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Abstract

In anticipation to substitute the existing manual/semi-automated methods for classifying quarry blasts, earthquakes, and

noise, we developed three convolutional neural network (CNN) models. The three CNN models extract relevant features from

seismograms (waveform), spectrograms (spectrum), and a combination of the two respectively. A total of 3414 samples were

extracted from the three categories, 15% of the data from each category were split for testing, and the remaining data were

augmented and used for training. The waveform model, spectrogram model, and combined model achieved accuracies of 95.32%,

93.13%, and 93.96%, respectively. The reliability of these models was ascertained by promising accuracies of >90% and 100%

obtained for large and small datasets from testing with SCEDC data and records from the Palitana region (Gujarat) respectively.

The results of this study demonstrate the potential of deep learning-based approaches for the effective classification of seismic

events.
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Key Points 9 

• Developed 3 CNN models to classify blasts, earthquakes & noise based on the features 10 

extracted from waveform, spectrum & combining both. 11 

• All 3 models have >93% accuracies and exhibit exceeding performance in matrix scores 12 

F1, recall and precision.  13 

• These models produce > 90% accuracies when tested on new datasets from SCEDC and 14 

Palitana region Gujarat.   15 
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Abstract 16 

In anticipation to substitute the existing manual/semi-automated methods for classifying quarry 17 

blasts, earthquakes, and noise, we developed three convolutional neural network (CNN) models. 18 

The three CNN models extract relevant features from seismograms (waveform), spectrograms 19 

(spectrum), and a combination of the two respectively. A total of 3414 samples were extracted 20 

from the three categories, 15% of the data from each category were split for testing, and the 21 

remaining data were augmented and used for training. The waveform model, spectrogram model, 22 

and combined model achieved accuracies of 95.32%, 93.13%, and 93.96%, respectively. The 23 

reliability of these models was ascertained by promising accuracies of >90% and 100% obtained 24 

for large and small datasets from testing with SCEDC data and records from the Palitana region 25 

(Gujarat) respectively. The results of this study demonstrate the potential of deep learning-based 26 

approaches for the effective classification of seismic events.  27 

Key Words: Deep Learning, CNN, Earthquakes, Quarry blasts, Noise, Spectrogram, Gujarat. 28 

1. INTRODUCTION 29 

Seismicity monitoring is one of the primary objectives in traditional seismological studies. This 30 

process requires manual inspection, which is time-consuming and is often associated with errors 31 

and biases. Continuous seismic networks used for monitoring seismicity at local and regional 32 

scales are thus contaminated with events other than natural earthquakes (Linville et al., 2019). 33 

Therefore, discriminating between a local tectonic event and a mining or quarry blast is a routine 34 

yet challenging task for both researchers who compile earthquake catalogs and those monitoring 35 

seismic networks (Astiz et al., 2014). Further, identification of blasts and earthquakes becomes 36 

especially challenging in near real-time monitoring when both the tectonic earthquakes and 37 

anthropogenic sources are in proximity (Whidden & Pankow 2012; Wiemer & Baer 2000; Horasan 38 
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et al., 2009) and the earthquake location has to be reported in less than 10 minutes of earthquake 39 

occurrence. 40 

Traditional seismological methods include manual, semi-automated and automated methods to 41 

discriminate between tectonic earthquakes, blasts and noise. Initially, the identification was based 42 

on occurrence time and location, often represented by the day-night distribution plot. Explosions 43 

usually occur during working hours from the same location, unlike earthquakes that can happen at 44 

any time and from any location. Later, more technical discrimination techniques were adopted 45 

based on waveform and spectrum analysis, such as ratios of amplitudes of various seismic phases 46 

(Bennett & Murphy 1986; Wüster et al., 1993; Anderson et al., 2009; Mc Laughlin et al., 2004), 47 

velocity spectra assessment (Taylor et al., 1988; Kim et al., 1994; Gitterman et al., 1998; Walter 48 

et al., 1995), ratios of corner frequencies (Korrat et al., 2022) and power spectral densities 49 

(Sertcelik et al., 2020). For large magnitude earthquakes (M>4), even the moment tensor solutions 50 

can be used for identifying the source. However, all these methods may not be applicable in all 51 

scenarios and are restricted by magnitude, distance and the type of instrument used to record these 52 

seismic signals. Moreover, manual methods are time consuming, require substantial effort for data 53 

selection, extraction, conversion and computation of the parameters and subsequent labeling of 54 

seismic events as blasts, earthquakes and noise. Unlike certain selection criteria such as window 55 

length for estimating amplitude, spectra, or magnitude, choosing corner frequencies and 56 

appropriate methods require individual experience and knowledge to ensure the correctness of the 57 

obtained results, which can vary for different scenarios. This can lead to partial loss of information 58 

or subjective factors affecting the outcome. 59 

Machine learning based classification models can overcome these challenges by preserving all 60 

parameter information based on the original waveform data and avoiding the impact of subjective 61 
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experience on classification outcomes. The advent of machine learning (ML) techniques has 62 

significantly impacted various scientific disciplines, including seismology, leading to numerous 63 

publications on ML and deep learning-based models for seismic signal classification (Renouard et 64 

al., 2021; Linville et al., 2019; Saad et al., 2019, 2022; Li et al., 2022).  In the present study, three 65 

CNN architectures were developed to identify earthquakes, quarry blasts and seismic noise. The 66 

first architecture is based on waveform analysis, the second on spectrum analysis, and the third on 67 

a combination of both waveform and spectrum features. The accuracies of all the three models 68 

were ≥ 93%. 69 

2. DATA 70 

2.1 Data collection 71 

 The Gujarat State Seismic Network (GSNet), operated by the Institute of Seismological Research 72 

(ISR), Gandhinagar, has been well-maintained since July 2006 (Chopra et al., 2008). The network 73 

consists of 60 Broadband Seismograph Stations (BBS) spread throughout the state and neighboring 74 

areas. Data from 45 BBS were transmitted to the Institute of Seismological Research via VSAT, 75 

enabling near real-time (24 × 7) monitoring of earthquake activity. Over the years, the network 76 

has recorded a significant number of earthquakes, primarily from Kachchh, Saurashtra, and 77 

mainland regions of Gujarat state (Rastogi et al., 2013). ISR is also obligated to promptly provide 78 

a preliminary earthquake report of all the earthquakes with magnitudes M≥2.5. These reports 79 

should be transmitted within minutes of the earthquake occurrence to both the disaster 80 

management authorities and state emergency response center through various modes of 81 

communication like email, SMS and the web. A recent study by Kumar et al., (2021) indicated an 82 

increase in low-magnitude earthquakes in the past decade, clustering mainly near Surendranagar 83 

region in the Saurashtra peninsula and Godhra in the mainland regions, predominantly during 84 
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daytime (IST). These events were associated with high b-values and were initially suspected to be 85 

quarry blasts; this anticipation was later confirmed during the Corona lockdown period. 86 

Consequently, the identification of such quarry blasts in the seismic catalog is crucial to provide 87 

an earthquake catalog devoid of artificial/anthropogenic events. 88 

In the present study, to differentiate earthquakes, quarry blasts and seismic noise, we utilized the 89 

waveform data recorded at Surendranagar (SUR) station from 2007 to 2022.  The SUR station 90 

(71.580 N, 22.730 E) was chosen as it is a permanently established long-running station of GSNet 91 

and also has clear records of anthropogenic activities. The station was equipped with a CMG-3T 92 

seismometer, configured at 50 Hz. We identified a total of 1298 blasts, which were ~25 to 37 km 93 

from the SUR station, within a region associated with mining-related quarries (Kumar et al., 2021) 94 

