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Abstract

River networks around the world exhibit statistical scaling laws, including the distribution of independent basin sizes in land-

scapes. The widespread occurrence of these patterns in various landscapes suggests that there are fundamental, but not yet fully

understood, processes responsible for these power law distributions. This study investigates the distribution of independent

basin areas across 25 islands worldwide, revealing a clear adherence to a power law pattern. The research suggests that the

power law exponent is influenced by landscape boundary characteristics, such as the compactness coefficient and fractal dimen-

sion, with the exponent value increasing with these factors. Furthermore, the study demonstrates the development of power

law patterns in basin areas using a probabilistic network growth model. This model, based on a preferential headward growth

mechanism, underscores the significant roles of boundary conditions and headward growth dynamics in the self-organization of

power law patterns in fluvial landscapes.
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Key Points:  7 

 The distribution of basin areas in fluvial landscapes, as studied across 25 diverse islands, 8 

exhibits a power law relationship 9 

 This emergent behavior is attributed to the headward growth nature of drainage networks 10 

evolution demonstrated using a probabilistic model 11 

 The power law exponent is found correlated with landscape boundary characteristics 12 

notably, fractal dimension and compactness coefficient 13 
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Abstract 15 

River networks around the world exhibit statistical scaling laws, including the distribution of 16 

independent basin sizes in landscapes. The widespread occurrence of these patterns in various 17 

landscapes suggests that there are fundamental, but not yet fully understood, processes 18 

responsible for these power law distributions. This study investigates the distribution of 19 

independent basin areas across 25 islands worldwide, revealing a clear adherence to a power law 20 

pattern. The research suggests that the power law exponent is influenced by landscape boundary 21 

characteristics, such as the compactness coefficient and fractal dimension, with the exponent 22 

value increasing with these factors. Furthermore, the study demonstrates the development of 23 

power law patterns in basin areas using a probabilistic network growth model. This model, based 24 

on a preferential headward growth mechanism, underscores the significant roles of boundary 25 

conditions and headward growth dynamics in the self-organization of power law patterns in 26 

fluvial landscapes. 27 

Plain Language Summary  28 

Fluvial landscapes exhibit several intriguing statistical patterns, among which we have explored 29 

how the basin areas of rivers are organized in a power law distribution. We analyzed 25 different 30 

island landscapes and observed a consistent pattern in basin area distribution. While the 31 

mechanisms behind these common structures are complex and not fully understood, our findings 32 

suggest a significant influence of the island's boundary shape on these patterns. To delve deeper, 33 

we employed a computer model to simulate channel network growth from their sources towards 34 

the landscape edges, which helped explain the emergence of the power-law pattern. This 35 

research enhances our understanding of natural landscape formation, highlighting the interplay 36 

between an island's shape and channel network development in shaping these distinct patterns. 37 

1 Introduction 38 

Power law distributions manifest in a wide range of natural phenomena, spanning 39 

disciplines such as demography, economy, geosciences, biology, among others (Corral & 40 

González, 2019; Marquet et al., 2005; Newman, 2005). Such patterns serve as signatures of 41 

complexity and can provide us important insights about the self-organizing processes leading to 42 

such patterns. The existence of power laws is sometimes attributed to evolution of system 43 

towards particular state such as self-organized criticality, energy or cost minimization, highly 44 

optimized tolerance or highly resilient system (Bak, 1996; Carlson & Doyle, 1999; Marković & 45 

Gros, 2014; A. Rinaldo et al., 1993; Ronellenfitsch & Katifori, 2019). Thus, the study of such 46 

patterns of river networks can help us in understanding the mechanisms involved in the fluvial 47 

landscape evolution (Andrea Rinaldo et al., 2014; Rodriguez‐Iturbe Ignacio, 1997). 48 

The river networks have been widely studied for their fractal patterns and certain scaling laws 49 

which they follow with quite narrow range of exponents irrespective of the differences in the 50 

underlined geography or climate (Maritan et al., 1996; Pelletier, 1999; Rodriguez‐Iturbe Ignacio, 51 

1997). The similar scaling laws are also found in martian fluvial networks as well (Stepinski et 52 

al., 2002). These statistical laws include Hack’s law relating the scaling between channel length 53 

and basin area, distribution of drainage area and upstream length for a basin. These patterns 54 

suggest that river networks are unique type of tree networks that might be arising due to certain 55 

similar geomorphic processes leading to such configuration. These scaling laws are also used by 56 

the river network simulation models to compare the modelled networks with real networks by 57 
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comparing the exponents (Borse & Biswal, 2023; Hooshyar et al., 2020; Paik & Kumar, 2008; 58 

