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Abstract

Thousands of people are injured every year from explosive remnants of war which include unexploded ordnance (UXO) and

abandoned ordnance. UXO has negative long-term impacts on livelihoods and ecosystems in contaminated areas. Exact

locations of remaining UXO are often unknown as survey and clearance activities can be dangerous, expensive and time-

consuming. In Vietnam, Lao PDR and Cambodia, about 20% of the land remains contaminated by UXO from the Vietnam

War. Recently declassified historical KH-9 satellite imagery, taken during and immediately after the Vietnam War, now provides

an opportunity to map this remaining contamination. KH-9 imagery was acquired and orthorectified for two study areas in

Southeast Asia. Bomb craters were manually labeled in a subset of the imagery to train convolutional neural networks (CNNs)

for automated crater detection. The CNNs achieved a F1-Score of 0.61 and identified more than 500,000 bomb craters across the

two study areas. The detected craters provided more precise information on the impact locations of bombs than target locations

available from declassified U.S. bombing records. This could allow for a more precise localization of suspected hazardous areas

during non-technical surveys as well as a more fine-grained determination of residual risk of UXO. The method is directly

transferable to other areas in Southeast Asia and is cost-effective due to the low cost of the KH-9 imagery and the use of

open-source software. The results also show the potential of integrating crater detection into data-driven decision making in

mine action across more recent conflicts.
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Key Points: 14 

 We detect bomb craters in declassified Vietnam War-era satellite imagery to understand 15 

remaining unexploded ordnance contamination 16 

 We find that crater appearance differs by location and changes over time which affects 17 

the detection accuracy 18 

 We show that detected craters are more precise than bombing records which can improve 19 

data-driven decision making in mine action 20 
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Abstract 22 

Thousands of people are injured every year from explosive remnants of war which include 23 

unexploded ordnance (UXO) and abandoned ordnance. UXO has negative long-term impacts on 24 

livelihoods and ecosystems in contaminated areas. Exact locations of remaining UXO are often 25 

unknown as survey and clearance activities can be dangerous, expensive and time-consuming. In 26 

Vietnam, Lao PDR and Cambodia, about 20% of the land remains contaminated by UXO from 27 

the Vietnam War. Recently declassified historical KH-9 satellite imagery, taken during and 28 

immediately after the Vietnam War, now provides an opportunity to map this remaining 29 

contamination. KH-9 imagery was acquired and orthorectified for two study areas in Southeast 30 

Asia. Bomb craters were manually labeled in a subset of the imagery to train convolutional 31 

neural networks (CNNs) for automated crater detection. The CNNs achieved a F1-Score of 0.61 32 

and identified more than 500,000 bomb craters across the two study areas. The detected craters 33 

provided more precise information on the impact locations of bombs than target locations 34 

available from declassified U.S. bombing records. This could allow for a more precise 35 

localization of suspected hazardous areas during non-technical surveys as well as a more fine-36 

grained determination of residual risk of UXO. The method is directly transferable to other areas 37 

in Southeast Asia and is cost-effective due to the low cost of the KH-9 imagery and the use of 38 

open-source software. The results also show the potential of integrating crater detection into 39 

data-driven decision making in mine action across more recent conflicts. 40 

 41 

Plain Language Summary 42 

Every year, thousands of people are injured or killed by unexploded weapons from previous 43 

wars. In Vietnam, Lao PDR and Cambodia, unexploded bombs from the Vietnam War remain in 44 

about 20% of the land. Clearing this area is expensive and could take decades, requiring 45 

prioritization and risk management. To identify the most affected areas, we used machine 46 

learning methods to find bomb craters in satellite images within two study areas. As bomb 47 

craters often change appearance or completely disappear over time, making them difficult to 48 

detect in today's satellite images, we used recently declassified U.S. satellite images, taken 49 

during the Vietnam War. We found that the detected crater locations are more precise than target 50 

locations from bombing records, as they show where the bombs actually exploded, which we 51 
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found can be kilometers away from their recorded targets. Although the presence of bomb craters 52 

means that the corresponding bombs exploded, any unexploded bombs from the same bomb 53 

strike are likely to be located nearby. Detected crater locations can therefore be used to more 54 

precisely define the areas where unexploded bombs are suspected to remain, which can help to 55 

make subsequent clearance activities more efficient and risk management more reliable. 56 

1 Introduction 57 

Unexploded ordnance (UXO) refers to explosive munitions, including bombs, artillery 58 

projectiles and cluster submunitions that have been deployed during military conflicts but did not 59 

explode. UXO continues to present significant humanitarian and environmental challenges. In 60 

2022 alone, the United Nations Mine Action Service (UNMAS) reported more than 3,000 61 

casualties from explosive remnants of war, which include UXO and abandoned explosive 62 

ordnance, across 15 countries and numbers of UXO are increasing due to ongoing conflicts such 63 

as in Ukraine (Cluster Munition Coalition, 2023; UNMAS, 2019). UXO has negative long-term 64 

impacts on public health, livelihoods and ecosystems in contaminated areas (Frost et al., 2017; 65 

Hofmann & Juergensen, 2017; E. Lin et al., 2020; Nguyen, 2020; Ounmany & Andriesse, 2018). 66 

Moreover, the removal of UXO remains technically challenging, expensive and hazardous, 67 

particularly in conflict and post-conflict environments where access to reliable data on 68 

contamination is limited. 69 

  70 

Mainland Southeast Asia has one of the highest UXO contamination rates in the world, mainly 71 

originating from the aerial bombardment by the U.S. military during the Vietnam War, also 72 

known as the American War in Vietnam or the Second Indochina War which took place between 73 

1955 and 1975 (Martin et al., 2019). During the war, the U.S. Air Force dropped approximately 74 

eight million tons of bombs on the countries of Vietnam, Cambodia and Lao PDR (Anderson, 75 

2002; High et al., 2013). Today, about 20% of the land in these countries is thought to still be 76 

contaminated by UXO (Martin et al., 2019). However, the exact locations and extents of 77 

contaminated areas mostly remain unknown, despite being essential for an efficient allocation of 78 

limited resources for UXO clearance. Non-technical survey is commonly used as a first step to 79 

identify contaminated land and categorize it into suspected or confirmed hazardous areas. This 80 

approach relies on the collection and analysis of all available data about possible explosive 81 
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ordnance contamination in an area, including historical records such as locations of army bases, 82 

battle areas and bombing targets. As it is cheaper than technical survey and clearance, which rely 83 

on expensive technical assets to be deployed to the field, an accurate non-technical survey can 84 

ensure the most efficient allocation of limited resources (Bold & Avenell, 2021; E. Lin et al., 85 

2020; UNMAS, 2019). 86 

 87 

U.S. bombing records are one of the most comprehensive data sources used for non-technical 88 

survey in Southeast Asia. In 2016, the United States Department of Defense released these 89 

records to the public as part of the Theater History of Operations (THOR) data, an attempt to 90 

record all air operations by the United States since World War I. The THOR data includes the 91 

geographical coordinates of target locations, the type and number of weapons dropped on each 92 

target and the time of the attack. The bombing records have been a valuable data source for non-93 

technical surveys (Bold & Avenell, 2021) and for research into the political, economic and health 94 

impacts of the Vietnam War (D. T. Le et al., 2022; K. Le & Nguyen, 2020; Yamada & Yamada, 95 

2021). However, High et al. (2013) suggest the bombing data should only be used as one source 96 

among many, after identifying multiple issues, including missing, corrupted and actively falsified 97 

records. An overview of THOR bombing targets in Southeast Asia during the Vietnam War is 98 

shown in Figure 1a. 99 

 100 

Remote sensing data can provide a valuable alternative data source where bombing records are 101 

unavailable or inaccurate (Bennett et al., 2022). Lin et al. (2020) used recent, very high 102 

resolution (< 1 m) satellite imagery to detect bomb craters from the Vietnam War in Cambodian 103 

agricultural land. However, detecting bomb craters from past conflicts in more recent satellite 104 

images can be challenging as the appearance of bomb craters changes over time due to erosion, 105 

vegetation growth and human intervention (E. Lin et al., 2020). Historical aerial wartime 106 

imagery has been used as an alternative to detect and analyze World War II bomb craters in 107 