(Figure 1a). The magnitude range of these blasts (~M 0.6 to M 3.5) closely matches the range of 95 

micro earthquakes. Additionally, we selected 1005 local earthquake waveforms with epicentral 96 

distances ranging from 30 km to 110 km across Gujarat in the magnitude range of M 0.7 to M 4.5. 97 

The earthquakes were carefully chosen with a considerable overlap in the lower magnitude range 98 

to have comparable waveforms in the lower magnitude range as in the blast’s dataset. To create a 99 

uniform dataset of seismic noise, we randomly selected 1111 noise samples encompassing 100 

different times of the day and seasons throughout the year. This approach ensures that the dataset 101 

represents all possible noise scenarios over different times, seasons and years. The magnitude 102 

distribution of the blasts and earthquakes used in the present study were shown in Figure 1b. 103 

Seismological waveform data are a conglomeration of multiple factors like nature of the source, 104 

epicentral distance, the travel path/medium and the station location or the underlying geology that 105 

mostly influences the noise characteristics. The quality of waveforms (clear seismic phases) also 106 

hugely depends on the magnitude as well. It is a challenging job to identify clear phases in the case 107 
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of lower magnitudes where the energy quickly attenuates resulting in low signal to noise ratio and 108 

weak phases that can hardly surpass the background noise level (Korrat et al., 2022; Tibi et al., 109 

2019). Considering all the above-mentioned factors, we employed a 180 s window length for 110 

earthquakes, blasts, and noise unlike other published models (Liu et al., 2021; Kong et al., 2022) 111 

that utilized ≤ 100s window length. The longer waveform length was chosen to preserve features 112 

such as coda length, which differs significantly between earthquakes and blasts, especially for 113 

earthquakes with large magnitudes and epicentral distances, resulting in longer coda lengths. 114 

Each earthquake and blast were manually verified and visually inspected based on occurrence time 115 

(7 am to 7 pm IST), geographical location, and waveform characteristics, including coda length 116 

and P, S phase amplitudes. Furthermore, we observed that identifying the source characteristics is 117 

much simpler in the frequency domain than in the time domain (Korrat et al., 2022), as the 118 

spectrogram illustrates the signal intensity across different frequencies found within an arbitrary 119 

waveform. We plotted spectrograms that provided a clear identification of the source, particularly 120 

when categorizing events in the lower magnitude range with low signal-to-noise ratios (Allmann 121 

et al., 2008). The spectrum of earthquakes exhibited two distinct frequency bands corresponding 122 

to P and S phases in the chosen window length (Figure 2a). Conversely, the spectrum of blasts 123 

showed a single band corresponding to the onset of the P phase (Figure 2b). An example of the 124 

seismic noise spectrum is shown in Figure 2c. Therefore, a total of 3414 waveforms that include 125 

1298 blasts, 1005 earthquakes and 1111 noise samples were labeled for further processing. 126 

2.2 Data pre-processing and splitting 127 

The most commonly observed issue in seismic waveforms is that traces deviate from the baseline 128 

and are associated with some long periodic trend (Liu et al., 2021). Therefore, all the waveforms 129 

are corrected for the trend and mean using detrend and demean tools in ObsPy (Breckpot et al., 130 
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2010; Krischer et al., 2015). As the first step in deep learning a test dataset, comprising 15% of the 131 

raw/unaugmented data, was separated. This test dataset was not used to train the model, and its 132 

purpose was to assess the statistical significance of the model's performance. The test set consists 133 

of 513 seismic events, almost equally weighted among the three classes; earthquakes (151), blasts 134 

(195) and noise (167). The same test dataset was used for all the three models, namely the 135 

waveform, spectrum and combined model. 136 

2.3 Data Augmentation 137 

The crux of deep learning models largely depends on the quality, quantity, and consistency of the 138 

labeled dataset used for training. Therefore, a limitation of machine learning is the lack of 139 

sufficient amount of training data or uneven class balance in a dataset. The present objective for 140 

the 3-class classification requires a huge dataset, but the dataset consists of 2901 waveforms which 141 

is insufficient for deep learning. So, we adopted the technique of data augmentation to overcome 142 

this limitation and construct a suitable training dataset using ObsPy. The data is augmented by: (i) 143 

flipping the polarities of the waveforms, (ii) applying bandpass filter from 2.0 Hz to 8.0 Hz and, 144 

(iii) randomly muting one trace. The miniseed files are converted into Numpy (Harris et al., 2020) 145 

arrays and are saved in ‘.npy’ format with a shape of (9001, 3), where 9001 represents the ‘npts’ 146 

(number of points) and 3 represents the number of channels. In order to maintain uniform trace 147 

length or equal number of ‘npts’, the traces with shorter lengths were padded with zeros at the end. 148 

This resulted in a total of 11,614 waveforms that were used as training dataset for the waveform 149 

model. 150 

The spectra are computed for the raw waveforms after correcting for the trend and mean. The data 151 

augmentation in waveforms shows noticeable changes especially when the polarities of the 152 

waveform were flipped. However, such differences/changes were not visually identifiable in the 153 
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spectrograms. Therefore, the spectrum data of the earthquakes, blasts and noise were augmented 154 

by applying band-pass (2.0-8.0 Hz), low-pass (8.0 Hz), and high-pass (2.0 Hz) filters. The input 155 

shape for the spectrum model was (390, 25, 3), corresponding to (time × frequency × channels). 156 

To maintain the same shape, zero padding was applied at the end of the spectrum data. 157 

3 CNN MODELS 158 

Recent studies have highlighted the effectiveness of CNN-based identification methods in seismic 159 

data processing and the extraction of characteristic features. These features can aid in 160 

discrimination and classification based on pixel-level information, thereby synthesizing global 161 

information. In the present study, we developed three CNN models based on waveforms, 162 

spectrograms and combined parameters to classify local earthquakes, quarry blasts and seismic 163 

noise. To build these models, TensorFlow (Abadi, 2016) was utilized and all the three models were 164 

trained on the Nvidia RTX A5000. Each of these models were described below. All the models 165 

were trained on the data recorded at a single station SUR. 166 

 A Categorical Cross-Entropy loss function and an Adam optimization method (Kingma et al., 167 

2014) were used to train all the models below. To prevent our models from overfitting data, we 168 

incorporated an early stopping mechanism. This means that if the accuracy remains unchanged for 169 

selected consecutive epochs (which can be defined through the parameter called “patience"), the 170 

training process terminates. This approach ensures the reliability of the training process. In the 171 

present study, we chose patience as 10 for all the three models. 172 

3.1 Waveform Model 173 

For training the waveform CNN model, three-component seismogram data with a length of 180s 174 

(20s before and 160s after the first arrival) was utilized. For distinguishing the three classes 175 

(earthquakes, quarry blasts and noise) we developed a 4 layered convolutional model with filter 176 
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counts 32, 64, 128 and 256. The model has two fully connected (FC) layers (256, 128) with max-177 

pooling and drop-out layers between each layer show in Figure 3(a). The probability of each class 178 

was computed from the output layer using the ‘softmax’ activation function (Nwankpa et al., 179 

2018). The best accuracy of 95.32 % was obtained with a learning rate of 2*10-4 and a batch size 180 

of 16 given in Table S1 in of Supporting Information. 181 

3.2 Spectrum Model 182 

This model was developed as an alternative approach to discriminate earthquakes and quarry blasts 183 

based on spectrograms. Extracting information from spectrograms provides a reliable 184 

classification. The spectrograms show clear distinguishing features that can be used to train the 185 

model for reliable classification, even in the low-to-intermediate magnitude range of earthquakes 186 

and quarry blasts. The spectrograms are computed for 1s sliding windows with 50% overlap, which 187 

results in 390-time windows for which we compute the discrete Fourier transform between 1 and 188 

