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Abstract

Accurately predicting the extent of compound flooding events, including storm surge, pluvial, and fluvial flooding, is vital for

protecting coastal communities. However, high computational demands associated with detailed probabilistic models highlight

the need for simplified models to enable rapid forecasting. The objective of this study was to assess the accuracy and efficiency

of a reduced-complexity, hydrodynamic solver – the Super-Fast INundation of CoastS (SFINCS) model – in a probabilistic

ensemble simulation setting, using Hurricane Ike (2008) in the Texas Gulf Coast as a case study. Results show that the

SFINCS-based framework can provide probabilistic outputs under reasonable simulation times (e.g., less than 4 hours for a 100-

member ensemble on a single CPU). The model agrees well with observed data from NOAA tidal stations and USGS gage height

stations. The ensemble approach significantly reduced errors (average 16%) across all stations compared to a deterministic case.

The ensemble improved overall performance and revealed wider flood extents and lower depths. Sensitivity studies performed

on ensemble sizes (1,000, 189, 81) and lead times (1 to 3 days before landfall) further demonstrate the reliability of flood extent

predictions over varying lead times. In particular, Counties adjacent to the Trinity River Basin had [?] 80% probability in

exceeding the critical 3-m flood threshold during Hurricane Ike. Our study highlights the effectiveness of the SFINCS-based

framework in providing probabilistic flood extent/depth forecasts over long lead times in a timely manner. Thus, the framework

constitutes a valuable tool for effective flood preparedness and response planning during compound flooding.
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Abstract 14 

Accurately predicting the extent of compound flooding events, including storm surge, pluvial, 15 

and fluvial flooding, is vital for protecting coastal communities. However, high computational 16 

demands associated with detailed probabilistic models highlight the need for simplified models 17 

to enable rapid forecasting. The objective of this study was to assess the accuracy and efficiency 18 

of a reduced-complexity, hydrodynamic solver – the Super-Fast INundation of CoastS (SFINCS) 19 

model – in a probabilistic ensemble simulation setting, using Hurricane Ike (2008) in the Texas 20 

Gulf Coast as a case study. Results show that the SFINCS-based framework can provide 21 

probabilistic outputs under reasonable simulation times (e.g., less than 4 hours for a 100-member 22 

ensemble on a single CPU). The model agrees well with observed data from NOAA tidal stations 23 

and USGS gage height stations. The ensemble approach significantly reduced errors (average 24 

16%) across all stations compared to a deterministic case. The ensemble improved overall 25 

performance and revealed wider flood extents and lower depths. Sensitivity studies performed on 26 

ensemble sizes (1,000, 189, 81) and lead times (1 to 3 days before landfall) further demonstrate 27 

the reliability of flood extent predictions over varying lead times. In particular, Counties adjacent 28 

to the Trinity River Basin had ≥ 80% probability in exceeding the critical 3-m flood threshold 29 

during Hurricane Ike. Our study highlights the effectiveness of the SFINCS-based framework in 30 

providing probabilistic flood extent/depth forecasts over long lead times in a timely manner. 31 

Thus, the framework constitutes a valuable tool for effective flood preparedness and response 32 

planning during compound flooding. 33 

Plain Language Summary 34 

Understanding and predicting compound floods caused by multiple drivers, including storm 35 

surge, extreme rainfall, and river discharge, is important for protecting coastal areas. This study 36 

tested a reduced complexity solver called SFINCS to determine if it could quickly and accurately 37 

forecast floods using Hurricane Ike (2008) in Texas as a case study. The SFINCS-based 38 

ensemble framework accurately predicted flooding patterns and depths, running on average 15-39 

30 times faster than traditional hydrodynamic models. By simulating many ensembles, it showed 40 

which areas are at a high risk of flood inundation (> 3-m) which should help communities better 41 

prepare for future floods. Our research demonstrates that employing this SFINCS-based 42 

ensemble approach can enhance the accuracy of compound flood predictions, helping coastal 43 

communities in mitigating flood risk.  44 
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1. Introduction 45 

