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Abstract

A too-weak eddy feedback in models has been proposed to explain the signal-to-noise paradox in seasonal-to-decadal forecasts

of the winter Northern Hemisphere. We show that the “eddy feedback parameter’ (EFP) used in previous studies is sensitive to

sampling and multidecadal variability. When these uncertainties are accounted for, the EFP diagnosed from CMIP6 historical

simulations generally falls within the reanalysis uncertainty. We find the EFP is not independent of the sampled North Atlantic

Oscillation (NAO). Within the same dataset, a sample containing larger NAO variability will show a larger EFP, suggesting that

the link between eddy feedbacks and the signal-to-noise paradox could be due to sampling effects with the EFP. An alternative

measure of eddy feedback, the barotropic energy generation rate, is less sensitive to sampling errors and delineates CMIP6

models that have weak, strong, or unbiased eddy feedbacks, but shows little relation to NAO variability.
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fig3_efp_nao_correlation_cmip6_DJF_1850-2014.png.
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fig2_efp_reanalysis_uncertainties.png.
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fig4_lefp-in-box-cmip6_vs_efp_and_nao.png.
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Key Points:10

• The ‘eddy feedback parameter’ is a highly non-stationary quantity, making reanal-11

ysis and model comparisons problematic on short time periods12

• Sampling uncertainty in the eddy feedback parameter from reanalysis data is com-13

parable to the intermodel spread across models14

• Barotropic energy generation rate is a more stable quantity, but does not explain15

model spread in North Atlantic climate variability16
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Abstract17

Model forecasts on seasonal-to-decadal timescales have recently been shown to have18

significant skill in predicting the North Atlantic Oscillation (NAO, a large-scale pattern19

of variability). However, these forecasts are undermined by signal-to-noise ratios that20

are lower than expected given the skill, meaning the models are underconfident. This21

problem is known as the “signal-to-noise paradox’. Previous work has shown that mod-22

els underestimate the strength of feedback from atmospheric eddies onto the midlatitude23

circulation, but models with a stronger eddy feedback suffer less from the signal-to-noise24

paradox. However, we find that the “eddy feedback parameter’ (EFP) used in these stud-25

ies exhibits large sampling uncertainty that has not previously been taken into account.26

When accounting for this sampling uncertainty, the EFP in models is generally consis-27

tent with reanalysis data. Furthermore, across samples, the EFP correlates with the vari-28

ability of the NAO, meaning they are not independent, which makes the EFP problem-29

atic for understanding the causes of the signal-to-noise paradox. Samples with larger NAO30

variability are diagnosed with a larger EFP, even within the same dataset. An alterna-31

tive measure of eddy feedback is less sensitive to sampling and better identifies models32

which have weak, strong, or unbiased eddy feedbacks.33

Plain Language Summary34

Model forecasts on seasonal-to-decadal timescales have recently been shown to have35

significant skill in predicting the North Atlantic Oscillation (NAO, a large-scale pattern36

of variability). However, these forecasts are undermined by signal-to-noise ratios that37

are lower than expected given the skill, meaning the models are underconfident and larger38

ensembles of simulations are needed to be able to extract the predictable signal. This39

problem is known as the “signal-to-noise paradox”. Previous work has shown that mod-40

els tend to underestimate the strength of feedback from atmospheric eddies onto the mid-41

latitude circulation, but models with a stronger eddy feedback suffer less from the signal-42

to-noise paradox, suggesting that more confident predictions would be possible if eddy43

feedbacks in models were improved. However, we find that the “eddy feedback param-44

eter” (EFP) used in these studies exhibits large sampling uncertainty that has not pre-45

viously been taken into account. When accounting for this sampling uncertainty, the EFP46

in models is generally consistent with reanalysis data, rather than being too weak. Fur-47

thermore, across samples, the EFP correlates with the variability of the NAO, meaning48

they are not independent. The lack of independence between the EFP and the NAO makes49

the EFP problematic for understanding the causes of the signal-to-noise paradox. What50

could have been interpreted as models with a stronger eddy feedback giving stronger NAO51

variability, is actually a result of samples with larger NAO variability being diagnosed52

with a larger EFP, even within the same dataset. We test an alternative measure of eddy53

feedback and find it is much less sensitive to sampling issues than the EFP, finding no54

systematic model bias but better distinguishing which models have weak, strong, or un-55

biased eddy feedbacks.56

1 Introduction57

The winter North Atlantic Oscillation (NAO) has been shown to be predictable on58

seasonal (Scaife et al., 2014) and decadal (Smith et al., 2019) timescales. However, the59

predictable NAO signal in models (variability of the ensemble mean) is weaker than ex-60

pected given the skill, meaning forecasts are underconfident (Scaife & Smith, 2018). This61

underconfidence occurs despite models having a relatively good representation of total62

NAO variability and has been coined the signal-to-noise paradox (Scaife et al., 2014; Scaife63

& Smith, 2018). This underconfidence could be a manifestation of a too-large compo-64

nent of forecast noise or a too-weak predictable signal (Eade et al., 2014; Scaife & Smith,65

2018).66
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Several studies have investigated whether predictable NAO signals are poorly cap-67

tured in models, including the representation of teleconnections from the tropics to the68