25 Hz for the three components of the seismogram each having 180 s data length. Thus, the 189 

spectrogram's model input size is (390 × 25 × 3). Spectrum model focuses on different frequency 190 

bands generated due to the arrival of different phases (P and S) to make the three-class 191 

identification. This model consists of 4 convolution layers with 16, 32, 64 and 128 filters, and two 192 

fully connected layers at the end. We applied a 2 × 2 ‘max-pooling’ between each convolution 193 

layer and the final layer is the fully connected output layer that computes the probabilities obtained 194 

for different classes using the ‘softmax’ activation function shown in Figure 3(b). The activation 195 

function used for this model is SeLU and an accuracy of 93.13% is obtained.  196 

3.3 Combined Model 197 

The combined model was developed combining the architectures of waveform and spectrogram 198 

models incorporating the features from both waveform and spectrum. The features thus extracted 199 
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from both the models are then combined with a concatenation layer. The concatenated features are 200 

then passed through a FC layer before the model predicts the final classification shown in Figure 201 

S1.  The SeLU activation function was used across the network appended by a last layer of softmax 202 

activation function with three neutrons for a 3-category classification problem. An accuracy of 203 

93.96 % was obtained using this model. 204 

4. RESULTS AND DISCUSSION 205 

In this study, we employed a training dataset comprising 11,614 waveforms and a test dataset of 206 

513 waveforms to build three models namely waveform, spectrogram and combined. The achieved 207 

accuracies for these models were 95.32%, 93.13%, and 93.96%, respectively. Further, the 208 

performance of these models were assessed using Receiver Operating Characteristic (ROC) curves 209 

on the test dataset. These curves are useful for testing the model’s ability to classify input by 210 

plotting the true positive rate against the false positive rate. The Area Under the Curve (AUC) was 211 

employed as a metric to measure the quality of the ROC curve, with a value of 1 signifying optimal 212 

performance (Figure S2), the AUC values of each model with individual class values are given in 213 

Table S2. The AUCs are >0.97 for each model indicating the model’s ability to correctly 214 

distinguish various classes (Table S2) 215 

In ML, to evaluate the performance of a classification of models these four parameters are used 216 

namely, accuracy (Acc), precision (Pr), recall (Re) and F1-score (F1). 217 

Acc =
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 
  (1) 218 

Pr = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   (2) 219 

Re = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   (3) 220 

F1 = 2 
𝑅𝑒 ∗ 𝑃𝑟

𝑅𝑒 + 𝑃𝑟
   (4) 221 
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where, TP and TN are abbreviations for True Positive and True Negative, similar to FP and FN, 222 

which represent False Positive and False Negative. Accuracy (1) describes the correctness rate of 223 

the predicted labels, as it is the ratio of the sum of all the true predictions to the number of all 224 

possible predictions. The precision (2) value provides insights into TP (such as earthquake, blast, 225 

or noise in our case), where a value close to 1 indicates that most predictions are correctly 226 

identified. Recall (3) is the ratio of positively identified predictions to the number of actual positive 227 

classes. Thus, a higher recall value suggests that most predictions are correct, reducing the 228 

possibility of misclassification or false classification. The F1-score (4), unlike its counterparts 229 

recall and precision, considers both true and false predictions and is a weighted average of 230 

precision and recall. These parameters are calculated for each model and tabulated in table T1. 231 

These four parameters are >0.90 in all the three models. The precision value obtained from the 232 

waveform model is highest (0.97) for noise and earthquakes, indicating that these classes are better 233 

or correctly identified compared to the blasts that have least precision value (0.91). However, in 234 

the spectrum model, the ability to predict the blasts improves, indicating an increase in precision 235 

value (0.96) compared to the waveform model. Further, the confusion matrix provides detailed 236 

insights on the actual number of true and predicted classes in each category. The confusion matrix 237 

of the three models (Figure S3) shows the edge of each model over the other. Although the 238 

waveform model gives best predictions in all the categories, the combined model gives 100% 239 

correct prediction in the noise class. The same was expected from the spectrum model that was 240 

developed based on the difference observed in the predominant frequencies of blasts, noise and 241 

earthquakes (Figure 2). However, it failed to produce the expected outcome. 242 

The waveform model produces the highest accuracy when compared to other models developed in 243 

the present study, and its performance is also comparable with the previously published waveform-244 
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based CNN model (Liu et al., 2021) to distinguish tectonic and non-tectonic earthquakes. Their 245 

model was trained and tested using data from the China Earthquake Network Center. They 246 

obtained an accuracy of 92% with their four layered model using the Rectified Linear Unit (ReLU) 247 

activation function in a 7-layered CNN model. In another study, Hourcade et al. (2022) developed 248 

a 4-layered spectrum-based CNN model with the ReLU activation function. There model was 249 

trained to differentiate between natural and anthropogenic events from metropolitan France, and 250 

it achieved an accuracy of 98%. 251 

4.1 Misclassifications by Waveform-based CNN  252 

The waveform-based model identifies noise with high accuracy (99%). However, a small 253 

proportion of the test set (4%, comprising 22 waveforms) was misclassified, primarily consisting 254 

of blasts and earthquakes.  A visual examination of the misclassified waveforms was conducted 255 

(Figure S4) to identify any specific patterns or features that are contributing to the misclassification 256 

of certain waveforms. Subsequently, the signal-to-noise ratio (SNR) was also calculated using the 257 

following formula to quantify the limitations of the waveform-based model with respect to the 258 

relative strength of the seismic signal to the background noise. 259 

𝑆𝑁𝑅 =  10 𝑙𝑜𝑔10 (
𝜇 𝑆2

𝜇 𝑁2)   (5)  260 

where, 𝜇 𝑆2
 represents the mean squared amplitude of the seismic signal calculated over a 10 s 261 

interval post the first arrival, and 𝜇 𝑁2 represents the mean squared amplitude of background noise 262 

calculated over a 10 s interval preceding the first arrival (Figure S5). 263 

The resulting SNR value, expressed in decibels (dB), provides a measure of the relative strength 264 

of the seismic signal to the background noise. In the present study the SNR varies from -9 to 44 265 

dB (Figure S6). The negative values are obtained when the ratio of (
𝜇 𝑆2

𝜇 𝑁2) is < 1 which indicates 266 
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that the noise dominates over the signal. (
𝜇 𝑆2

𝜇 𝑁2)=1 means that the strength of signal and noise are 267 

equal, resulting in a SNR of 0 (as  10 𝑙𝑜𝑔10 (1) = 0). Majority of the misclassified waveforms (15 268 

i.e. 68% of the total misclassified waveforms) have low SNR <10 (Figure S6 (c)) and ≥ 50% 269 

prediction probability for the wrong class given in Figure S7. 270 

4.2 Misclassification by Spectrogram-based CNN  271 

A clear distinction between an earthquake and a quarry blast was evident on a spectrogram (Figure 272 

2), prompting us to develop a spectrum-based model to improve the accuracy of classification. 273 

Although the spectrum model achieved good classification results, they were not as promising as 274 

anticipated. Visual inspection of the misclassified spectrogram records revealed two issues: (1) 275 

strong and consistent energy at a particular frequency band throughout the selected time window, 276 

and (2) a frequency response resembling a sinusoidal trend from an unidentified source (example 277 

shown in Figure S8). Attempts to mitigate these issues by applying a bandstop filter resulted in the 278 

loss of information and created a void at that particular frequency band (Figure S8(b)). An 279 

improved dataset would provide a more comprehensive understanding of the model's behavior and 280 

enhance its robustness, which is currently limited by the limited dataset. 281 

5. INDEPENDENT TEST 282 

The three models developed in the present study were mainly trained using GSNet data. However, 283 

to make sure they work well in different situations, we tested them using earthquake data from the 284 