Europe (Clermont et al., 2019; Kruse et al., 2019; Waga et al., 2022), but its availability is often 108 

restricted to small areas. Declassified historical U.S. satellite imagery (USGS EROS Center, 109 

2018), taken during and immediately after the Vietnam War, now presents an opportunity to 110 

overcome some of these challenges. The KH-4a/b CORONA missions provide high resolution 111 

imagery (1.8-2.8 m) between 1963 and 1972 which, since its declassification in 1995, has been 112 
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used in a variety of applications that range from the discovery of archaeological sites to land 113 

cover change detection (Deshpande et al., 2021; Lasaponara et al., 2018; Nita et al., 2018). 114 

Recently, it was used to classify land affected by bombing in a part of Quang Tri province, 115 

Vietnam (Munteanu et al., 2024). The KH-9 HEXAGON stereo-panoramic imagery provides 116 

almost complete coverage of the Earth’s land area between 1971 and 1984 at a spatial resolution 117 

of 0.6-1.2 m. Due to its recent declassification in 2011 and the technical challenges associated 118 

with orthorectifying the imagery (Zhou et al., 2021), researchers have only recently begun to 119 

explore its use in a diverse range of applications such as archaeology (Hammer et al., 2022) and 120 

glaciology (Ghuffar et al., 2023). 121 

 122 

Previous studies on the automatic detection and counting of bomb craters in remotely sensed 123 

imagery have relied on methods developed for detecting extra-terrestrial craters on planetary 124 

surfaces (Clermont et al., 2019; E. Lin et al., 2020). In this field, convolutional neural networks 125 

(CNNs) are increasingly replacing applications that rely on the extraction of manually specified 126 

features such as crater shape and shadows. U-Nets, a type of CNN architecture originally 127 

developed for segmenting medical imagery (Ronneberger et al., 2015), have been successfully 128 

applied to segment extra-terrestrial craters (Chen et al., 2023; Silburt et al., 2019) and more 129 

recently to detect artillery craters in Ukraine (Duncan et al., 2023). To achieve instance 130 

segmentation, a method for identifying individual instances of an object, methods are often 131 

adjusted by introducing a boundary class (Duncan et al., 2023) or by using template matching on 132 

the semantic segmentation product (Chen et al., 2023; Silburt et al., 2019). 133 

 134 

Our study was structured in the following way. First, we acquired KH-9 imagery for two study 135 

areas in Southeast Asia and orthorectified the imagery using open-source tools. We manually 136 

labeled craters on a subset of the imagery and categorized them based on their appearance. To 137 

automate crater detection, we used an instance segmentation workflow using CNNs with a U-Net 138 

architecture. We then analyzed how the model performance varies for different crater 139 

appearances. Finally, we compared detected crater locations to U.S. bombing records, identifying 140 

multiple issues with the bombing records in the process. Our results show that craters visible in 141 

the KH-9 imagery provide more precise information about where bombs landed than currently 142 

used bombing records. Additionally, our findings demonstrate how methods to automatically 143 
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detect these craters can improve data-driven decision making within the mine action sector in 144 

Southeast Asia. 145 

2 Materials and Methods 146 

2.1 Study areas 147 

Two study areas across Southeast Asia were selected (Figure 1). The first study area covers a 148 

total of 4,148 km
2
 of Quang Tri (QT) province, the most heavily bombed province in Vietnam 149 

during the war (Miguel & Roland, 2011), as it contained the 17
th

 parallel, the dividing line 150 

between North and South Vietnam at the time. The second study area, here referred to as the tri-151 

border area (TBA), is located around the meeting point of the borders of Vietnam, Lao PDR, and 152 

Cambodia. Encompassing 17,285 km
2
 of predominantly mountainous and densely vegetated 153 

land, the TBA contained sections of the Ho Chi Minh Trail, the principal supply route for the 154 

North Vietnamese Army, including a vital entry point of the trail into South Vietnam in Kon 155 

Tum province. The KH-9 images were taken on November 4, 1972 (TBA) and on March 20, 156 

1973 (QT province). 157 
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 158 

2.2 Processing the KH-9 imagery 159 

A total of 20 KH-9 images, forming 10 stereo pairs of forward and aft looking cameras, were 160 

used for the study. The U.S. Geological Survey provided photogrammetric film scans of the 161 

archived KH-9 film sources at a resolution of 7 microns and a cost of 30$ per image. Previously 162 

digitized images, now including all images used in this study, are available at no cost via the 163 

Earth Explorer platform.  164 

 165 

Figure 1. (a) THOR bombing targets over Southeast Asia during the Vietnam War. (b) and (c) show the two study areas, 

including points of interest during the war. The cities of Dong Ha, Quang Tri, Dak To and Kon Tum were locations of larger 

military bases whereas Khe Sanh, Dak Seang and Ben Het contained smaller military camps. 
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The film scans were provided in multiple sections and were not georeferenced. The open-source 166 

Nasa Ames Stereo Pipeline (ASP) (Beyer et al., 2021) was used to process and orthorectify the 167 

imagery. The ASP implements a rigorous camera model including motion compensation (Sohn 168 

et al., 2004) for the panoramic cameras used by the KH-9 satellites. We adapted the example 169 

workflow described in section 8.26 of the ASP manual (Beyer et al., 2021), as we integrated 170 

manual ground control points (GCPs) to improve accuracy. 171 

 172 

First, image parts were stitched together and cropped to the image extent using the 173 

image_mosaic and historical_helper tools in ASP. QGIS (QGIS Association, 2023) and Google 174 

Earth imagery were used to identify approximately 15 ground control points (GCPs) per image. 175 

The GCPs were used to initialize intrinsic and extrinsic camera parameters which were further 176 

optimized using a joint bundle adjustment for each stereo pair. The optimized camera parameters 177 

were used to project each image onto a digital elevation model (NASA Shuttle Radar 178 

Topography Mission (SRTM), 2013) at a resolution of one meter per pixel using the mapproject 179 

tool in ASP.  180 

 181 

The resulting images were cropped to the study areas introduced in Section 2.1. The QT imagery 182 

was mosaicked into one image, while the TBA images, being larger in size, were not mosaicked. 183 

A further 60 validation GCPs (QT province: 20, TBA: 40) were collected for validation of the 184 

orthorectification process and showed a mean absolute horizontal error of 7.0 m (25
th

 percentile: 185 

3.4 m, median: 5.8 m, 75
th

 percentile: 8.8 m) for QT province and 17.5 m (25
th

 percentile: 8.6 m, 186 

median: 13.7 m, 75
th

 percentile: 21.4 m) for the TBA.  187 

2.3. Labeling of bomb craters 188 

The processed KH-9 imagery was divided into image tiles with a width and height of 256 pixels. 189 

From the QT imagery, 1,000 random image tiles were chosen and divided into sets of 600 for 190 

training, 200 for validation, and 200 for testing. From the TBA imagery, 1,400 tiles were 191 

selected, with 600 allocated for training, 200 for validation, and 600 for testing. The decision to 192 

increase the number of test tiles for the TBA was driven by its lower density of bomb craters, 193 

aiming to ensure a more representative test score. 194 

 195 
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Craters visible in the selected image tiles were manually labeled if they were larger than 25 196 

pixels (equivalent to 25 m
2
). Smaller ground features were excluded as they were difficult to 197 

reliably identify given the image resolution and quality. The threshold of 25 pixels was selected 198 

based on visual inspection. Each labeled crater was assigned one of five classes based on its 199 

appearance in the imagery which varied substantially (Figure 2). 200 

 201 

Labeling proved particularly challenging in mountainous areas with heavy vegetation and in 202 

areas featuring houses, trees or graves that could resemble craters in the imagery. Where 203 

necessary, the context visible in the KH-9 and current satellite imagery was used to make a 204 

better-informed decision. Notably, the crater prevalence was much lower for the TBA where 964 205 

craters were identified compared to 10,132 craters in QT province. Additional details on the 206 

crater labeling and the different crater classes are provided in the Supplementary Materials. 207 

