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Abstract

Subgrid-scale processes, such as atmospheric gravity waves, play a pivotal role in shaping the Earth’s climate but cannot

be explicitly resolved in climate models due to limitations on resolution. Instead, subgrid-scale parameterizations are used to

capture their effects. Recently, machine learning has emerged as a promising approach to learn parameterizations. In this study,

we explore uncertainties associated with a machine learning parameterization for atmospheric gravity waves. Focusing on the

uncertainties in the training process (parametric uncertainty), we use an ensemble of neural networks to emulate an existing

gravity wave parameterization. We estimate both offline uncertainties in raw neural network output and online uncertainties in

climate model output, after the neural networks are coupled. We find that online parametric uncertainty contributes a significant

source of uncertainty in climate model output that must be considered when introducing neural network parameterizations.

This uncertainty quantification provides valuable insights into the reliability and robustness of machine learning-based gravity

wave parameterizations, thus advancing our understanding of their potential applications in climate modeling.
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Abstract 17 

Subgrid-scale processes, such as atmospheric gravity waves, play a pivotal role in shaping the 18 
Earth’s climate but cannot be explicitly resolved in climate models due to limitations on 19 
resolution. Instead, subgrid-scale parameterizations are used to capture their effects.  Recently, 20 
machine learning has emerged as a promising approach to learn parameterizations. In this study, 21 
we explore uncertainties associated with a machine learning parameterization for atmospheric 22 
gravity waves. Focusing on the uncertainties in the training process (parametric uncertainty), we 23 
use an ensemble of neural networks to emulate an existing gravity wave parameterization. We 24 
estimate both offline uncertainties in raw neural network output and online uncertainties in 25 
climate model output, after the neural networks are coupled. We find that online parametric 26 
uncertainty contributes a significant source of uncertainty in climate model output that must be 27 
considered when introducing neural network parameterizations. This uncertainty quantification 28 
provides valuable insights into the reliability and robustness of machine learning-based gravity 29 
wave parameterizations, thus advancing our understanding of their potential applications in 30 
climate modeling. 31 

 32 

Plain Language Summary 33 

Climate models are unable to resolve processes that vary on length and time scales smaller than 34 
the model resolution and timestep. For example, atmospheric gravity waves, which are waves 35 
created when winds encounter disturbances to the flow, such as mountains, convection and 36 
fronts, can have wavelengths smaller than the spacing between grid cells. Climate models use 37 
“parameterizations” to capture the effect of these processes. Machine learning based 38 
parameterizations are becoming popular because they can learn relationships purely from data. 39 
However, we do not have a good understanding of the uncertainties introduced through machine 40 
learning parameterizations. This study estimates uncertainties associated with training a neural 41 
network gravity wave parameterization. We explore uncertainties in the neural network output, 42 
as well as the uncertainties in the climate model output, when the neural network is used for the 43 
gravity wave parameterization.  44 

1 Introduction 45 

1.1. Subgrid-scale parameterizations 46 

Global climate models (GCMs) simulate the entire Earth system by coupling a dynamical 47 
core, which numerically solves the primitive equations for atmospheric flow, with other physical 48 
components called “subgrid-scale parameterizations”. The latter includes dynamical processes 49 
occurring on scales smaller than the grid-scale (generally 𝑂(100	km) for a typical GCM; Chen 50 
et al., 2021), such as convection and short wavelength gravity waves, and non-dynamical 51 
processes, such as radiation, atmospheric chemistry, and cloud and aerosol microphysics. 52 
Subgrid-scale parameterizations make up a large portion of the computational cost associated 53 
with GCM simulations and sometimes make drastic assumptions for the sake of computational 54 
cost, which can introduce additional sources of model uncertainty. This has motivated the 55 
demand for faster and/or higher accuracy schemes that use machine learning (ML)/artificial 56 
intelligence (AI), which hold out the potential for training on large volumes of training data and 57 
performing fast inferences when invoked. 58 
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 59 
ML-based subgrid-scale parameterizations have demonstrated skill across a wide range of 60 

atmospheric processes including convection, clouds, aerosols, radiation and gravity waves (e.g., 61 
Brenowitz et al., 2020; Brenowitz & Bretherton, 2019; Chantry et al., 2021; Chevallier et al., 62 
2000; Espinosa et al., 2022; Gentine et al., 2018; Harder et al., 2022; Krasnopolsky & Fox-63 
Rabinovitz, 2006; O’Gorman & Dwyer, 2018; Perkins et al., 2023; Rasp et al., 2018; Ukkonen, 64 
2022; Yu et al., 2023; Yuval et al., 2021; Yuval & O’Gorman, 2020). However, few studies have 65 
explored the uncertainties associated with these. Stochastic subgrid-scale parameterizations have 66 
been developed by sampling from parametric distributions, learned through neural networks 67 
(Guillaumin & Zanna, 2021) and generative adversarial networks (GANs) (Gagne II et al., 2020; 68 
Nadiga et al., 2022; Perezhogin et al., 2023).  These studies focus on stochastic representations to 69 
improve model accuracy since they may better represent scaling properties (Palmer, 2019). 70 
Including uncertainty estimates can also be beneficial in assessing the trustworthiness of model 71 
predictions (Haynes et al., 2023; McGovern et al., 2022), and has gained some attention in 72 
weather and climate prediction studies (e.g., Delaunay & Christensen, 2022; Gagne et al., 2014, 73 
2017; Gordon & Barnes, 2022; Weyn et al., 2021). Here, we explore uncertainty quantification 74 
in a machine learning subgrid-scale parameterization (a type of model uncertainty; Hawkins & 75 
Sutton, 2009; Palmer, 2019), focusing on gravity wave parameterizations.  76 

 77 
1.2 Atmospheric Gravity Waves  78 

 79 
Atmospheric gravity waves (GWs) are important drivers of middle atmosphere 80 

circulation as they transport momentum upwards and away from their sources in the lower 81 
troposphere (Fritts & Alexander, 2003). They are forced by perturbations to a stable stratified 82 
flow, for instance, orography, convection, and frontogenesis. They propagate primarily in the 83 
vertical and, due to the decreasing density in the upper atmosphere, grow in amplitude until 84 
reaching a critical level, at which point they break and deposit momentum. This provides a 85 
forcing on the mean flow in the middle and upper atmosphere and has a substantial impact on 86 
atmospheric circulation, including in driving the Quasi-Biennial Oscillation (QBO) in the 87 
equatorial stratosphere (Baldwin et al., 2001) and affecting the occurrence of Sudden 88 
Stratospheric Warmings in the polar vortex during winter (Wang & Alexander, 2009), described 89 
further in Section 1.3.  90 
 91 

GW wavelengths can range from 𝒪(1	km)	to 𝒪(1000	km), which presents a challenge 92 
for accurate representation in global climate models (GCMs). While the primitive equations do 93 
capture GW dynamics, typical GCM resolutions are 𝒪(100	km), resulting in a large portion of 94 
the GW spectrum being un- or under-resolved. Parameterizations must be employed to model the 95 
impacts of subgrid-scale GWs on the mean flow and are critical for obtaining realistic 96 
circulation, for example, to induce a spontaneous QBO (Bushell et al., 2020). Some studies find 97 
GW parameterizations to be necessary even in kilometer-scale resolution simulations (Achatz et 98 
al., 2023; Polichtchouk et al., 2023), suggesting that the need for accurate parameterizations will 99 
persist even as modeling centers move towards high resolution GCMs (or “digital twins”; e.g., 100 
Bauer et al., 2021). 101 
 102 

1.2.2 Gravity wave parameterizations 103 
 104 
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GCMs usually make use of both an orographic and a non-orographic GW 105 
parameterization to capture their effects. Machine learning alternatives to GW parameterizations 106 
have recently gained attention in several forms. Chantry et al. (2021), Espinosa et al. (2022) and 107 
Hardiman et al. (2023) present machine learning emulators of existing non-orographic gravity 108 
wave schemes, while Dong et al. (2023)  and Sun et al. (2023) use machine learning to learn 109 
gravity wave momentum fluxes from high resolution simulations.  110 

 111 
This study can be viewed as a continuation of the work by Espinosa et al. (2022), which 112 

develops an emulator of a non-orographic GW parameterization designed primarily for 113 
convectively forced GWs (Alexander & Dunkerton, 1999). Note that this machine learning 114 
parameterization is, at best, as accurate as the scheme it aims to emulate and is not significantly 115 
faster than the original physics-based scheme, which could be due to coupling of the neural 116 
network within a Fortran-based GCM (Cambridge-ICCS, 2023). Rather, this neural network 117 
emulator is used as a first step towards probing uncertainties introduced when replacing a gravity 118 
wave parameterization with an emulator, when we have a “ground truth” parameterization for 119 
reference.  120 
 121 

1.3 Gravity wave effects 122 
 123 
1.3.1 Quasi-Biennial Oscillation 124 
 125 
Gravity waves strongly influence the stratospheric circulation. In the tropical 126 

stratosphere, the dominant mode of variability is the Quasi-Biennial Oscillation (QBO), in which 127 
the equatorial stratospheric zonal winds alternate between easterly and westerly and descend 128 
downwards with time (Gray, 2010). The change in direction is driven by breaking waves across a 129 
range of scales (Baldwin et al., 2001; Lindzen & Holton, 1968), with modeling studies 130 
suggesting that non-orographic gravity wave parameterizations contribute around half of the 131 
forcing required for a simulated QBO (Holt et al., 2020).  132 