Rodríguez‐Iturbe et al., 1992). The quantitative understanding of such networks helps us to 59 

understand the underlined principles hidden in the pattern formation. Moreover, the 60 

understanding of network structures has several applications in studying the hydrological 61 

modelling as well as ecological networks (Biswal & Singh, 2017; Larsen et al., 2017; Ranjbar et 62 

al., 2020; Rodríguez-Iturbe et al., 1982; Sarker et al., 2019). Thus, developing quantitative 63 

indices to characterize the landscapes would be beneficial for the better understanding of 64 

landscape organization (Nowosad & Stepinski, 2019).  65 

Numerous efforts, including experimental studies (Cheraghi et al., 2018; Pelletier & Turcotte, 66 

2000), have been made to model the evolution of river networks, utilizing either statistical 67 

frameworks (Meakin et al., 1991; Andrea Rinaldo et al., 1998) or physical mass balance 68 

equations (Tucker & Hancock, 2010; Willgoose et al., 1991), with the objective of modelling 69 

landscapes and elucidating the underlying principles of such scaling laws. Some studies 70 

suggested that such organization is effect of river networks evolving to minimize their energy 71 

expenditure (Rodríguez‐Iturbe et al., 1992). However, some studies suggested that emergence of 72 

such patterns is consequence of inherent randomness in the landscape (Paik & Kumar, 2008). 73 

Some studies simulated channel network evolution following headward growth of channels in 74 

statistical manner (Howard, 1971). Thus, our understanding of why river networks organize to 75 

such unique patterns is still evolving.  76 

One of the power laws observed in landscapes is the Basin Area Distribution (BAD) of 77 

independent basin areas within a landscape. Although river networks have been extensively 78 

researched in terms of other statistical laws, the understanding of independent basin area 79 

distribution remains limited to date. Previous studies have explored the power law behavior in 80 

Basin Area Distribution (BAD). For instance, using a minimum energy dissipation model, Sun & 81 

Meakin (1994) not only reported power law behavior in BAD but also suggested a direct 82 

relationship between the BAD exponent and the fractal dimension of landscape boundaries, as 83 

indicated by 𝜏 = 1 + 𝐷/2 , where 𝜏 is the power law exponent and 𝐷 is the fractal dimension. 84 

Similarly, La Barbera & Lanza (2001), through a case study in Italy, confirmed that the 85 

distribution of independent basin areas follows a power law pattern with an exponent of 0.7 and 86 

also noted its relation to fractal dimension. Oliveira et al., (2019) extended these observations to 87 

Martian and lunar landscapes, demonstrating the universality of power law distribution in BAD. 88 

Despite these advancements, the underlying mechanism of this organization remains largely 89 

unknown, and comprehensive studies encompassing a wide variety of real-world landscapes 90 

have been lacking. In this study, we investigate the BAD across various islands globally and 91 

examine its relationship with boundary properties. Additionally, we employ a probabilistic 92 

model to shed light on the mechanisms driving BAD. 93 

2 Materials and Methods 94 

2.1 Basin Area Distribution (BAD) for Islands 95 

For this study, we selected 25 islands of varying sizes, ranging from 60 km² to 115,000 km², 96 

located in diverse geographical regions. The digital elevation terrain data was sourced from the 97 

USGS Earth Explorer SRTM dataset, available at a 1 arc-second resolution. Watersheds were 98 

delineated using the hydrology toolbox in ArcMap. We studied BAD using exceeding 99 

probability distribution to avoid the issue of bin sizing. We can obtain the exceedance probability 100 
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of basin area as 𝑃(𝑁𝐴 ≥ 𝐴) representing the number of basins in landscape having basin areas 101 

greater than 𝐴 or the probability that a basin chosen at random will have a basin area greater than 102 

𝐴. The relationship can be expressed as 𝑃(𝑁𝐴 ≥ 𝐴) ∝ 𝐴− 𝜏. We then used maximum likelihood 103 

estimation to calculate the best fit power law exponent (𝜏) for that distribution as it is reported to 104 

be more accurate (Goldstein et al., 2004). We used the threshold area of 0.05 km
2
 to delineate 105 

basins for the power law distribution analysis.  106 

2.2 Characterizing Shape of Landscape Boundary  107 

Fractal dimension (FD) have been widely used to study several geomorphological characteristics 108 