Tropical cyclones (TCs), including hurricanes and tropical storms, pose substantial threats to 46 

coastal areas. In particular, compound flooding caused by the simultaneous occurrence of storm 47 

surge, pluvial flooding from heavy rainfall, and fluvial flooding from river discharge, can inflict 48 

catastrophic impact on coastal communities. Despite significant recent progress in TC 49 

forecasting, accurately predicting compound flooding remains a formidable challenge due to the 50 

complex interplay of factors such as weather conditions, ocean temperatures, geography and 51 

human intervention, especially for vulnerable regions like the Texas Gulf Coast. For instance, 52 

hurricanes Ike (2008) and Harvey (2017) that struck the Texas Gulf Coast represent some of the 53 

costliest storms in the U.S. history, with estimated ~$160 billion damage (combined both events, 54 

National Hurricane Center, 2018). These TCs highlighted the urgent need for improved 55 

nowcasting and forecasting techniques for compound flooding events (Lee et al., 2023; Wahl et 56 

al., 2015). Hurricane Ike has been extensively studied, with researches focusing on various 57 

aspects of its dynamics, coastal impacts, and infrastructure effects (Stearns & Padgett, 2012). 58 

Several studies have investigated the simulation of hydrodynamics and waves (Chen & Curcic, 59 

2016; Hope et al., 2013; Maymandi et al., 2022; Veeramony et al., 2012; Xu et al., 2023), as well 60 

as methodologies for addressing storm surge and wave heights (Kennedy et al., 2011; Lee et al., 61 

2017). Mitigating these risks requires a comprehensive understanding of TC-induced hazards and 62 

effective decision-making tools. However, traditional evacuation decisions during hurricanes 63 

often prioritize storm intensity, overlooking other critical factors such as compound flooding 64 

risks. One of the significant challenges in TC forecasting is the limited predictability, particularly 65 

regarding flood-related hazards. Knutson et al., (2010) and Wang et al., (2015) highlight the 66 

difficulties in aggregating forecast data across regions because of geographical variations and 67 

limited sample size of forecast TCs affecting each specific region. Understanding the 68 

interconnectivity among various forecast components is crucial for improving TC flood 69 

predictability. Lamers et al., (2023) and Nederhoff et al., (2023) highlight the importance of 70 

investigating the relationships between TC track, intensity, precipitation, and river discharge 71 

forecasts to enhance flood warning and preparedness activities.  72 

To assess uncertainty in flood forecasts, there is a recognized need to shift towards probabilistic 73 

forecasting of downstream hazards. Titley et al., (2024) and Wright et al., (2015) stress the 74 

importance of probabilistic approaches in optimizing forecast guidance, especially for rare events 75 

like TC-induced flooding. A probabilistic surge and flood-inundation modeling system would 76 

provide coastal communities with the probability of occurrence for different surface water depth 77 

thresholds, supporting assessment of surge and flood risks, design of resilient infrastructure, as 78 

well as decision-making for coastal planning and management. Large ensemble modeling 79 

analysis is required to provide probabilities of TC-induced flooding extents and depths, 80 

particularly from compound flooding, aiding risk assessment and decision-making. While 81 

existing techniques provide essential information, challenges remain in addressing uncertainties 82 

and capturing complex interactions. Methods like the Monte Carlo Wind Speed Probability 83 

(WSP) model and landfall distribution product (LDP) effectively communicate intensity 84 

uncertainties (Trabing et al., 2023). However, challenges persist in accurately predicting TC 85 

tracks and intensity changes, necessitating further development of probabilistic forecasting 86 

methods (Torn & DeMaria, 2021). The Monte Carlo approach is employed to generate ensemble 87 

members, introducing random variations in initial conditions, and utilizing error matrices from 88 

the previous step. Specifically, these ensemble members are generated around the forecasted 89 

official track, and the method incorporates error matrices based on an autoregressive technique 90 
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for along-track, cross-track, and intensity errors (DeMaria et al., 2009). Within the context of 91 

probabilistic ensemble simulation, such as Monte Carlo methods applied to hurricane 92 

forecasting, the ensemble size refers to the number of simulated scenarios or members used to 93 

capture the uncertainty associated with various input parameters (Cashwell & Everett, 1957; 94 