 133 
In this study, we measure the performance of gravity wave parameterizations through the 134 
simulated QBO period and amplitudes at 10 hPa, where the QBO amplitude is generally a 135 
maximum (Bushell et al., 2020; Richter et al., 2020). We consider the QBO winds to be defined 136 
by the zonal mean zonal winds between 5°S and 5°N. Following Schenzinger et al., (2017), we 137 
estimate the period of a QBO cycle by the length between transition times from westward and 138 
eastward flow, after applying a 5-month binomial filter to remove high frequency variability. 139 
The amplitude is estimated as the absolute maximum of the QBO winds during each cycle. 140 
 141 

1.3.2 Stratospheric Polar Vortex  142 
 143 

As well as driving the equatorial stratospheric circulation, gravity waves are also 144 
influential at high latitudes. Gravity waves affect the stratospheric polar vortex in both 145 
hemispheres, as they contribute to the breakdown of the polar vortices, influencing the frequency 146 
and properties of Sudden Stratospheric Warmings (SSWs) (Siskind et al., 2007, 2010; Wang & 147 
Alexander, 2009; Whiteway et al., 1997; Wright et al., 2010) and the timing of the Spring final 148 
warming (Gupta et al., 2021). SSWs are defined as a reversal of the zonal mean zonal winds at 149 
60°N at 10 hPa (Butler et al., 2015) which is followed by large and rapid temperature increases 150 
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(>30-40 K) in the polar stratosphere. They occur around 6 times per decade in the Northern 151 
hemisphere, but are not common in the Southern hemisphere. In this study, we consider gravity 152 
wave parameterization effects on the number of Northern hemisphere SSWs per decade and the 153 
timing of the final warming of the Southern hemisphere polar vortex.  154 
 155 
 156 
2. Uncertainty Quantification 157 
 158 

Uncertainties can be categorized into two types: aleatoric uncertainty and epistemic 159 
uncertainty (Hüllermeier & Waegeman, 2021). Aleatoric uncertainty is used to describe the 160 
variability in a system that is due to inherently random effects (Haynes et al., 2023; Hüllermeier 161 
& Waegeman, 2021). It represents the statistical or stochastic nature of a system, such as flipping 162 
a coin or rolling a dice and in ML literature, refers to uncertainty in the data. It includes internal 163 
variability of the system and observational uncertainties in the data. In contrast, epistemic 164 
uncertainty is caused by a lack of knowledge about the best model for a system and refers to 165 
uncertainty in the model. It includes structural uncertainties from the choice of ML architecture, 166 
parametric uncertainties in estimating of model parameters, and out-of-sample uncertainties 167 
which arise when predicting outside of the range of the training data.  168 

In this study, we aim to quantify parametric uncertainty, a type of epistemic uncertainty, 169 
in an ML-based parameterization for gravity waves. We expect this to also capture out-of-sample 170 
uncertainties, i.e., increased uncertainty when generalizing to a situation that lies outside of the 171 
training data distribution. For simplicity, we do not estimate aleatoric uncertainty in the training 172 
data, and we also do not consider structural uncertainty. Future studies may wish to account for 173 
these additional types of uncertainty for a more complete picture. There are several methods that 174 
could be used to estimate parametric uncertainty (Abdar et al., 2021). Here, we use an ensemble 175 
of deep neural networks or “deep ensembles”, which involves training multiple identical neural 176 
networks, each with a different initialization (Lakshminarayanan et al., 2017). Each neural 177 
network converges upon slightly different parameters which are then used to predict an 178 
ensemble, from which statistics can be obtained. This is a relatively simple approach to 179 
implement, although can be costly as it requires repetition during training and evaluation. Deep 180 
ensembles have been used in climate model applications for prediction (Weyn et al., 2021), but 181 
have not been used for subgrid-scale parameterizations. In this context, deep ensembles could be 182 
viewed as a machine learning complement to “perturbed parameter ensembles” (PPE), which 183 
involve perturbing physics-based parameters for uncertainty quantification (e.g., Murphy et al., 184 
2007; Sengupta et al., 2021; Sexton et al., 2021). 185 

 186 
3 Methods 187 
 188 

3.1 Gravity Wave Parameterization Setup 189 
 190 

Alexander & Dunkerton (1999; hereafter AD99) present a simple non-orographic, gravity 191 
wave parameterization that has been used in various GCMs, including GFDL’s Atmospheric 192 
Model 3  (Donner et al., 2011), Isca (Vallis et al., 2018), and MiMA (Jucker & Gerber, 2017). 193 
AD99 estimates gravity wave drag (GWD) in both the zonal and meridional directions for each 194 
level in a column, at each grid-cell and timestep. When coupled into a climate model, gravity 195 
wave drag or forcing acts to accelerate or decelerate winds (i.e., it is a wind tendency). As a 196 
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spectral parameterization, AD99 defines a spectrum of gravity waves at a source level with 197 
momentum flux distributed by phase speeds, assumed to follow a Gaussian distribution centered 198 
at 0 m/s with half-width 35 m/s. This spectrum of gravity waves propagates upwards until the 199 
waves reach the critical level (when the wind speed equals the phase speed of the waves), when 200 
breaking occurs and drag is deposited.   201 

 202 
3.2 Atmospheric Model Setup 203 

 204 
We use an intermediate complexity GCM, a Model of an idealized Moist Atmosphere 205 

(MiMA) (Jucker & Gerber, 2017). It is run at spectral resolution T42, corresponding to 64 206 
latitudes by 128 longitudes (approximately 2.8 degrees or 300 km grid spacing at the equator), 207 
with 40 model levels. The level top is 0.18 hPa, with a strong dissipating sponge layer in the 208 
upper three levels (0.85-0.18 hPa). AD99 is coupled into MiMA with the parameters described 209 
above and with a fixed source level defined to be 315 hPa in the tropics and decreasing in height 210 
with latitude, roughly in line with the tropopause. The model is run with an advection timestep of 211 
10 minutes and a physics timestep, which includes calling the gravity wave parameterization, of 212 
3 hours.  213 

 214 
3.2 Machine Learning Setup 215 

 216 
We use the neural network (NN) gravity wave parameterization developed by Espinosa et 217 

al. (2022). This is trained on MiMA simulations using the AD99 gravity wave parameterization, 218 
described above (Alexander & Dunkerton, 1999). Espinosa et al. (2022) show that the NN 219 
emulator, trained on one year of data, achieves an accurate representation of the AD99 scheme 220 
both offline and online. For the online tests, Espinosa et al. (2022) replace the original AD99 221 
scheme in MiMA with the NN emulator within MiMA and show that these coupled NN 222 
simulations produce a Quasi-Biennial Oscillation consistent with original AD99 simulation. 223 
Furthermore, when tested on an out-of-sample climate under 4xCO2 forcing, the NN simulations 224 
remained stable and reproduced similar changes to the QBO as the AD99 simulations.  225 
 226 
 Espinosa et al. (2022) emulate the zonal and meridional GW drag with two independently 227 
trained but almost identical fully connected NNs. The inputs to the zonal GW drag network are 228 
zonal winds at all levels, 𝑢, temperature at all levels, 𝑇, surface pressure, 𝑝!, and latitude, 𝜆, and 229 
similarly for the meridional GW drag the inputs are meridional winds at all levels, 𝑣, 𝑇, 𝑝!, and 230 
𝜆. MiMA uses 40 pressure levels, giving a total of 82 inputs into the NN. The architecture 231 
consists of four shared hidden layers followed by another four pressure level specific layers (see 232 
Supporting Information of Espinosa et al., 2022). The network outputs the zonal/meridional GW 233 
drag for all 40 pressure levels. Note that the pressure levels closest the surface always predict 234 
zero, where there is no GW drag below the source of the GWs. Although these layers are 235 
redundant, we include them because the AD99 gravity wave source level changes with latitude to 236 
follow the approximate level of the tropopause. Following Espinosa et al. (2022), we normalize 237 
the input and output data to have a zero mean and standard deviation of 1. For the pressure levels 238 
below the source level, where all GW drag values are exactly zero and standard deviation is 239 
undefined, we fix the outputs to zero. Although we follow the same architecture as Espinosa et 240 
al. (2022), there are some software differences in our implementation. Firstly, we opt for 241 
PyTorch (Paszke et al., 2019) rather than Keras and TensorFlow (Abadi et al., 2015; Chollet & 242 
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others, 2015) for the machine learning library. Secondly, Espinosa et al. (2022) use the forpy 243 
software (Rabel, 2019) to call python code in the fortran-based climate model. This resulted in a 244 
slow-down of roughly 2.5x when replacing AD99 with the NN emulator. Instead, we use FTorch 245 
(Cambridge-ICCS, 2023), a software package that directly calls the existing Torch C++ interface 246 
from Fortran resulting in faster inference. We find a 20% slow-down in the NN simulations 247 
relative to the AD99 simulations, although we have not explored if this could be optimized 248 
further. 249 
 250 