 208 

Figure 2. (a) Different crater types defined based on their appearance characteristics in the KH-9 imagery. (b) Examples of the 209 
crater types in context for an area in Quang Tri province. 210 

 211 

2.4. Detection of bomb craters 212 

An instance segmentation workflow was used to predict individual craters in the imagery. The 213 

instance segmentation was implemented as a semantic segmentation problem by adding a 214 

boundary class, an approach commonly used in biomedical applications such as nucleus 215 
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segmentation (Caicedo et al., 2019), where large amounts of densely packed objects have to be 216 

separated. For this approach, the area of each labeled crater was expanded by two pixels which 217 

were assigned to the new boundary class. All crater pixels that were touching neighboring craters 218 

were also labeled as boundary pixels. 219 

2.4.1. Neural network architecture and training 220 

A U-Net with a Resnet50 backbone, pre-trained on the Imagenet dataset, was used for the 221 

segmentation (Deng et al., 2009; He et al., 2015; Ronneberger et al., 2015). While multiple 222 

improvements to the standard U-Net architecture have been suggested, in most settings they only 223 

lead to minor or no accuracy improvements at a larger computational cost (Gut et al., 2022; 224 

Kugelman et al., 2022; Wang & Miao, 2022). Therefore, instead of comparing different model 225 

architectures, the analysis in this paper focuses on different bomb crater appearances, which have 226 

a large impact on model accuracy, and the comparison of detected craters with historical 227 

bombing records. 228 

 229 

The model was implemented using the pytorch and segmentation_models_pytorch packages in 230 

Python (Iakubovskii, 2019; Paszke et al., 2019). An initial model was trained using data from 231 

both study areas before the model was fine-tuned for each study area independently, using only 232 

the training data for the respective study area. Min-max scaling was applied to individual image 233 

tiles. During model training, the images were augmented by applying random vertical and 234 

horizontal flips as well as random brightness and contrast adjustments. As the pre-trained model 235 

expected color images with three channels as input, whereas the KH-9 images are grayscale with 236 

a single channel, an additional layer was added in front of the pre-trained model to map from one 237 

to three channels. 238 

 239 

The models were trained on a Nvidia RTX 2060 GPU using an Adam optimizer (Kingma & Ba, 240 

2014) and a focal loss function (T.-Y. Lin et al., 2017), which assigned more weight to training 241 

examples that were not well classified. Focal loss has been shown to work well for imbalanced 242 

data (T.-Y. Lin et al., 2017; Mulyanto et al., 2021) which was a problem here as more than 99% 243 

of all labeled pixels were background pixels. A focal loss alpha value of 1 was used for the 244 

background class and 3 for all other classes based on the model performance on the validation 245 

images. A batch size of 8 and a learning rate of 1e-3 was used during initial model training and 246 
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the learning rate was reduced to 1e-5 for the fine-tuning of each study area. Early stopping was 247 

used to stop model training if the validation loss did not decrease for 50 epochs in a row. 248 

2.4.2. Semantic segmentation evaluation 249 

The segmentation results were evaluated using a pixel-to-pixel comparison on the test images. 250 

We used precision, recall and F1-score which are commonly applied in settings of class 251 

imbalance and which are defined as: 252 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 #(1)  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 #(2)  

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 , #(3)  

where TP denotes true positives, FN denotes false negatives and FP denotes false positives. We 253 

calculated these metrics for each individual crater class, and additionally calculated one 254 

combined score that only considers whether a pixel had been correctly identified as a crater 255 

pixel, even if the crater class of predicted and labeled pixels differed. 256 

2.4.3. Instance segmentation 257 

Multiple post-processing steps are applied to transform the semantic segmentation output into 258 

individual crater instances (Figure 3). Connected crater pixels were considered as one crater 259 

instance even if they belonged to different crater classes. Pixels of class Boundary were treated 260 

as background pixels at this stage. Each predicted crater instance was assigned the majority class 261 

of its pixels. All predicted crater instances smaller than 25 pixels were removed. 262 
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 263 

Figure 3. Crater prediction and post-processing workflow. 264 

 265 

The accuracy of crater instances was evaluated using the metrics described in Section 2.4.2. A 266 

predicted crater (A) was considered correct if it had an Intersection over Union (IoU) of 0.5 or 267 

more with a labeled crater (B), where IoU is defined as: 268 

𝐼𝑜𝑈(𝐴, 𝐵) =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
 . #(4)  

Accuracy scores were calculated for each individual crater type and for a combined crater class 269 

that only considered whether a crater instance had been correctly identified even if the crater 270 

class of the predicted and labeled craters differed. 271 

2.4.4. Model prediction 272 

The trained models were applied to the entire study areas using a sliding window approach with 273 

an overlap of 64 pixels. Only the center 192×192 pixels of each predicted 256×256 image tile 274 

were retained to avoid artefacts and improve performance at tile edges. When identifying 275 

individual crater instances on the predicted segmentation masks the tile size of 1024×1024 with 276 

an overlap of 512 pixels was used to avoid mistakenly separating large craters that crossed one or 277 

more image tiles. As the images, and therefore crater predictions, in the second study area were 278 

overlapping, we only kept predicted craters of one of the images in these overlapping areas. This 279 

was not necessary for QT province, where the KH-9 images were mosaicked before crater 280 

detection, resulting in the same outcome.  281 
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2.5. THOR bombing data 282 

We identified multiple issues with the THOR bombing data, including (1) coordinates being 283 

labeled as using the WGS84 datum while our analysis suggested they were provided in the 284 

Indian 1960 datum; (2) double counting of B-52 bombing missions from 1971 onwards; (3) 285 

wrongly assigned mission functions resulting in wrongly assigned kinetic and non-kinetic 286 

mission classifications; and (4) missing weapon types for a large proportion of the records. We 287 

corrected the THOR records to the best of our knowledge to make them usable for the purpose of 288 

our research, which compared the bombing on a large scale, but note that some limitations and 289 

uncertainty remain. Details of the identified issues and applied corrections, including checks to 290 

the robustness of our results based on alternative processing, are provided in the Supplementary 291 

Material. 292 

 293 

The analysis was limited to large aircraft bombs which would result in craters larger than 25 m
2
. 294 

All records of bombing that occurred after the respective KH-9 images were taken were dropped. 295 

The resulting records are referred to as total bombing. The data were further split into (1) bombs 296 

dropped within the year before the respective KH-9 images were taken (previous year bombing) 297 

and (2) bombs dropped more than a year before the imagery was taken (bombing before previous 298 

year). The resulting numbers of bombs dropped were directly compared to the number of 299 

detected craters in each study area. Additionally, aggregated counts of detected craters and 300 

bombs dropped for grid cells of various cell sizes between 100 m and 4 km were compared using 301 

the Spearman correlation coefficient r (Schober et al., 2018). To allow for a direct comparison 302 

between the number of detected craters and the number of bombs dropped during previous year 303 

bombing, excluding the influence of older craters, a distinct analysis was undertaken. This 304 

analysis focused on grid cells (2 km × 2 km) within QT province, where previous year bombing 305 

constituted at least 90% of total bombing. 306 

 307 

3 Results and Discussion 308 

3.1. Model evaluation 309 

The trained models achieved an F1-Score of 0.61 (precision: 0.67, recall: 0.56) when predicting 310 

craters of all types across the test sets and predicted a total of 541,398 craters (QT: 442,157, 311 

TBA: 99,241) across the full study areas (Figure 4). The model performance differed between 312 
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the two study areas with an F1-Score of 0.64 for QT province and 0.44 for the TBA (Table 1). 313 

We present detailed metrics by study area and crater types in Table 1. Most of the predicted 314 

craters were of type Pattern (QT: 229,467, TBA: 67,985), Rim (QT: 91,112, TBA: 9,995) and 315 

Crescent (QT: 71,364, TBA: 16,836). The model only predicted a small number of craters of 316 

type Group (QT: 9,645, TBA: 46) and Bowl (QT: 40,569, TBA: 4,379). Figure 5 shows the 317 

detected crater locations by crater type for the QT study area. 318 

Table 1. Bomb crater detection results showing F1-score (precision/recall) and the number of labeled craters N in the test data. 319 
For the Craters category, all crater classes are considered as one combined crater class. 320 

