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Abstract

Sea ice thickness (SIT) estimates derived from CryoSat-2 radar freeboard measurements are assimilated into the Met Office’s

global ocean–sea ice forecasting system, FOAM. We test the sensitivity of short-range forecasts to the snow depth, radar

freeboard product and assumed radar penetration through the snowpack in the freeboard-to-thickness conversion. We find that

modifying the snow depth has the biggest impact on the modelled SIT, changing it by up to 0.88 m (48%), compared to 0.65 m

(33%) when modifying the assumed radar penetration through the snowpack and 0.55 m (30%) when modifying the freeboard

product. We find a doubling in the thermodynamic volume change over the winter season when assimilating SIT data, with

the largest changes seen in the congelation ice growth. Next, we determine that the method used to calculate the observation

uncertainties of the assimilated data products can change the mean daily model SIT by up to 36%. Compared to measurements

collected at upward-looking sonar moorings and during the Operation IceBridge campaign, we find an improvement in the

SIT forecasts’ variability representation when assuming partial radar penetration through the snowpack and when improving

the method used to calculate the CryoSat-2 observation uncertainties. This paper highlights a concern for future SIT data

assimilation and forecasting, with the chosen parameterisation of the freeboard-to-thickness conversion having a substantial

impact on model results.
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• We test the sensitivity of short-range forecasts to the parameters used in the12
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• Changing the method used to characterize the observation uncertainties can16

change the mean daily model sea ice thickness by up to 36%17
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Abstract18

Sea ice thickness (SIT) estimates derived from CryoSat-2 radar freeboard19

measurements are assimilated into the Met Office’s global ocean–sea ice forecasting20

system, FOAM. We test the sensitivity of short-range forecasts to the snow depth,21

radar freeboard product and assumed radar penetration through the snowpack22

in the freeboard-to-thickness conversion. We find that modifying the snow depth23

has the biggest impact on the modelled SIT, changing it by up to 0.88 m (48%),24

compared to 0.65 m (33%) when modifying the assumed radar penetration through25

the snowpack and 0.55 m (30%) when modifying the freeboard product. We find26

a doubling in the thermodynamic volume change over the winter season when27

assimilating SIT data, with the largest changes seen in the congelation ice growth.28

Next, we determine that the method used to calculate the observation uncertainties29

of the assimilated data products can change the mean daily model SIT by up to30

36%. Compared to measurements collected at upward-looking sonar moorings31

and during the Operation IceBridge campaign, we find an improvement in the32

SIT forecasts’ variability representation when assuming partial radar penetration33

through the snowpack and when improving the method used to calculate the34

CryoSat-2 observation uncertainties. This paper highlights a concern for future35

SIT data assimilation and forecasting, with the chosen parameterisation of the36

freeboard-to-thickness conversion having a substantial impact on model results.37

Plain Language Summary38

Satellite altimeters can be used to estimate sea ice thickness, by estimating39

how far the sea ice sticks out above the surrounding waterline. This is done by40

measuring the time taken for radar waves to reach the sea ice and ocean surfaces41

and return to the altimeter. These radar waves are processed using a retracking42

algorithm, to calculate the radar freeboard. Several assumptions are used to convert43

this radar freeboard into sea ice thickness, including values for snow depth and44

the ability of the altimeter’s radar waves to penetrate through the snow overlying45

the sea ice. We test the sensitivity of modelled sea ice thickness to the retracking46

algorithm used, the snow depth and assumed radar penetration. We do this by47

assimilating our sea ice thickness estimates, converted from radar freeboard using48

varying values for these parameters, into the Met Office’s global ocean–sea ice49

forecasting system, FOAM. We then determine the sensitivity of modelled sea ice50

thickness to the observation uncertainties assigned to the assimilated data. We find51

that snow depth has the biggest influence on modelled sea ice thickness, followed by52

the uncertainty calculation, assumed radar penetration and the retracking algorithm.53

1 Introduction54

Accurate monitoring and modelling of Arctic sea ice thickness (SIT) is integral55

to determining its implications on regional and global climates, safe travel for56

Arctic coastal communities, shipping routes, the marine ecosystem and wildlife57

dependent on the ice for hunting and traveling. While the observation and modelling58

of sea ice concentration is well developed, the same is not true for SIT. This is59

because estimating SIT from satellite data requires knowledge about the hydrostatic60

properties of the sea ice and its overlying snow cover. SIT can be estimated using61

satellite radar altimeters by measuring the time taken for the radar pulse to travel62

to the sea ice surface and return to the altimeter. The same can then be done for63

the sea surface found in open water areas between the ice floes, with the difference64

between these two measurements referred to as the radar freeboard. By factoring in65

assumptions on the ability of the altimeter’s radar waves to penetrate the snowpack,66

this can then be converted into the sea ice freeboard (the height of the ice above the67
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surrounding sea water). The radar range to the assumed ice surface is calculated68

through the retracking of the radar waveform to obtain the presumed range to69

a single scattering surface, with the choice of retracking algorithm affecting the70

radar freeboard retrieved. Currently, two types of retracking algorithm are used71

in SIT products. The most common is the threshold algorithm, which applies a72

fixed percentage threshold to the waveform’s first maximum power return (e.g.73

Guerreiro et al., 2017; Laxon et al., 2013). Alternatively, a physical algorithm74

can be used, which varies the percentage threshold used according to the physical75

properties of the sea ice (e.g. Landy et al., 2020). Using assumptions on snow depth,76

as well as sea ice and snow density, SIT can then be calculated assuming hydrostatic77

equilibrium.78

The method for converting radar freeboard estimates to SIT requires an79

assumed value for the fractional depth of the snowpack where the retracker detects80

the backscattered radar echo, α (as per Nab et al., 2023). An assumption of α =81

1 means that the radar goes entirely through the snowpack, such that the pulse82

path length through snow has no impact on the radar freeboard estimate. α < 183

represents a height for the mean radar scattering intensity within the snowpack84

(or at its surface if α = 0). As α is proportional to SIT (Kwok & Cunningham,85

2015), a reduction in the former will reduce the latter. All current SIT estimates86

from Ku-band altimeters rely on the assumption of full radar penetration of the87

snowpack, since it is not yet possible to measure α directly from space. However,88

studies have shown that this assumption may not be the case in reality, as snow89

properties affect the ability of radar waves to penetrate the snowpack. During Arctic90

field campaigns in 2006 and 2008, Willatt et al. (2010) found that the proportion of91

radar returns appearing closer to the air-snow interface than the snow-ice interface92

increased with temperature. Similarly, Nandan et al. (2017) predicted an upward93

shift in the dominant scattering surface of CryoSat-2 waves with increased snow94

salinity over first-year ice using a radiative transfer model. Nandan et al. (2023)95

found a sensitivity of Ku-band radar waves to previous air-snow interfaces, buried96

within the snowpack after new snowfall. On satellite footprint-scales, Nab et al.97

(2023) showed synoptic timescale correlations between radar freeboard estimates98

and snow accumulation, revealing radar echoes returning from within the snowpack.99

Over Arctic sea ice, previous studies have calculated α to be between 0.40 - 0.96 for100

Ku-band radar waves (Armitage & Ridout, 2015; Kilic et al., 2019; Shen et al., 2020;101

Nab et al., 2023).102

The fast-changing Arctic climate means that accurate short- and long-term103

predictions of its sea ice cover are becoming increasingly important. Data104

assimilation of sea ice variables can be used to improve model estimates of sea ice105

concentration, extent and thickness (e.g. Fritzner et al., 2019; Y.-F. Zhang et al.,106