(Breyer & Scott Snow, 1992; Fehr et al., 2011; Khanbabaei et al., 2013). The FD value for a 2-109 

dimensional boundary characterizes the boundary's roughness or irregularity. We calculated the 110 

FD of boundaries for 25 islands using the Box-counting method. This method involves 111 

overlaying the island images with a grid and counting the number of grid boxes intersecting the 112 

island boundary. The process is repeated with progressively finer grids, increasing resolution and 113 

thus more accurately capturing the boundary's intricate structure. The fractal dimension is 114 

determined by plotting log(N) against log(r) and calculating the slope of the resulting line, where 115 

𝐹𝐷 =
 𝑙𝑜𝑔(𝑁)

𝑙𝑜𝑔(𝑟)
. Here N is number of box counts and r is resolution that is 1/box size. Note that 116 

minimum box size here will be the resolution of original DEM i.e. around 30 meters. 117 

Furthemore, Gravelius compactness (GC) is employed to assess the shapes of islands by 118 

quantifying their spatial compactness. GC is calculated as the ratio of the island perimeter to the 119 

perimeter of a circle with equivalent area. A lower GC indicates a more compact shape, 120 

resembling a circular or regular form, while a higher GC suggests more elongated or irregular 121 

boundaries. Specifically, when GC equals 1, it represents a perfectly circular shape. This metric 122 

facilitates the quantitative evaluation and comparison of spatial organization in island 123 

boundaries. 124 

3 Results: Basin Area Distribution Analysis Across Islands  125 

The delineated basins of Hawaii, Taiwan, and Tasmania islands are illustrated in Figure 1, along 126 

with their respective BAD plots. The power law distribution can be infurred from the linear trend 127 

on log-log scale. This scaling is consistent for a large portion of the data, which includes smaller 128 

basins, but it deviates for the very large basins. With the sample example of 3 islands shown 129 

here; it can be observed that as the roughness of the island boundaries is increasing from Hawaii 130 

to Taiwan to Tasmania which is reflected in the increasing value of Fractal dimension. 131 

Additionally, the boundaries become increasingly irregular and less compact, which is reflected 132 

in the rising Gravelius compactness (GC) coefficient values. The value of the BAD exponent (𝜏) 133 

is also increases alongside the FD and GC values. Table 1 presents the calculated values for all 134 

25 islands. Figures 1d and 1e demonstrate a positive correlation between 𝜏 and both FD and GC. 135 
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 136 
Figure 1. Basin area distribution of islands. (a), (b) and (c) shows the delineated basin of Hawaii, Taiwan 137 

and Tasmania respectively alongwith the corresponding basin area distributions. (d) and (e) shows that 𝜏 138 

is positively correlated to fractal dimension and Gravelius compactness coefficient of the landscape 139 

boundary of 25 islands. 140 

 141 

Island name  Location FD 
Perimeter  

(Km) 

Area  

(Sq. Km) 
GC 

BAD (𝜏) 

Exponent  

Andaman 
Bay of Bengal, Indian 

Ocean 
1.160 2898.70 5571.53 10.96 0.69 

Auckland Pacific Ocean 1.167 10016.99 114931.02 8.34 0.65 

Barbados Caribbean Sea 1.064 138.49 435.07 1.87 0.57 
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Belle Île Atlantic Ocean 1.114 93.21 89.67 2.78 0.62 