North Atlantic (O’Reilly et al., 2019; Williams et al., 2023), the response to Arctic sea69

ice anomalies (Smith et al., 2022), the response to North Atlantic sea surface temper-70

ature (SST) anomalies (Simpson et al., 2018), the response to solar cycle variability (Gray71

et al., 2013; Scaife et al., 2014) and the response to predictable tropical stratospheric vari-72

ability (Andrews et al., 2019).73

There are currently two main hypotheses to explain the NAO signal-to-noise prob-74

lem.75

1. Weak air-sea coupling in the North Atlantic. This has been shown to contribute76

to an underestimation of winter North Atlantic eddy-driven jet variability on mul-77

tidecadal timescales (Simpson et al., 2018; Bracegirdle et al., 2018) and summer78

NAO variability on decadal timescales (Ossó et al., 2020).79

2. Weak eddy feedbacks in midlatitudes. Eddy momentum fluxes can act to reinforce80

the zonal-mean flow and increase the persistence of jets (Lorenz & Hartmann, 2001,81

2003) and the NAO is known to be driven by momentum forcing from synoptic82

and stationary eddies (Luo et al., 2007). Smith et al. (2022) introduced the “eddy83

feedback parameter” (EFP) to quantify the relationship between eddy forcing and84

the midlatitude jet (see Section 2.2.1). Smith et al. (2022) showed the EFP in present85

day climate correlated with the amplitude of the midlatitude zonal wind response86

to projected Arctic sea ice loss across a set of climate models. They showed that87

models underestimated the EFP compared to reanalyses and used an emergent88

constraint approach to derive a constrained spread of the modeled jet shift. Hardiman89

et al. (2022) found that models with a weaker EFP (further from reanalysis) gen-90

erally have less skill and worse signal-to-noise errors for predicting the Northern91

hemisphere winter circulation.92

Most of the work on the NAO signal-to-noise problem has focused on seasonal-to-93

decadal timescales; it remains an open question as to whether similar issues manifest in94

multidecadal projections of the NAO including externally forced trends (McKenna & May-95

cock, 2021). The initial motivation of this work was to test the eddy feedback hypoth-96

esis in climate simulations by examining whether the EFP is related to multidecadal NAO97

variability. However, we found that our results were strongly affected by sampling issues98

with the EFP not accounted for in past studies. In this study, we address the sampling99

uncertainty in the EFP within reanalysis and climate model datasets, as well as the in-100

herent relationship between the EFP and NAO characteristics within a sample. The EFP101

is based on zonal-mean data and does not separate the timescales of eddies and the mean102

flow. Therefore, we also analyze a spatially-resolved diagnostic of eddy feedback, the barotropic103

energy generation rate (Mak & Cai, 1989), which allows us to investigate the relation-104

ship between North-Atlantic eddy feedback and NAO variability using time-filtered data.105

This study is laid out as follows: Section 2 describes the datasets used in the study106

and methods for quantifying eddy-mean flow feedback, Section 3 presents the results and107

Section 4 presents a summary of the key findings.108

2 Methods109

2.1 Datasets110

Climate model data is taken from phase 6 of the Coupled Model Intercomparison111

Project (CMIP6) (Eyring et al., 2016). We use the historical experiment (1850-2014) from112

12 CMIP6 models that provide the required variables (monthly-mean mean-sea-level pres-113

sure, and daily-mean zonal (u) and meridional (v) wind on pressure levels) for at least114

10 ensemble members (see supplement Table S6). We select models that provide large115
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ensembles in order to quantify sampling effects and the role of internal variability in cal-116

culating the EFP and its relationship with the NAO. Diagnostics are calculated from data117

regridded to the coarsest resolution climate model (CanESM5, roughly 2.8°). All diag-118

nostics are for Northern hemisphere winter (DJF) with the year labeled by the JF (e.g.119

2009/10 is labeled 2010).120

We use the ERA5 (Hersbach et al., 2020) and ERA20C (Poli et al., 2016) reanal-121

ysis datasets. The back extension of ERA5 covers the period 1940 to 1978 and the stan-122

dard ERA5 covers 1979 to present. ERA20C covers 1900-2010 and only assimilates sur-123

face pressure and surface marine wind observations. For ERA5 and ERA20C winds, we124

aggregate six hourly data (00, 06, 12, 18) to daily means to provide an equivalent com-125

parison to the CMIP6 data. We also use monthly-mean mean-sea-level pressure data from126

20CRv3 (Slivinski et al., 2019), a longer timescale reanalysis that only assimilates sur-127

face pressure, and HadSLP (Allan & Ansell, 2006), a gridded dataset produced from sur-128

face pressure observations, to calculate NAO timeseries in the supplement.129

2.2 Diagnostics130

2.2.1 Eddy feedback parameter131

Smith et al. (2022) defined the eddy feedback parameter (EFP) as the squared cor-132

relation coefficient (r2) between the DJF-mean zonal-mean zonal wind (ū) and the DJF-133

mean of the horizontal component of the Eliassen-Palm flux (EP-flux) divergence, cal-134

culated as a function of latitude and pressure, and then averaged over 25-72◦N, and 200-135

600 hPa. Hardiman et al. (2022) used a similar formulation, but calculated the EFP at136

a single level (500 hPa) and only included the quasi-geostropic component of EP-flux di-137

vergence, expressed as a zonal acceleration: eq. 1 from Hardiman et al. (2022),138