2018; Williams et al., 2023; Y. Zhang et al., 2023; Gregory et al., 2023). Studies107

have shown that SIT has a longer memory than sea ice concentration, such that108

the change in the initial model state caused by assimilating the former will persist109

for longer than by assimilating the latter (Guemas et al., 2016). When assimilating110

CryoSat-2-derived SIT into the Met Office’s coupled sea ice-ocean system (FOAM),111

Fiedler et al. (2022) found an improvement in FOAM SIT results of 0.61 m mean112

difference (0.42 m root mean square difference) relative to a control experiment113

without SIT assimilation, when both model runs were compared to Operation114

IceBridge (OIB) estimates. When compared to buoy SIT data in the Beaufort115

region, no improvement was found in the modelled SIT when assimilating CryoSat-2116

SIT data. When adding the assimilation of data from the Soil Moisture and Ocean117

Salinity (SMOS) satellite radiometer over thin ice to this setup, Mignac et al. (2022)118

found a reduction in SIT over first-year ice, which better matched the OIB and buoy119

data than when only assimilating CryoSat-2-derived SIT or not assimilating any120

thickness information.121
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Uncertainties in the snow depth, radar freeboard product and assumed radar122

penetration all contribute to the overall error in satellite-derived SIT. To account123

for these errors, data assimilation methods use observational error estimates to124

determine how much weight observational data should carry in the assimilation125

process, with observations deemed to have a lower error having a larger influence126

on the assimilation results. The accuracy of the resulting modelled SIT estimates127

is thus expected to improve with improved error estimates for the data assimilated.128

The lack of error estimates provided with currently operational CryoSat-2-derived129

radar freeboard products means that the observation uncertainty calculation130

in CryoSat-2 freeboard and thickness assimilation research has been relatively131

simplified so far. For example, Fritzner et al. (2019) and Chen et al. (2017) used132

fixed uncertainties of 0.5 m and 1.5 m, respectively, for all CryoSat-2 observations133

when assimilating CryoSat-2-derived SIT. Fiedler et al. (2022) and Mignac et al.134

(2022) used a parameterisation method, assigning high uncertainty values (0.5 - 8135

m) to SIT values below 1.5 m and above 4 m, with SIT values between 1.5 - 4 m136

assigned uncertainty values < 0.5 m.137

We test the sensitivity of 1-day sea-ice forecasts in FOAM to the parameters138

used in the freeboard-to-thickness conversion, focusing on the snow depth, radar139

freeboard product and assumed radar penetration (α). This allows us to determine140

how much of the sensitivity in the radar freeboard-to-thickness conversion is141

carried through into the model forecasts. Previous studies have shown the ability142

of CryoSat-2-derived SIT assimilation to improve modelled SIT (e.g. Fritzner et143

al., 2019; Fiedler et al., 2022; Mignac et al., 2022; Sievers et al., 2023) but, to144

our knowledge, there have been no studies on the sensitivity of these results to145

the parameterisation of the freeboard-to-thickness conversion. We also test the146

sensitivity of the 1-day SIT forecasts to the SIT observation uncertainties used in147

the data assimilation. We do this by comparing data assimilation results obtained148

using a simple parameterisation scheme to derive SIT observation uncertainties, as149

described in Fiedler et al. (2022) and Mignac et al. (2022), to one using Gaussian150

error propagation to derive SIT uncertainties from each individual radar freeboard151

measurement, as described in Ricker et al. (2014).152

2 Methods153

2.1 UK Met Office Forecast Ocean Assimilation Model (FOAM)154

FOAM is the UK Met Office’s global, coupled ocean-sea ice forecasting system.155

It is used to produce daily analyses and short-range forecasts of ocean temperature,156

salinity, velocities and various sea ice parameters. FOAM’s operational ocean-sea157

ice analysis is also used by the Met Office’s Global Seasonal (GloSea) coupled158

ensemble prediction system to initialise its ocean and sea ice components daily.159

FOAM is forced at the surface using output from the Met Office Numerical Weather160

Prediction (NWP) system. The ocean model component of FOAM, NEMO (Nucleus161

for European Modelling of the Ocean; Madec et al., 2023) is coupled to the recently162

developed SI3 (Sea Ice modelling Integrated Initiative; Vancoppenolle et al., 2023).163

SI3 merges the capabilities of three sea ice models formerly coupled to NEMO:164

CICE, GELATO and LIM (Madec et al., 2023). The SI3 configuration includes five165

thickness categories (plus open water), multi-layer thermodynamics and prognostic166

melt ponds. We run the FOAM system with a 1/4 degree tripolar grid (ORCA025)167

for both sea ice and ocean components, with 75 vertical levels in the latter (Storkey168

et al., 2018).169

Data assimilation is a procedure for producing a complete estimate of the170

current state of the ocean and sea ice by combining information from observations171

with the model. A previous model forecast is compared with newly acquired172
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observations and the two sets of data, together with information about their173

respective errors, are combined to produce a new, more accurate model state174

from which to launch a forecast. The observation uncertainties are important175

in this procedure since erroneous observations with low prescribed uncertainties176

would unduly influence the analysis. FOAM is set up to assimilate in situ177

and satellite-derived observational data using the three-dimensional variation178

assimilation scheme NEMOVAR (Waters et al., 2015). A 24-hour assimilation179

window is used to assimilate observations of sea-surface temperature (SST),180

sea-level anomaly, sea ice concentration, and temperature and salinity profiles.181

The in situ SST data consists of data from buoys (drifting and moored) and ships.182

This is supplemented by satellite-derived SSTs from NOAA’s Advanced Very High183

Resolution Radiometer (AVHRR), the Advanced Microwave Scanning Radiometer184

2 (AMSR2) and the Sea and Land Surface Temperature Radiometer (SLSTR),185

as well as data from the Visible Infrared Imaging Radiometer Suite (VIIRS)186

sensor data from the Suomi-NPP (National Polar-orbiting Partnership) satellite.187

The sea-level anomaly data are in the form of along-track satellite data from the188

Jason-2, Jason-3, Sentinel-3A and -3B, CryoSat-2 and AltiKa satellites. Sea ice189

concentration data are provided by the Special Sensor Microwave Imager/Sounder190

(SSMI/S) instruments from the Defense Meteorological Satellites Program191

(DMSP) satellites. These are processed by the European Organisation for the192

Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea-Ice Satellite193

Application Facility (OSI-SAF). The temperature and salinity profiles are taken194

from moored arrays, gliders, Argo floats and research Conductivity, Temperature195

and Depth (CTD) instruments. Additional temperature profiles from Expendable196

Bathythermographs (XBTs) and marine mammal sensors are also used.197

NEMOVAR has previously been used to assimilate SIT observations from198

CryoSat-2 and SMOS into FOAM (Fiedler et al., 2022; Mignac et al., 2022),199

although this is currently not done operationally. SMOS is an L-band microwave200

radiometer, able to estimate SIT by evaluation of the ice’s surface brightness201

temperatures (Tbs) using a radiative transfer model (Tian-Kunze et al., 2014).202

Over thin ice (<1 m), its relative uncertainties are believed to be significantly lower203

than altimeter-based techniques. Over thicker ice, the Tbs become insensitive to ice204

thickness. While SMOS has a much higher temporal resolution than altimeters,205

providing daily pan-Arctic coverage (of the thinner ice), it has coarser spatial206

resolution, with a larger effective footprint of ∼ 40 km (Kaleschke et al., 2012).207