In this study, we capture parametric uncertainty of the NN emulator presented in 251 
Espinosa et al. (2022) using deep ensembles (Lakshminarayanan et al., 2017). We repeatedly 252 
train an ensemble of size 30 independent NNs, each with the same architecture and trained on the 253 
same data but with different random seed initializations. The random seed affects the 254 
initialization of the NN parameters and the shuffling order of data during training, leading to 255 
slightly different parameters when converged. Following Espinosa et al. (2022), we train the 256 
NNs with one year of data, selected so that it contains a typical QBO cycle with a period and 257 
amplitude similar to the long-term mean period and amplitude. We use the following one year of 258 
data for the validation dataset, and the following 20 years are used for the test dataset, requiring 259 
22 years of simulation data in total. Figure 1 shows (a) the QBO zonal winds and (b) the QBO 260 
zonal gravity wave drag over this dataset up to year 12. 261 

 262 
Figure 1 The QBO (a) zonal winds and (b) zonal gravity wave drag for the training, validation, 263 
and test dataset. 264 

 265 
 266 
4 Results 267 

 268 
4.1 Offline predictions 269 
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 270 
Figure 2 shows an example of gravity wave drag (GWD) profiles for a single grid cell 271 

close to the equator for a) the zonal component and b) the meridional component, with the black 272 
line indicating the ground truth from the AD99 parameterization and the red line indicating the 273 
mean prediction across all NN ensemble members. The orange shading represents 1 standard 274 
deviation across all ensemble members. Animations showing the evolution of this GWD profile 275 
can be found in the Supporting Materials. The NNs agree well on the gravity wave profiles and 276 
the ground truth falls within the 1 standard deviation range for across most model levels for the 277 
zonal component. The meridional component generally captures the patterns within the profile 278 
but is found to be less accurate, even when considering the uncertainty estimates. 279 
 280 
 281 
 282 

 283 
  284 
 285 
Figure 2 Example profiles of a) zonal and b) meridional gravity wave drag at one grid-cell and 286 
one timestep in the tropics where the black line indicates the ground truth from the AD99 287 
parameterization, the red line indicates the mean prediction across all neural network ensembles 288 
and the orange shading indicates 1 standard deviation across these ensembles.  289 

 To measure the errors, we calculate the continuous ranked probability score (CRPS), a 290 
generalization of mean absolute error that allows for comparison of probability distributions. The 291 
use of CRPS to measure error between a predicted probability distribution and a single ground 292 
truth has long been used for verification of ensemble weather forecasts (Hersbach, 2000), and 293 
has recently been adopted for probabilistic machine learning (Gneiting & Raftery, 2007). Figure 294 
3 shows CRPS for a) zonal and b) meridional gravity wave drag predictions over a range of 295 
latitudes. Note the scale of the axis is reduced by 10x relative to the gravity wave drag 296 
magnitudes in Figure 2. We find lower errors in the lower and mid-stratosphere that increase 297 
with height, where gravity wave drag magnitudes also increase. We see good performance across 298 
all latitudes. 299 
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 300 
Figure 3 Continuous Ranked Probability Score for a) zonal and b) meridional gravity wave drag 301 
for different latitudes over the test dataset.  302 

 303 
4.2 Offline uncertainty estimates  304 

  305 
One common problem in uncertainty quantification of deep learning algorithms is in 306 

ensuring that uncertainty estimates are reasonable, often known as calibration of uncertainty 307 
(Lakshminarayanan et al., 2017). A well-calibrated machine learning model should predict low 308 
uncertainties when errors are small and high uncertainties when errors are large (for instance, 309 
when the data is out-of-sample). Figure 4 shows the 1 standard deviation uncertainty estimates 310 
against the ensemble mean absolute errors estimated for the test dataset, with the colors 311 
representing the density of points. Ideally, these should be correlated and lie approximately along 312 
the 𝑦 = 𝑥 line shown in the dashed line. Points above the 𝑦 = 𝑥 line are underconfident and 313 
points below are overconfident. Although the errors and predicted uncertainties are correlated, 314 
we see that the NNs suffer from overconfidence and frequently underestimate the uncertainty 315 
relative to the error. This is typical behavior for machine learning uncertainty estimates, 316 
including those based on deep ensembles (Abdar et al., 2021), and may be not be surprising 317 
given we only consider one type of uncertainty (parametric uncertainty) and do not consider 318 
structural uncertainty or data uncertainty in these estimates. This overconfidence is systematic 319 
across all levels of the stratosphere and occurs for both zonal and meridional NNs, but especially 320 
for the meridional predictions. 321 
 322 
 323 
 324 
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 325 
Figure 4 Ensemble uncertainty (measured as 1 standard deviation amongst the ensemble 326 
predictions) against ensemble error (measured as the mean absolute error across all ensemble 327 
predictions) for a) zonal and b) meridional gravity wave drag for test dataset between 5°S-5°N 328 
at 10 hPa. Each individual point represents a single prediction at one timestep and grid-cell and 329 
they are shaded according to density. The black dashed line shows the 𝑦 = 𝑥 line. 330 

 331 
4.3 Offline and Online Probability Distributions  332 

 333 
Once coupled online into MiMA, the ensembles begin to diverge from each other even 334 

though they are initialized from the same state. This is partly due to the chaotic nature of the 335 
atmosphere where minute differences in one atmospheric variable can lead to very different 336 
atmospheric states after some time. Even introducing relatively minor differences in the GWD 337 
profiles, such as those in Figure 2, can lead to very different atmospheric states. Here, we aim to 338 
quantify how uncertainties in Figure 2 propagate into the GCM. We examine long-term statistics 339 
in order to separate out the NN parametric uncertainty from the internal variability. 340 

 341 
We consider GWD in the tropics, due to its influence on the QBO. Figure 5 shows 342 

distributions of gravity wave drag in the upper stratosphere at 10 hPa for (a) zonal and (b) 343 
meridional components, where the black line indicates ground truth from the AD99 MiMA 344 
simulations, the blue line indicates the offline NN predicted gravity wave drag and the red line 345 
indicates the online NN predicted GWD. Both offline and online distributions are centered over 346 
the same location as AD99, indicating that the NN does not introduce a bias. In the lower 347 
stratosphere, the distributions are virtually indistinguishable (not shown). However, in the upper 348 
stratosphere at 10 hPa, the NN distributions take a different shape than AD99. This is 349 
particularly notable around the low negative zonal gravity wave drag values, where AD99 350 
predicts an asymmetric gravity wave drag distribution with a positive skew. The NN 351 
distributions are more symmetric between positive and negative values. This may because 352 
machine learning optimizes for RMSE which may overly smooth gravity wave drag profiles, 353 
reducing asymmetry between positive and negative drag. The online NN distributions are 354 
slightly smoother than the offline NN distributions. We suggest that this must be caused by the 355 
interaction between the predicted gravity wave drag and the winds when coupled online. This is 356 
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verified by Figure 6a, which shows distributions of zonal winds near the equator at 10 hPa, 357 
where online distributions tend to be smoother and weaker than the AD99 distributions. 358 

 359 
Figure 5b shows that the online and offline meridional distributions are highly similar, 360 

even though they are smoothed out at low magnitudes. Even though the meridional NN is 361 
generally less accurate (e.g., Figure 2b), the meridional component of gravity wave drag does not 362 
appear to diverge when coupled online. Similarly, Figure 6b shows the distribution of the 363 
meridional winds to be unchanged when the NNs are coupled. This indicates that the meridional 364 
circulation is not highly sensitive to the effects of subgrid-scale gravity wave drag, possibly due 365 
to lower magnitude of the meridional winds.  366 
 367 
 368 

 369 
 370 
 371 
Figure 5 a) zonal and b) meridional gravity wave drag distributions for AD99 simulations 372 
(black), offline NN predictions (blue) and online NN simulations (red) at 10 hPa between 5°S-373 
5°N.  374 

 375 
Figure 6 a) zonal and b) meridional wind distributions for AD99 (black) and online NN 376 
simulations (red) at 10 hPa between 5°S-5°N. 377 
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 378 
4.4 QBO uncertainties 379 

 380 
Ultimately, we are interested in how the NN estimations for GWD influence the 381 

climatology and its variability when coupled into a GCM. We examine statistics of the QBO in 382 
MiMA by calculating the QBO period and amplitude at 10 hPa for each QBO cycle within 400 383 
years of AD99 simulations and the 600 years of NN simulations (from 30 simulations each of 20 384 
year simulations), shown in Figure 7. While the mean period of the QBO across all simulation 385 
years are similar, the NN ensembles show increased variability that can be attributed to the 386 
parametric uncertainty. The NNs also appear to introduce a bias that reduces the QBO amplitude, 387 
consistent with the reduction in QBO zonal winds (Figure 6). These increases in QBO variability 388 
originate from differences between NN ensemble members (and therefore from the learned NN 389 
parameters), each of which tend to maintain fairly consistent QBO periods and amplitudes within 390 
the 20 year simulation.  391 
 392 