DeMaria et al., 2009; Nederhoff et al., 2023). In ensemble forecasting, the lead time of a 95 

hurricane’s landfall plays a crucial role in determining the accuracy of mesoscale meteorological 96 

simulations (Nederhoff et al., 2023; Titley et al., 2020; Toth & Buizza, 2019) due to its direct 97 

correlation with the uncertainty associated with the impending landfall (Trabing et al., 2023). 98 

When a model accurately predicts the hurricane’s path and intensity with an extended lead time, 99 

it enhances confidence in the model’s reliability. Various probabilistic modeling systems and 100 

forecasting techniques have been developed to address TC-induced hazards. Global Flood 101 

Awareness System (GloFAS), despite its coarse resolution (~10 km), offers valuable insights 102 

globally (Alfieri et al., 2013; Harrigan et al., 2023) while regional systems such as the Stevens 103 

Flood Advisory System (SFAS) provide higher resolution for specific areas (Ayyad et al., 2022; 104 

Tounsi et al., 2023). However, these systems often lack explicit consideration of TC-related 105 

processes and interactions, requiring further research.  106 

Further research is necessary for refining probabilistic modeling systems, enhancing ensemble 107 

forecasting techniques, and integrating statistical and physics-driven approaches for 108 

comprehensive TC forecasting, impact assessment, and risk management. Hybrid approaches, 109 

combining probabilistic and deterministic methods, show promise in accurately representing a 110 

wider range of scenarios (Bakker et al., 2022; Pakhale et al., 2024). Artificial Intelligence (AI) 111 

and Machine learning (ML) techniques, though increasingly popular, may overlook critical 112 

nonlinear interactions (Chen et al., 2023; Kumar et al., 2023; Lecacheux et al., 2021). Combining 113 

statistical and physics-driven modeling, as proposed by Titley et al., (2024), offers a 114 

comprehensive approach to address these challenges. 115 

One limitation of ensemble-based approaches is the computational resources required to generate 116 

and analyze ensemble forecasts. Ensemble forecasting involves running multiple simulations to 117 

capture the uncertainty inherent in weather and climate predictions. Each ensemble member 118 

requires significant computational power and time to execute, even with the use of a high-119 

performance computing (HPC) systems. Improved efficiency of ensemble simulations requires 120 

fast solvers, such as the open-source hydrodynamic solver, Super-Fast INundation of CoastS 121 

(SFINCS Leijnse et al., 2021) or similar models (e.g., LISFLOOD-FP: Bates et al., 2010, 122 

SLOSH: NOAA, 2006), to forecast and predict compound flood events. SFINCS integrates 123 

various flood drivers, including pluvial and fluvial drivers along with tidal, wind- and wave-124 

driven processes into a single domain, allowing comprehensive analysis of compound flooding 125 

events (Eilander et al., 2023; Grimley et al., 2022; Leijnse et al., 2023; Nederhoff et al., 2023). 126 

Additionally, the model offers a significantly faster computational speed (~15‒30 times speedup, 127 

Röbke et al., 2021) than the more complex models, such as ADCIRC (Luettich et al., 1992), 128 