 Craters Pattern Rim Group Crescent Bowl Boundary Background 

Quang Tri         

Pixels 

 

0.65  

(0.70/0.61) 

 

0.63  

(0.62/0.64) 

0.59 

(0.60/0.58) 

0.13 

(0.45/0.07) 

0.35 

(0.31/0.40) 

0.27 

(0.35/0.22) 

0.45 

(0.44/0.46) 

0.99 

(0.99/0.99) 

Craters (IOU > 0.5) 
0.64 

(0.68/0.60) 

N=1712 

0.70 

(0.68/0.73) 

N=748 

0.55 

(0.58/0.52) 

N=449 

0.07 

(0.33/0.04) 

N=247 

0.30 

(0.25/0.37) 

N=111 

0.24 

(0.30/0.20) 

N=157 

- - 

Tri-border area         

Pixels 0.41 

(0.61/0.31) 

0.53 

(0.56/0.50) 

0.38 

(0.67/0.27) 

0.00 

(0.00/0.00) 

0.17 

(0.21/0.14) 

0.06 

(0.47/0.03) 

0.29 

(0.39/0.23) 

1.00 

(1.00/1.00) 

Craters (IOU > 0.5) 
0.44 

(0.59/0.35) 

N=314 

0.58 

(0.59/0.57) 

N=142 

0.37 

(0.64/0.26) 

N=54 

0.00 

(0.00/0.00) 

N=15 

0.20 

(0.25/0.17) 

N=36 

0.03 

(0.20/0.02) 

N=67 

- - 
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 322 

Figure 4. Comparison of predicted bomb craters (blue) and THOR bombing targets (red) during the year preceding the KH-9 323 
image acquisition in Quang Tri province. (a) shows a high density of bomb craters and bombs dropped close to Quang Tri city. 324 
(b) shows multiple lines of bomb craters matching B-52 bombing targets recorded in THOR. (c) shows an area with large 325 
amounts of craters but little bombing during the year before the KH-9 images were taken, indicating the craters originated from 326 
earlier in the war. 327 

 328 

3.1.1. Model performance across study areas 329 

The difference in F1-Scores for the two study areas is likely partly due to the lower prevalence of 330 

craters in the TBA where only 1 in 1434 pixels were crater pixels compared to 1 in 90 for QT 331 

province. The lower prevalence results in a smaller number of labeled craters and a higher 332 

influence of every false positive crater prediction on the evaluation metrics, which has been 333 

identified as a challenge in previous research on bomb crater detection (Clermont et al., 2019; 334 

Lin et al., 2020). As a random sample of images was used in each study area, the test data had a 335 

realistic class distribution, and the results for the TBA reflect the difficulty of predicting bomb 336 

craters over large, mostly unaffected areas. Further, land cover can influence the accuracy of 337 

predictions; in the TBA, land cover mostly consisted of heavily vegetated land and mountainous 338 
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terrain, with only small amounts of agricultural land in which bomb craters are generally easier 339 

to identify and segment (Duncan et al., 2023).  340 

3.1.2. Model performance across crater types 341 

Model performance varied between the different crater types (Table 1), with higher F1-scores for 342 

craters of type Pattern and Rim compared with Group, Crescent and Bowl. This could be 343 

attributed to the lower prevalence for these crater types, resulting in fewer training data for the 344 

model to learn from especially in the TBA imagery, which is why we focus the rest of the 345 

discussion of crater types on the results for QT province.  346 

 347 

 348 

Figure 5. Predicted craters by crater class in Quang Tri province. The total number of detected craters N is provided for each 349 
class. There is a clear difference in the distribution of the crater classes. Rim and Bowl craters were mostly located in the paddy 350 
fields closer to the coast, where the Rim craters seem to match better with previous year bombing. Group craters were rare and 351 
only predicted in very specific locations that have seen the heaviest bombing. Pattern and Crescent craters were spread across 352 
the whole study area. 353 

 354 

Visual inspection and the pixel level accuracy assessment highlighted that the model detected 355 

Group craters in the correct areas (Figure 5). However, the model did not accurately separate 356 

individual crater instances, a challenge that we also encountered during crater labeling. One way 357 

to address this could be to use an area-based approach that treats overlapping craters as one 358 
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object and uses the total covered area instead of the crater count as a metric. Crescent craters 359 

were often located in areas with steep slopes and dense vegetation which meant that the 360 

appearance of these craters varied substantially, making reliable labeling difficult. Bowl craters 361 

were often old craters that had eroded and blended into the surroundings, which made labeling 362 

and detection challenging. These craters often occurred along rivers and canals where they were 363 

filled with water and only visible as dark circular blobs that could be confused with other ground 364 

features like trees. Therefore, Crescent or Bowl craters would be easier to detect in images taken 365 

closer to the date of the bombing. 366 

3.2. Comparison of detected bomb craters with THOR bombing data 367 

The THOR bombing records show that around 1 million bombs (QT: 654,730, TBA: 321,504) 368 

were dropped across the two study areas during the year preceding the KH-9 image acquisition 369 

(previous year bombing) and more than 3 million bombs (QT: 2.23 million, TBA: 1.13 million) 370 

during the entire conflict before the respective KH-9 images were taken (total bombing). 371 

Comparisons between detected craters and number of dropped bombs over grid cells of 2 km  2 372 

km (Table 2) indicated that craters were positively correlated with previous year bombing (QT: r 373 

=0.76, TBA: r =0.51) and total bombing (QT: r =0.58, TBA: r =0.51) and correlation coefficients 374 

increased with grid cell size (Figure 6).  375 

 376 

A visual comparison showed that detected craters were located close to THOR target locations 377 

and were often organized in lines of craters characteristic for the B-52 bombing strikes (Figure 378 

4). The predicted crater locations are overlayed with aggregated bombing data for QT province 379 

(grid size: 2 km  2) and the TBA (grid size: 4 km  4 km) in Figure 7. In grid cells in QT 380 

province for which more than 90% of total bombing happened during the year before KH-9 381 

image acquisition, the model detected a total of 157,846 craters, accounting for 46% of the 382 

344,135 bombs dropped during previous year bombing (44% of total bombing). 383 

 384 
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Table 2. Spearman correlation coefficients between detected craters and number of bombs dropped (THOR) aggregated across 385 
grid cells of 2 km × 2km. For the Craters category detected craters of all crater classes were aggregated. 386 

 Craters Pattern Rim Group Crescent Bowl 

Number of 

bombs 

dropped 

Quang Tri        

Previous year bombing 
 

0.76 

 

0.74 0.78 0.68 0.52 0.62 654,730 

Total bombing 0.58 0.55 0.46 0.33 0.61 0.41 2,232,280 

Number of detected craters 442,157 229,467 91,112 9,645 71,364 40,569 - 

Tri-border area        

Previous year bombing 0.51 0.52 0.42 0.11 0.47 0.34 321,504 

Total bombing 0.51 0.51 0.40 0.09 0.44 0.34 1,133,025 

Number of detected craters 99,241 67,985 9,995 46 16,836 4,379 - 

 387 

 388 

Figure 6. Spearman correlations of the aggregated number of detected craters against bombs dropped (THOR) within grid cells 389 
of multiple sizes. 390 

 391 

3.2.1. Spatial precision 392 

Craters identified in the KH-9 imagery can offer more precise information about potential UXO 393 

locations compared to the THOR data. While each THOR record is confined to a single target 394 

location, it can encompass tens or hundreds of dropped bombs. Figure 8, depicting three target 395 

locations of B-52 bombing missions, shows resulting craters spanning several kilometers. Only 396 
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few of these craters lie within a hundred-meter radius of the target location which explains the 397 

low correlations between detected craters and dropped bombs for smaller grid sizes (Figure 6). In 398 

the instance illustrated in Figure 8, our estimation indicates that identifying the impact crater 399 

locations from the B-52 bomb strikes reduces the potential area for locating unexploded bombs 400 

from those strikes to about 9% of the area derived from the THOR target locations alone, as 401 

unexploded bombs are likely to be located near the lines of craters. 402 

 403 

Moreover, the KH-9 imagery can be useful to identify and correct errors in the THOR data. The 404 

imagery in Figure 8 revealed a discrepancy with the THOR data, where no nearby craters were 405 

visible for one target location. According to the THOR records, this mission had been diverted 406 

with some bombs supposedly dropped on the target visible in Figure 8 and the remainder on a 407 

second target. However, the KH-9 imagery suggests it is more likely that all bombs were 408 

dropped at the second target and none at the first. This highlights the advantages of having 409 

multiple independent data sources that can be cross-referenced for a more thorough analysis. 410 