Bermuda Atlantic Ocean 1.247 252.67 60.52 9.16 1.01 

Cyprus Mediterranean Sea 1.067 973.70 9261.18 2.85 0.54 

Fiji Pacific Ocean 1.149 1697.31 10683.85 4.63 0.66 

Grenada Caribbean Sea 1.143 164.05 317.46 2.60 0.56 

Socotra Arabian Sea 1.067 421.86 3610.46 1.98 0.63 

Hawaii Central Pacific Ocean 1.046 680.46 10462.94 1.88 0.46 

Oahu Central Pacific Ocean 1.178 426.72 1562.74 3.05 0.57 

Sicily Mediterranean Sea 1.115 1883.08 25431.83 3.33 0.59 

Jeju Korea Strait 1.183 614.10 1858.76 4.02 0.56 

Kauai Central Pacific Ocean 1.101 241.27 1440.80 1.79 0.54 

Mataram 
Bali Sea and Indian 

Ocean 
1.171 839.11 4555.57 3.51 0.6 

Maui Central Pacific Ocean 1.161 523.53 1888.44 3.40 0.48 

Mauritius Indian Ocean 1.117 399.21 1869.09 2.61 0.51 

Grande Comore Indian Ocean 1.049 209.85 1021.39 1.85 0.48 

Sumba Indian Ocean 1.059 769.77 10939.17 2.08 0.53 

French Southern 

and Antarctic 

lands 

Antarctic Ocean 1.231 4239.12 7281.61 14.02 0.84 

Cabo Verde-Praia Atlantic Ocean 1.161 362.44 1004.73 3.23 0.57 

Reunion Indian Ocean 1.049 280.22 2524.23 1.57 0.46 

Taiwan Western Pacific Ocean 1.106 2108.27 35973.34 3.14 0.61 

Tasmania Southern Ocean 1.176 5785.95 65076.21 6.40 0.65 

Tereciara Atlantic Ocean 1.103 191.35 406.68 2.68 0.55 

Table 1. The BAD exponent (𝜏) and the boundary characteristics FD and GC for islands 142 

3 Probabilistic Drainage Network Evolution Model to Explain BAD 143 

To understand the power law organization of basins, we employed the probabilistic network 144 

evolution model by Borse & Biswal (2023) applied within realistic boundary shapes. The model 145 

aims to simulate the evolution and organization of drainage networks into self-similar, tree-like 146 

patterns, incorporating physically meaningful variables into its statistical modeling framework. 147 

The modelled networks follow statistical scaling laws similar to real river networks. This model 148 

introduces new parameters that offer flexibility in generating networks with varying shapes and 149 

characteristics. The model follows preferential headward growth of channels from boundary or 150 

outlets, where the preferences is probabilistically determined based on the downstream length of 151 

the evolving streams. Refer to (Borse & Biswal, 2023) for detailed information about the model. 152 

The parameter 𝛼 characterizes this preferential headward growth and plays a pivotal role in 153 
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shaping the overall sizes of the basins. As 𝛼 increases, the competition among growing networks 154 

is restricted, providing networks with a faster growth rate to expand more. Consequently, 155 

networks with lower 𝛼 values exhibit increased elongation due to heightened competition in 156 

network growth. Thus larger basins forms with higher 𝛼 and smaller elongated basins are formed 157 

for lower 𝛼 (Figure 2c and 2d).  158 

Figure 2a-c illustrates the evolution of drainage networks from boundary outlets in a headward 159 

direction, using a sample simulation with 𝛼 = 0, where networks grow from all sides with equal 160 

probability. Figure 2d shows the resulting network with 𝛼 = 1 where single larger basin is 161 

formed. Our findings indicate that the modeled basins adhere to power laws for Basin Area 162 

Distribution (BAD), with the exponent varying according to the shape of the landscape 163 

boundary. Figure 2e-g shows basins obtained using the model within the Hawaii’s boundary with 164 

different 𝛼 values. While the growth mechanism characterized by 𝛼 significantly affects the sizes 165 

of the largest basins formed, the majority of smaller basins maintain uniform scaling laws, as 166 

evidenced by similar scaling exponents and the overlap in the BAD plot across different α values 167 

(Figure 2h). However, keeping 𝛼 constant and varying boundary conditions reveals noticeable 168 

differences in scaling exponents. Figures 2f, 2i, and 2j display networks generated from sample 169 

simulations with the same 𝛼 value (0.5), but under different boundary conditions. The 170 

corresponding BAD plots in Figure 2k distinctly highlight the differences in slopes for the three 171 

diverse landscape boundaries. Figure 2l demonstrates that 𝜏 is influenced by the shape of the 172 

landscape boundary, rather than the chosen 𝛼 value. To ensure computational efficiency of the 173 

model, we resampled the original island boundaries to a smaller grid sizes. We have applied flow 174 

accumulation threshold of 50 for delineating networks as well as plotting basins. 175 
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 176 

Figure 2. Modelled basins using probabilistic Network Evolution Model. (a), (b) and (c) shows intermediate 177 

snapshots of network evolution using probabilistic model with 𝛼 = 0 where network grows uniformly from all 178 

directions. (d) presents a final network sample for 𝛼 = 1, illustrating the formation of larger basins. (e), (f) and (g) 179 

are modelled basins within Hawaii boundary with different 𝛼 values. (h) shows almost overlapping BAD plots 180 

corresponding to modelled Hawaii basins despite different 𝛼 values. (i) and (j) show modeled basins for the Taiwan 181 

and Tasmania boundaries, respectively, obtained with 𝛼 = 0.5. (k) shows the sample BAD plots obtained with the 182 

same 𝛼 but different boundary conditions highlighting the differences in the slopes. (i) presents boxplots for each 183 

ensemble of 20 simulations, clearly demonstrating that despite varying α values, the boundary shape significantly 184 

influences the 𝜏 value. 185 

4 Discussion and Conclusion 186 

The emergence of power laws in natural systems has been attributed to a variety of mechanisms. 187 