In this study, SIT derived from both SMOS and CryoSat-2 is assimilated, alongside208

the operationally assimilated variables mentioned previously. The SMOS data is209

only assimilated where SIT ≤ 1 m (Figure 1). SMOS SIT uncertainties are provided210

with the data and used in the assimilation of this dataset. Although SMOS SITs are211

assimilated in all experiments performed here, our sensitivity study is purely focused212

on the CryoSat-2 data assimilation: Only the CryoSat-2 freeboard-to-thickness213

conversion parameters and uncertainty calculation are changed in the experiments214

performed in this study. See Mignac et al. (2022) for a full description of the215

methodology for assimilating CryoSat-2 and SMOS SIT estimates into FOAM.216

2.2 Calculation of sea ice thickness with varying parameters217

To derive SIT from CryoSat-2 radar freeboard estimates (Fr), we first calculate218

sea ice freeboard (Fi) as follows:219

Fi = Fr + (α
c

cs
− 1)hs (1)

where α is the radar penetration, c is the speed of light in a vacuum, cs is the220

speed of light in snow and hs is the snow depth.221
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Figure 1. Day of 2016-2017 winter season until which SMOS data is assimilated into FOAM

(Day 1 = 17 October 2016). Areas where SMOS is never assimilated are shown in grey.
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We then use this to calculate SIT:222

SIT =
Fiρw + hsρs

ρw − ρi
(2)

where ρw is the density of seawater, taken from the model density field at223

the surface, ρi is the bulk density of sea ice and ρs is the snow density, evolving224

temporally following Eq. 11 of Mallett et al. (2020):225

ρs = 6.5t+ 274.51 (3)

where t is the number of months since October.226

2.3 Description of experiments227

We start with a control experiment (CTRL), running FOAM with the228

assimilation of its operationally assimilated ocean and sea-ice observations (see229

subsection 2.1), which does not include SIT. We then replicate the setup of Mignac230

et al. (2022), who assimilated CryoSat-2 and SMOS SIT into FOAM (using CICE as231

the sea ice component). Since the publication of that paper, the sea ice component232

of FOAM has been replaced with SI3 (see Blockley et al., 2023). We assimilate233

CryoSat-2 and SMOS into FOAM following the methods of Mignac et al. (2022),234

using SI3 as the sea ice model. We use the AWI-derived CryoSat-2 radar freeboard235

data for this, as this is the CryoSat-2-derived product the Met Office is currently236

testing for operational assimilation. Mignac et al. (2022) assumed a pan-Arctic237

fixed sea ice density (916.7 kgm−3), taken from CICE. We instead assume a sea ice238

density based on ice type: Using the OSI-SAF daily ice type product (OSI-403-c;239

Aaboe et al., 2021), we set the bulk density of sea ice (ρi) to 916.7 kgm−3 for240

first-year ice and 882 kgm−3 for multi-year ice (as per Ricker et al., 2014). We241

use this second experiment, following the setup of Mignac et al. (2022) in SI3,242

with ice type-dependent sea ice density, as our baseline experiment (BASE). We243

perform four sets of experiments in relation to this BASE experiment: Three of244

these are performed to test the sensitivity of modelled SIT to changing the values245

of one parameter in the freeboard-to-thickness conversion, with the last performed246

to test the impact of changing the CryoSat-2 SIT uncertainties. A summary of the247

experiments is given in Table 1, with the following sub-sections describing their248

set-up in more detail.249

Table 1. Configuration of the experiments: Parameters for conversion of250

CryoSat-2 radar freeboard estimates to assimilated SIT.251
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252

Experiment Snow depth Freeboard product Radar penetration (α) SIT uncertainty

CTRL N/A N/A N/A N/A

BASE FOAM AWI 1.0 Parameterised

SN SMLG SM-LG AWI 1.0 Parameterised

SN AWI AWI AWI 1.0 Parameterised

FB LARM FOAM LARM 1.0 Parameterised

FB CPOM FOAM CPOM 1.0 Parameterised

α 0.9 FOAM AWI 0.9 Parameterised

α 0.6 FOAM AWI 0.6 Parameterised

UNC FOAM AWI 1.0 Derived

253

We run all experiments from 17 October 2016 to 15 April 2017. Whilst254

conducting the experiments for the full CryoSat-2 period would be better, the255

computing time required per experiment per season makes this unfeasible. We256

choose the 2016-17 winter season to maximise the amount of independent data257

available for evaluation. This means that the results found in this paper are an258

example of the potential impacts of the changes we are making, and should not be259

taken as a quantification of the impacts of CryoSat-2 assimilation in general.260

2.3.1 Snow depth261

We test the sensitivity of short-range SIT forecasts to the choice of snow depth262

product (hs), used in Equations 1 and 2 to convert the CryoSat-2-derived radar263

freeboard estimates into SIT. The BASE experiment uses FOAM’s model snow264

depths for this. We perform two experiments, replacing the FOAM snow depths265

used in the conversion with:266

• AWI: Monthly snow depth parameterisation used by the Alfred Wegener267

Institute (AWI), based on merging the Warren climatology with daily snow268

depth values derived from AMSR2 over first-year ice (Hendricks et al., 2021).269

• SM-LG: Daily estimates from SnowModel-LG (SM-LG; Liston et al., 2020,270

2021), a snow evolution model that provides daily, pan-Arctic snow property271

distributions for snow on sea ice. These snow depths have been evaluated272

using a range of in situ observations and were bias-corrected using OIB snow273

depths, such that the average modeled snow depth is equal to the average274

observed OIB snow depth over OIB observation tracks. The model is forced275

using ERA5 reanalysis data including air temperature, precipitation and wind276

variables.277

The snow depth products vary noticeably, with the FOAM product showing278

a consistently lower snow depth than the SM-LG and AWI products (Figure 2).279

Regionally, the difference between the snow depth products is largest around280

Greenland, where the daily SM-LG snow depth is about three times as high as281

the AWI and FOAM snow depths, and in the Laptev region, where the AWI snow282

depth is often double the FOAM and SM-LG snow depth.283
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Figure 2. Regional and pan-Arctic daily mean snow depth for each of the snow products used

in the freeboard-to-thickness conversion.
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Figure 3. Monthly average radar freeboard for the assimilated CryoSat-2 SIT products, and

the difference between them: AWI (left), CPOM-AWI (middle) and LARM-AWI (right). Top row

shows October 2016, bottom row shows April 2017.