Delft3D-FM (Kernkamp et al., 2011), and SCHISM (Zhang et al., 2016).  129 

The reduced-complexity approach taken within SFINCS serves as an alternative to more 130 

complex models that are computationally intensive. SFINCS uses a first-order explicit numerical 131 

scheme (Bates et al., 2010) to solve a set of simplified depth-averaged (linear) shallow water 132 

equations. Certain physical processes (e.g., viscosity, atmospheric pressure, Coriolis, advection) 133 

that are less critical for specific predictions can be turned off to reduce computational demand, 134 

but the reduced solver with essential physics ensures both efficiency and accuracy in the model. 135 
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This innovative approach provides a distinct advantage over conventional models by 136 

significantly reducing computational requirements while maintaining a high level of accuracy. It 137 

presents a new outlook on flood prediction methodologies, placing emphasis on efficiency 138 

without compromising the reliability of forecasts. This approach significantly contributes to the 139 

timely and dependable prediction of complex storm surge and flood events, ensuring greater 140 

accuracy while optimizing computational resources. 141 

The objective of this study was to develop a probabilistic ensemble approach to simulate 142 

compound flood events using a reduced complexity solver applied to a typical TC in the Texas 143 

Gulf Coast. Novel aspects of the work include comprehensive modeling of compound flooding, 144 

including storm surge, pluvial and fluvial components, application of a probabilistic framework 145 

to provide detailed uncertainty quantification, and assessment of different lead times to evaluate 146 

forecasting skill. We selected the SFINCS model because of its low computational intensity and 147 

ability to model compound events. SFINCS incorporates spatially and temporally detailed data, 148 

including bathymetry, storm winds, land use patterns, oceanographic conditions, and 149 

meteorological factors within the target domain. SFINCS is relatively new; therefore, detailed 150 

validation studies are warranted to test its accuracy and applicability. 151 

Hurricane Ike’s devastating impact on Texas in 2008 was primarily marked by powerful wind-152 

driven storm surge. Although pluvial and fluvial flooding played roles as well, it is the storm 153 

surge that stands out as the defining factor in Ike’s destructive force Fox News, 2015; Morss & 154 

Hayden, 2010; Rego & Li, 2010. However, in light of the global significance of compound 155 

floods Eilander et al., 2023; Gu et al., 2022, this study considered the drivers of pluvial and 156 

fluvial flooding. Ike was selected in part because its track is similar to the catastrophic 1900 157 

Galveston hurricane (Trumbla, 2019). The evolution of Hurricane Ike from a tropical wave west 158 

of Cape Verde to a Category 4 hurricane over the central Atlantic, its fluctuations in strength, 159 

and its subsequent landfalls in Galveston, Texas, offer a rich dataset for comprehensive analysis. 160 

Moreover, Hurricane Ike's extensive aftermath, marked by its toll on human lives (mortality 195, 161 

National Hurricane Center, 2014 ) and infrastructure, makes it an important case study. In this 162 

analysis, all relevant processes of compound flooding events, including contributions from 163 

rainfall (pluvial), river runoff (fluvial) and surface processes (e.g. water levels, tides, storm 164 

surge) are incorporated to provide a comprehensive probabilistic modeling framework as shown 165 

in the flowchart (Fig. 1). In Section 2, we provide an in-depth exploration of the SFINCS model, 166 

its configurations, and ensemble approach. Moving to Section 3, we discuss the analysis of the 167 

model results, presenting the surge and flood maps (height and extent). In Section 4, we provide 168 

a discussion of the sensitivity analysis (ensemble sizes and lead times), alongside an assessment 169 

of its computational efficiency and accuracy.  170 
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2. Materials and Methods 171 

2.1 Deterministic Model Configuration and Data Sources 172 

The model extent, boundaries (e.g., county and watersheds), and best track of Hurricane Ike 173 

(2008) are shown in Fig. 2. The cartesian rectilinear grids in UTM 15N were first created with 174 

resolutions of 200 × 200 m and a subgrid mode with resolutions of 10 × 10 m was applied in 175 

this study.  176 

Bathymetric-topographic datasets for this specific region were sourced from the National 177 

Oceanic and Atmospheric Administration - National Centers for Environmental Information 178 

(NOAA NCEI) Continuously Updated Digital Elevation Model (CUDEM, available in both 10 179 

m and 3 m resolutions) database (CIRES, 2014a, 2014b). Manning’s roughness coefficient was 180 

obtained from the National Land Cover Database (NLCD-CONUS, Homer et al., 2020). To 181 

calculate the volume of runoff during the infiltration process, a Global curve number dataset 182 