Southern California Earthquake Data Center (SCEDC). A total of 1037 events were downloaded, 285 

with 417 earthquakes recorded at BJX station and 620 blasts recorded at EDW2 station. An 286 

accuracy of 94%, 90% and 91% was obtained with waveform model, spectrum and combined 287 

model respectively results were given in Fig S9. 288 



manuscript submitted to Geophysical Research Letters 

14 

Further, while preparing this manuscript, we observed some unexpected seismic activity from a 289 

region named Palitana, in the Gujarat state of India, hitherto devoid of any active seismic activity 290 

from previous GSNet monitoring for almost 16 years. Thus, we tested these few ambiguous 291 

waveforms, and with 100% certainty, these events were classified correctly as quarry blasts with 292 

all our three models. 293 

6. CONCLUSION 294 

In order to reduce the amount of processing time for classifying various seismic events, in the 295 

present study we developed three deep learning classification models based on waveform, 296 

spectrogram, and combining both utilizing the CNNs. These models identified seismic noise, 297 

quarry blasts, and earthquakes with an accuracy of 95.32%, 93.13%, and 93.96% respectively. To 298 

verify the dependability and efficacy of these models, tests were conducted on alternative datasets. 299 

This testing provided us clear evidence that these models can be effectively utilized for 300 

classification of seismic events (earthquakes & blasts) from other regions as well. The accuracy 301 

and application of our models to different regions can be further effectively improved by increasing 302 

our labelled dataset with varied examples. 303 

The ML based approaches are more efficient and accurate in discriminating earthquakes and blasts 304 

over manual methods that are limited by magnitude and SNR. In the present study, 185 waveforms 305 

have SNR < 10, which means that the noise is dominant over the signal and only 15 (8% of 185 306 

waveforms) were misclassified and 92% of the events were correctly classified, even in the low 307 

magnitude range and noisy data. The proposed classification models can improve the speed and 308 

accuracy in detecting the microseismic events and quarry blasts. This approach can be used to 309 

discriminate in real time and reduce the mislabelled/ambiguous events and thus constituting in 310 

making the catalog as reliable as possible. On a long-term basis we plan to use these models for 311 
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monitoring illegal mining activity in Gujarat state as such activities demand attention from local 312 

governing bodies which may cause important implications for the safety and environmental 313 

management. 314 

7. FUTURE WORK 315 

These classification models will be further developed for near real time monitoring which includes 316 

phase detection and estimating the earthquake location parameters. This should be able to reduce 317 

the manual efforts to identify different sources and also estimate the location and magnitude within 318 

a fraction of seconds. Recent works utilized Fourier Neural Operators (Li et al., 2020; Sun et al., 319 

2023) to develop near real time seismic monitoring. They proposed a model to identify the 320 

earthquakes and mark phases on the real time monitoring with multiple stations as input. 321 
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 430 

Tables and captions 431 

Table 1: Summary of the evaluation parameters obtained for waveform (WF), spectrum (SPEC) 432 

and combined (COM) models.  433 

 434 

Classes F1 Score Recall Precision 

WF SPEC COM WF SPEC COM WF SPEC COM 

Earthquake 0.91 0.95 0.95 0.92 0.97 0.94 0.97 0.94 0.96 

Blasts 0.93 0.92 0.93 0.95 0.89 0.92 0.91 0.96 0.93 

Noise 0.98 0.97 0.98 0.99 0.98 0.99 0.97 0.96 0.96 

 435 
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Figures and Figure Captions 436 

 437 

Figure 1(a): The spatial distribution of the earthquakes (blue circles) and blasts (red circles) used 438 

in the present study, recorded at Surendranagar (SUR) broadband station (green triangle). The inset 439 

map shows the Gujarat State in India. 440 
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 441 

Figure 1(b): Magnitude distribution of the blasts and earthquakes (shown in figure 1) used in the 442 

present study.  443 
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 444 

Figure 2: Examples of (A) an earthquake, (B) a blast, and (C) noise recorded at the SUR station. 445 

The station code, the component, epicentral distance (Δ) in kilometers, and the start time (UTC) 446 

of the chosen window are mentioned in the right corner of each waveform. The distinct spectral 447 

characteristics of each example can be seen in the corresponding frequency distribution 448 

(spectrogram) and frequency and amplitude distribution. Earthquake spectra exhibit two distinct 449 

frequency peaks corresponding to P- and S-phase arrivals, with predominant frequencies in the 450 

range of 3–16 Hz. Blast spectra show a single peak corresponding to the onset of the P-phase and 451 

have larger amplitudes in the higher frequencies between 12 and 18 Hz. Seismic noise amplitudes 452 

are generally lower and in the frequency range less than 5 Hz.  453 
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 454 

Figure 3(a): Schematic representation of the waveform-based CNN model's architecture developed 455 

in this study to discriminate between earthquakes, blasts, and seismic noise. The input for this 456 

model is a three-channel waveform of 180 seconds length at a sampling rate of 50 Hz. The input 457 

shape is (9001,3) corresponding to the number of points, and channels. This model was built with 458 

4 1D CNN layers, with SeLU activation function. The output dimension is provided below each 459 

layer before the final prediction of the three classes (earthquakes, blasts, and seismic noise) using 460 

the softmax activation function. 461 
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 462 

Figure 3(b): Schematic representation of the spectrum-based CNN model's architecture developed 463 

in this study to discriminate between earthquakes, blasts, and seismic noise. The input for this 464 

model is a three-channel spectrogram of 180 seconds length at a sampling rate of 50 Hz. The input 465 

shape is (390,25,3) corresponding to the number of points, frequency, and channels. The yellow 466 

block represents the 2D CNN layers which uses SeLU activation function followed by 2D 467 

MaxPooling layers (red blocks) which reduces the dimension of the input data from 390 to 24 468 

before flattening the data for fully connected layers that will be used for the final prediction of the 469 

three classes of earthquakes, blasts, and seismic noise using the softmax activation function. 470 
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Table 1: Summary of the evaluation parameters obtained for waveform (WF), spectrum 

(SPEC) and combined (COM) models.  
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Key Points 9 

• Developed 3 CNN models to classify blasts, earthquakes & noise based on the features 10 

extracted from waveform, spectrum & combining both. 11 

• All 3 models have >93% accuracies and exhibit exceeding performance in matrix scores 12 

F1, recall and precision.  13 

• These models produce > 90% accuracies when tested on new datasets from SCEDC and 14 

Palitana region Gujarat.   15 
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Abstract 16 

In anticipation to substitute the existing manual/semi-automated methods for classifying quarry 17 

blasts, earthquakes, and noise, we developed three convolutional neural network (CNN) models. 18 

The three CNN models extract relevant features from seismograms (waveform), spectrograms 19 

(spectrum), and a combination of the two respectively. A total of 3414 samples were extracted 20 

from the three categories, 15% of the data from each category were split for testing, and the 21 

remaining data were augmented and used for training. The waveform model, spectrogram model, 22 

and combined model achieved accuracies of 95.32%, 93.13%, and 93.96%, respectively. The 23 

reliability of these models was ascertained by promising accuracies of >90% and 100% obtained 24 

for large and small datasets from testing with SCEDC data and records from the Palitana region 25 

(Gujarat) respectively. The results of this study demonstrate the potential of deep learning-based 26 

approaches for the effective classification of seismic events.  27 

Key Words: Deep Learning, CNN, Earthquakes, Quarry blasts, Noise, Spectrogram, Gujarat. 28 