∇.FH

ρacos(ϕ)
= − 1

acos2ϕ

d(u′v′cos2ϕ)

dϕ
, (1)

where ρ is density, ϕ is latitude, a is Earth’s radius. Overbars represent a zonal mean,139

and primes represent local deviations from the zonal mean. Here, we calculate the EFP140

following Hardiman et al. (2022). The differences in methodology for calculating the EFP141

can give a different absolute value, but give similar results for the uncertainty (see sup-142

plement Fig. S1).143

2.2.2 Barotropic energy generation rate144

The barotropic energy generation rate (G) diagnoses the exchange of energy be-145

tween eddies and the large-scale flow based on an energy equation for the ageostrophic146

perturbation flow in quasi-geostrophic dynamics (Mak & Cai, 1989). If (U, V ) describes147

the large-scale geostrophic wind and (u′, v′) the eddies, then the barotropic energy gen-148

eration rate is given by149

G = E ·D, (2)

where150

E = cos(ϕ)

(
1

2
(v′2 − u′2),−u′v′

)
, (3)

is the E-vector, which describes the elongation of the eddy, and151

D =
1

acos(ϕ)

(
∂U

∂λ
− ∂V cos(ϕ)

∂ϕ
,
∂V

∂λ
+

∂Ucos(ϕ)

∂ϕ

)
, (4)

is the deformation of the large-scale flow (Mak & Cai, 1989), where λ is latitude. Note152

that we use the spherical coordinate version of these equations from Fukotomi and Ya-153

sunari (2002). We diagnose G using daily-mean winds at 250 hPa that are separated into154

a high frequency (2-6 day) eddy component and a slowly varying (> 10 day) large-scale155

component using Lanczos filters with a window of 61 days.156
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In comparison to the EFP, G is spatially-resolved, giving a measure of the local en-157

ergy exchange. To provide a comparison with the EFP and relate G to NAO variabil-158

ity, we average G over a box in the North Atlantic (60◦–25◦W, 30◦–45◦N) giving GNA.159

This region is where the models and reanalysis show climatological negative values (see160

supplement Fig. S2), indicating exchange of energy from the eddies to the large scale flow.161

2.2.3 North Atlantic Oscillation index162

The NAO index is calculated as the difference in DJF area-averaged mean-sea-level163

pressure between a southern box (90◦W–60◦E, 20◦N–55◦N) and a northern box (90◦W–60◦E,164

55◦N–90◦N) following Stephenson et al. (2006). From the NAO timeseries we calculate165

variance. Multidecadal NAO variance is also calculated by first applying a 20-year run-166

ning mean.167

The NAO has not been detrended, which could lead to a overestimation of NAO168

variance in the CMIP6 models compared to ERA5 because we are retaining longer-timescale169

variability. However, multidecadal variability is only a small part of the total NAO vari-170

ance (see section 3.3), so the difference in NAO variance due to including these longer171

timescales is small.172

2.3 Statistics173

To estimate sampling uncertainty, we recalculate the EFP in ERA5 by resampling174

winters with replacement (bootstrapping) using the same sample size as the input dataset175

(e.g. for 1940-2022, each sample is 82 years), repeating 1000 times. We also recalculate176

the EFP, NAO variance, and GNA in ERA5 in the same way, but with a sample size match-177

ing the historical simulation length (164 years) to compare with the CMIP6 simulations.178

Each diagnostic is calculated using the same sample years, allowing us to assess relation-179

ships between these diagnostics due to sampling. Relationships between variables are es-180

timated using linear least squares regression.181

3 Results182

3.1 Uncertainties in reanalysis derived eddy feedback parameter183

In this section, we show how the EFP is affected by sampling uncertainty and mul-184

tidecadal variability. Figure 1 shows the calculation of the EFP in ERA5 broken into con-185

stituent steps. Figure 1a and 1b show the DJF-mean input variables as a function of lat-186

itude and year: ū and the acceleration of ū diagnosed from the quasigeostropic compo-187

nent of the horizontal EP-flux divergence. The EFP is calculated by calculating the cor-188

relation coefficient (r) between these two variables at each latitude and then averaging189

r2 across latitudes. r is defined as the covariance of two variables normalized by their190

standard deviations. To understand how different years and latitudes contribute to the191

EFP, Fig. 1c shows the anomalies of the input variables, relative to the time mean at192

each latitude, multiplied together, so the time mean is the covariance as a function of193

latitude. Figure 1d shows the same, but normalized by the standard deviations of the194

input variables at each latitude, so the time mean is r as a function of latitude.195

Figure 1 reveals two potential issues with the EFP:196

1. Calculating r at each latitude and then taking a spatial average overemphasizes197

latitudes with weaker variability. This can be seen by comparing Fig. 1c and 1d:198

anomalies are weaker closer to the equator for the covariance but have a larger con-199

tribution to r because the standard deviation at those latitudes is smaller.200

2. A single outlier season can make a large contribution to the EFP (e.g. 2009/2010201

in Fig. 1d). This undermines comparisons of the EFP in reanalysis data and cli-202
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Figure 1. Calculation of the EFP using ERA5. Variables used to calculate the EFP as a