 411 
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 412 
Figure 7. Comparison of predicted bomb craters (blue) and THOR bombs dropped (red) aggregated across grid cells of 2 km × 413 

2 km for Quang Tri province and 4 km × 4 km for the tri-border area. Bombs dropped during the year preceding the KH-9 414 
image acquisition are shown in (a) and (b) whereas (c) and (d) show all bombing that happened more than a year before the 415 
image acquisition. 416 

 417 

3.2.2. Temporal analysis 418 

Bomb craters can become increasingly difficult to detect from space over time. In Southeast 419 

Asia, with its dense rainforests and regular flooding, craters can quickly become covered up by 420 

vegetation, deformed by erosion or filled up by humans (E. Lin et al., 2020). Our analysis 421 

underscores that these effects impact detection results even after short periods of time, not only 422 

limiting the utility of current satellite imagery but emphasizing the need for additional imagery 423 

taken during the earlier stages of the war. 424 

 425 
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Our models detected a high concentration of craters near the cities of Quang Tri and Kon Tum, 426 

which were subject to heavy bombing during the year preceding the KH-9 image acquisition. 427 

Comparatively fewer craters were detected in areas targeted earlier during the war (Figure 7). 428 

This is reflected by a higher correlation of detected craters with previous year bombing 429 

compared to total bombing in QT province, albeit not for the TBA (Table 2). Notably, we 430 

encountered challenges labeling and detecting partly eroded craters formed by bombs dropped 431 

earlier in the war, which we associated with the crater types Bowl and Crescent. To mitigate this 432 

bias towards areas bombed later in the war, we propose the use of the CORONA imagery 433 

captured during the earlier phases of the conflict (Munteanu et al., 2024). 434 

 435 

 436 

Figure 8. KH-9 imagery for an area in Kon Tum province showing three target locations of B-52 bombing missions that occurred 437 
during the month preceding the image acquisition. Overlayed on the imagery are estimated risk areas, delineating areas where 438 
unexploded bombs resulting from the bombing strikes could be located. These risk zones were determined by a 2.5 km radius 439 
around the THOR target locations (red) and rectangles drawn around the visible impact craters (blue). 440 

 441 

Even in cases where bombings occurred near the time of image acquisition, not every dropped 442 

bomb recorded in THOR resulted in a crater detected by our model. In areas in QT province 443 

where bombing almost exclusively happened in the year before image acquisition, our model 444 

detected 150,895 craters, equivalent to 46% of bombs dropped that year. Several factors 445 

contribute to the lower number of detected craters, including: (1) bombs that left no craters, 446 
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either because they exploded on water or failed to explode altogether; (2) craters that initially 447 

formed but vanished within less than a year due to human activities, natural events like 448 

landslides or consecutive bombing of the same location; (3) craters that were obscured in the 449 

imagery by clouds, vegetation, or flooding; and (4) craters that were visible in the imagery but 450 

not detected by our models. 451 

 452 

While some of these limitations can be addressed, many are inherent to the approach. However, 453 

their impacts can be mitigated if they are recognized and dealt with correctly. Typically, 454 

bombing strikes involved dropping numerous bombs on a single target, and identifying half of 455 

the resulting craters can provide a sufficiently accurate representation of the affected area. The 456 

main challenge lies in recognizing and compensating for factors that introduce bias, such as 457 

crater visibility and model performance variations across different soil and land cover types. 458 

Further research is needed to investigate these factors and should incorporate multiple data 459 

sources including the THOR bombing data, historical land cover maps and confirmed locations 460 

of UXO. 461 

3.3. Implications for mine action 462 

The use of KH-9 imagery and derived crater locations could offer significant advantages to the 463 

mine action sector in Southeast Asia, extending beyond the capabilities of existing data sources 464 

used for non-technical surveys. Notably, our analysis revealed shortcomings of the THOR 465 

bombing data, emphasizing its lower precision compared to the detected crater locations. 466 

Additionally, the THOR data excludes weapons used by ground forces on both sides, such as 467 

artillery projectiles. Reports from local population carry a subjective element and are susceptible 468 

to recall bias, particularly when recounting events that happened 50 years ago. Additionally, their 469 

utility may be limited in previously unpopulated areas or where significant population shifts have 470 

happened since the war. Similarly, visual observations of UXO are invariably biased towards 471 

more populated areas. In contrast, the KH-9 imagery offers a more objective perspective, 472 

presenting an opportunity to address and overcome some of these challenges. 473 

 474 

Despite the discussed benefits, the KH-9 imagery comes with its own biases and limitations. Due 475 

to their danger, mine action in Southeast Asia focuses on contamination with cluster 476 

submunitions which are only about the size of a tennis ball (McCosker et al., 2020). While 477 
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patterns of smaller craters, that might be linked to artillery fire or cluster bomb strikes, were 478 

visible in certain areas of the imagery, these craters would have been too small to be detected by 479 

our models. However, even where impact craters are not directly visible in the KH-9 imagery, 480 

the presence of other objects, such as larger craters or military infrastructure, could be indicators 481 

for the presence of cluster submunitions. More research is needed to explore this possibility and 482 

should make use of existing clearance data. Additionally, despite the current focus on cluster 483 

submunitions, there are increasing efforts to understand and manage the residual risk from other 484 

weapon types (Stauffer & Mestre, 2020). The number of craters, as detected by our models, 485 

could be a valuable indicator to help determine the residual risk level for an area at a more fine-486 

grained level than would be possible using only the bombing records. 487 

 488 

One of the key strengths of the KH-9 imagery lies in its cost-effectiveness and ease of integration 489 

into existing workflows. Each image, covering a large area, only costs $30 on first request and 490 

previously requested images are freely available. The main limitation is the additional processing 491 

needed to orthorectify the images, including the time-consuming manual creation of ground 492 

control points. However, as demonstrated in our research, open-source tools can be used for this 493 

processing which reduces the cost. Products derived from our analysis can easily be integrated 494 

into existing mine action tools through imagery base layers for the KH-9 imagery and risk maps 495 

derived from detected bomb craters. The availability of the imagery for large parts of Southeast 496 

Asia makes it a useful tool for detailed analysis at both large (Figure 7) and small (Figure 8) 497 

scales. 498 

3.4. Implications for sustainable development 499 

Our work is directly aligned with Goal 16.1 of the Sustainable Development Goals (SDGs), 500 

which aims to "significantly reduce all forms of violence and related death rates everywhere". 501 

Additionally, mine action has been shown to have a direct impact on 12 out of the 17 SDGs 502 

(Hofmann & Juergensen, 2017). Notably, Lao PDR and Cambodia went as far as introducing an 503 

18
th

 SDG that specifically addresses the legacy of unexploded ordnance. The craters detected in 504 

this study allow for a detailed analysis of the impact of bombing on post-conflict land-use 505 

changes, which have previously been linked to deforestation (SDG 13, SDG 15), reduced 506 

agricultural productivity (SDG 2) and hindered infrastructure development (SDG 1, SDG 9, SDG 507 
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11) (Clerici et al., 2020; E. Lin, 2022; Martin et al., 2019; Munteanu et al., 2024; Ounmany & 508 

Andriesse, 2018).  509 

  510 

In addition to supporting mine action, our work extends to other domains. While bomb craters 511 

have been identified as biodiversity hotspots (SDG 15) (Vad et al., 2017), they could also present 512 

potential public health hazards (SDG 3), as the stagnant water they collect can become breeding 513 

sites for mosquito larvae (Wimberly et al., 2021). Moreover, sediment buildup within these 514 

craters may contain concentrated levels of dioxins from herbicide spraying during the Vietnam 515 