2.3.2 Freeboard product284

We test the sensitivity of short-range forecasts to the use of different285

CryoSat-2-derived along-track radar freeboard products (Fr in equation (1)). The286

BASE experiment uses the AWI freeboard product, derived using the AWI threshold287

retracker (Hendricks et al., 2021). We perform two additional experiments, using288

CryoSat-2 radar freeboard data created using the physical LARM retracker (Landy289

et al., 2020) and the CPOM threshold retracker (e.g. Tilling et al., 2018).290

The radar freeboard products vary noticeably, with the CPOM product291

showing a consistently higher radar freeboard than the LARM and AWI products on292

average, particularly in the marginal seas. In the Central Arctic, the LARM product293

shows consistently lower radar freeboards than the AWI and CPOM products294

(Figure 3).295

2.3.3 Assumed mean penetration of radar waves into the snowpack296

In the conversion of radar freeboard to SIT in the BASE experiment, we297

assume the radar waves from CryoSat-2 penetrate all the way through the snowpack,298

reflecting off the snow-ice interface (α = 1.0 in Equation 1). We perform two299

additional experiments, assuming different mean scattering depths of the radar300

waves within the snowpack:301
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• α = 0.9: as for summer sea ice, following Landy et al. (2022)302

• α = 0.6: the mean pan-Arctic value calculated by Nab et al. (2023)303

Using a constant value for α is a first approach: Several studies have shown that304

α varies depending on wind distribution, temperature and snow properties such as305

salinity (Nandan et al., 2023; Nab et al., 2023; Nandan et al., 2017). This means306

that α is not a constant in reality - it varies spatially and temporally. However,307

the exact value of α and its determinants is still the subject of much research. We308

thus assign a constant pan-Arctic α value to determine the sensitivity of the data309

assimilation to this parameter, rather than trying to determine the perfect α to use310

to represent reality.311

2.3.4 Freeboard uncertainty312

The current method for assimilating CryoSat-2 along-track SIT into FOAM313

involves weighting the CryoSat-2 observations dependent on their SIT, as per314

Figure 3 of Fiedler et al. (2022). This involves assigning high uncertainty values315

(0.5 - 8 m) to SIT values below 1.5 m and above 4 m, such that they are weighted316

lower in the assimilation than SIT values between 1.5 - 4 m, which are assigned317

uncertainty values < 0.5 m. Although this works well for thick ice, Mignac et al.318

(2022) found this method to lead to an overestimation in SIT in areas of thin ice,319

as higher SIT estimates in these areas are given a higher weighting in the data320

assimilation, despite not being more accurate than thinner CryoSat-2 SIT estimates321

that are down-weighted. Instead of this parameterised uncertainty, the assimilation322

weighting can be based on the uncertainty calculated for each freeboard observation.323

This is currently only possible for the AWI freeboard product, as the LARM and324

CPOM products do not include pre-calculated freeboard uncertainties, providing325

only uncertainties on the interpolated sea surface elevation at ice floes. We run an326

experiment (UNC) using SIT uncertainties derived from each individual freeboard327

measurement uncertainty, by applying a Gaussian propagation of the freeboard328

uncertainties through Equation 2 (as per Ricker et al., 2014). Uncertainties for the329

other parameters used in the freeboard-to-thickness conversion, such as the snow330

depth, sea-ice and snow densities, are taken from Figure 4 of Ricker et al. (2014).331

2.4 Datasets used for evaluation332

The 1-day SIT forecasts are compared to SIT derived from the Beaufort Gyre333

Exploration Project (BGEP; Krishfield et al., 2014) mooring observations, as well334

as airborne measurements from NASA’s OIB campaign (Kurtz et al., 2013). The335

location of these data and mean SIT estimated by the airborne campaign are shown336

in Figure 4. It is worth noting that the sea ice model used here has an approximate337

resolution of 12 km in the Arctic, with the SIT computed as the model grid cell338

average. Therefore, there are limitations in the model’s ability to represent the339

variability found at point measurements.340

2.4.1 Mooring data341

SIT measurements from the BGEP campaign were derived from342

bottom-anchored moorings equipped with upward-looking sonars. The BGEP data343

were collected continuously at three locations (BGEP-A, BGEP-B and BGEP-D) in344

the Beaufort Sea between 17 October 2016 to 15 April 2017 (Krishfield et al., 2014).345

The buoys estimate the sea ice draft at 2-second intervals, which are processed into346

daily averages. The daily drafts are converted into SIT by dividing them by 0.89, as347

per Rothrock (2003). We choose this simplified method for converting draft to SIT,348

instead of per Equation 2 of Kern et al. (2015), to avoid the use of snow depth data349
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in this conversion and keep this as an independent dataset. For the evaluation, the350

daily model SITs are interpolated to the mooring locations.351

2.4.2 Airborne data352

Total freeboard (snow depth + ice freeboard) measurements were taken during353

the OIB campaign using an Airborne Topographic Mapper (Krabill, 2013), a 532 nm354

wavelength conically scanning laser altimeter with a 1 m footprint. The altimeter355

measures the elevation of the top of the snowpack and the elevation of the nearby356

ocean surface with an accuracy of <10 cm, such that the total freeboard can be357

estimated by taking the difference between these two (Krabill et al., 1995). At the358

same time, the snow depth was measured using a snow radar, which is assumed359

to reflect off the snow-ice interface. The sea ice freeboard is then estimated by360

taking the difference between these two, and SIT calculated under the assumption361

of hydrostatic equilibrium as per Equation 2. Multiple data products have been362

derived from the OIB measurements. The National Snow and Ice Data Center363

(NSIDC) Quick-Look product is used here, which is known to underestimate snow364

depth by up to 8.8 cm (Kwok et al., 2017). In this product, SIT point measurements365

are averaged over 50 km clusters. Point measurements with a standard deviation366

greater than 1 m are not used in the cluster for ice thinner than 1 m, and point367

measurements with a standard deviation greater than 2 m are not used in the368

cluster for ice thicker than 4 m (Kurtz et al., 2013). Further processing is conducted369

here to remove cluster observations with a standard deviation greater than 2 m, as370

per Mignac et al. (2022). For the evaluation, the daily model SITs are interpolated371

to the OIB cluster locations.372

3 Results373

3.1 Data assimilation influence on model sea ice thickness374

To determine regional patterns, we use the Arctic regions defined by the375

NSIDC (Meier et al., 2007) to plot the evolution of the regional mean SIT for the376

different experiments (Figure 5). In the Baffin region, the CTRL experiment shows377

significantly higher daily mean SIT than the other experiments, with this difference378

increasing as the season progresses. By April, the mean daily SIT in the CTRL379

experiment in this region is double the SIT found in the other experiments. In the380

Central Arctic and East Siberian region, the CTRL experiment shows a lower daily381

mean SIT than the other experiments, particularly between November - March. In382

the Greenland region, the experiments with CryoSat-2 assimilation show a sudden383

drop in daily mean SIT in February, which is not shown in the CTRL experiment.384

Compared to the CTRL experiment, all experiments show a higher daily mean SIT385

in all regions except for the Beaufort Sea, Baffin Bay and Barents Sea. The increase386

in SIT after CryoSat-2 assimilation is particularly evident in the Central Arctic,387

where the increase is largest in the SN SMLG and SN AWI experiments and occurs388

immediately after data assimilation begins in October. In the Central Arctic, the389

α 0.6 experiment shows the smallest difference compared to the CTRL experiment,390

but the SIT is still 10s cm higher early in the winter season.391
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Figure 4. Location of bottom-anchored moorings (BGEP-A, BGEP-B, BGEP-D) and SIT

derived from airborne OIB measurements.
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Figure 5. Regional mean daily SIT. Note the different y-axes.
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Figure 6. a-h) Mean daily difference in SIT between each experiment and the BASE

experiment (experiment - BASE). Text shows the pan-arctic mean (top) and standard deviation

(bottom). i) Standard deviation between the mean daily SIT for all the assimilation experiments

(excluding CTRL).
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Compared to the BASE experiment, the α 0.6 and α 0.9 experiments show392

a pan-Arctic decrease in SIT on average, while the SN SMLG and SN AWI393

experiments show a pan-Arctic increase in SIT (Figure 6). The FB LARM394

experiment shows a decrease in SIT over multi-year ice and an increase in SIT395

over first-year ice, while the FB CPOM experiment shows an increase in SIT in396

almost all regions of the Arctic, except for some parts of the Central Arctic. The397