DJF mean, (a) zonal-mean zonal wind and (b) the acceleration of the zonal-mean zonal wind

diagnosed from the quasi-geostrophic component of the horizontal EP-flux divergence. (c) The

product of anomalies of (a) and (b), where the anomalies are calculated against the time mean

(mean across rows) by latitude. (d) shows the same as (c), but normalized by the standard de-

viations, at each latitude, of (a) and (b). The time mean of (c) and (d) give the covariance and

correlation as a function of latitude, respectively.

mate models when they do not span a common period and do not sample the same203

internal variability. For example, if a model with inherently weak eddy feedback204

happens to simulate a season like 2009/2010, it may appear to have a larger EFP205

than a model with a strong eddy feedback that by chance does not simulate a sea-206

son like 2009/2010.207

Building on point 2, to quantify the sampling uncertainty we recalculate the EFP208

by sampling years from ERA5 with replacement (see Section 2.3). Figure 2a shows re-209

sults with the resampling period varied to show the dependence of “observed” EFP on210

time period: the full ERA5 period (1940-2022); the pre-satellite backward extension pe-211

riod only (1940-1979); and the satellite period only (1979-2022). In all cases, the sam-212

pling uncertainty in the EFP (≈ 0.2-0.3) is comparable to the median value based on213

the 95% confidence interval. This sampling effect represents a substantial uncertainty214

that has not been acknowledged in previous studies (e.g., Smith et al. (2022); Hardiman215

et al. (2022); Screen et al. (2022)).216

Figure 2a also shows the EFP is dependent on time period: the satellite period has217

a larger EFP than the pre-satellite back extension period, with no overlap of the 95%218

intervals. To better understand the dependence of EFP on time period, we calculate the219

EFP using a rolling 23-year window (consistent with the 1993-2016 period used in Hardiman220

et al. (2022)). ERA5 shows a systematic increasing trend in the 23-year EFP (Fig. 2b)).221

A long-term trend in the EFP could be spurious if the reanalysis is poorly constrained222

by observations and behaves more like the underlying atmospheric model further back223
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Figure 2. Uncertainties in the EFP identified from reanalysis data. (a) The EFP calculated

by resampling ERA5 over different periods. Orange lines show the median, crosses show the EFP

from the original set of years, boxes show the 25-75% range, whiskers show the 2.5-97.5% range,

and circles show points outside this range. (b) The EFP calculated over 23-year rolling windows

and 23-year running mean NAO for ERA5 and ERA20C data. The x-axis shows the middle year

in each sample. The vertical line is for 1993-2016, the years used in Hardiman et al. (2022).

in time. Figure. 2b also shows the EFP from ERA20C, which extends back to 1900. Longer-224

term reanalyses that only assimilate a limited set of surface observations, such as ERA20C,225

have been shown to produce unrealistic trends as the density of the observation network226

evolves with time (Krueger et al., 2013; Oliver, 2016; Befort et al., 2016; Bloomfield et227

al., 2018). However, ERA20C actually shows a larger EFP in the 1930s/1940s when there228

is less observation data and reproduces the increase in EFP over the late 20th century.229

This shows the apparent EFP trend is unlikely to be due to an intrinsic bias of weak eddy230

feedback in the model that produces ERA5 and instead is related to multidecadal vari-231

ability in the input parameters.232

Interestingly, the increase in EFP over the late 20th century closely mirrors the pos-233

itive trend in the NAO over this period, though this common temporal behavior does234

not appear in the earlier period covered only by ERA20C. It makes sense that the NAO235

and EFP are related. Eddy-driven jet latitude is related to the NAO (Woollings et al.,236

2010) and NAO predictability (Parker et al., 2019; Strommen, 2020), and zonal-mean237

zonal wind is one of the inputs to the EFP calculation. The EFP calculation also em-238

phasizes large seasonal deviations in jet latitude. For example, winter 2009/10 had a strongly239

southward shifted jet and negative NAO (Santos et al., 2013). Figure 1d showed how the240

shift in jet in 2009/10 is emphasized in the correlation calculation and Fig. 2b shows a241

step increase of almost 0.1 when 2009/10 is included in the rolling window.242

The time period used by Hardiman et al. (2022) (1993-2016) is very close to the243

maximum EFP over the entire 20th century due to the inclusion of 2009/10 and the co-244

incidence with a “high phase” of multidecadal variability. The results in this section show245
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that previous studies have likely overestimated the long-term mean EFP in reanalysis246

data.247

3.2 Comparison of climate models and reanalysis eddy feedback param-248

eter249

We next address the comparison of EFP in climate models with reanalysis data in250

the context of the sampling uncertainties described in the previous section. Figure 3 shows251

the range of EFP calculated from the CMIP6 ensembles (a, c) and from repeatedly sam-252

pling 164 years from ERA5 with replacement (b), as well as the relationship with NAO253

variance (discussed in the following section). In contrast to previous results, we do not254

find that the EFP is weaker in models than in reanalysis. The EFP diagnosed from CMIP6255

models is generally within the uncertainty from ERA5, with some models potentially hav-256

ing too large EFP (CanESM5, CESM2, CMCC-CM2-SR5). If we only considered the257

EFP and its associated uncertainty from the satellite period of ERA5 (Fig. 2a), then we258