(Jaafar et al. 2019) with a spatial resolution of 250 m was utilized to derive a runoff coefficient.  183 

Boundary conditions play an important role in accurately simulating tidal effects at open ocean 184 

boundaries. Within our grid-domain, an offshore water level boundary was established. The 185 

variability in water levels along these boundaries has been derived from HYCOM see surface 186 

height (SSH) data, encompassing five tidal constituents (M2, S2, O1, K1, N2) at three-hour 187 

intervals, with a spatial resolution of ~ 4 km. Additionally, we incorporated the primary river 188 

discharge (m3/s) for each watershed, as shown in Fig. 2. The nine upstream boundary conditions 189 

(Clear Creek, Sims Bayou, Brays Bayou, White Oak Bayou, Little White Oak, Green Bayou, 190 

West Fork of San Jacinto River, Cedar Bayou, Trinity River) (streamflow, m3/s) were defined 191 

using river discharge time series obtained from accessible USGS stream gages (15-min, USGS, 192 

2016) during Ike 2008.  193 

We used wind field data sourced from the National Hurricane Center-Joint Typhoon Warning 194 

Center (JTWC) best track, employing the Holland formula (Holland et al., 2010) and the Rmax 195 

relationship (Nederhoff et al., 2019). We leverage the Wind Enhance Scheme (WES, Deltares, 196 

2018) developed by Deltares to generate the wind and pressure fields around a specified tropical 197 

cyclone center location based on various cyclone parameters. It computes 2D surface winds and 198 

pressure fields on a moving circular “spider” web grid. These datasets were compared against the 199 

observed data from the NOAA stations. Three wind drag coefficients were specified with the 200 

SFINCS wind speed framework (0.001 at 0 m/s, 0.0025 at 28 m/s, 0.0015 at 50 m/s). In addition 201 

to the meteorological forcing condition, the ERA5 (Hersbach et al., 2020) provides downscaled 202 

hourly, 31-km precipitation rates. The effect of wind-driven waves was not factored into the 203 

storm surge and flood outcomes in this study. 204 

2.2 Ensemble Approach 205 

Forecasting TCs is a complex task encompassing predictions of numerous interconnected factors, 206 

including storm tracks, winds (speed/direction/pressure), and rainfall. Even though the National 207 

Hurricane Center provides forecasts every 6 hours up to 72 hours before landfall, these 208 

predictions are not perfect. Persistent errors stem from incomplete understanding of the complex 209 

formation and progression of TCs, compounded by limitations inherent in forecasting 210 

methodologies. Therefore, recognizing the inherent variability in storm track and intensity is 211 

important when employing modeling tools for cyclone simulations. Our approach, inspired by 212 

DeMaria et al., (2009), utilizes a Monte Carlo method to generate an ensemble of predictions 213 
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based on error matrices (e.g., addressing along-track (AT), cross-track (CT), and intensity 214 

errors). The error vector is decomposed into AT and CT components relative to the direction of 215 

the cyclone motion vector in the forecast track, with AT and CT errors determined using a 216 

simple autoregressive technique. For predicting the error of maximum wind intensity (VE), 217 

DeMaria et al., (2009) considered the distance to landfall. However, it is simplified by a linear 218 

function of the error from the previous time step in the Delft Dashboard (Van Ormondt et al., 219 

2020). The ensemble tracks with different lead times (days before landfall) are shown in Fig. 3. 220 

The Interagency Performance Evaluation Task Force (IPET, 2006) method employs a 221 

comprehensive rainfall analysis technique to calculate the mean rainfall intensity over a specified 222 

region. By integrating critical parameters such as the distance 𝑟 (in km) from the hurricane center 223 

to the point of interest and the azimuth β (in degrees) relative to the direction of motion, the 224 

