) using increments of 15km^2 . On the other hand, the proportion of this total lost area ascribed to V1 was varied between 0 to 1 using increments of 0.05. For each scenario, the co-tectonic lines have been computed by interpolating χ and elevation along streams 1 and 2 at regularly spaced distances (2m) from the fault, and determining their gradient and intercept from the χ -elevation pair of even fault-distance points.
- 177 In a first step, the solution space can be reduced by analyzing the sign of slope of the co-tectonic lines, as 178 these lines must by definition slope downstream (positive sign). Our simulation shows that the co-tectonic 179 lines slope upstream for a V1 catchment loss proportion lower than 0.5 (i.e., negative sign: see inset of Fig. 180 5). There is an evident reason for this: since our approach assumes that tectonic deformation does not vary 181 from V1 to V2, the higher position of V2 relative to V1 in the χ -elevation necessarily requires V1 proportion 182 to be higher than V2 proportion.
- For each solution, we have then analyzed the distribution of the co-tectonic lines relative to the downstream section of the corrected profile. To do so, we have selected a reference point of the main trunk sufficiently far away from the fault to ensure it is not affected by faulting-related uplift. The narrowness of the WAG (Fig. 2a) indicates that it is a shallow structure propagating no more than a few kilometers deep. On the other hand, normal-faulting-controlled uplift extends to distances that scale with the thickness of crust involved in the deformation (Armijo et al., 1996). We thus considered a distance of 10 km as a safe buffer for the WAG, and picked the reference point at that distance (red point in the inset of Fig. 4).
- 190 We recall that co-tectonic lines should become increasingly tangent to the steady-state profile (see Theory), 191 and hence distribute just above the reference point, as catchment loss corrections approach the actual values (Fig. 1c and 1d). The best solution is thus estimated by computing the elevation of individual co-tectonic 192 lines at the reference χ (hereafter referred to as "projected elevation"), and analyzing their distribution 193 relative to the reference elevation. The results show little sensitivity to the total lost area (Fig. 5), but do show 194 a convergence regarding the relative proportion of lost areas. The best fit is obtained for a V1 proportion of 195 ~ 0.8 . This value is very close to that determined from the geometry of the upstream basins (i.e., ~ 0.84 ; see 196 197 inset of Fig. 2a), which therefore supports the use of our approach.
- The cumulative uplift recorded by the 2 valleys can then be readily quantified by propagating the mean slope of the co-tectonic lines from the reference point (Fig. 6). The obtained uplift profiles depend on the total lost area (Fig. 6), a parameter that we cannot resolve precisely with our method. However, the dispersion remains small except for scenario where the lost area is extremely small (i.e., < 20% of the observed value) (Fig. 6).
- 202

203 **5. DISCUSSION AND CONCLUSION**

The very good match between the proportion of catchment loss obtained from our approach when 204 205 applied to WAG and that measured from the actual upstream drainage, indicates that the long profiles of V1 and V2 have been essentially preserved since the beheading event. This in turn supports the view that a loss 206 207 of drainage area results in the preservation of transient states in the landscape (Whipple et al., 2017b), although it is likely favored by the local climate aridity in the case of the WAG. On the other hand, our 208 approach is not very effective to quantify the total catchment loss (Fig. 5), which in turn results in 209 210 uncertainties regarding the magnitude of uplift (Fig. 6). However, large uncertainties exist only for extreme values of catchment loss (< 20% of the actual value). This indicates that loose constraints on catchment area 211 loss (obtained for example from the dimension of the beheaded valleys) might be sufficient to quantify 212 tectonic uplift with reasonable uncertainties. 213

The new approach developed in the present article to quantify the cumulative uplift recorded by 214 215 tectonically beheaded valleys assumes steady-state profiles at the time of catchment loss. It is worth noting that this assumption has distinct implications depending on the chronology of events. For one end-member, 216 beheading is synchronous with the onset of faulting, which means that the pre-beheading profiles are in 217 equilibrium with a spatially constant uplift-rate equal to zero (or any other value), and are thus characterized 218 by a linear chi-plot (equivalent to the black line in Fig. 1b). For the other end-member, beheading occurs 219 sufficiently long after the onset of faulting for the stream profiles to be in equilibrium with a spatially 220 variable uplift-rate at the time of beheading. In this latter case, the chi-plot must have a concave-up shape 221 which mirror the uplift profile of Fig. 1a (Perron and Royden, 2013). Both the traditional method and the new 222 approach described in this article implicitly assume the first end-member. Although our results seem to 223 indicate that this assumption is valid in the case of the WAG, it likely does not hold in general. 224