would conclude that some CMIP6 models underestimate the EFP. This highlights the259

importance of considering longer-timescale variability, as well as sampling uncertainty,260

when quantifying the EFP and the limitation of using the EFP as a diagnostic for model261

performance.262

3.3 Relationship between the eddy feedback parameter and the North263

Atlantic oscillation264

Section 3.1 highlighted a relationship between long-term variations in the EFP and265

the NAO. We next show how this relationship can lead to correlations that should be266

interpreted as a sample with larger NAO variability giving a larger EFP, rather than stronger267

eddy feedbacks leading to stronger NAO variability. Most CMIP6 models capture NAO268

variability well (Fig. 3a) compared to ERA5 (Fig. 3b). Only MIROC-ES2L is system-269

atically too weak. Some models are potentially too weak (MIROC6, INM-CM5-0) or too270

strong (IPSL-CM6A-LR, CESM2), but produce ensemble members within the range of271

ERA5 uncertainty.272

The lines in Fig. 3 show linear regressions calculated from the data in each panel273

in different ways:274

1. For “ERA5” (gray line in Fig. 3b) the regression is across the bootstrap samples.275

Because EFP and NAO variance are calculated using the same sets of sample years,276

this tells us how the EFP relates to NAO variability purely due to sampling.277

2. “Mean” is the regression across the ensemble mean points of all models. This re-278

lates to model biases and is what would typically be used for emergent constraints279

(e.g. Smith et al. (2022))280

3. “Weighted” is a weighted average regression across all models. For each model,281

a regression is calculated across ensemble members. The average slope and inter-282

cept are then calculated from these individual model regressions, weighted by the283

number of ensemble members for each model. This indicates whether a sampling284

relationship between EFP and NAO variability is present, on average, in individ-285

ual models.286

4. “All” is the regression across all ensemble members of all models with each sam-287

ple treated independently. This gives a mix between “Mean” and “Weighted”.288

The full set of results from the linear regressions are given in the supplement (Tables S1-289

S5). Note that many of the individual model regressions in 3) are not significant due to290

low sample sizes and the p-value test is less meaningful for the “ERA5” and “All” re-291

gressions because the points are not independent. However, the analysis is intended to292
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Figure 3. The relationship between the EFP and NAO variance for (a, c) CMIP6 historical

simulations (1850-2014) and (b) ERA5 (full period, 1940-2022). (a) The EFP and NAO variance

for CMIP6 ensemble members and mean for each model ensemble (outlined symbols). (b) EFP

and NAO variance calculated using 164 years sampled from ERA5 with replacement (repeated

1000 times). The outlined dot shows the EFP and NAO variance for the full ERA5 data. (c) The

same as (a), but for NAO variance calculated after applying a 20-year running-mean filter. The

lines on each subfigure show linear regressions calculated from each set of data in the subfigures

(see text for details). The lines from (a) are duplicated in (b) for comparison.
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show how sampling issues with the EFP can produce spurious relationships with the NAO293

rather than identifying significant relationships.294

All three regressions in Figure 3a show a similar relationship between EFP and NAO295

variance and are well reproduced by sampling ERA5 (r=0.34-0.55). This means that the296

across model relationship between the EFP and NAO variance (“Mean”), which could297

have been interpreted as physically related model biases, is most likely an extension of298

the sampling relationship found in ERA5: a model with stronger NAO variability is di-299

agnosed with a larger EFP.300

Although total NAO variability is relatively well represented for models exhibit-301

ing the signal-to-noise paradox (Scaife & Smith, 2018), weak multidecadal NAO vari-302

ability Bracegirdle (2022); Bonnet et al. (2024) could be evidence of signal-to-noise is-303

sues in climate models. However, similar relationships are found when multidecadal vari-304

ability is isolated (Fig. 3c), suggesting this is still only identifying sampling relationships.305

We haven’t estimated the reanalysis relationship between the EFP and multidecadal NAO306

variance because ERA5 is too short for sampling and longer-timescale reanalyses give307

less consistent values of NAO further back in time (see supplement Figs. S3 and S4).308

3.4 Alternative measure of eddy feedback309

We next show that an alternative measure of eddy feedback targeted at the North310

Atlantic (GNA, see section 2.2.2) suffers much less from the sampling issues identified311

for the EFP. Figure 4 shows GNA for ERA5 and the CMIP6 ensembles and its relation-312

ship to NAO variance and the EFP. GNA is better able to identify models that are weak313

(CanESM5, CESM2, IPSL-CM6A-LR, CMCC-CM2-SR5, INM-CM5-0, MIROC6, MIROC-314

ES2L), strong (MPI-ESM1-2-LR/HR), or unbiased (UKESM1-0-LL, CNRM-CM6-1, CNRM-315

ESM2-1) compared to ERA5 due to having much smaller sampling uncertainty.316

The sampling relationship between GNA and NAO variability in ERA5 is much weaker317

(r=0.07) in contrast to that of the EFP and NAO variability (r=0.55). Furthermore, the318

relationship differs from the (nonsignificant) across model relationship. Similar results319

are found for multidecadal NAO variability. Interestingly GNA shows no sampling re-320

lationship to the EFP and very little relationship across the models used here (Fig 4d,e).321