IPET method aims to provide accurate estimates of ensemble rainfalls. During the evaluation 225 

process of ensemble rainfalls, the IPET method identified an underestimation in rainfall 226 

estimates. To rectify this discrepancy, the rainfall estimates (asymmetric component factor) were 227 

doubled based on the magnitude of the underestimation. The improved rainfall intensity in the 228 

area of interest was improved using the ensemble tracks (Fig. 4). This adjustment was important 229 

in enhancing the accuracy of the IPET rainfall estimates, aligning it closely with other reanalysis 230 

data during extreme weather events.  231 

𝑚𝐼(𝑟, β) = {
1.14 + 0.12∆𝑃,                                𝑟 ≤ 𝑅𝑚𝑎𝑥

(1.14 + 0.12∆𝑃)𝑒
−0.3(

𝑟−𝑅𝑚𝑎𝑥
𝑅𝑚𝑎𝑥

)
,    𝑟 > 𝑅𝑚𝑎𝑥

                                        Eq. 1 232 

where 𝑚𝐼 is the azimuthally averaged component in mm/hr, and ∆𝑃 is the central pressure deficit 233 

in millibars (Eq. 1). An example of ensemble rainfalls using the IPET approach is shown in Fig. 234 

3. 235 

We investigated the implementation of a simple ensemble approach for river streamflow analysis 236 

in our case study. There are five ensembles, a raw data consisting of streamflow measurements 237 

recorded at 15-min intervals, 6-hourly maximum, minimum, and mean, and daily mean 238 

streamflow values. To comprehensively represent various ensemble configurations, all 239 

combinations were parameterized as detailed in Table 1 for the purpose of this study. The table 240 

summarizes the diverse ensemble combinations explored during the analysis, facilitating a 241 

thorough examination of their impacts and efficacy in streamflow estimation and prediction. 242 

2.3 Calibration and Validation Approaches 243 

We conducted multiple calibration steps in the modeling analysis, incorporating various 244 

adjustments, such as adopting different tidal boundary conditions at the open ocean boundary 245 

(Fig. 2), turning the infiltration process on and off, optimizing the intensity factor of the IPET 246 

rainfall approach, and conducting sensitivity analyses on ensemble generation. These steps were 247 

undertaken to minimize systematic uncertainties and enhance the overall performance of the 248 

modeling system. Initially, boundary conditions derived from the TPXO 7.2 and 8.0 tidal 249 

models, designed to represent tidal water levels, were assessed, but they underestimated water 250 

levels at the NOAA tidal gage stations. Subsequently, in an effort to enhance the accuracy of 251 

simulated surface water elevations, water levels sourced from the HYCOM (Cummings & 252 

Smedstad, 2013) SSH data, encompassing tidal constituents such as M2, S2, O1, K1, and N2, 253 

were incorporated into the model. In compound flood modeling, the infiltration dynamics are 254 

important because the ground surface partitions rainfall into evapotranspiration, runoff, and 255 

infiltration depending on soil texture and land use. SFINCS provides several rainfall-runoff 256 
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processes, and we adopted the curve number method as an empirical rainfall-runoff approach. 257 

The infiltration process by the curve number method shows a relatively average flood reduction 258 

of ~8% across the entire model domain, with on and off infiltration during the calibration 259 

process. This reduction may be attributed to Hurricane Ike not bringing intense rainfall, allowing 260 

the infiltration to decrease flood levels. However, if infiltration capacity is surpassed during 261 

high-intensity rainfall, excess water can lead to rapid surface runoff and severe flooding. 262 

Therefore, this study aims to apply the infiltration process using the curve number method more 263 

accurately and practically to achieve more realistic results. Due to the challenges in collecting 264 

precipitation data for Hurricane Ike in 2008, we additionally conducted a comparison between 265 

precipitation estimates derived from IPET and other reanalysis datasets. The IPET rainfall data 266 

significantly underestimated rainfall values from ERA5 and NCEP-CFS (Fig. 4). To rectify this 267 

discrepancy, a calibration process was undertaken by doubling the rainfall intensity factor (a 268 

similar magnitude of rainfall in Fig. 4). To perform a comprehensive sensitivity analysis 269 

considering the influence of a number of ensemble members (i.e., ranging from 81, 189, and 270 