If the second end-member applies, then the way we estimate the preferred solution from the 225 distribution of co-tectonic lines would not work, because the chi-plots immediately before beheading would 226 not form a straight line. However, the co-tectonic lines formulation offers an avenue to treat that case. We 227 describe here a possible strategy based on the example of Fig. 1, but assuming the second end-member. Just 228 before beheading, the slope of the chi-plot would decrease away from the fault along with the decrease of the 229 230 uplift-rate (Fig. 1a), instead of forming a straight line as in Fig. 1b. In addition, the slope would become constant beyond the edge of the deforming zone (at distance lower than ~ 18 km in Fig. 1a). Because each 231 co-tectonic line represents the slope of the pre-beheading chi-plot at a given distance from the fault (and 232 hence for a given uplift-rate), they are expected to follow the same pattern (i.e., display slopes that decrease 233 away from the fault and stabilize beyond the edge of the deforming zone). Examining the progressive 234 stabilization of the co-tectonic line slopes away from the fault thus represents a possible way to deal with 235 236 initially non-linear chi-plots. This should be a topic of future extension of our method to other natural prototypes. 237

238 Beside this perspective, the main advance provided by our approach is that it does not use any 239 information from the lost catchments upstream from the fault. Whereas the change in base-level that necessarily accompanies the capture of these catchments can greatly affect the results of the traditional 240 method, it has no effect on the approach presented here (compare Fig. 3 with Fig. 6). This also implies that 241 this approach becomes increasingly useful as ambiguities about the pre-deformation drainage topology 242 becomes significant. This advantage should become all the more decisive when attempting to reconstruct 243 244 tectonic deformation accumulated over long time periods (Moulin et al., 2016). We believe that, once calibrated against other field examples, our approach could allow quantifying tectonic deformation over 245 timescales that are difficult to access with current methods (i.e., several hundreds of ka or more). 246

248 ACKNOWLEDGMENTS

This research was supported by King Abdullah University of Science and Technology (KAUST) under the Award Number OSR-CRG2019-4076.

251

252 **OPEN RESEARCH**

The 2m DEM derived from Pleiades images photogrammetry as well as the code developed through this study can be requested to the corresponding author.

255

256

257 **REFERENCES**

Altherr, Rainer, Regina Mertz-Kraus, Frank Volker, Hans Kreuzer, Friedhelm Henjes-Kunst, and Ulrich Lange. "Geodynamic setting of Upper Miocene to Quaternary alkaline basalts from Harrat al 'Uwayrid (NW Saudi Arabia): Constraints from KAr dating, chemical and Sr-Nd-Pb isotope compositions, and petrological modeling." *Lithos* 330 (2019): 120-138.

Armijo, Rolando, B. G. C. P. Meyer, G. C. P. King, Alexis Rigo, and D. Papanastassiou. "Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean." *Geophysical Journal International* 126, no. 1 (1996): 11-53.

Benedetti, Lucilla, Paul Tapponnier, Geoffrey CP King, Bertrand Meyer, and Isabelle Manighetti. "Growth folding and active thrusting in the
Montello region, Veneto, northern Italy." *Journal of Geophysical Research: Solid Earth* 105, no. B1 (2000): 739-766.

Bonnet, Stephane. "Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide." *Nature Geoscience* 2, no. 11 (2009): 766-771.

Burbank, Douglas, Andrew Meigs, and Nicholas Brozović. "Interactions of growing folds and coeval depositional systems." *Basin research* 8, no. 3 (1996): 199-223.