This suggests that either the EFP is capturing different aspects of eddy feedback, due322

to GNA being more localized, or that the EFP is a poor measure of eddy feedback due323

to the sampling issues shown in earlier.324

4 Conclusions325

Previous studies have suggested that seasonal prediction systems and free running326

climate models systematically underestimate Northern hemisphere midlatitude eddy feed-327

backs (Smith et al., 2022; Screen et al., 2022), and that this bias may explain the signal-328

to-noise paradox (Scaife et al., 2019; Hardiman et al., 2022). However, we find that the329

eddy feedback parameter (EFP) used by Smith et al. (2022), Screen et al. (2022), and330

Hardiman et al. (2022) exhibits large sampling uncertainty which can impede model-reanalysis331

comparisons and makes determining physical mechanisms difficult.332

We have shown that the EFP is sensitive to individual outlier seasons and also ex-333

hibits strong multidecadal variability. This makes the EFP problematic to interpret as334

an intrinsic property of a model or the real world because very large sample sizes are needed335

to produce an estimate with sufficiently small uncertainties. Previous published estimates336

of the EFP in modern reanalysis data are close to the maximum value derived within337

the 1940-2022 period because of the pronounced effect of an outlier season (2009/10) and338

the phasing of multidecadal variability in the EFP. When sampling uncertainty is taken339

into account, the EFP in CMIP6 historical simulations is largely consistent with ERA5.340
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Figure 4. The same as Fig. 3, but with North-Atlantic DJF-mean barotropic energy gener-
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y-axis for CMIP6 models and ERA5, respectively.
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Previous results using the EFP as an emergent constraint (Smith et al., 2022; Screen et341

al., 2022) should have much larger error bars to account for these sampling uncertain-342

ties. These uncertainties may be the reason that Screen et al. (2022) found that the re-343

analysis EFP in the Southern Hemisphere is roughly in the middle of the model values,344

while the Northern Hemisphere EFP appeared too weak in models.345

We have also shown that the sample EFP correlates with sample NAO variability346

and this can lead to spurious across-model correlations between the EFP and NAO vari-347

ability. The across model correlation could have been interpreted as a stronger model348

eddy feedback causing stronger NAO variability, but is actually due to a sample with349

stronger NAO variability being diagnosed with a stronger EFP because the EFP and NAO350

are not independent. The relation between the EFP and NAO makes sense because both351

variables have an underlying relationship with jet latitude. For example, winter 2009/10352

had an anomalously southward shifted jet and negative NAO (Santos et al., 2013) and353

makes the largest single contribution to the EFP in ERA5. It could be argued that mod-354

els with stronger eddy feedbacks would produce more years like 2009/10; however, it is355

clear that we need a much larger sample of data than is available for reanalyses to de-356

termine if this is the case.357

We have investigated another measure of eddy feedback, the barotropic energy gen-358

eration rate G, which more cleanly separates eddy forcing and mean flow terms and can359

be calculated locally for the North Atlantic region (GNA). GNA shows much smaller sam-360

pling uncertainty than the EFP and a much weaker sampling relationship with NAO vari-361

ability, suggesting that it is better at describing intrinsic properties of the models and362

reanalysis. We find no systematic bias in GNA, but GNA does better distinguish which363

models are too weak, too strong or unbiased.364

In summary, our results raise questions about previous interpretations that weak365

eddy feedbacks can explain the signal-to-noise paradox. Firstly, we find that models do366

not systematically underestimate eddy feedbacks when accounting for sampling uncer-367

tainty in the EFP or using an alternative, better constrained, diagnostic (GNA). Secondly,368

the diagnosed EFP from a sample is dependent on the sample NAO variability, which369

makes it difficult to interpret differences associated with the EFP as being caused by eddy370

feedbacks rather than some confounding variable. Therefore previous results should be371

re-examined with a diagnostic of eddy feedback that is more robust to climate variabil-372

ity and where clearer causality can be determined, such as the barotropic energy gen-373

eration rate or a more in depth lead-lag approach that formally isolates the feedback of374

eddies on the mean flow (e.g., Lorenz and Hartmann (2001)).375

Data availability376

The ERA5 reanalysis data is available from the Copernicus Climate Data Store.377

ERA20C was accessed from the NCAR research data archive. The CMIP6 data used in378

the study was accessed from the Earth System Grid Federation. The diagnostics calcu-379

lated for each CMIP6 simulation are given in the supplement (Table S6). The code used380

for calculating the diagnostics is available at github.com/leosaffin/constrain and381

the code for further processing and making the figures is available at github.com/leosaffin/382

eddy feedback.383
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Ossó, A., Sutton, R., Shaffrey, L., & Dong, B. (2020). Development, Amplification,496

and Decay of Atlantic/European Summer Weather Patterns Linked to Spring497

–14–



manuscript submitted to Geophysical Research Letters

North Atlantic Sea Surface Temperatures. J. Clim., 33 (14), 5939–5951. Re-498

trieved from https://journals.ametsoc.org/view/journals/clim/33/14/499

JCLI-D-19-0613.1.xml doi: https://doi.org/10.1175/JCLI-D-19-0613.1500

Parker, T., Woollings, T., Weisheimer, A., O’Reilly, C., Baker, L., & Shaffrey, L.501