UNC experiment shows a pan-Arctic decrease in SIT, with an increase over a398

small part of the Central Arctic. The standard deviation (STDEV) of the SIT399

in these experiments is higher over the Central Arctic and Russian Arctic (> 0.4400

m), where there are more CryoSat-2 observations, decreasing to <0.2 m towards401

the Beaufort Sea and in Baffin Bay (Figure 6), where a much larger number of402

SMOS observations dominate the SIT assimilation results (see Figure 1). The large403

spread in the Central Arctic and Russian Arctic is supported by the large differences404

between the assimilation experiments as the winter season progresses (Figure 5).405

3.2 Relative impact of changing each parameter406

In relation to the BASE experiment, we find that changing the assumed407

radar penetration (α), freeboard product and snow depth product used in the408

freeboard-to-thickness conversion can change the daily regional model SIT by up409

to 0.65 m, 0.55 m and 0.88 m, respectively, with each of these maximum values410

found in the Central Arctic. For the α experiments, the largest relative differences411

were seen in the Central Arctic, where reducing the assumed radar penetration412

decreased the daily mean SIT by up to 33%. Large differences were also seen in413

East Siberian and Chukchi regions, where decreasing the assumed radar penetration414

decreased SIT by up to 28%. When changing the freeboard product used, we find415

the largest differences in these same three regions, with SIT changing by up to 30%.416

When changing the snow depth product used, the largest differences where found417

in the Central Arctic and Beaufort Sea, with SIT changing by up to 48%. When418

considering absolute values, changing the snow depth product, freeboard product419

and assumed radar penetration resulted in changes in modelled SIT of 0.11 m (σ420

= 0.18 m), 0.07 m (σ = 0.11 m) and 0.08 m (σ = 0.15 m) on average, respectively421

(Figure 7).422
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Figure 7. Difference in the daily regional SIT compared to the BASE experiment

caused by changing the assumed α, freeboard product and snow depth product used in the

freeboard-to-thickness conversion. Top row shows value difference (m), bottom row shows

percentage difference. Values are calculated as the daily difference between the BASE experiment

and the experiments where the parameter of interest is changed, in each grid cell. Boxes extend

from the 25th to 75th percentiles of the values, with a black line showing the median and a

green dot showing the mean. Whiskers extend to the 5th and 95th percentiles. Note the different

y-axes. Outliers are not shown. The radar penetration (α) set contains the α 0.9 and α 0.6

experiments. The freeboard product set contains the FB CPOM and FB LARM experiments.

The snow depth set contains the SN SMLG and SN AWI experiments. The CTRL and UNC

experiments are not included in this analysis.
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3.3 Impact of sea ice thickness data assimilation changes on the423

thermodynamic sea ice budget424

We now investigate the impact of changing the freeboard-to-thickness425

conversion parameters and uncertainties on the thermodynamic sea ice budgets,426

in order to determine the sensitivity of the model processes to these changes.427

When assimilating CryoSat-2 data, we find a decrease in thermodynamic428

volume change in the Central Arctic and an increase in the marginal seas of the429

BASE experiment compared to the CTRL experiment (Figure 8a). When reducing430

the assumed radar penetration, we find a decrease in the thermodynamic volume431

change in all regions of the Arctic, when compared to the BASE experiment. When432

changing the snow depth product used in the freeboard-to-thickness conversion,433

we find an increase in thermodynamic volume change in almost all regions of the434

Arctic compared to the BASE experiment, particularly in the Beaufort Sea. The435

spatial distribution of these changes is very similar when using SM-LG and AWI436

snow depths. When changing the freeboard product used, we find a decrease in437

thermodynamic volume change in the Central Arctic and an increase in the marginal438

seas, compared to the BASE experiment. The UNC experiment shows a decrease439

in thermodynamic volume change over most of the Central Arctic, with an increase440

in the marginal seas and Baffin Bay. The standard deviation of the runs where441

CryoSat-2 is assimilated is up to 1 x 10 6 m3 in parts of the Central Arctic and East442

Siberian regions, decreasing down to 0 m3 in parts of the Canadian Archipelago443

region (Figure 8).444

Figure 9 shows the difference in ice volume change due to thermodynamic445

processes when using differing parameters in the freeboard-to-thickness conversion.446

In relation to the BASE experiment, we find that modifying the assumed radar447

penetration, freeboard product and snow depth product used can shift the daily448

model thermodynamic volume change by up to 1.6 x 106 m3, 1.2 x 106 m3 and 1.4449

x 106 m3 respectively. For the α experiments, the largest relative differences were450

seen in the East Siberian and Central Arctic regions, where modifying the assumed451

radar penetration shifted the daily ice volume change by up to 125%. When452

modifying the freeboard product used, we also find the largest relative differences453

in the Central Arctic, with thermodynamic volume change shifting by up to 140%.454

Similarly, when modifying the snow depth product used, the largest differences in455

thermodynamic volume change were found in the Central Arctic and the Beaufort456

Sea, with differences in ice volume change of up to 150%. When considering absolute457

values, changing the snow depth product, freeboard product and assumed radar458

penetration used changed the model ice volume change by 0.32 x 10 6 m3 (σ = 0.93459

x 10 6 m3), 0.36 x 10 6 m3 (σ = 0.87 x 10 6 m3) and 0.31 x 10 6 m3 (σ = 0.80 x 10 6
460

m3) on average, respectively.461
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Figure 8. Difference between mean daily ice volume change due to thermodynamic processes

for each experiment and the BASE experiment (experiment - BASE). Text shows the pan-Arctic

mean (top) and standard deviation (bottom).
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Figure 9. Difference in the daily ice volume change due to thermodynamic processes,

caused by changing the assumed α, freeboard product and snow depth product used in the

freeboard-to-thickness conversion. Top row shows value difference (m), bottom row shows

percentage difference. Values are calculated as the daily difference between the BASE experiment

and the experiments where the parameter of interest is changed, in each grid cell. Boxes extend

from the 25th to 75th percentiles of the values, with a black line showing the median and a

green dot showing the mean. Whiskers extend to the 5th and 95th percentiles. Note the different

y-axes. Outliers are not shown. The radar penetration (α) set contains the α 0.9 and α 0.6

experiments. The freeboard product set contains the FB CPOM and FB LARM experiments.

The snow depth set contains the SN SMLG and SN AWI experiments. The CTRL and UNC

experiments are not included in this analysis.
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Figure 10. Total pan-Arctic volume of ice gained or lost through thermodynamic processes

between October 2017 - April 2017 in each experiment. Top shows absolute values, bottom shows

values relative to BASE experiment (experiment - BASE). Note the different y-axes.

Figure 10 decomposes the thermodynamic ice mass changes into separate462

components that take place during ice growth (congelation growth, frazil ice463

formation and snow ice formation) and ice melt (surface melt, bottom melt and464

lateral melt), as per Figure 4 of Tsamados et al. (2015). On a pan-Arctic scale,465

we find the biggest differences between the experiments come from congelation ice466

growth, followed by bottom melt and frazil growth. This is consistent with Figure467

5, which shows that ice generally grows much faster in the assimilation experiments468

relative to CTRL. We find a positive total growth in all experiments over the winter469

season, as expected, with the largest increase in sea ice volume found in the α 0.6470

experiment and the smallest in the CTRL experiment. Compared to the BASE471

experiment, we find an increase in congelation growth, and consequently total472

growth, in the α 0.6, α 0.9 and FB LARM experiments, with decreases in the other473

experiments. This means that reducing the assumed radar penetration and changing474

the freeboard to inherently thinner products increase the rate of winter ice growth,475

whereas changing the snow depth to inherently thicker products reduces the rate of476

winter ice growth.477
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Figure 11. Difference between FOAM SIT and OIB SIT, between 9 March and 19 April 2017.