 393 
 394 
Figure 7 Violin plots showing distributions of QBO a) period and b) amplitude for the AD99 395 
simulations in grey and for NN simulations in orange. The boxplots also show the median, upper 396 
and lower quartiles and each point represents a single QBO cycle.  397 

 398 
We estimate parametric uncertainty by considering the increase in variability that arises 399 

due to the NNs. Assuming QBO cycles are normally distributed in both AD99 and in the 400 



manuscript submitted to JAMES 

 

ensemble of NNs, the additional variability from the uncertainty in parameters, 𝜎param, can be 401 
calculated as 402 

𝜎param" = 𝜎AD99" + 𝜎NNs"  403 

Equation 1 404 

where 𝜎AD99"  is the variance in the AD99 simulations and 𝜎NNs"  is the total variance across 405 
all NN ensemble members. These results are shown in Table 1. Notably, the parametric 406 
uncertainty is significantly larger than the internal variability in the AD99 simulations, for both 407 
the QBO period and amplitude. It is possible that these uncertainties are underestimates of the 408 
true parametric uncertainty, given the overconfidence noted in offline tests (Figure 4). Still, the 409 
uncertainties in NN parameters are much greater than uncertainties in the parameters in the 410 
physics-based scheme AD99, estimated to be 1.53 months and 2.14 m/s for the period and 411 
amplitude respectively, in Mansfield & Sheshadri (2022) under the same model set-up. This 412 
highlights the importance of uncertainty quantification, regardless of whether the 413 
parameterization is physics-based or machine learning based.  414 

 415 
Table 1 Mean and variability of QBO calculated across MiMA simulations using AD99 vs. the 416 
ensemble of NNs. Means are estimated across all QBO cycles in a 400 year long MiMA 417 
simulation using AD99 and in 600 years of simulations from the 30-member, 20 year long 418 
simulations from the ensemble of NNs. Variability is measured as 1 standard deviation between 419 
all QBO cycles. Parametric uncertainty is calculated assuming QBO cycles are normally 420 
distributed (Equation 1). 421 

  Mean  Variability (measured as 1 standard deviation) 

  AD99  Ensemble of 
NNs   

Internal 
variability in 
AD99 
simulations 

Total 
variability in 
ensemble of 
NNs  

Parametric 
uncertainty  

Period 
(months) 25.32 26.78 2.03 3.82 3.25 

Amplitude 
(m/s) 28.29 25.91 2.17 3.86 3.18 

 422 
 423 
 424 
 425 

4.5 Polar vortex uncertainties 426 
 427 

The QBO is just one phenomenon that is strongly influenced by gravity wave dynamics. 428 
The stratospheric polar vortices in both hemispheres also depend upon gravity wave activity. In 429 
particular, the breakdown of the polar vortices during sudden stratospheric warmings (SSWs) 430 
and in the springtime final warming is driven by both planetary-scale and subgrid-scale gravity 431 
waves, and the variability of these events could also be impacted by changes to the gravity wave 432 
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parameterization. For the northern hemisphere polar vortex, we consider the frequency of SSWs 433 
and for the southern hemisphere, we consider polar vortex lifetime. Figure 8 shows there is no 434 
obvious distinction between the variability of these properties between the AD99 and NN 435 
simulations, thus making the attribution of extratropical changes (and therefore, the calibration of 436 
extratropical parameters in AD99 and other schemes; Mansfield & Sheshadri, 2022) rather 437 
challenging.This may be because the breakdown of the polar vortices is driven by both 438 
planetary-scale waves and subgrid-scale gravity waves, thereby reducing the impact of any 439 
changes to the parameterization. Furthermore, some studies find there may be a compensation 440 
effect between resolved Rossby waves and unresolved gravity waves during SSW events (e.g., 441 
Cohen & Gerber, 2013), while some studies suggest that small scale gravity waves influence 442 
polar vortex recovery after a SSW more strongly than the breakdown itself (Wicker et al., 2023).    443 
 444 

 445 
Figure 8 Histograms showing a) the Northern hemisphere number of SSWs per decade and b) 446 
the Southern hemisphere polar vortex lifetime for AD99 simulations in grey and the NN 447 
simulations in orange. 448 

 449 
 450 
5 Conclusions  451 
 452 

This study uses deep neural network ensembles to quantify parametric uncertainties in a 453 
machine learning parameterization of gravity wave drag. We use the neural network architecture 454 
of Espinosa et al.  (2022) trained on one year of data simulated by the intermediate complexity 455 
GCM, MiMA, which uses AD99 gravity wave parameterization (Alexander & Dunkerton, 1999; 456 
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Jucker & Gerber, 2017). An ensemble of 30 identical neural networks are trained, each 457 
initialized with a different random seed. This ensemble allows us to estimate parametric 458 
uncertainties in neural network weights and biases. First, we assessed uncertainties in raw GWD 459 
output, which we refer to as offline uncertainties. We find fairly consistent results across all 460 
neural networks. Then, we used the FTorch library to couple the neural network into MiMA, 461 
allowing for GCM simulations that use the machine learning parameterization in place of the 462 
traditional physics-based scheme (Cambridge-ICCS, 2023). We assess uncertainties in GCM 463 
output for gravity wave drag and wind, refering to these as online uncertainties. We find 464 
increased online uncertainty, particularly for zonal winds.  465 

 466 
Comparing long-term statistics of the climate within MiMA using the physics-based 467 

scheme AD99 and the ensemble of neural networks, showed that the use of NN emulators can 468 
alter the circulation significantly. We found that the NNs from the ensemble produce a bias in 469 
the QBO towards reduced amplitudes and dramatically increase the variability of the QBO, with 470 
uncertainty from NN parameters increasing the variability between QBO cycles by over 50%. 471 
Uncertainty quantification of parameterizations should therefore not be overlooked when 472 
developing ML-based schemes for future climate models. Our findings reiterate results from 473 
previous studies that find that, even when offline tests indicate “good” NN performance with 474 
relatively low uncertainties, the coupling of machine learning schemes into climate models can 475 
still introduce a significant source of uncertainty (Brenowitz et al., 2020; Lin et al., 2023). 476 
Learning distributions on the model parameters could provide a basis for further parameter 477 
refinement, for example, acting as a Bayesian prior distribution that could be constrained through 478 
online calibration, such as derivative-free optimization Ensemble Kalman methods (Pahlavan et 479 
al., 2023). As with traditional parameterization calibration, this could lead to improved QBO 480 
statistics and reduced parametric uncertainty. Interestingly, we find that the behavior and 481 
breakdown of the polar vortex is not strongly dependent on the parameterization, which may be 482 
partially due to influences from planetary-scale waves. This suggests that it may not be possible 483 
to further calibrate neural network parameters to polar vortex properties, and is comparable to 484 
the difficulties in calibration of extratropical parameters of AD99 (Mansfield & Sheshadri, 485 
2022). 486 

 487 
We only scratch the surface of uncertainty quantification for machine learning 488 

parameterizations. Firstly, we describe only one type of uncertainty: parametric uncertainty, a 489 
type of epistemic (model) uncertainty. There exist a wide range of machine learning approaches 490 
that could be used  for this task, including Bayesian Neural Networks, Monte Carlo dropout 491 
generative models and deep ensembles (Abdar et al., 2021). We used deep ensemble methods for 492 
this task (Lakshminarayanan et al., 2017), due to their simplicity to implement. However, this 493 
approach is computationally costly during both training and evaluation, requiring the use of 494 
ensembles which is not feasible for long climate model integrations. A more complete picture 495 
would be given by also assessing aleatoric (data) uncertainties. We note that our parametric 496 
uncertainty estimates would change given a different training dataset, which makes detangling 497 
the effects of epistemic and aleatoric uncertainty a challenge (Haynes et al., 2023; Hüllermeier & 498 
Waegeman, 2021). Still, learning the relative contributions between model and data uncertainties 499 
would be insightful when designing machine learning parameterizations. Aleatoric uncertainties 500 
could be estimated through the use of Bayesian neural networks or Monte Carlo dropout (Abdar 501 
et al., 2021), by parameterizing gravity wave outputs as a distribution (Guillaumin & Zanna, 502 
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2021; Haynes et al., 2023), or through generative models such as GANs (Gagne II et al., 2020; 503 
Nadiga et al., 2022; Perezhogin et al., 2023).  504 

 505 
Secondly, the machine learning parameterization used here is an emulator of an existing 506 

scheme, allowing us to compare against a ground truth simulation. Future studies may wish to 507 
extend this to train ML models on gravity-wave resolving simulations e.g., with kilometer-scale 508 
resolution models such as IFS (Anantharaj et al., 2022), WRF (Sun et al., 2023) or ICON 509 
(Hohenegger et al., 2023). When using novel training datasets from high resolution simulations, 510 
we do not have online “true” distributions to compare against, which could present challenges 511 
when disentangling the various sources of variability. Furthermore, it also raises the issue of 512 
understanding the role of aleatoric uncertainty, e.g., in the choice of training data and method for 513 
estimating gravity wave drag (Sun et al., 2023). 514 