(2019, aug). Seasonal Predictability of the Winter North Atlantic Oscilla-502

tion From a Jet Stream Perspective. Geophys. Res. Lett., 46 (16), 10159–503

10167. Retrieved from https://doi.org/10.1029/2019GL084402 doi:504

https://doi.org/10.1029/2019GL084402505

Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart, F., . . .506

Fisher, M. (2016). ERA-20C: An Atmospheric Reanalysis of the Twentieth507

Century. Journal of Climate, 29 (11), 4083–4097. Retrieved from https://508

journals.ametsoc.org/view/journals/clim/29/11/jcli-d-15-0556.1.xml509

doi: https://doi.org/10.1175/JCLI-D-15-0556.1510

Santos, J. A., Woollings, T., & Pinto, J. G. (2013). Are the Winters 2010 and511

2012 Archetypes Exhibiting Extreme Opposite Behavior of the North At-512

lantic Jet Stream? Mon. Weather Rev., 141 (10), 3626–3640. Retrieved513

from https://journals.ametsoc.org/view/journals/mwre/141/10/514

mwr-d-13-00024.1.xml doi: https://doi.org/10.1175/MWR-D-13-00024.1515

Scaife, A. A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R. T., Dunstone,516

N., . . . Williams, A. (2014). Skillful long-range prediction of Euro-517

pean and North American winters. Geophys. Res. Lett., 41 (7), 2514–518

2519. Retrieved from https://doi.org/10.1002/2014GL059637 doi:519

https://doi.org/10.1002/2014GL059637520

Scaife, A. A., Camp, J., Comer, R., Davis, P., Dunstone, N., Gordon, M., . . . Vi-521

dale, P. L. (2019). Does increased atmospheric resolution improve seasonal522

climate predictions? Atmospheric Science Letters, 20 (8), e922. Retrieved from523

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/asl.922 doi:524

https://doi.org/10.1002/asl.922525

Scaife, A. A., & Smith, D. (2018). A signal-to-noise paradox in climate science.526

npj Clim. Atmos. Sci., 1 (1), 28. Retrieved from https://doi.org/10.1038/527

s41612-018-0038-4 doi: 10.1038/s41612-018-0038-4528

Screen, J. A., Eade, R., Smith, D. M., Thomson, S., & Yu, H. (2022, dec). Net529

Equatorward Shift of the Jet Streams When the Contribution From Sea-Ice530

Loss Is Constrained by Observed Eddy Feedback. Geophys. Res. Lett., 49 (23),531

e2022GL100523. Retrieved from https://doi.org/10.1029/2022GL100523532

doi: https://doi.org/10.1029/2022GL100523533

Simpson, I. R., Deser, C., McKinnon, K. A., & Barnes, E. A. (2018). Modeled and534

Observed Multidecadal Variability in the North Atlantic Jet Stream and Its535

Connection to Sea Surface Temperatures. Journal of Climate, 31 (20), 8313–536

8338. Retrieved from https://journals.ametsoc.org/view/journals/clim/537

31/20/jcli-d-18-0168.1.xml doi: 10.1175/JCLI-D-18-0168.1538

Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Giese, B. S.,539
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using different pressure levels to calculate the EFP (Fig. S1), maps of barotropic energy

February 16, 2024, 3:10pm



X - 2 :

generation rate for each model and ERA5 (Fig. S2), various estimates of NAO variance

from different reanalysis datasets (Figs. S3 and S4), the caption for Table S1 uploaded

separately, and the full results of the linear regressions from Figs. 3 and 4 (Tables S2-S6).
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Table S1. Table S6 shows the CMIP6 historical simulations used in this study listed

by model and variant, as well as the calculated EFP, NAO variance, multidecadal NAO

variance, and GNA for each simulation.
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Figure S1. Uncertainties in the EFP calculation in ERA5 for (a) sampling and (b) multidecadal

variability, calculated in the same way as Fig. 2 but comparing averaging r2 at 500 hPa (following

Hardiman et al. (2022) and averaging r2 from 600-200 hPa (following Smith et al. (2022)), here

using data at every 50 hPa. The 600-200 hPa average generally shows larger EFP but similar

uncertainty.
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Figure S2. The DJF mean barotropic energy generation rate (G) for (a) ERA5 (1940-2022),

(b) CMIP6 multi-model mean for historical simulations (1850-2014) and (c)-(o) CMIP6 ensemble

mean for each model for historical simulations. The black box in each figure covers 60◦–25◦W,

30◦–45◦N and is the averaging region used in the main paper to reduce G to a single number,

GNA. The box is designed to capture the regional minimum while excluding positive regions to

avoid cancellation.
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Figure S3. Timeseries of the NAO (a, b) and 20-year running mean NAO (c, d) calculated

using different reanalysis datasets, and the influence of detrending these timeseries (c, d). The

numbers in each panel show the NAO variance for the timeseries in that panel for each dataset.
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Figure S4. The same as Fig. S3, but only using data in the period that is common to all

reanalyses (1900-2010).
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Table S2. Linear regression results for EFP vs. total NAO variance.