3.4 Comparison with buoy- and airborne-derived sea ice thickness478

We now compare our experiments to independent SIT datasets, to determine479

the impact of changing the freeboard-to-thickness conversion parameters and480

uncertainties on the model’s ability to represent buoy- and airborne-derived SIT.481

3.4.1 Operation IceBridge (OIB)482

The spatiotemporal patterns of modelled SIT showed noticeable differences483

between the CTRL experiment and the assimilation experiments. This is484

particularly evident to the north of Greenland, where there was a consistent485

increase in SIT by up to 1 m, bringing the model SIT closer to the OIB SIT (Figure486

11). Despite this, all experiments still show an underestimation of SIT north of487

Greenland, with the SN SMLG and SN AWI experiments showing an overestimation488

in the Central Arctic and marginal seas.489
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Figure 12. Histograms of FOAM SIT and OIB SIT, between 9 March and 19 April 2017.

Between the CTRL and BASE experiments, there is an improvement in both490

the r and RMSE values. When decreasing the assumed value for α, we find an491

improvement in FOAM’s ability to represent the variability in the OIB SIT data,492

compared to the CTRL and BASE experiments. However, we find an increase in493

the RMSE with a decrease in assumed α compared to the BASE experiment, as the494

model SIT becomes too low. When changing the CryoSat-2 freeboard product, we495

find a degradation in the model’s ability to represent the SIT variability in the OIB496

data, with the r value decreasing from 0.73 in the BASE experiment (r = 0.73), to497

0.7 for the FB CPOM experiment and 0.65 for the FB LARM experiment. However,498

we find an improvement in the magnitude of the modelled SIT in the FB CPOM499

experiment (RMSE = 0.85 m) compared to the BASE (0.88 m) and FB LARM500

(1.03 m) experiments. When changing the snow depth used in the SIT conversion,501

we find a decrease in r value, from 0.77 for the BASE experiment to 0.70 for the502

SN AWI experiment and 0.66 for the SN SMLG experiment. In terms of RMSE,503

changing the snow depth shows an improvement, with the SN AWI experiment (0.78504

m) performing better than the SN SMLG (0.81 m) and BASE (0.88 m) experiments.505

We find a wider range of values in the OIB SIT data than in the FOAM data,506

particularly in the CTRL, α and freeboard product experiments, where values of507

4 - 6 m are much more frequently found in the OIB data than in the FOAM data508

(Figure 12). Additionally, areas of thin ice (<1 m) are present in all the FOAM509

experiments, but not in the OIB data. In terms of variability representation, the510

α 0.6 experiment (r = 0.77) performs the best out of all the experiments, followed511

by the α 0.9 and UNC experiments (r = 0.75). In terms of RMSE, the SN AWI512

experiment performs the best (0.78 m), followed by the SN SMLG experiment (0.81513

m).514
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3.5 Beaufort Gyre Exploration Project (BGEP)515

We find an overestimation in SIT in each of the experiments in the January516

- February period at BGEP-B, with the exception of the CTRL and α 0.6517

experiments (Figure 13). We find an overestimation at BGEP-A in the CTRL518

experiment in January - February and at BGEP-D in CTRL in February, which519

is not found in the experiments where CryoSat-2 is assimilated. We find the lowest520

RMSE in the UNC and CTRL experiments at BGEP-A and BGEP-B, respectively.521

At BGEP-D, we find similar RMSE values in all experiments (0.42-0.47 m),522

with SN AWI performing the best. Overall, we find similar RMSE values in all523

experiments (0.35-0.37 m) except FB CPOM and SN SMLG (0.41-0.42 m). We find524

that the FOAM experiments do not represent the daily variability measured by the525

BGEP buoys well, finding an improvement when taking a one-week running mean of526

the BGEP data (Figure S1). This is not surprising considering the repeat sub-cycle527

of CryoSat-2 (30 days) and the model grid size of ∼12 km, compared to the high528

temporal sampling resolution of the moorings.529

As we are only using one season of data, the linear correlation coefficient is not530

a suitable method of assessing how well the model is able to represent the variability531

measured at stand-alone buoys. Instead, we calculated an error by taking the532

difference between the model and the daily mean BGEP SIT, before dividing this533

by the daily BGEP standard deviation. This tells us how many standard deviations534

the model prediction is away from the buoy measurement on each day. We find535

that the UNC and CTRL experiments perform best at BGEP-A and BGEP-B,536

respectively, with errors of 0.17. At BGEP-D, the α 0.9 and UNC experiments537

perform the best with an error of 0.22. When the buoys are combined, the α 0.9 and538

UNC experiments perform the best with an error of 0.14. The CTRL, FB CPOM539

and SN SM-LG experiments perform the worst at the individual buoys, with the540

FB CPOM experiment performing the worst when the buoys are combined. At each541

buoy, the experiments are normally within two standard deviations of the buoy542

measurements, decreasing to one standard deviation when the buoys are combined543

(Figure S2).544
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Figure 13. FOAM SIT and BGEP SIT at BGEP-A, BGEP-B and BGEP-D mooring

locations from 17 October 2016 to 15 April 2017. FOAM SIT is only shown on days where BGEP

data is available. The grey shaded area shows the BGEP uncertainty, represented by the daily

standard deviation. Coloured text shows the mean root-mean-squared error for the season for

each experiment.
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4 Discussion and Conclusions545

4.1 Relative influence of each parameter546

We find large differences in the modelled SIT when changing the freeboard547

and snow product used, as well as the assumed radar penetration. However, each548

parameter has a strongly regional impact, which differs across the experiments.549

Our results suggest that differences in the Central Arctic are dominated by changes550

in the snow depth, whereas the use of different freeboard products plays a more551

dominant role in the marginal seas. The use of different observation uncertainties552

also plays a significant role in the marginal seas, as it increases the relative553

weighting of the assimilated CryoSat-2-derived SIT data compared to the SMOS554

data.555

For the snow depth product used, the largest changes occur in the Beaufort,556

East Siberian and Central Arctic regions. Using snow depth observations from557

SnowModel-LG or passive microwave coupled to the Warren snow climatology,558

instead of the FOAM snow depths, increases the modelled SIT in these regions559

by 9-25 cm (7-16%) on average. This is because both snow depth products are560

thicker than FOAM and therefore produce thicker estimates of sea ice for a given561

freeboard. Our snow depth experiments imply that models with a thin spring snow562

cover (∼20 cm) in the Central Arctic will not produce reliable SIT after assimilating563

CryoSat-2 freeboards. When assimilating CryoSat-2-derived SIT data, Mignac et564

al. (2022) found a decrease in the underestimation of SIT in this region compared565

to OIB-derived SIT, with the root-mean-squared difference decreasing from 0.95 m566

to 0.65 m, although the underestimation bias remained to the north of Greenland,567

where the FOAM snow depths are too low. Previous modelling studies have found568

a large underestimation of SIT in the Central Arctic. For example, Wang et al.569