1. INTRODUCTION 29 

Seismicity monitoring is one of the primary objectives in traditional seismological studies. This 30 

process requires manual inspection, which is time-consuming and is often associated with errors 31 

and biases. Continuous seismic networks used for monitoring seismicity at local and regional 32 

scales are thus contaminated with events other than natural earthquakes (Linville et al., 2019). 33 

Therefore, discriminating between a local tectonic event and a mining or quarry blast is a routine 34 

yet challenging task for both researchers who compile earthquake catalogs and those monitoring 35 

seismic networks (Astiz et al., 2014). Further, identification of blasts and earthquakes becomes 36 

especially challenging in near real-time monitoring when both the tectonic earthquakes and 37 

anthropogenic sources are in proximity (Whidden & Pankow 2012; Wiemer & Baer 2000; Horasan 38 
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et al., 2009) and the earthquake location has to be reported in less than 10 minutes of earthquake 39 

occurrence. 40 

Traditional seismological methods include manual, semi-automated and automated methods to 41 

discriminate between tectonic earthquakes, blasts and noise. Initially, the identification was based 42 

on occurrence time and location, often represented by the day-night distribution plot. Explosions 43 

usually occur during working hours from the same location, unlike earthquakes that can happen at 44 

any time and from any location. Later, more technical discrimination techniques were adopted 45 

based on waveform and spectrum analysis, such as ratios of amplitudes of various seismic phases 46 

(Bennett & Murphy 1986; Wüster et al., 1993; Anderson et al., 2009; Mc Laughlin et al., 2004), 47 

velocity spectra assessment (Taylor et al., 1988; Kim et al., 1994; Gitterman et al., 1998; Walter 48 

et al., 1995), ratios of corner frequencies (Korrat et al., 2022) and power spectral densities 49 

(Sertcelik et al., 2020). For large magnitude earthquakes (M>4), even the moment tensor solutions 50 

can be used for identifying the source. However, all these methods may not be applicable in all 51 

scenarios and are restricted by magnitude, distance and the type of instrument used to record these 52 

seismic signals. Moreover, manual methods are time consuming, require substantial effort for data 53 

selection, extraction, conversion and computation of the parameters and subsequent labeling of 54 

seismic events as blasts, earthquakes and noise. Unlike certain selection criteria such as window 55 

length for estimating amplitude, spectra, or magnitude, choosing corner frequencies and 56 

appropriate methods require individual experience and knowledge to ensure the correctness of the 57 

obtained results, which can vary for different scenarios. This can lead to partial loss of information 58 

or subjective factors affecting the outcome. 59 

Machine learning based classification models can overcome these challenges by preserving all 60 

parameter information based on the original waveform data and avoiding the impact of subjective 61 
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experience on classification outcomes. The advent of machine learning (ML) techniques has 62 

significantly impacted various scientific disciplines, including seismology, leading to numerous 63 

publications on ML and deep learning-based models for seismic signal classification (Renouard et 64 

al., 2021; Linville et al., 2019; Saad et al., 2019, 2022; Li et al., 2022).  In the present study, three 65 

CNN architectures were developed to identify earthquakes, quarry blasts and seismic noise. The 66 

first architecture is based on waveform analysis, the second on spectrum analysis, and the third on 67 

a combination of both waveform and spectrum features. The accuracies of all the three models 68 

were ≥ 93%. 69 

2. DATA 70 

2.1 Data collection 71 

 The Gujarat State Seismic Network (GSNet), operated by the Institute of Seismological Research 72 

(ISR), Gandhinagar, has been well-maintained since July 2006 (Chopra et al., 2008). The network 73 

consists of 60 Broadband Seismograph Stations (BBS) spread throughout the state and neighboring 74 

areas. Data from 45 BBS were transmitted to the Institute of Seismological Research via VSAT, 75 

enabling near real-time (24 × 7) monitoring of earthquake activity. Over the years, the network 76 

has recorded a significant number of earthquakes, primarily from Kachchh, Saurashtra, and 77 

mainland regions of Gujarat state (Rastogi et al., 2013). ISR is also obligated to promptly provide 78 

a preliminary earthquake report of all the earthquakes with magnitudes M≥2.5. These reports 79 

should be transmitted within minutes of the earthquake occurrence to both the disaster 80 

management authorities and state emergency response center through various modes of 81 

communication like email, SMS and the web. A recent study by Kumar et al., (2021) indicated an 82 

increase in low-magnitude earthquakes in the past decade, clustering mainly near Surendranagar 83 

region in the Saurashtra peninsula and Godhra in the mainland regions, predominantly during 84 
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daytime (IST). These events were associated with high b-values and were initially suspected to be 85 

quarry blasts; this anticipation was later confirmed during the Corona lockdown period. 86 

Consequently, the identification of such quarry blasts in the seismic catalog is crucial to provide 87 

an earthquake catalog devoid of artificial/anthropogenic events. 88 

In the present study, to differentiate earthquakes, quarry blasts and seismic noise, we utilized the 89 

waveform data recorded at Surendranagar (SUR) station from 2007 to 2022.  The SUR station 90 

(71.580 N, 22.730 E) was chosen as it is a permanently established long-running station of GSNet 91 

and also has clear records of anthropogenic activities. The station was equipped with a CMG-3T 92 

seismometer, configured at 50 Hz. We identified a total of 1298 blasts, which were ~25 to 37 km 93 

from the SUR station, within a region associated with mining-related quarries (Kumar et al., 2021) 94 

(Figure 1a). The magnitude range of these blasts (~M 0.6 to M 3.5) closely matches the range of 95 

micro earthquakes. Additionally, we selected 1005 local earthquake waveforms with epicentral 96 

distances ranging from 30 km to 110 km across Gujarat in the magnitude range of M 0.7 to M 4.5. 97 

The earthquakes were carefully chosen with a considerable overlap in the lower magnitude range 98 

to have comparable waveforms in the lower magnitude range as in the blast’s dataset. To create a 99 

uniform dataset of seismic noise, we randomly selected 1111 noise samples encompassing 100 

different times of the day and seasons throughout the year. This approach ensures that the dataset 101 

represents all possible noise scenarios over different times, seasons and years. The magnitude 102 

distribution of the blasts and earthquakes used in the present study were shown in Figure 1b. 103 

Seismological waveform data are a conglomeration of multiple factors like nature of the source, 104 

epicentral distance, the travel path/medium and the station location or the underlying geology that 105 

mostly influences the noise characteristics. The quality of waveforms (clear seismic phases) also 106 

hugely depends on the magnitude as well. It is a challenging job to identify clear phases in the case 107 
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of lower magnitudes where the energy quickly attenuates resulting in low signal to noise ratio and 108 

weak phases that can hardly surpass the background noise level (Korrat et al., 2022; Tibi et al., 109 

2019). Considering all the above-mentioned factors, we employed a 180 s window length for 110 

earthquakes, blasts, and noise unlike other published models (Liu et al., 2021; Kong et al., 2022) 111 

that utilized ≤ 100s window length. The longer waveform length was chosen to preserve features 112 

such as coda length, which differs significantly between earthquakes and blasts, especially for 113 

earthquakes with large magnitudes and epicentral distances, resulting in longer coda lengths. 114 

Each earthquake and blast were manually verified and visually inspected based on occurrence time 115 