Slope Intercept Correlation p-value
ERA5 28.83 10.49 0.55 6.7e-79
CESM2 7.22 20.10 0.05 0.89
CMCC-CM2-SR5 0.75 16.52 0.015 0.97
CNRM-CM6-1 55.62 8.09 0.5 0.0052
CNRM-ESM2-1 30.97 12.56 0.51 0.13
CanESM5 36.69 4.83 0.68 7.8e-06
INM-CM5-0 15.27 9.24 0.57 0.082
IPSL-CM6A-LR 74.84 4.67 0.63 7.7e-05
MIROC-ES2L 5.57 6.18 0.16 0.4
MIROC6 31.62 4.55 0.71 0.022
MPI-ESM1-2-HR -53.21 29.09 -0.49 0.15
MPI-ESM1-2-LR 37.47 8.90 0.42 0.026
UKESM1-0-LL 26.34 7.35 0.56 0.019
Mean 30.10 8.86 0.37 0.24
All 30.53 8.92 0.34 8.1e-08
Weighted 31.68 8.81 0.42 -

Table S3. Linear regression results for EFP vs. mulitdecadal NAO variance.

Slope Intercept Correlation p-value
CESM2 -2.44 1.52 -0.14 0.7
CMCC-CM2-SR5 6.50 -1.50 0.42 0.19
CNRM-CM6-1 -2.33 1.23 -0.12 0.54
CNRM-ESM2-1 2.91 0.17 0.42 0.23
CanESM5 1.68 0.24 0.19 0.28
INM-CM5-0 1.62 0.19 0.17 0.64
IPSL-CM6A-LR 2.24 0.27 0.18 0.33
MIROC-ES2L 0.63 0.20 0.12 0.52
MIROC6 -0.46 0.51 -0.074 0.84
MPI-ESM1-2-HR 0.63 0.49 0.02 0.96
MPI-ESM1-2-LR 6.24 -0.62 0.36 0.057
UKESM1-0-LL 0.41 0.52 0.039 0.88
Mean 1.21 0.37 0.39 0.21
All 1.37 0.35 0.22 0.0006
Weighted 1.53 0.27 0.14 -
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Table S4. Linear regression results for GNA vs. total NAO variance.

Slope Intercept Correlation p-value
ERA5 8461.79 22.42 0.073 0.022
CESM2 131289.14 106.14 0.38 0.28
CMCC-CM2-SR5 8617.46 20.90 0.14 0.68
CNRM-CM6-1 -14521.78 7.82 -0.14 0.47
CNRM-ESM2-1 20153.73 31.97 0.23 0.52
CanESM5 -36974.19 -5.57 -0.24 0.16
INM-CM5-0 40523.43 26.54 0.65 0.04
IPSL-CM6A-LR 43468.05 45.39 0.23 0.2
MIROC-ES2L -4334.54 4.68 -0.07 0.71
MIROC6 -23431.50 -2.09 -0.31 0.38
MPI-ESM1-2-HR -16241.35 3.40 -0.3 0.41
MPI-ESM1-2-LR 29384.11 40.07 0.39 0.042
UKESM1-0-LL 28850.67 33.41 0.35 0.17
Mean -9590.76 10.03 -0.28 0.38
All -7204.36 11.55 -0.16 0.015
Weighted 10707.70 22.47 0.075 -

Table S5. Linear regression results for GNA vs. multidecadal NAO variance.

Slope Intercept Correlation p-value
CESM2 2963.38 2.70 0.069 0.85
CMCC-CM2-SR5 -7903.51 -3.10 -0.44 0.18
CNRM-CM6-1 1225.89 1.68 0.065 0.73
CNRM-ESM2-1 -2613.77 -1.18 -0.26 0.46
CanESM5 271.12 0.89 0.011 0.95
INM-CM5-0 11251.15 4.46 0.5 0.14
IPSL-CM6A-LR -613.47 0.46 -0.03 0.87
MIROC-ES2L -547.56 0.00 -0.061 0.75
MIROC6 557.26 0.72 0.053 0.88
MPI-ESM1-2-HR 4283.84 4.08 0.27 0.45
MPI-ESM1-2-LR 167.79 0.95 0.011 0.95
UKESM1-0-LL 3939.05 3.28 0.21 0.42
Mean -467.55 0.37 -0.36 0.25
All -551.83 0.33 -0.18 0.0067
Weighted 678.36 1.08 0.021 -
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Table S6. Linear regression results for GNA vs. EFP.

Slope Intercept Correlation p-value
ERA5 -8.08 0.21 -0.0037 0.91
CESM2 -79.61 0.24 -0.033 0.93
CMCC-CM2-SR5 -1009.61 -0.15 -0.86 0.00073
CNRM-CM6-1 -262.64 -0.01 -0.27 0.14
CNRM-ESM2-1 -357.42 -0.08 -0.25 0.49
CanESM5 -4.72 0.29 -0.0017 0.99
INM-CM5-0 174.96 0.26 0.075 0.84
IPSL-CM6A-LR 357.42 0.42 0.22 0.22
MIROC-ES2L 157.37 0.27 0.09 0.64
MIROC6 44.54 0.23 0.026 0.94
MPI-ESM1-2-HR -0.31 0.24 -0.00062 1
MPI-ESM1-2-LR 204.11 0.39 0.24 0.22
UKESM1-0-LL -160.93 0.14 -0.09 0.73
Mean 65.74 0.27 0.16 0.62
All 90.96 0.29 0.18 0.0059
Weighted -7.83 0.23 -0.019 -
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