(2016) found an underestimation of up to 2 m in February - March. Xia & Xie570

(2018) found that CryoSat-2 freeboards increasingly underestimated those from OIB571

as the OIB freeboard increased, up to -44 cm mean bias when the airborne laser572

scanner freeboards were >66 cm thick. Since the thickest sea ice north of Greenland573

is also the roughest in the Arctic, this suggests that the CryoSat-2 radar returns574

might be biased towards smoother areas of the topography, underestimating the true575

mean freeboard. A freeboard bias caused by the radar penetrating only a fraction576

of the snow layer would act in the other direction, generating thinner SIT estimates577

compared to OIB, so this appears to be a less important factor over the multi-year578

ice region north of Greenland.579

We find differences in SIT of up to 35% when decreasing the assumed mean580

radar penetration of the snowpack from 100 to 90 and 60%, with the largest581

differences seen in the Western and Russian Arctic. In comparison to the OIB582

data, which mostly cover multi-year ice north of Greenland and Canada, the 60%583

penetration experiment led to more of an underestimation of the ice thickness584

than other experiments. However, in comparison to thinner ice measured by the585

Beaufort Gyre mooring ice drafts, the 60% penetration experiment was not found586

to underestimate the in situ-measured ice thickness. Nab et al. (2023) found a587

response in CryoSat-2-derived radar freeboard estimates to snow accumulation, wind588

speed and air temperature, with the magnitude of the response varying between589

tested freeboard products, which suggests that the radar penetration depth can590

be <100% under certain conditions. Results from our bias assessment versus in591

situ data suggest these conditions may occur more frequently over first-year than592

multi-year ice; however, there could be competing biases that obscure this finding.593

CryoSat-2 measures thick ice with relatively high accuracy but struggles with594

very thin ice (Ricker et al., 2014), so improvements in forecast accuracy caused by595

changing the assimilation parameters are mainly found in the Central Arctic where596
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the observations are more accurate than the free-model run. We find a larger spread597

in areas that have more CryoSat-2 observations, such as the Central Arctic and East598

Siberian regions. In regions where there are fewer CryoSat-2 observations, such as599

the Baffin and Barents regions, there is a much smaller spread in the data, as the600

SIT assimilation is dominated by the assimilation of SMOS data. The assimilated601

CryoSat-2 freeboard products have noticeable differences over thin ice regions, with602

the use of the CPOM product leading to a higher SIT in these regions than the603

LARM and AWI products.604

We find that using observation errors derived from the individual freeboard605

measurements, rather than parameterising them based on the SIT value, leads to a606

noticeably different SIT and thermodynamic growth distribution. The BASE and607

UNC experiments show a 36% daily mean absolute difference in SIT, despite the use608

of the same snow depth, assumed radar penetration and radar freeboard product609

in the freeboard-to-thickness conversion. Compared to the BASE experiment, the610

UNC experiment shows thinner ice on average on a pan-Arctic scale, except for611

a small region north of the Canadian Archipelago. This is likely due to the high612

observation errors assigned to CryoSat-2-derived SIT values below 1 m (σ = 8 m),613

compared to values between 1 - 4 m (σ<0.5 m) in the BASE experiment with an614

empirical parameterisation of the errors. This means that measurements of thicker615

ice have a substantially higher weighting in the data assimilation, which can lead to616

an overestimation in SIT in areas where low-value CryoSat-2-derived SIT values are617

removed from the assimilation despite being accurate.618

The differences in thermodynamic volume change between the experiments619

and the BASE run show similar spatial patterns as those for SIT, but of the620

opposite sign. This is expected, as thin ice grows faster due to steeper temperature621

gradients, leading to a negative feedback between SIT and thermodynamic volume622

change (Haas, 2003). Therefore, when the assimilated CryoSat-2 observations are623

thinner than the model (e.g. in the α 0.6 and α 0.9 experiments), the model reacts624

by growing more sea ice thermodynamically. This is particularly evident in the625

FB CPOM and FB LARM experiments, where areas that show a thinning sea626

ice cover as a result of the data assimilation show an increase in thermodynamic627

growth, while areas with a thickening ice cover show a decrease in thermodynamic628

growth. We find a decrease in mean daily thermodynamic volume change in the629

SN SMLG and SN AWI experiments. This is likely due to the increase in snow630

depth in these runs, with the two snow depth products generally thicker than631

modelled snow from FOAM, which leads to an increased derived SIT, insulating632

the ice and thus reducing winter ice growth. The UNC results are slightly different633

from the others, with a pan-Arctic thinning in SIT resulting in decreases in634

thermodynamic growth in the marginal seas and increases over the Central Arctic.635

We find this to be due to a seasonal change in the assimilation impact on the SIT in636

this experiment: in October - November, the SIT in the UNC experiment increases637

by up to 40% more than the BASE experiment in the marginal seas, while the rest638

of the ice cover thins by more than 40% compared to the BASE experiment. As639

the season progresses, this increase in SIT in the UNC experiment decreases, with640

decreases in SIT seen in almost all regions by April (Figure S3). The difference641

in thermodynamic volume growth between these experiments shows the inverse642

pattern: the UNC experiment shows a much lower thermodynamic volume growth in643

the marginal seas in the early winter months than the BASE experiment, with the644

difference decreasing as the season progresses (Figure S4).645

In this study, we have tested a variation of parameterisation combinations for646

the freeboard-to-thickness conversion. We find a large spread in the model results647

between these different experiments, particularly over thicker ice (e.g. the Central648

Arctic), that increases as the winter season progresses. This highlights a concern649
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for future SIT data assimilation and forecasting, with the chosen parameterisation650

of the freeboard-to-thickness conversion having a substantial impact on model SIT651

results, with a difference in model SIT of up to 30-48%. Additionally, our results call652

for an improved, consistent definition of CryoSat-2 radar freeboard uncertainties,653

with our derived SIT uncertainties causing a change in mean model SIT of up to654

36%.655

4.2 Comparison with independent datasets656

We find a consistent underestimation in SIT and total thickness north of657

Greenland in all our experiments, likely due to the consistent underestimation of658

the FOAM model snow depth in this area. When replacing this snow depth with659

the SM-LG and AWI products, we find a significant improvement in the model SIT660

results in this area, compared to independent datasets; however, the SIT is still661

underestimated. These snow depth values are generally higher than those of FOAM,662

leading to an increase in SIT on a pan-Arctic scale. The SIT is also improved663

when using derived uncertainties from the AWI product, rather than uncertainties664

parameterized for specific ranges of ice thickness, which suggests the uncertainties665

for thick multi-year ice are well-constrained in the product. Over thinner ice areas,666

the CryoSat-2 data should either be entirely discarded or the derived freeboard667

uncertainties used, since down-weighting the assimilation of the thinnest freeboards668

can increase the impact of erroneously thick freeboards in these areas.669

In terms of variability, compared to the OIB estimates, each of our experiments670

performs better than the CTRL experiment, with the α 0.6, α 0.9 and UNC671

experiments also performing better than the BASE experiment. Compared to OIB672

estimates, decreasing the assumed α used in the freeboard-to-thickness conversion673

leads to an increase in RMSE. As the OIB SIT estimates are calculated using an674

assumption of full C-S-band snowradar penetration through the snowpack, this675

is unsurprising. We find the lowest RMSE in the SN AWI experiment (0.78 m),676

followed by the SN SMLG experiment (0.81 m). Compared to the BGEP SITs, the677

experiments perform equally well in terms of RMSE (0.35 - 0.37 m when the buoys678

are combined), with the exception of the FB CPOM and SN SMLG experiments679

which perform worse (0.42 and 0.41 m, respectively). The BGEP data are limited680

to the Beaufort Sea region, while the OIB covers large parts of the Arctic, with the681

exception of the Russian Arctic. As a result, the BGEP datasets largely cover areas682

of thin ice (<1.5 m), which CryoSat-2 and FOAM struggle with compared to thicker683

ice. The UNC experiment was found to perform better than the BASE experiment684

over areas of thin ice: when isolating areas where the OIB-derived SIT is lower685

than 1 m, the UNC experiment was found to have a lower RMSE (0.32 m) than the686

BASE experiment (0.41 m), with the same r value (0.82). Similarly, compared to687

the BGEP-derived SIT data, the UNC experiment performs better than the BASE688

experiment at BGEP-A and BGEP-B, and when the buoys are combined. This689

highlights the importance of assigning realistic observation errors when assimilating690