War, posing a risk to individuals (SDG 3), particularly when the craters are repurposed as fish 516 

ponds (Olson & Morton, 2019). Bomb craters have been shown to alter hydrology and soil 517 

development in affected areas (Certini et al., 2013; Hupy & Koehler, 2012; Kiernan, 2015), but it 518 

remains unclear whether this could relate to the prevalence of landslides and flooding (SDG 13, 519 

SDG 15). More research is needed to understand these effects, and the bomb crater locations 520 

identified in this study could serve as a valuable resource for such investigations. 521 

4 Conclusions 522 

The presence of UXO in Vietnam, Lao PDR, and Cambodia continues to pose a significant threat 523 

to both public health and economic development. However, due to the expense and time required 524 

for detailed surveys, the exact locations of UXO often remain unknown. This study developed a 525 

workflow to orthorectify and automatically detect bomb craters in the declassified KH-9 526 

imagery. The models achieved an overall F1-Score of 0.61 and predicted more than 500,000 527 

bomb craters across the two study areas. The results demonstrate how the identified bomb craters 528 

can complement existing data sources such as the THOR bombing records. We estimate this 529 

could allow for more precise localization of suspected hazardous areas during non-technical 530 

surveys as well as a more fine-grained determination of residual risk of UXO in areas where 531 

extensive clearance operations are deemed too expensive. The developed methods are scalable to 532 

large regions at low cost and directly transferable to other affected areas in Southeast Asia. The 533 

instance segmentation workflow for the crater detection is also applicable to more recent 534 

conflicts including the ongoing war in Ukraine. 535 
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Introduction  

The following gives additional information about the methods used for crater labeling 

(Text S1) and the processing of the THOR bombing records (Text S2, Figure S1, Figure S2, 

Table S2, Table S3). To assess the robustness of the results to the THOR processing, 

Tables S4 and S5 provide spearman correlations between detected bomb craters and 

THOR bombing for different subsets of THOR, extending Table 2 in the paper. In 

addition, Table S1 lists the KH-9 images used during the analysis. 

Text S1. Crater labeling 

Simple craters usually consist of a bowl-shaped hole with an elevated rim and a 

circular continuous ejecta blanket around the rim (Barlow et al., 2021; Roberts et al., 

2021). In the KH-9 imagery, crater bowl and rim were usually visible as a bright circle with 

a shadow on the side of the crater that faces the sun, or as a dark circle if the crater was 

filled with water. The crater ejecta were often visible as a bright circle around the crater 

bowl and in some cases as rayed ejecta extending much further from the crater 

(Sabuwala et al., 2018). We labeled an object as a crater of type Rim if both the crater 

bowl and the crater ejecta were visible and could be distinguished from each other. 

 

In the imagery, small craters were often only visible as circular white blobs, where the 

crater bowl could not be distinguished from the crater ejecta. We labeled these circular 

white blobs as craters of type Pattern if they appeared in patterns with other blobs of the 

same size. We also ensured that the context did not indicate them to be different objects 

such as houses, trees or circular graves. This was done using both the context visible in 

the KH-9 imagery and, if necessary, current Google Earth imagery. As the image 

resolution and quality made it difficult to reliably identify very small objects as craters, 

we excluded all objects smaller than 25 pixels, equivalent to 25 m2. Similar to our 

approach, Lin et al. (2020) limit their analysis to bomb craters with diameters between 3 

and 12 m using satellite imagery with a resolution of 0.5 m. Duncan et al. (2023), who 

also use imagery with a resolution of 0.5 m, do not set a size limit during crater labeling 

but find that their model performs worse on smaller craters of less than 30 m2. They also 

note the difficulty of labeling craters on vegetated and heterogeneous surfaces and limit 

their study to agricultural fields with short vegetation. 

 

We labeled craters as type Group if crater bowls or continuous ejecta of three or more 

craters overlapped, in which case only the crater bowl was labeled as the crater ejecta 

could not be attributed clearly to an individual crater. We labeled craters as type Bowl if 

only the crater bowl, often filled with water, was visible. This can occur for older craters 

where the ejecta has eroded over time. We labeled craters as type Crescent where we 

saw a crescent shaped crater rim/ejecta, which can occur in areas with steep slopes or 

where erosion has affected the crater appearance (Aschauer & Kenkmann, 2017; Hayashi 

& Sumita, 2017). Craters of types Group, Bowl and Crescent were difficult to identify 

reliably, and we often relied on context to make the final decision. 
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We used the circle shape from the QGIS toolbar to label the craters, even if they were 

not perfectly circular, as we found this to be an efficient approach. We used freehand 

label shapes to separate overlapping crater bowls. The labels encompassed both the 

crater bowl and, if visible, the crater ejecta, but excluded rayed ejecta. For craters of type 

Group, only the crater bowl was labeled since the continuous ejecta could not be 

attributed clearly to any individual crater. For craters of type Crescent, for which a full 

circular shape is not given, we still used a circle shape as the label, based on the best 

approximation of the suspected crater shape. 

 

Text S2. THOR processing 

This section provides additional information about issues with the THOR data 

that we identified during our analysis and describes how we decided to correct or 

circumvent these issues. This is not an exhaustive list of issues in the THOR data 

but focuses on the issues that were immediately relevant to our analysis. We 

chose solutions that were acceptable for the purpose of our research, which 

compares the bombing on a large scale. However, some individual bombing 

records might not be processed correctly, which is unavoidable due to the 

limitations of the THOR data. More work is needed to identify additional 

limitations, but this was outside the scope of this paper.  

 

1. Coordinate reference system 

Our analysis suggested that the THOR target coordinates, provided in 

columns tgtlatdd_ddd_wgs84 and tgtlonddd_ddd_wgs84, despite their names, did 

not use the WGS84 coordinate reference system but were instead provided in the 

Indian 1960 geodetic coordinate system (EPSG:4131). We therefore converted 

these coordinates from EPSG:4131 to EPSG:4326 (using EPSG:1542), which led to 

a shift of about 500 meters. We found that the resulting coordinates matched the 

locations of the craters visible in the KH-9 imagery more closely. This was 

particularly true for B-52 bombing missions where it was often easiest to match 

the distinct lines of craters to individual records in the THOR data. We also tested 

the hypothesis using historical topographic maps1 created by the U.S. Army Map 

Service during the Vietnam War. These maps show the Military Grid Reference 

System (MGRS) coordinates, which were used by the U.S. military at the time. 

While the THOR bombing records do not contain the original MGRS target 

coordinates, these coordinates are included in the corresponding SEADAB source 

records available in the National Archives and Records Administration (NARA) 

 
1 These maps are part of the AMS Topographic Maps - Series L7014 available at 

https://maps.lib.utexas.edu/maps/topo/vietnam/ (accessed 21/10/2023) 

https://maps.lib.utexas.edu/maps/topo/vietnam/
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archives2. We again found that the shifted target coordinates matched the MGRS 

target coordinates more closely when we located those on the topographic 

maps.      

 

2. Mission function codes 

We found that multiple mission function descriptions, given in the 

mfunc_desc column in the THOR data, were wrong which, in some cases, also led 

to a wrong mission function class (mfunc_desc_class). We suspected that during 

the conversion from mission function codes (mfunc) to mission function 

descriptions, the CACTA lookup table was used for both CACTA and SEADAB 

records. However, some of the code meanings were changed for the SEADAB 

data, which can be seen in the corresponding NARA documentation3. Most 

notably, B-52 bombing missions were wrongly classified in the THOR data as 

non-kinetic missions with description “COMBT CARGO AIR  DROP” instead of the 

correct “HEAVY BOMBARD”. The wrong mission functions can be corrected by 

using the correct lookup table, as provided in the NARA documentation for the 

SEADAB data, to map the mission function codes (mfunc) to the mission function 

description (mfunc_desc). However, we did not use the mission function 

information in our analysis and therefore did not apply this processing step. We 

nevertheless make note of this information here as filtering the kinetic records in 

THOR by using the mission function class has been a common processing step in 

past analyses. We refer the reader to the corresponding documentation of the 

SEADAB and CACTA data in the NARA archives for the correct mission function 

mapping.  