The popularly known generic mechanism is network growth by adding new vertices with 188 

preferential attachment to the well-connected sites given by Barabási & Albert (1999). Another 189 

mechanism by Caldarelli et al. (2002) suggests that sites with larger intrinsic fitness are more 190 

likely to become highly connected also known as good-get-richer mechanism. However, the 191 

understanding of processes leading to the scale free organization patterns in case of river 192 

networks is still evolving. The study by Sun & Meakin (1994) shown that computer generated 193 

minimum energy dissipation networks follow power law with respect to BAD. However, their 194 

model does not provide further insights into the specific processes leading to the emergence of 195 

power law patterns in BAD. Similarly, other studies, including those by La Barbera & Lanza 196 
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(2001) and Oliveira et al. (2019), report power law behavior in BAD but do not elaborate on the 197 

role of boundary conditions or the potential mechanisms behind this emergence. 198 

The headward growth in our probabilistic model, which is proportional to the downstream length 199 

of the growing stream, is anologous to a network with sites expanding through preferential 200 

attachment. This mechanism may contribute to the emergence of power laws. In this context of 201 

BAD, a higher value of τ indicates a more uneven distribution of basin areas, meaning the 202 

probability decreases rapidly as the area increases. Now, when the boundary is more irregular, it 203 

leads to disproportionate access for the growing networks. This creates an uneven distribution, 204 

which in turn results in a higher BAD power law exponent. This pattern is observed in both real-205 

world and modeled results. The scaling of basin area distribution is observed to break for the 206 

larger basin areas. This could be attributed to the significant influence of prevailing geological 207 

conditions on basin organization (Andrea Rinaldo et al., 2014). Landscape evolution is shaped by 208 

various factors, including climatic conditions, geological characteristics, and tectonic activities.  209 

Thus, while fluvial erosion can be one of the factor behind the evolution of networks following 210 

scaling laws (Cheraghi et al., 2018), the size of larger basins might be determined by these 211 

diverse factors and not solely by headward growth due to fluvial erosion.  212 

We would like to highlight some intricacies involved in the present study for example the 213 

calculation of FD depends on the method used. We employed the commonly used box-counting 214 

method, but it's important to note that different methods, such as the self-similarity-based FD 215 

calculation proposed by La Barbera & Lanza (2001), might yield different FD values. Similarly, 216 

the threshold value used for basin delineation slightly influences the obtained 𝜏 value. To 217 

maintain consistency, we used a threshold of 0.05 Km², which is considered suitable for basin 218 

delineation and has been endorsed by (Reddy et al., 2018). This threshold strikes a balance: it is 219 

large enough to avoid the limitations imposed by the spatial resolution of the Digital Elevation 220 

Model (DEM), yet small enough to include data from smaller basins. Choosing a much smaller 221 

threshold would not be advisable due to the DEM’s resolution constraints, which limit the 222 

accuracy of the basin delineation algorithm at finer scales.  223 

Given these methodological nuances, direct comparison of the 𝜏 values between real and 224 

modeled basins within the same boundary is not sensible due to our use of resampled grids at a 225 

coarser resolution for modeling. A more appropriate approach involves comparing modeled 226 

boundaries amongst themselves, acknowledging the significant resolution differences and 227 

resultant alterations in boundary characteristics. Nevertheless, despite slight shifts in 𝜏 values for 228 

modeled basins or variations due to the threshold used, the overall trends in our observation 229 

remain consistent. For instance, the influence of landscape boundary characteristics on 𝜏 is 230 

clearly evident in Figure 2i.  231 

In conclusion, our study offers valuable insights into the emergence of power-law behavior in 232 

basin area distributions across varied landscapes. We have discovered that landscape boundary 233 

characteristics, particularly compactness and fractal dimension, significantly influence the power 234 

law exponent. Additionally, the headward growth of river networks is identified as a crucial 235 

factor in shaping these distribution patterns, thereby underscoring the importance of adaptive 236 

dynamic processes in landscape evolution. This research elucidates the complex interplay among 237 

boundary characteristics, network growth mechanisms, and self-organizing behaviors in fluvial 238 

landscapes and enhancing our comprehension of complex natural systems. 239 
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