 515 
Thirdly, MiMA is an intermediate complexity atmospheric circulation model. One may 516 

expect that coupling this atmospheric model to other Earth system components, such as the 517 
ocean, land, and sea-ice, would introduce further uncertainties. Therefore, we might consider the 518 
results presented here as a lower bound on the uncertainties we could expect to see in fully 519 
operational Earth system models that employ ML parameterizations. Extending this study to 520 
higher complexity Earth system models would be significantly more costly, however, this could 521 
be worthwhile towards better informing the design of ML parameterizations, which ultimately 522 
could lead to efficient but accurate hybrid GCMs that combine traditional dynamical solvers with 523 
novel machine learning parameterizations.  524 
  525 
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Abstract 17 

Subgrid-scale processes, such as atmospheric gravity waves, play a pivotal role in shaping the 18 
Earth’s climate but cannot be explicitly resolved in climate models due to limitations on 19 
resolution. Instead, subgrid-scale parameterizations are used to capture their effects.  Recently, 20 
machine learning has emerged as a promising approach to learn parameterizations. In this study, 21 
we explore uncertainties associated with a machine learning parameterization for atmospheric 22 
gravity waves. Focusing on the uncertainties in the training process (parametric uncertainty), we 23 
use an ensemble of neural networks to emulate an existing gravity wave parameterization. We 24 
estimate both offline uncertainties in raw neural network output and online uncertainties in 25 
climate model output, after the neural networks are coupled. We find that online parametric 26 
uncertainty contributes a significant source of uncertainty in climate model output that must be 27 
considered when introducing neural network parameterizations. This uncertainty quantification 28 
provides valuable insights into the reliability and robustness of machine learning-based gravity 29 
wave parameterizations, thus advancing our understanding of their potential applications in 30 
climate modeling. 31 

 32 

Plain Language Summary 33 

Climate models are unable to resolve processes that vary on length and time scales smaller than 34 
the model resolution and timestep. For example, atmospheric gravity waves, which are waves 35 
created when winds encounter disturbances to the flow, such as mountains, convection and 36 
fronts, can have wavelengths smaller than the spacing between grid cells. Climate models use 37 
“parameterizations” to capture the effect of these processes. Machine learning based 38 
parameterizations are becoming popular because they can learn relationships purely from data. 39 
However, we do not have a good understanding of the uncertainties introduced through machine 40 
learning parameterizations. This study estimates uncertainties associated with training a neural 41 
network gravity wave parameterization. We explore uncertainties in the neural network output, 42 
as well as the uncertainties in the climate model output, when the neural network is used for the 43 
gravity wave parameterization.  44 

1 Introduction 45 

1.1. Subgrid-scale parameterizations 46 

Global climate models (GCMs) simulate the entire Earth system by coupling a dynamical 47 
core, which numerically solves the primitive equations for atmospheric flow, with other physical 48 
components called “subgrid-scale parameterizations”. The latter includes dynamical processes 49 
occurring on scales smaller than the grid-scale (generally 𝑂(100	km) for a typical GCM; Chen 50 
et al., 2021), such as convection and short wavelength gravity waves, and non-dynamical 51 
processes, such as radiation, atmospheric chemistry, and cloud and aerosol microphysics. 52 
Subgrid-scale parameterizations make up a large portion of the computational cost associated 53 
with GCM simulations and sometimes make drastic assumptions for the sake of computational 54 
cost, which can introduce additional sources of model uncertainty. This has motivated the 55 
demand for faster and/or higher accuracy schemes that use machine learning (ML)/artificial 56 
intelligence (AI), which hold out the potential for training on large volumes of training data and 57 
performing fast inferences when invoked. 58 
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 59 
ML-based subgrid-scale parameterizations have demonstrated skill across a wide range of 60 

atmospheric processes including convection, clouds, aerosols, radiation and gravity waves (e.g., 61 
Brenowitz et al., 2020; Brenowitz & Bretherton, 2019; Chantry et al., 2021; Chevallier et al., 62 
2000; Espinosa et al., 2022; Gentine et al., 2018; Harder et al., 2022; Krasnopolsky & Fox-63 
Rabinovitz, 2006; O’Gorman & Dwyer, 2018; Perkins et al., 2023; Rasp et al., 2018; Ukkonen, 64 
2022; Yu et al., 2023; Yuval et al., 2021; Yuval & O’Gorman, 2020). However, few studies have 65 
explored the uncertainties associated with these. Stochastic subgrid-scale parameterizations have 66 
been developed by sampling from parametric distributions, learned through neural networks 67 
(Guillaumin & Zanna, 2021) and generative adversarial networks (GANs) (Gagne II et al., 2020; 68 
Nadiga et al., 2022; Perezhogin et al., 2023).  These studies focus on stochastic representations to 69 
improve model accuracy since they may better represent scaling properties (Palmer, 2019). 70 
Including uncertainty estimates can also be beneficial in assessing the trustworthiness of model 71 
predictions (Haynes et al., 2023; McGovern et al., 2022), and has gained some attention in 72 
weather and climate prediction studies (e.g., Delaunay & Christensen, 2022; Gagne et al., 2014, 73 
2017; Gordon & Barnes, 2022; Weyn et al., 2021). Here, we explore uncertainty quantification 74 
in a machine learning subgrid-scale parameterization (a type of model uncertainty; Hawkins & 75 
Sutton, 2009; Palmer, 2019), focusing on gravity wave parameterizations.  76 

 77 
1.2 Atmospheric Gravity Waves  78 

 79 
Atmospheric gravity waves (GWs) are important drivers of middle atmosphere 80 

circulation as they transport momentum upwards and away from their sources in the lower 81 
troposphere (Fritts & Alexander, 2003). They are forced by perturbations to a stable stratified 82 
flow, for instance, orography, convection, and frontogenesis. They propagate primarily in the 83 
vertical and, due to the decreasing density in the upper atmosphere, grow in amplitude until 84 
reaching a critical level, at which point they break and deposit momentum. This provides a 85 
forcing on the mean flow in the middle and upper atmosphere and has a substantial impact on 86 
atmospheric circulation, including in driving the Quasi-Biennial Oscillation (QBO) in the 87 
equatorial stratosphere (Baldwin et al., 2001) and affecting the occurrence of Sudden 88 
Stratospheric Warmings in the polar vortex during winter (Wang & Alexander, 2009), described 89 
further in Section 1.3.  90 
 91 

GW wavelengths can range from 𝒪(1	km)	to 𝒪(1000	km), which presents a challenge 92 
for accurate representation in global climate models (GCMs). While the primitive equations do 93 
capture GW dynamics, typical GCM resolutions are 𝒪(100	km), resulting in a large portion of 94 
the GW spectrum being un- or under-resolved. Parameterizations must be employed to model the 95 
impacts of subgrid-scale GWs on the mean flow and are critical for obtaining realistic 96 
circulation, for example, to induce a spontaneous QBO (Bushell et al., 2020). Some studies find 97 
GW parameterizations to be necessary even in kilometer-scale resolution simulations (Achatz et 98 
al., 2023; Polichtchouk et al., 2023), suggesting that the need for accurate parameterizations will 99 
persist even as modeling centers move towards high resolution GCMs (or “digital twins”; e.g., 100 
Bauer et al., 2021). 101 
 102 

1.2.2 Gravity wave parameterizations 103 
 104 
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GCMs usually make use of both an orographic and a non-orographic GW 105 
parameterization to capture their effects. Machine learning alternatives to GW parameterizations 106 
have recently gained attention in several forms. Chantry et al. (2021), Espinosa et al. (2022) and 107 
Hardiman et al. (2023) present machine learning emulators of existing non-orographic gravity 108 
wave schemes, while Dong et al. (2023)  and Sun et al. (2023) use machine learning to learn 109 
gravity wave momentum fluxes from high resolution simulations.  110 

 111 
This study can be viewed as a continuation of the work by Espinosa et al. (2022), which 112 

develops an emulator of a non-orographic GW parameterization designed primarily for 113 
convectively forced GWs (Alexander & Dunkerton, 1999). Note that this machine learning 114 
parameterization is, at best, as accurate as the scheme it aims to emulate and is not significantly 115 
faster than the original physics-based scheme, which could be due to coupling of the neural 116 
network within a Fortran-based GCM (Cambridge-ICCS, 2023). Rather, this neural network 117 
emulator is used as a first step towards probing uncertainties introduced when replacing a gravity 118 
wave parameterization with an emulator, when we have a “ground truth” parameterization for 119 
reference.  120 
 121 

1.3 Gravity wave effects 122 
 123 
1.3.1 Quasi-Biennial Oscillation 124 
 125 
Gravity waves strongly influence the stratospheric circulation. In the tropical 126 

stratosphere, the dominant mode of variability is the Quasi-Biennial Oscillation (QBO), in which 127 
the equatorial stratospheric zonal winds alternate between easterly and westerly and descend 128 
downwards with time (Gray, 2010). The change in direction is driven by breaking waves across a 129 
range of scales (Baldwin et al., 2001; Lindzen & Holton, 1968), with modeling studies 130 
suggesting that non-orographic gravity wave parameterizations contribute around half of the 131 
forcing required for a simulated QBO (Holt et al., 2020).  132 