CryoSat-2 data. This suggests that improving the observation errors used when691

assimilating CryoSat-2 SIT data could improve model performance over areas of692

thin ice, as the number of measurement over thin ice that are assimilated can be693

increased by more accurately separating the inaccurate ones.694

We repeated the above analysis with airborne estimates taken during the695

IceBird campaign series. However, we found these results to give very limited insight696

into the ability of the FOAM experiments to produce accurate SIT forecasts. We697

believe this is due to the large amount of pre-processing required to make this data698

comparable to the model data, due to the former’s much higher spatial and temporal699

resolution. The results are shown in Supplementary Section 1.700

–28–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Our results show that, while improving the representation of one parameter701

in the freeboard-to-thickness conversion does often lead to an improved model SIT702

result in comparison to independent observations, this is not always the case. This703

is likely due to competing biases, which have been created by tuning the model704

to observational data using the current parameterisation, such that changing one705

parameter without changing the others can often bring the model results further706

away from the observations, despite an improvement in that parameter’s values.707

This means that changing the parameters altogether is often the only way to bring708

the model results closer to the observations, as competing biases can be corrected709

for at the same time. The challenge is optimizing the combination of parameter710

changes, when they have different impacts (negative or positive) in different regions711

of the Arctic or part of the winter season. However, the purpose of this study712

is to determine the sensitivity of the model SIT results to the parameterisation713

of the radar freeboard-to-thickness conversion, rather than to find an optimal714

model configuration. Optimization is complex and will likely require a trade-off715

between accurately simulating the mean ice state characteristics and capturing716

the inter-annual ice state variability. This is a key point, since the quality of a717

seasonal sea ice forecasts relies on the ability to capture interannual variations in718

the anomalies of the SIT which translate into later ice extent forecasting skill (e.g.719

Landy et al., 2022).720

4.3 Future Work721

The sensitivity of the FOAM system’s SIT forecasts to the parameterisation of722

the freeboard-to-thickness conversion and other data assimilation parameters informs723

us how best to configure the Met Office’s operational system when implementing724

SIT assimilation. A near-real time CryoSat-2 product is required for operational725

assimilation of SIT into the Met Office systems. Currently, FOAM assimilates data726

from the previous 24 hours into its systems. The AWI product is available near-real727

time, so its SIT and snow depth values are currently being tested for operational728

assimilation. This product also comes with freeboard uncertainties, allowing for729

the use of derived SIT uncertainties in the operational assimilation. Additionally,730

testing the SIT assimilation on a fully coupled ocean-sea ice-land-atmosphere system731

would allow us to explore the impacts of SIT assimilation on land and atmosphere732

variables, to determine how SIT uncertainties affect parameters outside of the Arctic733

ocean.734

Tests with other satellite-derived SIT products, such as those derived from735

ICESat-2 and Sentinel-3, would allow us to increase the temporal and spatial736

resolution of the assimilated SIT data. This would require a consistent definition737

of uncertainties such that the different SIT products can be combined. Assimilation738

of ICESat-2 SIT would remove the need for radar scattering assumptions, reducing739

uncertainty in the SIT. However, as ICESat-2 estimates total freeboard (snow depth740

+ ice freeboard), using it to calculate SIT still requires the use of a snow product,741

and the uncertainties coming from the snow loading for a laser altimeter product are742

higher than for a radar altimeter product (Kaminski et al., 2018). Additionally, tests743

with spatially and temporally varying radar penetration assumptions would improve744

the representation of changes in radar penetration in response to meteorological745

conditions found by previous studies.746
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Figure S1. FOAM SIT and one-week running mean of BGEP SIT at BGEP-A, BGEP-B and

BGEP-D mooring locations from 25 November 2016 to 15 April 2017. The grey shaded area

shows the BGEP uncertainty, represented by the daily standard deviation. Coloured text shows

the mean root-mean-squared error for the season for each experiment.
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Figure S2. Daily difference between FOAM SIT and BGEP SIT at BGEP-A, BGEP-B and

BGEP-D mooring locations, normalised by the BGEP standard deviation. Coloured text shows

the mean absolute value for each experiment. Note the different y-axes.
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Figure S3. a-g) Monthly difference between mean daily sea ice thickness in the UNC experi-

ment and the BASE experiment (UNC-BASE) h) standard deviation of the monthly differences.
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Figure S4. a-g) Monthly difference between mean daily thermodynamic volume change in the

UNC experiment and the BASE experiment (UNC-BASE) h) standard deviation of the monthly

differences.
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1. IceBird

As part of the IceBird campaign series, total thickness (snow depth + sea ice thickness) mea-

surements were collected during the PAMARCMIP campaign in March and April 2017 (Hendricks

et al., 2020). The data was gathered using the AWI EM-Bird, a helicopter-borne electromagnetic

(EM) induction system on flights in the Beaufort Sea and the Chukchi Sea. The system works

by sending a low-frequency EM field through the sea ice, generating eddy currents in the water

below. This induces a secondary EM field that propagates back upwards through the sea ice, the

strength of which is directly related to the distance between the EM system and the underside of

the sea ice. Using a laser, the distance between the EM system and the snow surface is then mea-

sured, such that the total thickness can be derived as the difference between the laser-determined

snow surface and the EM-determined underlying water surface. See Haas et al. (2009) for a full

description of this method. On the same flights, snow depth measurements were taken using the

AWI Snow Radar (Jutila et al., 2021), an ultrawideband microwave radar able to estimate snow

depth on sea ice with a mean bias of 0.86 cm. See Jutila et al. (2022) for a full description of

this method. The high-frequency IceBird snow depth and total thickness data are binned into 12

km grid cells (equivalent to the FOAM grid size in the Arctic), with the median taken to avoid

the impact of outliers. To determine the sea ice thickness, we take the difference between the

coincident total thickness and snow depth measurements. Only points where data for both the

total thickness and snow depth are available are used. For the evaluation, the model SITs are

then interpolated to these observation locations.

With the exception of the α 0.6 and UNC experiments, we find a consistent overestimation

in the model SIT compared to the IceBird SIT everywhere except at the ice edge (Figure S5).

Similarly to the OIB comparison, we find a wider range of values in the IceBird data than
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in the model results, particularly at SIT values below 1 m and above 3 m (Figure S6). We

find a negative correlation between the IceBird data and each of the experiments (Figure S6).

Each of the assimilation experiments performs worse than the CTRL experiment in terms of the

magnitude of the r value. The experiments perform similarly in terms of RMSE (0.80 - 0.85 m),

with the exception of the SN SMLG and SN AWI experiments (0.91 and 0.96 m, respectively).
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Figure S5. Difference between FOAM SIT and IceBird SIT, between 9 March and 19 April

2017.
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Figure S6. Histograms of FOAM SIT and IceBird SIT in the Beaufort and Chukchi Seas,

between 30 March and 8 April 2017.
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