 

3. B-52 bombing records 

We found that B-52 bombing missions were likely recorded in both the 

SEADAB and the SACCOACT databases starting from March, 1 1971. Figure S1 

shows the number of weapons dropped in B-52 bombing missions by source 

database. While the SACCOACT and SEADAB records do not match exactly, they 

approximately agree from early 1971 onwards. We confirmed this by checking 

individual lines of craters in the KH-9 imagery that often can be matched to both 

a SEADAB and a SACCOACT B-52 bombing record despite only showing craters 

for one bomb strike. Notably, the target coordinates from the SACCOACT records 

 
2 The NARA SEADAB records (National Archives Identifier (NAID): 602566) are available online at 

https://catalog.archives.gov/id/602566 (accessed 21/10/2023) 
3 p.84-85 in the technical documentation for the NARA SEADAB data (NAID: 602566) 

https://s3.amazonaws.com/NARAprodstorage/opastorage/live/92/9370/1937092/content/arcmedia/electroni

c-records/rg-218/seadab/123.1DP.pdf (accessed 21/10/2023) and p.95-96 in the technical documentation of 

the CACTA data (NAID: 602566) 

https://s3.amazonaws.com/NARAprodstorage/opastorage/live/45/5547/2554745/content/electronic-

records/rg-218/CACTA/136.1DP.pdf (accessed 21/10/2023) 

https://catalog.archives.gov/id/602566
https://s3.amazonaws.com/NARAprodstorage/opastorage/live/92/9370/1937092/content/arcmedia/electronic-records/rg-218/seadab/123.1DP.pdf
https://s3.amazonaws.com/NARAprodstorage/opastorage/live/92/9370/1937092/content/arcmedia/electronic-records/rg-218/seadab/123.1DP.pdf
https://s3.amazonaws.com/NARAprodstorage/opastorage/live/45/5547/2554745/content/electronic-records/rg-218/CACTA/136.1DP.pdf
https://s3.amazonaws.com/NARAprodstorage/opastorage/live/45/5547/2554745/content/electronic-records/rg-218/CACTA/136.1DP.pdf
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did not exactly match the SEADAB target coordinates. We found that the 

SACCOACT targets were much less precise and often appeared to be located on a 

grid of about one nautical mile (approx. 1.8 km). In contrast, the SEADAB targets 

appeared to be more precise as they more closely matched the lines of craters 

identified in the KH-9 imagery. This can also be seen in Figure S2, where we 

compared the spatial distribution of the B-52 bombing missions for the Quang 

Tri study area. While the numbers aggregated by grid cells (Figure S2a and b) 

matched well between the databases, Figure S2c and d clearly show the better 

precision of the SEADAB records. The SEADAB data also appeared to contain 

additional records for some of the time periods (see Figure S1). We therefore 

decided to keep the SEADAB records and discarded all SACCOACT records after 

March, 1 1971. 

 

4. Missing weapon types in SEADAB 

Many records in the THOR data, including about 1.4 million of the 1.8 million 

total records originating from the SEADAB database, did not contain information 

about the weapon type used. As the weapon type information was crucial for our 

analysis, we imputed some of the missing weapon types based on the estimated 

weight of the weapon type, which was calculated using the equation 

 

𝑤𝑒𝑎𝑝𝑜𝑛𝑡𝑦𝑝𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑠𝑡 =
1

10 
×

𝑤𝑒𝑎𝑝𝑜𝑛𝑠𝑙𝑜𝑎𝑑𝑒𝑑𝑤𝑒𝑖𝑔ℎ𝑡

𝑛𝑢𝑚𝑤𝑒𝑎𝑝𝑜𝑛𝑠𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 
 (1) 

 

where weaponsloadedweight describes the weight loaded on the planes 

flying the mission and numweaponsdelivered denotes the total number of 

weapons loaded on the plane. The imputed weapon types and their 

corresponding estimated weight are provided in Table S1. However, the 

estimated weight of a weapon type sometimes matched with multiple potential 

weapon types. For the cases given in Table S2, this was not an issue as either all 

the matching weapon types would also be relevant for our analysis (see Section 

5) or the number of records for other weapon types were very low. One exception 

was the estimated weapon type weight of 820 pounds, which matched both the 

“M117 GP BOMB (750) LD” as well as the “CBU49 AN PR MINE”. To allow for a 

more accurate matching, we took the type of plane into account as we found that 

the “M117 GP BOMB (750) LD” bombs were more likely to be dropped from one 

of the following planes: "A-1", "A-37", "B-52", "B-57", "F-100", "F-105" and "F-5". 

In cases where a different plane was used, we matched the estimated weight of 

820 pounds to the “CBU49 AN PR MINE”. 

 

5. Weapon types resulting in large craters 
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We selected 22 weapon types for our analysis and discarded all records with 

other weapon types. The decision was made based on our understanding of 

which weapon types would result in large craters detectable by our model (≥ 

25m2). We also removed some weapon types that might result in large craters 

but which had very few records associated with them as these did not 

substantially affect our results. Removing those records made it easier in cases 

where it was challenging to understand the weapon type from the given name or 

to impute the weapon type based on its weight. The list of weapon types used for 

the analysis is given in Table S3. 

 

6. Maximum of weapons per plane 

We found multiple records with large amounts of weapons dropped that far 

exceeded the number of weapons that could be carried by the corresponding 

aircraft. In some cases, this could be traced back to simple typos, but 

investigating every individual case would be time consuming and often it was 

unclear if a record could be adjusted or was completely wrong. The maximum 

number of large bombs an individual plane could carry during the war was 108 

(by a B-52 bomber4), and as we only considered large bombs in our analysis, we 

removed all records where the number of weapons per plane exceeded 108. A 

more sophisticated way to address the issue would be to consider the maximum 

load of individual aircraft types, but this would be complicated due to the large 

number of combinations of weapons and aircraft types. Therefore, we opted for 

this simpler solution which was sufficient for the purpose of our analysis as it 

removes the most severe errors. 

 

7. Correlation results for different subsets of the THOR data 

We calculated the correlations between the detected bomb craters and 

different subsets of the THOR records, aggregated by 2  2 km grid cells, in order 

to test the robustness of the results we presented in the paper (see Tables S4 and 

S5). As expected, we typically saw higher correlations between craters and 

bombing records when only considering weapons dropped during the year 

before the KH-9 images were taken. We also saw higher correlations for the 

subset of heavier kinetic weapons compared to weapon types weighing less than 

200 pounds. Filtering on non-kinetic weapons resulted in much lower 

correlations, which was expected as these weapon types would not result in 

craters. Correlations were higher for the B-52 missions recorded in SEADAB 

compared to the SACCOACT records when considering previous year bombings, 

 
4 This number corresponds to the B-52D model which was able to carry up to 84 bombs internally and an 

additional 24 bombs under its wings https://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-

Sheets/Display/Article/195838/the-big-belly-bomber/ (accessed 21/10/2023) 

https://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-Sheets/Display/Article/195838/the-big-belly-bomber/
https://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-Sheets/Display/Article/195838/the-big-belly-bomber/
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which we suspect was due to the lower precision of the SACCOACT target 

locations (see Section 3). Overall, the correlation results showed that our analysis 

was robust and confirmed some of the methods we used for processing the 

THOR data. 