Giachetta, Emanuele, and Sean D. Willett. "Effects of river capture and sediment flux on the evolution of plateaus: insights from numerical modeling and river profile analysis in the upper Blue Nile catchment." *Journal of Geophysical Research: Earth Surface* 123, no. 6 (2018): 1187-1217.

Jaiswara, Nilesh Kumar, Prabha Pandey, and Anand K. Pandey. "Mio-Pliocene piracy, relict landscape and drainage reorganization in the
Namcha Barwa syntaxis zone of eastern Himalaya." *Scientific reports* 9, no. 1 (2019): 17585.

 Kleber, Emily J., Duane E. DeVecchio, J. Ramón Arrowsmith, and Tammy M. Rittenour. "Spatiotemporal Rates of Tectonic Deformation and Landscape Evolution above a Laterally Propagating Thrust Fault: Wheeler Ridge Anticline, California, USA." *Lithosphere* 2021, no. Special 2 (2021): 3395719.

Menier, David, Manoj Mathew, Manuel Pubellier, François Sapin, Bernard Delcaillau, Numair Siddiqui, Mu Ramkumar, and M. Santosh.
"Landscape response to progressive tectonic and climatic forcing in NW Borneo: Implications for geological and geomorphic controls on flood hazard." *Scientific Reports*7, no. 1 (2017): 457.

Moulin, Adrien, Lucilla Benedetti, Magali Rizza, Petra Jamšek Rupnik, Andrej Gosar, Didier Bourles, Karim Keddadouche et al. "The Dinaric fault system: Large-scale structure, rates of slip, and Plio-Pleistocene evolution of the transpressive northeastern boundary of the Adria microplate." *Tectonics* 35, no. 10 (2016): 2258-2292.

Perron, J. Taylor, and Leigh Royden. "An integral approach to bedrock river profile analysis." *Earth surface processes and landforms* 38, no. 6 (2013): 570-576.

Schwanghart, Wolfgang, and Dirk Scherler. "TopoToolbox 2–MATLAB-based software for topographic analysis and modeling in Earth surface sciences." *Earth Surface Dynamics*2, no. 1 (2014): 1-7.

Struth, Lucía, Emanuele Giachetta, Sean D. Willett, Lewis A. Owen, and Eliseo Tesón. "Quaternary drainage network reorganization in the
Colombian Eastern Cordillera plateau." *Earth Surface Processes and Landforms* 45, no. 8 (2020): 1789-1804.

Szymanski, E., D. F. Stockli, P. R. Johnson, and C. Hager. "Thermochronometric evidence for diffuse extension and two-phase rifting within the
Central Arabian Margin of the Red Sea Rift." *Tectonics* 35, no. 12 (2016): 2863-2895.

Viltres, Renier, Sigurjón Jónsson, Abdulaziz O. Alothman, Shaozhuo Liu, Sylvie Leroy, Frédéric Masson, Cécile Doubre, and Robert Reilinger.
"Present-Day Motion of the Arabian Plate." *Tectonics* 41, no. 3 (2022): e2021TC007013.

- Whipple, K. X., A. M. Forte, R. A. DiBiase, N. M. Gasparini, and W. B. Ouimet. "Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution." *Journal of Geophysical Research: Earth Surface* 122, no. 1 (2017): 248-273.
- Whipple, Kelin X., Roman A. DiBiase, William B. Ouimet, and Adam M. Forte. "Preservation or piracy: Diagnosing low-relief, high-elevation surface formation mechanisms." *Geology* 45, no. 1 (2017): 91-94.
- 298 Whipple, Kelin X., and Gregory E. Tucker. "Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs." *Journal of Geophysical Research: Solid Earth* 104, no. B8 (1999): 17661-17674.
- Willett, Sean D., Scott W. McCoy, J. Taylor Perron, Liran Goren, and Chia-Yu Chen. "Dynamic reorganization of river basins." *Science* 343, no. 6175 (2014): 1248765.
- Xu, Wenbin, Rishabh Dutta, and Sigurjón Jónsson. "Identifying active faults by improving earthquake locations with InSAR data and Bayesian estimation: the 2004 Tabuk (Saudi Arabia) earthquake sequence." *Bulletin of the Seismological Society of America* 105, no. 2A (2015): 765-775.
- Yang, Rong, Sean D. Willett, and Liran Goren. "In situ low-relief landscape formation as a result of river network disruption." *Nature* 520, no. 7548 (2015): 526-529.
- 306
- **307 FIGURE CAPTIONS**
- 308
- 309