(7 am to 7 pm IST), geographical location, and waveform characteristics, including coda length 116 

and P, S phase amplitudes. Furthermore, we observed that identifying the source characteristics is 117 

much simpler in the frequency domain than in the time domain (Korrat et al., 2022), as the 118 

spectrogram illustrates the signal intensity across different frequencies found within an arbitrary 119 

waveform. We plotted spectrograms that provided a clear identification of the source, particularly 120 

when categorizing events in the lower magnitude range with low signal-to-noise ratios (Allmann 121 

et al., 2008). The spectrum of earthquakes exhibited two distinct frequency bands corresponding 122 

to P and S phases in the chosen window length (Figure 2a). Conversely, the spectrum of blasts 123 

showed a single band corresponding to the onset of the P phase (Figure 2b). An example of the 124 

seismic noise spectrum is shown in Figure 2c. Therefore, a total of 3414 waveforms that include 125 

1298 blasts, 1005 earthquakes and 1111 noise samples were labeled for further processing. 126 

2.2 Data pre-processing and splitting 127 

The most commonly observed issue in seismic waveforms is that traces deviate from the baseline 128 

and are associated with some long periodic trend (Liu et al., 2021). Therefore, all the waveforms 129 

are corrected for the trend and mean using detrend and demean tools in ObsPy (Breckpot et al., 130 
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2010; Krischer et al., 2015). As the first step in deep learning a test dataset, comprising 15% of the 131 

raw/unaugmented data, was separated. This test dataset was not used to train the model, and its 132 

purpose was to assess the statistical significance of the model's performance. The test set consists 133 

of 513 seismic events, almost equally weighted among the three classes; earthquakes (151), blasts 134 

(195) and noise (167). The same test dataset was used for all the three models, namely the 135 

waveform, spectrum and combined model. 136 

2.3 Data Augmentation 137 

The crux of deep learning models largely depends on the quality, quantity, and consistency of the 138 

labeled dataset used for training. Therefore, a limitation of machine learning is the lack of 139 

sufficient amount of training data or uneven class balance in a dataset. The present objective for 140 

the 3-class classification requires a huge dataset, but the dataset consists of 2901 waveforms which 141 

is insufficient for deep learning. So, we adopted the technique of data augmentation to overcome 142 

this limitation and construct a suitable training dataset using ObsPy. The data is augmented by: (i) 143 

flipping the polarities of the waveforms, (ii) applying bandpass filter from 2.0 Hz to 8.0 Hz and, 144 

(iii) randomly muting one trace. The miniseed files are converted into Numpy (Harris et al., 2020) 145 

arrays and are saved in ‘.npy’ format with a shape of (9001, 3), where 9001 represents the ‘npts’ 146 

(number of points) and 3 represents the number of channels. In order to maintain uniform trace 147 

length or equal number of ‘npts’, the traces with shorter lengths were padded with zeros at the end. 148 

This resulted in a total of 11,614 waveforms that were used as training dataset for the waveform 149 

model. 150 

The spectra are computed for the raw waveforms after correcting for the trend and mean. The data 151 

augmentation in waveforms shows noticeable changes especially when the polarities of the 152 

waveform were flipped. However, such differences/changes were not visually identifiable in the 153 
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spectrograms. Therefore, the spectrum data of the earthquakes, blasts and noise were augmented 154 

by applying band-pass (2.0-8.0 Hz), low-pass (8.0 Hz), and high-pass (2.0 Hz) filters. The input 155 

shape for the spectrum model was (390, 25, 3), corresponding to (time × frequency × channels). 156 

To maintain the same shape, zero padding was applied at the end of the spectrum data. 157 

3 CNN MODELS 158 

Recent studies have highlighted the effectiveness of CNN-based identification methods in seismic 159 

data processing and the extraction of characteristic features. These features can aid in 160 

discrimination and classification based on pixel-level information, thereby synthesizing global 161 

information. In the present study, we developed three CNN models based on waveforms, 162 

spectrograms and combined parameters to classify local earthquakes, quarry blasts and seismic 163 

noise. To build these models, TensorFlow (Abadi, 2016) was utilized and all the three models were 164 

trained on the Nvidia RTX A5000. Each of these models were described below. All the models 165 

were trained on the data recorded at a single station SUR. 166 

 A Categorical Cross-Entropy loss function and an Adam optimization method (Kingma et al., 167 

2014) were used to train all the models below. To prevent our models from overfitting data, we 168 

incorporated an early stopping mechanism. This means that if the accuracy remains unchanged for 169 

selected consecutive epochs (which can be defined through the parameter called “patience"), the 170 

training process terminates. This approach ensures the reliability of the training process. In the 171 

present study, we chose patience as 10 for all the three models. 172 

3.1 Waveform Model 173 

For training the waveform CNN model, three-component seismogram data with a length of 180s 174 

(20s before and 160s after the first arrival) was utilized. For distinguishing the three classes 175 

(earthquakes, quarry blasts and noise) we developed a 4 layered convolutional model with filter 176 
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counts 32, 64, 128 and 256. The model has two fully connected (FC) layers (256, 128) with max-177 

pooling and drop-out layers between each layer show in Figure 3(a). The probability of each class 178 

was computed from the output layer using the ‘softmax’ activation function (Nwankpa et al., 179 

2018). The best accuracy of 95.32 % was obtained with a learning rate of 2*10-4 and a batch size 180 

of 16 given in Table S1 in of Supporting Information. 181 

3.2 Spectrum Model 182 

This model was developed as an alternative approach to discriminate earthquakes and quarry blasts 183 

based on spectrograms. Extracting information from spectrograms provides a reliable 184 

classification. The spectrograms show clear distinguishing features that can be used to train the 185 

model for reliable classification, even in the low-to-intermediate magnitude range of earthquakes 186 

and quarry blasts. The spectrograms are computed for 1s sliding windows with 50% overlap, which 187 

results in 390-time windows for which we compute the discrete Fourier transform between 1 and 188 

25 Hz for the three components of the seismogram each having 180 s data length. Thus, the 189 

spectrogram's model input size is (390 × 25 × 3). Spectrum model focuses on different frequency 190 

bands generated due to the arrival of different phases (P and S) to make the three-class 191 

identification. This model consists of 4 convolution layers with 16, 32, 64 and 128 filters, and two 192 

fully connected layers at the end. We applied a 2 × 2 ‘max-pooling’ between each convolution 193 

layer and the final layer is the fully connected output layer that computes the probabilities obtained 194 

for different classes using the ‘softmax’ activation function shown in Figure 3(b). The activation 195 

function used for this model is SeLU and an accuracy of 93.13% is obtained.  196 

3.3 Combined Model 197 

The combined model was developed combining the architectures of waveform and spectrogram 198 

models incorporating the features from both waveform and spectrum. The features thus extracted 199 
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from both the models are then combined with a concatenation layer. The concatenated features are 200 

then passed through a FC layer before the model predicts the final classification shown in Figure 201 

S1.  The SeLU activation function was used across the network appended by a last layer of softmax 202 

activation function with three neutrons for a 3-category classification problem. An accuracy of 203 

93.96 % was obtained using this model. 204 

4. RESULTS AND DISCUSSION 205 

In this study, we employed a training dataset comprising 11,614 waveforms and a test dataset of 206 

513 waveforms to build three models namely waveform, spectrogram and combined. The achieved 207 

accuracies for these models were 95.32%, 93.13%, and 93.96%, respectively. Further, the 208 

performance of these models were assessed using Receiver Operating Characteristic (ROC) curves 209 

on the test dataset. These curves are useful for testing the model’s ability to classify input by 210 

plotting the true positive rate against the false positive rate. The Area Under the Curve (AUC) was 211 

employed as a metric to measure the quality of the ROC curve, with a value of 1 signifying optimal 212 

performance (Figure S2), the AUC values of each model with individual class values are given in 213 