 133 
In this study, we measure the performance of gravity wave parameterizations through the 134 
simulated QBO period and amplitudes at 10 hPa, where the QBO amplitude is generally a 135 
maximum (Bushell et al., 2020; Richter et al., 2020). We consider the QBO winds to be defined 136 
by the zonal mean zonal winds between 5°S and 5°N. Following Schenzinger et al., (2017), we 137 
estimate the period of a QBO cycle by the length between transition times from westward and 138 
eastward flow, after applying a 5-month binomial filter to remove high frequency variability. 139 
The amplitude is estimated as the absolute maximum of the QBO winds during each cycle. 140 
 141 

1.3.2 Stratospheric Polar Vortex  142 
 143 

As well as driving the equatorial stratospheric circulation, gravity waves are also 144 
influential at high latitudes. Gravity waves affect the stratospheric polar vortex in both 145 
hemispheres, as they contribute to the breakdown of the polar vortices, influencing the frequency 146 
and properties of Sudden Stratospheric Warmings (SSWs) (Siskind et al., 2007, 2010; Wang & 147 
Alexander, 2009; Whiteway et al., 1997; Wright et al., 2010) and the timing of the Spring final 148 
warming (Gupta et al., 2021). SSWs are defined as a reversal of the zonal mean zonal winds at 149 
60°N at 10 hPa (Butler et al., 2015) which is followed by large and rapid temperature increases 150 
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(>30-40 K) in the polar stratosphere. They occur around 6 times per decade in the Northern 151 
hemisphere, but are not common in the Southern hemisphere. In this study, we consider gravity 152 
wave parameterization effects on the number of Northern hemisphere SSWs per decade and the 153 
timing of the final warming of the Southern hemisphere polar vortex.  154 
 155 
 156 
2. Uncertainty Quantification 157 
 158 

Uncertainties can be categorized into two types: aleatoric uncertainty and epistemic 159 
uncertainty (Hüllermeier & Waegeman, 2021). Aleatoric uncertainty is used to describe the 160 
variability in a system that is due to inherently random effects (Haynes et al., 2023; Hüllermeier 161 
& Waegeman, 2021). It represents the statistical or stochastic nature of a system, such as flipping 162 
a coin or rolling a dice and in ML literature, refers to uncertainty in the data. It includes internal 163 
variability of the system and observational uncertainties in the data. In contrast, epistemic 164 
uncertainty is caused by a lack of knowledge about the best model for a system and refers to 165 
uncertainty in the model. It includes structural uncertainties from the choice of ML architecture, 166 
parametric uncertainties in estimating of model parameters, and out-of-sample uncertainties 167 
which arise when predicting outside of the range of the training data.  168 

In this study, we aim to quantify parametric uncertainty, a type of epistemic uncertainty, 169 
in an ML-based parameterization for gravity waves. We expect this to also capture out-of-sample 170 
uncertainties, i.e., increased uncertainty when generalizing to a situation that lies outside of the 171 
training data distribution. For simplicity, we do not estimate aleatoric uncertainty in the training 172 
data, and we also do not consider structural uncertainty. Future studies may wish to account for 173 
these additional types of uncertainty for a more complete picture. There are several methods that 174 
could be used to estimate parametric uncertainty (Abdar et al., 2021). Here, we use an ensemble 175 
of deep neural networks or “deep ensembles”, which involves training multiple identical neural 176 
networks, each with a different initialization (Lakshminarayanan et al., 2017). Each neural 177 
network converges upon slightly different parameters which are then used to predict an 178 
ensemble, from which statistics can be obtained. This is a relatively simple approach to 179 
implement, although can be costly as it requires repetition during training and evaluation. Deep 180 
ensembles have been used in climate model applications for prediction (Weyn et al., 2021), but 181 
have not been used for subgrid-scale parameterizations. In this context, deep ensembles could be 182 
viewed as a machine learning complement to “perturbed parameter ensembles” (PPE), which 183 
involve perturbing physics-based parameters for uncertainty quantification (e.g., Murphy et al., 184 
2007; Sengupta et al., 2021; Sexton et al., 2021). 185 

 186 
3 Methods 187 
 188 

3.1 Gravity Wave Parameterization Setup 189 
 190 

Alexander & Dunkerton (1999; hereafter AD99) present a simple non-orographic, gravity 191 
wave parameterization that has been used in various GCMs, including GFDL’s Atmospheric 192 
Model 3  (Donner et al., 2011), Isca (Vallis et al., 2018), and MiMA (Jucker & Gerber, 2017). 193 
AD99 estimates gravity wave drag (GWD) in both the zonal and meridional directions for each 194 
level in a column, at each grid-cell and timestep. When coupled into a climate model, gravity 195 
wave drag or forcing acts to accelerate or decelerate winds (i.e., it is a wind tendency). As a 196 
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spectral parameterization, AD99 defines a spectrum of gravity waves at a source level with 197 
momentum flux distributed by phase speeds, assumed to follow a Gaussian distribution centered 198 
at 0 m/s with half-width 35 m/s. This spectrum of gravity waves propagates upwards until the 199 
waves reach the critical level (when the wind speed equals the phase speed of the waves), when 200 
breaking occurs and drag is deposited.   201 

 202 
3.2 Atmospheric Model Setup 203 

 204 
We use an intermediate complexity GCM, a Model of an idealized Moist Atmosphere 205 

(MiMA) (Jucker & Gerber, 2017). It is run at spectral resolution T42, corresponding to 64 206 
latitudes by 128 longitudes (approximately 2.8 degrees or 300 km grid spacing at the equator), 207 
with 40 model levels. The level top is 0.18 hPa, with a strong dissipating sponge layer in the 208 
upper three levels (0.85-0.18 hPa). AD99 is coupled into MiMA with the parameters described 209 
above and with a fixed source level defined to be 315 hPa in the tropics and decreasing in height 210 
with latitude, roughly in line with the tropopause. The model is run with an advection timestep of 211 
10 minutes and a physics timestep, which includes calling the gravity wave parameterization, of 212 
3 hours.  213 

 214 
3.2 Machine Learning Setup 215 

 216 
We use the neural network (NN) gravity wave parameterization developed by Espinosa et 217 

al. (2022). This is trained on MiMA simulations using the AD99 gravity wave parameterization, 218 
described above (Alexander & Dunkerton, 1999). Espinosa et al. (2022) show that the NN 219 
emulator, trained on one year of data, achieves an accurate representation of the AD99 scheme 220 
both offline and online. For the online tests, Espinosa et al. (2022) replace the original AD99 221 
scheme in MiMA with the NN emulator within MiMA and show that these coupled NN 222 
simulations produce a Quasi-Biennial Oscillation consistent with original AD99 simulation. 223 
Furthermore, when tested on an out-of-sample climate under 4xCO2 forcing, the NN simulations 224 
remained stable and reproduced similar changes to the QBO as the AD99 simulations.  225 
 226 
 Espinosa et al. (2022) emulate the zonal and meridional GW drag with two independently 227 
trained but almost identical fully connected NNs. The inputs to the zonal GW drag network are 228 
zonal winds at all levels, 𝑢, temperature at all levels, 𝑇, surface pressure, 𝑝!, and latitude, 𝜆, and 229 
similarly for the meridional GW drag the inputs are meridional winds at all levels, 𝑣, 𝑇, 𝑝!, and 230 
𝜆. MiMA uses 40 pressure levels, giving a total of 82 inputs into the NN. The architecture 231 
consists of four shared hidden layers followed by another four pressure level specific layers (see 232 
Supporting Information of Espinosa et al., 2022). The network outputs the zonal/meridional GW 233 
drag for all 40 pressure levels. Note that the pressure levels closest the surface always predict 234 
zero, where there is no GW drag below the source of the GWs. Although these layers are 235 
redundant, we include them because the AD99 gravity wave source level changes with latitude to 236 
follow the approximate level of the tropopause. Following Espinosa et al. (2022), we normalize 237 
the input and output data to have a zero mean and standard deviation of 1. For the pressure levels 238 
below the source level, where all GW drag values are exactly zero and standard deviation is 239 
undefined, we fix the outputs to zero. Although we follow the same architecture as Espinosa et 240 
al. (2022), there are some software differences in our implementation. Firstly, we opt for 241 
PyTorch (Paszke et al., 2019) rather than Keras and TensorFlow (Abadi et al., 2015; Chollet & 242 
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others, 2015) for the machine learning library. Secondly, Espinosa et al. (2022) use the forpy 243 
software (Rabel, 2019) to call python code in the fortran-based climate model. This resulted in a 244 
slow-down of roughly 2.5x when replacing AD99 with the NN emulator. Instead, we use FTorch 245 
(Cambridge-ICCS, 2023), a software package that directly calls the existing Torch C++ interface 246 
from Fortran resulting in faster inference. We find a 20% slow-down in the NN simulations 247 
relative to the AD99 simulations, although we have not explored if this could be optimized 248 
further. 249 
 250 