 

Figure S1. Daily number of bombs dropped on B-52 bombing missions by source 

database, with the full duration shown in (a) and the period after 1971 shown in (b). 
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Figure S2. B-52 bombing mission during the year before the KH-9 images were taken 

(March 1972 – March 1973) split up by source database. Panels (a) and (b) show the 

number of bombs aggregated by a grid of 2  2 km whereas (c) and (d) show the 

number of bombs dropped aggregated by exact target location. The grid pattern visible 

in panel (d) likely arises from the less precise target locations in the SACCOACT database 

which lead to multiple records with the exact same target location, often located on a 

grid of about one nautical mile (~1.8km). However, panel (c) shows that more precise 

target locations were recorded at the time as they are available in the SEADAB database. 
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Entity ID Study area Acquisition data 

D3C1205-100113A009 Quang Tri 20/03/1973 

D3C1205-100113F009 Quang Tri 20/03/1973 

D3C1205-100113A010 Quang Tri 20/03/1973 

D3C1205-100113F010 Quang Tri 20/03/1973 

D3C1205-100113A011 Quang Tri 20/03/1973 

D3C1205-100113F011 Quang Tri 20/03/1973 

D3C1205-100113A012 Quang Tri 20/03/1973 

D3C1205-100113F012 Quang Tri 20/03/1973 

D3C1204-200292A077 Tri-border area 04/11/1972 

D3C1204-200292F077 Tri-border area 04/11/1972 

D3C1204-200292A078 Tri-border area 04/11/1972 

D3C1204-200292F078 Tri-border area 04/11/1972 

D3C1204-200292A079 Tri-border area 04/11/1972 

D3C1204-200292F079 Tri-border area 04/11/1972 

D3C1204-200292A080 Tri-border area 04/11/1972 

D3C1204-200292F080 Tri-border area 04/11/1972 

D3C1204-200292A081 Tri-border area 04/11/1972 

D3C1204-200292F081 Tri-border area 04/11/1972 

D3C1204-200292A082 Tri-border area 04/11/1972 

D3C1204-200292F082 Tri-border area 04/11/1972 

Table S1. KH-9 images used in the analysis. Stereo pairs were used during 

orthorectification but only the aft looking images were used for the crater detection. 
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Estimated weapon type weight 

(in pounds) 
Matched weapon type 

260 MK81 GP BOMB (250) 

531 MK 82 GP BOMB (500) LD 

571 MK82 GP BOMB (500) HD 

820 
M117 GP BOMB (750) LD/ 

CBU49 AN PR MINE 

1100 MK83 GP BOMB (1000) 

Table S2. Matching between estimated weapon type weight and weapon type.  

 

 

Weapon type Source database 

500LB GP MK-82 CACTA 

750LB GP M-117 CACTA 

250LB MK-81 CACTA 

500LB GP M-64 CACTA 

250LB M-57 CACTA 

200/260 M81/88 CACTA 

1000LB MK-83 CACTA 

100LB GP M-30 CACTA 

1000LB GP M-65 CACTA 

2000LB MK-84 CACTA 

2000LB M-66 CACTA 

3000LB M-118 CACTA 

MK 82 GP BOMB (500) LD SEADAB 

M117 GP BOMB (750) LD SEADAB 

MK81 GP BOMB (250) SEADAB 

MK82 GP BOMB (500) HD SEADAB 

MK 82 GP BOMB (500) SEADAB 

MK83 GP BOMB (1000) SEADAB 

MK82 B SACCOACT 

750 GP SACCOACT 

M64A1 SACCOACT 

MK83 B SACCOACT 

Table S3. Weapon types and corresponding source database for the weapon types used 

in the analysis. 
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Category Craters Pattern Rim Group Crescent Bowl 
Number of 

Weapons 

Total bombing5 0.58 0.55 0.46 0.33 0.61 0.41 2,232,280 

Bombing previous year 0.76 0.74 0.78 0.68 0.52 0.62 654,730 

Kinetic weapons6 over 200 

pounds  
0.58 0.55 0.46 0.34 0.62 0.42 2,364,961 

Kinetic weapons over 200 

pounds previous year 
0.76 0.74 0.78 0.69 0.51 0.62 713,599 

Kinetic weapons under 200 

pounds 
0.12 0.10 0.02 -0.07 0.29 0.10 316,442 

Kinetic weapons under 200 

pounds previous year 
0.52 0.50 0.54 0.48 0.35 0.45 15,472 

Non-kinetic weapons7 0.26 0.24 0.20 0.05 0.31 0.22 52,238 

Non-kinetic weapons 

previous year 
0.38 0.36 0.35 0.27 0.27 0.32 5,111 

Unknown weapon type  0.76 0.74 0.71 0.61 0.60 0.58 702,797 

Unknown weapon type 

previous year 
0.77 0.74 0.79 0.69 0.52 0.64 489,716 

B-52 SACCOACT previous 

year 
0.72 0.70 0.73 0.68 0.48 0.54 438,411 

B-52 SEADAB previous 

year 
0.73 0.71 0.75 0.70 0.49 0.56 456,992 

B-52 SACCOACT 0.53 0.50 0.44 0.36 0.51 0.36 1,210,553 

B-52 SEADAB 0.68 0.69 0.61 0.53 0.56 0.44 687,490 

Table S4. Spearman correlation coefficients between detected craters and number of 

weapons dropped according to the THOR bombing data aggregated across grid cells of 

2 km  2km in the Quang Tri study area. The number of weapons dropped based on the 

THOR data is provided for additional context. For the “Craters” category detected craters 

of all crater classes were aggregated before calculating the correlation. The descriptor 

 
5 Total bombing refers to the final processing of the THOR data for our analysis, as presented in the paper 

itself, and therefore only considers the weapon types in Table S2 
6 Kinetic weapons refer to the classification provided by the mfunc_desc_class column. Here we consider 

the B-52 bombings with mission function code 61 originating from the SEADAB data as kinetic despite 

them being classified as non-kinetic in THOR. However, we did not update any other wrongly mapped 

mission function codes (see Text S2 Part 2 for details). No other filters, such as selecting specific weapon 

types (Text S2 Part 5) or removing records with too many bombs per plane (Text S2 Part 6) were applied. 
7 Non-kinetic weapons refer to the classification provided by the mfunc_desc_class column. We consider 

the B-52 bombing missions originating from SEADAB as kinetic and therefore exclude them here. No 

other filters were applied. Case numbers are low as most non-kinetic missions record 0 for the 

numweaponsdelivered field. 
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“previous year” was added where only missions that took place during the year before 

the KH-9 images were taken were considered, otherwise all missions before the KH-9 

images were taken were considered. 

 

Category Craters Pattern Rim Group Crescent Bowl 
Number of 

Weapons 

Bombing 0.52 0.52 0.4 0.1 0.45 0.33 1,133,025 

Bombing previous year 0.51 0.53 0.42 0.11 0.47 0.33 321,504 

Kinetic weapons over 200 

pounds  0.52 0.52 0.4 0.1 0.45 0.34 
1,250,068 

Kinetic weapons over 200 

pounds previous year 0.51 0.52 0.41 0.12 0.46 0.32 
343,853 

Kinetic weapons under 200 

pounds 0.41 0.4 0.32 0.09 0.35 0.29 
534,798 

Kinetic weapons under 200 

pounds previous year 0.34 0.34 0.29 0.13 0.29 0.25 
149,409 

Non-kinetic weapons 0.17 0.18 0.13 0.07 0.14 0.1 78,338 

Non-kinetic weapons 

previous year 0.12 0.13 0.1 0.08 0.11 0.07 
3,011 

Unknown weapon type  0.49 0.49 0.39 0.11 0.43 0.34 600,066 

Unknown weapon type 

previous year 0.5 0.5 0.4 0.12 0.44 0.32 
334,623 

B-52 SACCOACT previous 

year 0.43 0.44 0.38 0.07 0.4 0.3 
220,174 

B-52 SEADAB previous year 0.46 0.47 0.38 0.1 0.43 0.31 239,741 

B-52 SACCOACT 0.47 0.48 0.38 0.08 0.43 0.31 711,533 

B-52 SEADAB 0.48 0.49 0.4 0.09 0.44 0.33 294,806 

Table S5. Spearman correlation coefficients between detected craters and number of 

weapons dropped according to the THOR bombing data aggregated across grid cells of 

2 km  2km in the Tri-border study area. The number of weapons dropped based on the 

THOR data is provided for additional context. For the “Craters” category detected craters 

of all crater classes were aggregated before calculating the correlation. The descriptor 

“previous year” was added where only missions that took place during the year before 

the KH-9 images were taken were considered, otherwise all missions before the KH-9 

images were taken were considered. 
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