Table S2. The AUCs are >0.97 for each model indicating the model’s ability to correctly 214 

distinguish various classes (Table S2) 215 

In ML, to evaluate the performance of a classification of models these four parameters are used 216 

namely, accuracy (Acc), precision (Pr), recall (Re) and F1-score (F1). 217 

Acc =
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 
  (1) 218 

Pr = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   (2) 219 

Re = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   (3) 220 

F1 = 2 
𝑅𝑒 ∗ 𝑃𝑟

𝑅𝑒 + 𝑃𝑟
   (4) 221 
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where, TP and TN are abbreviations for True Positive and True Negative, similar to FP and FN, 222 

which represent False Positive and False Negative. Accuracy (1) describes the correctness rate of 223 

the predicted labels, as it is the ratio of the sum of all the true predictions to the number of all 224 

possible predictions. The precision (2) value provides insights into TP (such as earthquake, blast, 225 

or noise in our case), where a value close to 1 indicates that most predictions are correctly 226 

identified. Recall (3) is the ratio of positively identified predictions to the number of actual positive 227 

classes. Thus, a higher recall value suggests that most predictions are correct, reducing the 228 

possibility of misclassification or false classification. The F1-score (4), unlike its counterparts 229 

recall and precision, considers both true and false predictions and is a weighted average of 230 

precision and recall. These parameters are calculated for each model and tabulated in table T1. 231 

These four parameters are >0.90 in all the three models. The precision value obtained from the 232 

waveform model is highest (0.97) for noise and earthquakes, indicating that these classes are better 233 

or correctly identified compared to the blasts that have least precision value (0.91). However, in 234 

the spectrum model, the ability to predict the blasts improves, indicating an increase in precision 235 

value (0.96) compared to the waveform model. Further, the confusion matrix provides detailed 236 

insights on the actual number of true and predicted classes in each category. The confusion matrix 237 

of the three models (Figure S3) shows the edge of each model over the other. Although the 238 

waveform model gives best predictions in all the categories, the combined model gives 100% 239 

correct prediction in the noise class. The same was expected from the spectrum model that was 240 

developed based on the difference observed in the predominant frequencies of blasts, noise and 241 

earthquakes (Figure 2). However, it failed to produce the expected outcome. 242 

The waveform model produces the highest accuracy when compared to other models developed in 243 

the present study, and its performance is also comparable with the previously published waveform-244 
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based CNN model (Liu et al., 2021) to distinguish tectonic and non-tectonic earthquakes. Their 245 

model was trained and tested using data from the China Earthquake Network Center. They 246 

obtained an accuracy of 92% with their four layered model using the Rectified Linear Unit (ReLU) 247 

activation function in a 7-layered CNN model. In another study, Hourcade et al. (2022) developed 248 

a 4-layered spectrum-based CNN model with the ReLU activation function. There model was 249 

trained to differentiate between natural and anthropogenic events from metropolitan France, and 250 

it achieved an accuracy of 98%. 251 

4.1 Misclassifications by Waveform-based CNN  252 

The waveform-based model identifies noise with high accuracy (99%). However, a small 253 

proportion of the test set (4%, comprising 22 waveforms) was misclassified, primarily consisting 254 

of blasts and earthquakes.  A visual examination of the misclassified waveforms was conducted 255 

(Figure S4) to identify any specific patterns or features that are contributing to the misclassification 256 

of certain waveforms. Subsequently, the signal-to-noise ratio (SNR) was also calculated using the 257 

following formula to quantify the limitations of the waveform-based model with respect to the 258 

relative strength of the seismic signal to the background noise. 259 

𝑆𝑁𝑅 =  10 𝑙𝑜𝑔10 (
𝜇 𝑆2

𝜇 𝑁2)   (5)  260 

where, 𝜇 𝑆2
 represents the mean squared amplitude of the seismic signal calculated over a 10 s 261 

interval post the first arrival, and 𝜇 𝑁2 represents the mean squared amplitude of background noise 262 

calculated over a 10 s interval preceding the first arrival (Figure S5). 263 

The resulting SNR value, expressed in decibels (dB), provides a measure of the relative strength 264 

of the seismic signal to the background noise. In the present study the SNR varies from -9 to 44 265 

dB (Figure S6). The negative values are obtained when the ratio of (
𝜇 𝑆2

𝜇 𝑁2) is < 1 which indicates 266 
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that the noise dominates over the signal. (
𝜇 𝑆2

𝜇 𝑁2)=1 means that the strength of signal and noise are 267 

equal, resulting in a SNR of 0 (as  10 𝑙𝑜𝑔10 (1) = 0). Majority of the misclassified waveforms (15 268 

i.e. 68% of the total misclassified waveforms) have low SNR <10 (Figure S6 (c)) and ≥ 50% 269 

prediction probability for the wrong class given in Figure S7. 270 

4.2 Misclassification by Spectrogram-based CNN  271 

A clear distinction between an earthquake and a quarry blast was evident on a spectrogram (Figure 272 

2), prompting us to develop a spectrum-based model to improve the accuracy of classification. 273 

Although the spectrum model achieved good classification results, they were not as promising as 274 

anticipated. Visual inspection of the misclassified spectrogram records revealed two issues: (1) 275 

strong and consistent energy at a particular frequency band throughout the selected time window, 276 

and (2) a frequency response resembling a sinusoidal trend from an unidentified source (example 277 

shown in Figure S8). Attempts to mitigate these issues by applying a bandstop filter resulted in the 278 

loss of information and created a void at that particular frequency band (Figure S8(b)). An 279 

improved dataset would provide a more comprehensive understanding of the model's behavior and 280 

enhance its robustness, which is currently limited by the limited dataset. 281 

5. INDEPENDENT TEST 282 

The three models developed in the present study were mainly trained using GSNet data. However, 283 

to make sure they work well in different situations, we tested them using earthquake data from the 284 

Southern California Earthquake Data Center (SCEDC). A total of 1037 events were downloaded, 285 

with 417 earthquakes recorded at BJX station and 620 blasts recorded at EDW2 station. An 286 

accuracy of 94%, 90% and 91% was obtained with waveform model, spectrum and combined 287 

model respectively results were given in Fig S9. 288 
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Further, while preparing this manuscript, we observed some unexpected seismic activity from a 289 

region named Palitana, in the Gujarat state of India, hitherto devoid of any active seismic activity 290 

from previous GSNet monitoring for almost 16 years. Thus, we tested these few ambiguous 291 

waveforms, and with 100% certainty, these events were classified correctly as quarry blasts with 292 

all our three models. 293 

6. CONCLUSION 294 

In order to reduce the amount of processing time for classifying various seismic events, in the 295 

present study we developed three deep learning classification models based on waveform, 296 

spectrogram, and combining both utilizing the CNNs. These models identified seismic noise, 297 

quarry blasts, and earthquakes with an accuracy of 95.32%, 93.13%, and 93.96% respectively. To 298 

verify the dependability and efficacy of these models, tests were conducted on alternative datasets. 299 