In this study, we capture parametric uncertainty of the NN emulator presented in 251 
Espinosa et al. (2022) using deep ensembles (Lakshminarayanan et al., 2017). We repeatedly 252 
train an ensemble of size 30 independent NNs, each with the same architecture and trained on the 253 
same data but with different random seed initializations. The random seed affects the 254 
initialization of the NN parameters and the shuffling order of data during training, leading to 255 
slightly different parameters when converged. Following Espinosa et al. (2022), we train the 256 
NNs with one year of data, selected so that it contains a typical QBO cycle with a period and 257 
amplitude similar to the long-term mean period and amplitude. We use the following one year of 258 
data for the validation dataset, and the following 20 years are used for the test dataset, requiring 259 
22 years of simulation data in total. Figure 1 shows (a) the QBO zonal winds and (b) the QBO 260 
zonal gravity wave drag over this dataset up to year 12. 261 

 262 
Figure 1 The QBO (a) zonal winds and (b) zonal gravity wave drag for the training, validation, 263 
and test dataset. 264 

 265 
 266 
4 Results 267 

 268 
4.1 Offline predictions 269 
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 270 
Figure 2 shows an example of gravity wave drag (GWD) profiles for a single grid cell 271 

close to the equator for a) the zonal component and b) the meridional component, with the black 272 
line indicating the ground truth from the AD99 parameterization and the red line indicating the 273 
mean prediction across all NN ensemble members. The orange shading represents 1 standard 274 
deviation across all ensemble members. Animations showing the evolution of this GWD profile 275 
can be found in the Supporting Materials. The NNs agree well on the gravity wave profiles and 276 
the ground truth falls within the 1 standard deviation range for across most model levels for the 277 
zonal component. The meridional component generally captures the patterns within the profile 278 
but is found to be less accurate, even when considering the uncertainty estimates. 279 
 280 
 281 
 282 

 283 
  284 
 285 
Figure 2 Example profiles of a) zonal and b) meridional gravity wave drag at one grid-cell and 286 
one timestep in the tropics where the black line indicates the ground truth from the AD99 287 
parameterization, the red line indicates the mean prediction across all neural network ensembles 288 
and the orange shading indicates 1 standard deviation across these ensembles.  289 

 To measure the errors, we calculate the continuous ranked probability score (CRPS), a 290 
generalization of mean absolute error that allows for comparison of probability distributions. The 291 
use of CRPS to measure error between a predicted probability distribution and a single ground 292 
truth has long been used for verification of ensemble weather forecasts (Hersbach, 2000), and 293 
has recently been adopted for probabilistic machine learning (Gneiting & Raftery, 2007). Figure 294 
3 shows CRPS for a) zonal and b) meridional gravity wave drag predictions over a range of 295 
latitudes. Note the scale of the axis is reduced by 10x relative to the gravity wave drag 296 
magnitudes in Figure 2. We find lower errors in the lower and mid-stratosphere that increase 297 
with height, where gravity wave drag magnitudes also increase. We see good performance across 298 
all latitudes. 299 
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 300 
Figure 3 Continuous Ranked Probability Score for a) zonal and b) meridional gravity wave drag 301 
for different latitudes over the test dataset.  302 

 303 
4.2 Offline uncertainty estimates  304 

  305 
One common problem in uncertainty quantification of deep learning algorithms is in 306 

ensuring that uncertainty estimates are reasonable, often known as calibration of uncertainty 307 
(Lakshminarayanan et al., 2017). A well-calibrated machine learning model should predict low 308 
uncertainties when errors are small and high uncertainties when errors are large (for instance, 309 
when the data is out-of-sample). Figure 4 shows the 1 standard deviation uncertainty estimates 310 
against the ensemble mean absolute errors estimated for the test dataset, with the colors 311 
representing the density of points. Ideally, these should be correlated and lie approximately along 312 
the 𝑦 = 𝑥 line shown in the dashed line. Points above the 𝑦 = 𝑥 line are underconfident and 313 
points below are overconfident. Although the errors and predicted uncertainties are correlated, 314 
we see that the NNs suffer from overconfidence and frequently underestimate the uncertainty 315 
relative to the error. This is typical behavior for machine learning uncertainty estimates, 316 
including those based on deep ensembles (Abdar et al., 2021), and may be not be surprising 317 
given we only consider one type of uncertainty (parametric uncertainty) and do not consider 318 
structural uncertainty or data uncertainty in these estimates. This overconfidence is systematic 319 
across all levels of the stratosphere and occurs for both zonal and meridional NNs, but especially 320 
for the meridional predictions. 321 
 322 
 323 
 324 
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 325 
Figure 4 Ensemble uncertainty (measured as 1 standard deviation amongst the ensemble 326 
predictions) against ensemble error (measured as the mean absolute error across all ensemble 327 
predictions) for a) zonal and b) meridional gravity wave drag for test dataset between 5°S-5°N 328 
at 10 hPa. Each individual point represents a single prediction at one timestep and grid-cell and 329 
they are shaded according to density. The black dashed line shows the 𝑦 = 𝑥 line. 330 

 331 
4.3 Offline and Online Probability Distributions  332 

 333 
Once coupled online into MiMA, the ensembles begin to diverge from each other even 334 

though they are initialized from the same state. This is partly due to the chaotic nature of the 335 
atmosphere where minute differences in one atmospheric variable can lead to very different 336 
atmospheric states after some time. Even introducing relatively minor differences in the GWD 337 
profiles, such as those in Figure 2, can lead to very different atmospheric states. Here, we aim to 338 
quantify how uncertainties in Figure 2 propagate into the GCM. We examine long-term statistics 339 
in order to separate out the NN parametric uncertainty from the internal variability. 340 

 341 
We consider GWD in the tropics, due to its influence on the QBO. Figure 5 shows 342 

distributions of gravity wave drag in the upper stratosphere at 10 hPa for (a) zonal and (b) 343 
meridional components, where the black line indicates ground truth from the AD99 MiMA 344 
simulations, the blue line indicates the offline NN predicted gravity wave drag and the red line 345 
indicates the online NN predicted GWD. Both offline and online distributions are centered over 346 
the same location as AD99, indicating that the NN does not introduce a bias. In the lower 347 
stratosphere, the distributions are virtually indistinguishable (not shown). However, in the upper 348 
stratosphere at 10 hPa, the NN distributions take a different shape than AD99. This is 349 
particularly notable around the low negative zonal gravity wave drag values, where AD99 350 
predicts an asymmetric gravity wave drag distribution with a positive skew. The NN 351 
distributions are more symmetric between positive and negative values. This may because 352 
machine learning optimizes for RMSE which may overly smooth gravity wave drag profiles, 353 
reducing asymmetry between positive and negative drag. The online NN distributions are 354 
slightly smoother than the offline NN distributions. We suggest that this must be caused by the 355 
interaction between the predicted gravity wave drag and the winds when coupled online. This is 356 
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verified by Figure 6a, which shows distributions of zonal winds near the equator at 10 hPa, 357 
where online distributions tend to be smoother and weaker than the AD99 distributions. 358 

 359 
Figure 5b shows that the online and offline meridional distributions are highly similar, 360 

even though they are smoothed out at low magnitudes. Even though the meridional NN is 361 
generally less accurate (e.g., Figure 2b), the meridional component of gravity wave drag does not 362 
appear to diverge when coupled online. Similarly, Figure 6b shows the distribution of the 363 
meridional winds to be unchanged when the NNs are coupled. This indicates that the meridional 364 
circulation is not highly sensitive to the effects of subgrid-scale gravity wave drag, possibly due 365 
to lower magnitude of the meridional winds.  366 
 367 
 368 

 369 
 370 
 371 
Figure 5 a) zonal and b) meridional gravity wave drag distributions for AD99 simulations 372 
(black), offline NN predictions (blue) and online NN simulations (red) at 10 hPa between 5°S-373 
5°N.  374 

 375 
Figure 6 a) zonal and b) meridional wind distributions for AD99 (black) and online NN 376 
simulations (red) at 10 hPa between 5°S-5°N. 377 
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 378 
4.4 QBO uncertainties 379 

 380 
Ultimately, we are interested in how the NN estimations for GWD influence the 381 

climatology and its variability when coupled into a GCM. We examine statistics of the QBO in 382 
MiMA by calculating the QBO period and amplitude at 10 hPa for each QBO cycle within 400 383 
years of AD99 simulations and the 600 years of NN simulations (from 30 simulations each of 20 384 
year simulations), shown in Figure 7. While the mean period of the QBO across all simulation 385 
years are similar, the NN ensembles show increased variability that can be attributed to the 386 
parametric uncertainty. The NNs also appear to introduce a bias that reduces the QBO amplitude, 387 
consistent with the reduction in QBO zonal winds (Figure 6). These increases in QBO variability 388 
originate from differences between NN ensemble members (and therefore from the learned NN 389 
parameters), each of which tend to maintain fairly consistent QBO periods and amplitudes within 390 
the 20 year simulation.  391 
 392 

 393 
 394 
Figure 7 Violin plots showing distributions of QBO a) period and b) amplitude for the AD99 395 
simulations in grey and for NN simulations in orange. The boxplots also show the median, upper 396 
and lower quartiles and each point represents a single QBO cycle.  397 

 398 
We estimate parametric uncertainty by considering the increase in variability that arises 399 

due to the NNs. Assuming QBO cycles are normally distributed in both AD99 and in the 400 
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ensemble of NNs, the additional variability from the uncertainty in parameters, 𝜎param, can be 401 
calculated as 402 