1,000 ensembles) and lead times prior to landfall (1 to 3 days) on storm surge and flood 271 

predictions, we configured various ensemble cases (Table 1, i.e., the number of 81 derives from 272 

all possible combinations of error variations). The objective of the sensitivity analysis was to 273 

determine the optimal combination of lead times and number of ensemble members for refining 274 

our probabilistic ensemble modeling system.  275 

Skill score metrics employed to assess model accuracy included Root-Mean-Square Error 276 

(RMSE), Pearson’s Correlation Coefficient (CC), Mean-Absolute-Error (MAE), and Refined 277 

Index of Agreement (RIA). These metrics were calculated for all available observed stations 278 

(NOAA and USGS) using data and model predictions. Simulated flood event hydrographs were 279 

compared to observations at six representative USGS gages (gage water height, G1~G6 in Fig. 280 

2). In addition, simulated water levels were compared to observations at six NOAA tides gages. 281 

The reported data were in feet, referencing the North American Vertical Datum of 1988 (NAVD 282 

88). Both deterministic and ensemble cases were executed over a period of 13 days, spanning 283 

September 2nd through 15th, 2008, to simulate Hurricane Ike (2008) and its associated ensembles. 284 

Model outputs include the spatial extent and depth of surge and flood levels within the inundated 285 

extents over time.  286 
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3. Results  287 

3.1 Model Validations – Water Level and Winds at NOAA Stations 288 

The model output was compared to water levels at NOAA tide gauges and USGS gages (Fig. 5). 289 

The average error statistics across all six stations for water levels are: RMSE:0.32, CC: 94%, 290 

MAE: 0.18, RIA: 0.78 (Table 2). Examination of individual stations reveals variations in model 291 

performance. Notably, the upstream station at Manchester (A3) has relatively higher errors 292 

(RMSE: 1.11, MAE: 0.48). This discrepancy is attributed to a combination of geological 293 

features, grid resolutions, and coarse precipitation input. Implementing an ensemble approach 294 

emerges as an important strategy for rectifying errors. The aggregate statistics derived from 295 

1,432 simulations highlight a substantial improvement in overall performance (RMSE: 0.2, CC: 296 

95.7%, MAE: 0.14, RIA: 0.81) relative to the deterministic scenario. Notably, the discernible 297 

improvement at Station A3 stands out (i.e., average RMSE: 0.66, MAE 0.22) compared to 298 

deterministic case, underscoring the efficacy of the ensemble methodology in refining model 299 

predictions. Our study shows slightly lower errors in water levels than those in a recent Ike study 300 

(e.g., Al-Attabi et al., 2023). 301 

In assessing the model representation of wind speed and direction (we do not estimate the errors 302 

in winds in this study), a detailed comparison was made with NOAA stations using the spider 303 

web wind speed and direction generated by the WES scheme. Despite the absence of data at A3 304 

and A4 during the Ike 2008 event, both deterministic and ensemble mean analyses show good 305 

agreement across the remaining stations. This robust validation reinforces the model's ability to 306 

accurately capture and simulate wind dynamics, even in challenging scenarios. While some 307 

differences in wind direction phases are observed in the early stages, these variances are deemed 308 

negligible. Ensemble wind perturbation from a specific point in time (September 12, 12:00h, 309 

2008) contributes to a comprehensive understanding of these variations.  310 

3.2 Model Validations – Hydrographs at USGS Gage Heights  311 

Overall, the model shows good agreement with the USGS measurements, although variations are 312 

observed among specific stations (Fig. 5). Simulated hydrographs at Stations, G1, G2, and G3 313 

show relatively strong correlations with observed hydrograph data. The remaining three stations 314 