This testing provided us clear evidence that these models can be effectively utilized for 300 

classification of seismic events (earthquakes & blasts) from other regions as well. The accuracy 301 

and application of our models to different regions can be further effectively improved by increasing 302 

our labelled dataset with varied examples. 303 

The ML based approaches are more efficient and accurate in discriminating earthquakes and blasts 304 

over manual methods that are limited by magnitude and SNR. In the present study, 185 waveforms 305 

have SNR < 10, which means that the noise is dominant over the signal and only 15 (8% of 185 306 

waveforms) were misclassified and 92% of the events were correctly classified, even in the low 307 

magnitude range and noisy data. The proposed classification models can improve the speed and 308 

accuracy in detecting the microseismic events and quarry blasts. This approach can be used to 309 

discriminate in real time and reduce the mislabelled/ambiguous events and thus constituting in 310 

making the catalog as reliable as possible. On a long-term basis we plan to use these models for 311 
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monitoring illegal mining activity in Gujarat state as such activities demand attention from local 312 

governing bodies which may cause important implications for the safety and environmental 313 

management. 314 

7. FUTURE WORK 315 

These classification models will be further developed for near real time monitoring which includes 316 

phase detection and estimating the earthquake location parameters. This should be able to reduce 317 

the manual efforts to identify different sources and also estimate the location and magnitude within 318 

a fraction of seconds. Recent works utilized Fourier Neural Operators (Li et al., 2020; Sun et al., 319 

2023) to develop near real time seismic monitoring. They proposed a model to identify the 320 

earthquakes and mark phases on the real time monitoring with multiple stations as input. 321 
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 430 

Tables and captions 431 

Table 1: Summary of the evaluation parameters obtained for waveform (WF), spectrum (SPEC) 432 

and combined (COM) models.  433 

 434 

Classes F1 Score Recall Precision 

WF SPEC COM WF SPEC COM WF SPEC COM 

Earthquake 0.91 0.95 0.95 0.92 0.97 0.94 0.97 0.94 0.96 

Blasts 0.93 0.92 0.93 0.95 0.89 0.92 0.91 0.96 0.93 

Noise 0.98 0.97 0.98 0.99 0.98 0.99 0.97 0.96 0.96 

 435 
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Figures and Figure Captions 436 

 437 

Figure 1(a): The spatial distribution of the earthquakes (blue circles) and blasts (red circles) used 438 

in the present study, recorded at Surendranagar (SUR) broadband station (green triangle). The inset 439 

map shows the Gujarat State in India. 440 
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 441 

Figure 1(b): Magnitude distribution of the blasts and earthquakes (shown in figure 1) used in the 442 

present study.  443 
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 444 

Figure 2: Examples of (A) an earthquake, (B) a blast, and (C) noise recorded at the SUR station. 445 

The station code, the component, epicentral distance (Δ) in kilometers, and the start time (UTC) 446 

of the chosen window are mentioned in the right corner of each waveform. The distinct spectral 447 

characteristics of each example can be seen in the corresponding frequency distribution 448 

(spectrogram) and frequency and amplitude distribution. Earthquake spectra exhibit two distinct 449 

frequency peaks corresponding to P- and S-phase arrivals, with predominant frequencies in the 450 

range of 3–16 Hz. Blast spectra show a single peak corresponding to the onset of the P-phase and 451 

have larger amplitudes in the higher frequencies between 12 and 18 Hz. Seismic noise amplitudes 452 

are generally lower and in the frequency range less than 5 Hz.  453 
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 454 

Figure 3(a): Schematic representation of the waveform-based CNN model's architecture developed 455 

in this study to discriminate between earthquakes, blasts, and seismic noise. The input for this 456 

model is a three-channel waveform of 180 seconds length at a sampling rate of 50 Hz. The input 457 

shape is (9001,3) corresponding to the number of points, and channels. This model was built with 458 

4 1D CNN layers, with SeLU activation function. The output dimension is provided below each 459 

layer before the final prediction of the three classes (earthquakes, blasts, and seismic noise) using 460 

the softmax activation function. 461 
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 462 

Figure 3(b): Schematic representation of the spectrum-based CNN model's architecture developed 463 

in this study to discriminate between earthquakes, blasts, and seismic noise. The input for this 464 

model is a three-channel spectrogram of 180 seconds length at a sampling rate of 50 Hz. The input 465 

shape is (390,25,3) corresponding to the number of points, frequency, and channels. The yellow 466 

block represents the 2D CNN layers which uses SeLU activation function followed by 2D 467 

MaxPooling layers (red blocks) which reduces the dimension of the input data from 390 to 24 468 

before flattening the data for fully connected layers that will be used for the final prediction of the 469 

three classes of earthquakes, blasts, and seismic noise using the softmax activation function. 470 
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Table S1: Accuracy and loss function with varying batch sizes of waveform model. The bold 

text indicates the best accuracy. 

Learning rate Batch size Accuracy loss Early stop 

epochs 

10-4 4 95.61 0.1123 73 

10-4 8 95.52 0.1193 122 

10-4 16 94.90 0.1425 64 

10-4 32 94.64 0.1456 68 

10-4 64 94.60 0.1584 100 

10-4 128 94.20 0.1711 73 

10-4 256 93.50 0.1962 94 

2 x 10-4 4 90.51 0.2980 70 
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2 x 10-4 8 92.69 0.1829 71 

2 x 10-4 16 95.32 0.1274 64 

2 x 10-4 32 93.57 0.1798 36 

2 x 10-4 64 95.03 0.1304 100 

2 x 10-4 128 94.22 0.1621 52 

2 x 10-4 256 94.26 0.1682 65 

 

Table S2:  The Area Under the Curve (AUC) obtained for waveform (WF), spectrum (SPEC) and 

combined (COM) models for individual classes.  

AUC Waveform Spectrum Combined 

Overall 0.98 0.93 0.98 

Blast 0.98 0.92 0.98 

Earthquake 0.97 0.90 0.97 

Noise 0.99 0.96 0.99 
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Figure S1: combined model architecture. 

 

 

 

Figure S2: ROC plots of (A) Waveform model, (B) Spectrogram model and (C) Combined model. 
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Fig. S3: Confusion matrices for analyzing and comparing the classification results obtained from 

three distinct models: (A) Waveform Model, (B) Spectrum Model, and (C) Combined Model. 
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Figure S4: Visualization of test dataset traces along with their corresponding ground truth labels. The misclassified 

are shown in red colored font with the corresponding true labels in the brackets. It is evident that an increase in 

amplitude, especially when with poor signal-to-noise ratios led to classification errors. 
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Figure S5: Examples of waveforms along with the selected window (gray shaded rectangle) to calculate the SNR. 

The dotted red line indicates the P phase, the shaded portion is a 20 s window, 10 s before and after P arrival each. 
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Figure S6: Signal-to-Noise Ratio of (a), (b), and (c) represents the SNR of blasts, earthquakes, and misclassified 

events, respectively, in the test dataset of the waveform model. When the strength of noise dominates over the signal, 
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i.e.,  (
𝜇 𝑆2

𝜇 𝑁2) < 1, negative values are observed. The SNR of all the waveforms (earthquakes (151) and blasts (195)) 

varies from -9 to 44 dB, indicating that noise dominates over the signal. 

 

 

Figure S7: The figure shows the SNR values of the 22 misclassified events from the waveform 

model, along with the corresponding true (orange) and misclassified (green) prediction 

probabilities. The SNR is < 1 for 68% of the misclassified waveforms suggesting that the 

prediction probabilities for the true class are generally lower for misclassified waveforms with low 

SNR values. 

 

 



Supporting Information file submitted to Geophysical Research Letters 
 

11 

 

Figure S8: (a)Example of a misclassified spectrogram recorded at SUR station (on 2009-06-06 @ 10:27:42 GMT) 

showing three distinct energy bands within a frequency range through the selected time window.  (b) Demonstrates 

the effect of applying a bandstop filter to attenuate these noise bands resulting in loss of information and a void at 

the filtered frequency band. 
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Fig S9: Confusion matrices for analyzing and comparing the classification results obtained from three distinct 

models: (a) Waveform Model, (b) Spectrum Model, and (c) Combined Model respectively when tested with data 

downloaded from SCEDC, on which the models are not trained. 
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