𝜎param" = 𝜎AD99" + 𝜎NNs"  403 

Equation 1 404 

where 𝜎AD99"  is the variance in the AD99 simulations and 𝜎NNs"  is the total variance across 405 
all NN ensemble members. These results are shown in Table 1. Notably, the parametric 406 
uncertainty is significantly larger than the internal variability in the AD99 simulations, for both 407 
the QBO period and amplitude. It is possible that these uncertainties are underestimates of the 408 
true parametric uncertainty, given the overconfidence noted in offline tests (Figure 4). Still, the 409 
uncertainties in NN parameters are much greater than uncertainties in the parameters in the 410 
physics-based scheme AD99, estimated to be 1.53 months and 2.14 m/s for the period and 411 
amplitude respectively, in Mansfield & Sheshadri (2022) under the same model set-up. This 412 
highlights the importance of uncertainty quantification, regardless of whether the 413 
parameterization is physics-based or machine learning based.  414 

 415 
Table 1 Mean and variability of QBO calculated across MiMA simulations using AD99 vs. the 416 
ensemble of NNs. Means are estimated across all QBO cycles in a 400 year long MiMA 417 
simulation using AD99 and in 600 years of simulations from the 30-member, 20 year long 418 
simulations from the ensemble of NNs. Variability is measured as 1 standard deviation between 419 
all QBO cycles. Parametric uncertainty is calculated assuming QBO cycles are normally 420 
distributed (Equation 1). 421 

  Mean  Variability (measured as 1 standard deviation) 

  AD99  Ensemble of 
NNs   

Internal 
variability in 
AD99 
simulations 

Total 
variability in 
ensemble of 
NNs  

Parametric 
uncertainty  

Period 
(months) 25.32 26.78 2.03 3.82 3.25 

Amplitude 
(m/s) 28.29 25.91 2.17 3.86 3.18 

 422 
 423 
 424 
 425 

4.5 Polar vortex uncertainties 426 
 427 

The QBO is just one phenomenon that is strongly influenced by gravity wave dynamics. 428 
The stratospheric polar vortices in both hemispheres also depend upon gravity wave activity. In 429 
particular, the breakdown of the polar vortices during sudden stratospheric warmings (SSWs) 430 
and in the springtime final warming is driven by both planetary-scale and subgrid-scale gravity 431 
waves, and the variability of these events could also be impacted by changes to the gravity wave 432 
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parameterization. For the northern hemisphere polar vortex, we consider the frequency of SSWs 433 
and for the southern hemisphere, we consider polar vortex lifetime. Figure 8 shows there is no 434 
obvious distinction between the variability of these properties between the AD99 and NN 435 
simulations, thus making the attribution of extratropical changes (and therefore, the calibration of 436 
extratropical parameters in AD99 and other schemes; Mansfield & Sheshadri, 2022) rather 437 
challenging.This may be because the breakdown of the polar vortices is driven by both 438 
planetary-scale waves and subgrid-scale gravity waves, thereby reducing the impact of any 439 
changes to the parameterization. Furthermore, some studies find there may be a compensation 440 
effect between resolved Rossby waves and unresolved gravity waves during SSW events (e.g., 441 
Cohen & Gerber, 2013), while some studies suggest that small scale gravity waves influence 442 
polar vortex recovery after a SSW more strongly than the breakdown itself (Wicker et al., 2023).    443 
 444 

 445 
Figure 8 Histograms showing a) the Northern hemisphere number of SSWs per decade and b) 446 
the Southern hemisphere polar vortex lifetime for AD99 simulations in grey and the NN 447 
simulations in orange. 448 

 449 
 450 
5 Conclusions  451 
 452 

This study uses deep neural network ensembles to quantify parametric uncertainties in a 453 
machine learning parameterization of gravity wave drag. We use the neural network architecture 454 
of Espinosa et al.  (2022) trained on one year of data simulated by the intermediate complexity 455 
GCM, MiMA, which uses AD99 gravity wave parameterization (Alexander & Dunkerton, 1999; 456 
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Jucker & Gerber, 2017). An ensemble of 30 identical neural networks are trained, each 457 
initialized with a different random seed. This ensemble allows us to estimate parametric 458 
uncertainties in neural network weights and biases. First, we assessed uncertainties in raw GWD 459 
output, which we refer to as offline uncertainties. We find fairly consistent results across all 460 
neural networks. Then, we used the FTorch library to couple the neural network into MiMA, 461 
allowing for GCM simulations that use the machine learning parameterization in place of the 462 
traditional physics-based scheme (Cambridge-ICCS, 2023). We assess uncertainties in GCM 463 
output for gravity wave drag and wind, refering to these as online uncertainties. We find 464 
increased online uncertainty, particularly for zonal winds.  465 

 466 
Comparing long-term statistics of the climate within MiMA using the physics-based 467 

scheme AD99 and the ensemble of neural networks, showed that the use of NN emulators can 468 
alter the circulation significantly. We found that the NNs from the ensemble produce a bias in 469 
the QBO towards reduced amplitudes and dramatically increase the variability of the QBO, with 470 
uncertainty from NN parameters increasing the variability between QBO cycles by over 50%. 471 
Uncertainty quantification of parameterizations should therefore not be overlooked when 472 
developing ML-based schemes for future climate models. Our findings reiterate results from 473 
previous studies that find that, even when offline tests indicate “good” NN performance with 474 
relatively low uncertainties, the coupling of machine learning schemes into climate models can 475 
still introduce a significant source of uncertainty (Brenowitz et al., 2020; Lin et al., 2023). 476 
Learning distributions on the model parameters could provide a basis for further parameter 477 
refinement, for example, acting as a Bayesian prior distribution that could be constrained through 478 
online calibration, such as derivative-free optimization Ensemble Kalman methods (Pahlavan et 479 
al., 2023). As with traditional parameterization calibration, this could lead to improved QBO 480 
statistics and reduced parametric uncertainty. Interestingly, we find that the behavior and 481 
breakdown of the polar vortex is not strongly dependent on the parameterization, which may be 482 
partially due to influences from planetary-scale waves. This suggests that it may not be possible 483 
to further calibrate neural network parameters to polar vortex properties, and is comparable to 484 
the difficulties in calibration of extratropical parameters of AD99 (Mansfield & Sheshadri, 485 
2022). 486 

 487 
We only scratch the surface of uncertainty quantification for machine learning 488 

parameterizations. Firstly, we describe only one type of uncertainty: parametric uncertainty, a 489 
type of epistemic (model) uncertainty. There exist a wide range of machine learning approaches 490 
that could be used  for this task, including Bayesian Neural Networks, Monte Carlo dropout 491 
generative models and deep ensembles (Abdar et al., 2021). We used deep ensemble methods for 492 
this task (Lakshminarayanan et al., 2017), due to their simplicity to implement. However, this 493 
approach is computationally costly during both training and evaluation, requiring the use of 494 
ensembles which is not feasible for long climate model integrations. A more complete picture 495 
would be given by also assessing aleatoric (data) uncertainties. We note that our parametric 496 
uncertainty estimates would change given a different training dataset, which makes detangling 497 
the effects of epistemic and aleatoric uncertainty a challenge (Haynes et al., 2023; Hüllermeier & 498 
Waegeman, 2021). Still, learning the relative contributions between model and data uncertainties 499 
would be insightful when designing machine learning parameterizations. Aleatoric uncertainties 500 
could be estimated through the use of Bayesian neural networks or Monte Carlo dropout (Abdar 501 
et al., 2021), by parameterizing gravity wave outputs as a distribution (Guillaumin & Zanna, 502 
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2021; Haynes et al., 2023), or through generative models such as GANs (Gagne II et al., 2020; 503 
Nadiga et al., 2022; Perezhogin et al., 2023).  504 

 505 
Secondly, the machine learning parameterization used here is an emulator of an existing 506 

scheme, allowing us to compare against a ground truth simulation. Future studies may wish to 507 
extend this to train ML models on gravity-wave resolving simulations e.g., with kilometer-scale 508 
resolution models such as IFS (Anantharaj et al., 2022), WRF (Sun et al., 2023) or ICON 509 
(Hohenegger et al., 2023). When using novel training datasets from high resolution simulations, 510 
we do not have online “true” distributions to compare against, which could present challenges 511 
when disentangling the various sources of variability. Furthermore, it also raises the issue of 512 
understanding the role of aleatoric uncertainty, e.g., in the choice of training data and method for 513 
estimating gravity wave drag (Sun et al., 2023). 514 

 515 
Thirdly, MiMA is an intermediate complexity atmospheric circulation model. One may 516 

expect that coupling this atmospheric model to other Earth system components, such as the 517 
ocean, land, and sea-ice, would introduce further uncertainties. Therefore, we might consider the 518 
results presented here as a lower bound on the uncertainties we could expect to see in fully 519 
operational Earth system models that employ ML parameterizations. Extending this study to 520 
higher complexity Earth system models would be significantly more costly, however, this could 521 
be worthwhile towards better informing the design of ML parameterizations, which ultimately 522 
could lead to efficient but accurate hybrid GCMs that combine traditional dynamical solvers with 523 
novel machine learning parameterizations.  524 
  525 
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