312 Figure 1: Synthetic stream profiles that illustrate the approach employed to quantify the uplift recorded by 313 tectonically beheaded valleys. (a) The long profile of a main trunk and its two tributaries, and the total uplift 314 profile caused by slip on a normal fault are plotted against distance along channel. Streams are assumed to 315 obey the stream-power model (Whipple and Tucker, 1999) and be at equilibrium at the time of beheading.

The dotted stream sections are those lost by tectonic beheading. (b) Chi-plots of the same streams after 316 317 beheading. Only the stream sections downstream from the fault are represented. Note how the "convex-up" signal caused by drained area loss is obscured by subsequent tectonic uplift. The circles depict the 318 intersection between the tributaries and the fault, just before beheading, just after beheading, and after the 319 accumulation of tectonic uplift. (c and d) Two corrected chi-plots are represented by assuming different 320 values of lost areas for the two tributaries. The co-tectonic lines rotate depending on the assumed values, and 321 322 their distribution becomes increasingly tangent to the downstream not uplifted section as the assumed values 323 approach the actual one (i.e., when moving from c to d).

324 325

Figure 2: Topographic maps above the stream network beheaded by cumulative displacement on the normal 326 fault of the Wadi-al-Akhdar Graben. (a) Large scale map (30m TanDEM-X) showing the relation between 327 normal faulting (mapped from DEM analysis and field observations) and drainage geometry. The SW-facing 328 escarpment in the lower left corner of the map is the NE edge of the Red Sea Rift. The inset shows the 329 330 across-WAG correlation of catchment limits within the area delineated with a blue line in the main figure (black catchment limits have no equivalent on the NE side of the graben). The values in the inset depict the 331 lost catchment surface (in km²) of valleys V1 and V2 shown in (b). (b) Closer view of the intersection of 332 valleys V1 and V2 with the WAG (2-m-resolution DEM derived from photogrammetry of stereo Pleiades 333 334 images). A and B represent the interpreted lost catchments of V1 and V2. The black dashed line depicts the water-divide of the graben. 335

- 336 337
- 338

Figure 3: Longitudinal profiles of the main stream of catchment A and of V1 on both sides of the WAG. The dashed line represents the initial undeformed profile that would be estimated from the upstream still active section to determine the tectonic uplift recorded by V1. Comparison with Figure 6 shows how this estimation would bias both the magnitude and distribution of the calculated uplift.

Figure 4: Chi-plots of V1, V2, and their downstream trunk computed from a 2-m-resolution DEM, and using
a concavity index (m/n in Equations 1 and 2) of 0.45. Note the absence of a clear "convex-up" signal that
would be expected from the catchment loss. The inset shows the same chi-plots extending downstream, with
the extent of the main figure shown with a dotted box.

³⁸⁵ V1 catchment proportion ³⁸⁶ Figure 5: Determination of the V1 catchment loss proportion $(A_{lost}^{V1}/(A_{lost}^{V1} + A_{lost}^{V2}))$ using the approach ³⁸⁷ depicted in Figures 1c and 1d. The "misfit relative to reference point" is equivalent to the red arrow shown in ³⁸⁸ Figures 1c and 1d. The inset shows the proportion of negative co-tectonic slopes obtained from the analysis ³⁸⁹ as a function of V1 catchment loss proportion, and indicates that proportions lower than 0.5 are not ³⁹⁰ permitted.

- 391
- 392
- 393
- 394
- 395

290

397

 $\frac{\text{Figure 6:}}{\text{Figure 6:}} \text{ Tectonic uplift recorded by V1 and V2 for a range of total loss solutions. All these solutions conform with a V1/(V1+V2) catchment loss proportion of 0.8 as determined from Figure 5. The preferred estimate comes from the two solutions of lowest misfit (Figure 5), which also have a total loss value close to that determined from the actual catchment geometries (inset of Figure 1a).}$