(G4, G5 and G6) also show high correlations, but have relatively larger errors (RMSE, MAE and 315 

RIA), indicating greater discrepancy between model output and observations. To enhance model 316 

performance, an ensemble approach was used, resulting in a modest reduction in MAE and 317 

slightly improved error statistics for the ensemble mean. Stations G3 and G5 specifically resulted 318 

in ~ 30% and 16% reductions in MAE, and ~39% and 28% in RMSE reductions, respectively, 319 

based on the results from 1,432 ensemble members. However, other stations show negligible 320 

improvement. Station G4 has a negative RIA, indicating a larger discrepancy. Despite G4’s high 321 

spatial resolution of ~200 m and 10 m in sub-grid, the model overestimates the water levels, 322 

possibly due to complex dynamics, geological features (such as narrow channels), roughness 323 

variations, grid resolution, and interactions among other factors. Furthermore, the model has 324 

limitations in defining specific small river channels and features like weirs and dams. This 325 

limitation hinders accurate representation of upstream river and floodplain hydrodynamics, 326 

potentially impacting the model’s ability to predict hydrographs effectively. Addressing these 327 

factors is important for refining the model's accuracy and reliability in simulating hydrological 328 

processes. 329 
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3.3 Hurricane Ike 2008 – Flood inundation map  330 

To estimate flood extent, we overlaid simulated water levels relative to a map of permanent 331 

water, utilizing the Global Surface Water Occurrence (GSWO) dataset (Pekel et al., 2016). This 332 

process involved applying a threshold depth of 0.3 m. Specifically, areas with water depths 333 

exceeding this threshold are identified and categorized as flooded. Our models (both 334 

deterministic and ensemble in Fig. 6) were further assessed through a comprehensive comparison 335 

with flood-inundation maps from multiple sources, including the Harris County Flood Control  336 

District (Fig. 6-a), NOAA estimates (Fig. 6-b), and a recent case study by Al-Attabi et al., 337 

(2023). Despite differences in map units, our models consistently show similar depths and 338 

extents of flood inundation to those from these reference sources. Flood-inundation maps from 339 

the Harris County Flood Control District serve as a benchmark for local accuracy, while NOAA 340 

estimates provide a broader perspective at a regional scale. Additionally, the recent study by Al-341 

Attabi et al., (2023), specifically utilizing the Delft3D model, provides a valuable benchmark for 342 

comparison. The outputs from our models are similar to those from these other sources for 343 

Hurricane Ike, reinforcing the robustness of SFINCS model predictions. This alignment with an 344 

independent case study increases confidence in the accuracy and reliability of the SFINCS 345 

probabilistic modeling framework. Our model highlighted significant flooding exceeding 3 m, in 346 

Chambers County and the open Bay of Jefferson County. Coastal areas in Brazoria and 347 

Galveston counties experienced flooding in the range of 1 to 2 m. The correspondence between 348 

our model outputs and these specific observations (as Fig. 5) underscores the reliability of our 349 

models in capturing the spatial distribution and magnitude of flood inundation in diverse 350 

geographical settings. The model assesses flooding patterns in various watersheds across 351 

multiple counties, including Harris, Liberty, Galveston, and Brazoria counties. It demonstrates a 352 

satisfactory skill in identifying low levels of flooding in specific areas within these counties. 353 

Moreover, the model identifies flooding downstream of Dickinson Bayou, indicating a large-354 

flooded area, likely attributed to storm surge effects. One key observation highlighted by the 355 

model pertains to the Upper Gulf Coast, specifically in West Bay and Galveston Barrier Island. 356 

The analysis revealed a surge flood event during Hurricane Ike in 2008. However, an interesting 357 

aspect is the discrepancy revealed by ensembles in flood extent and depth. Despite perceived 358 

non-flooding in the deterministic case, the ensemble model shows a broader flood extent with 359 

lower flood depth. This suggests that the model, through ensemble approaches, captures a more 360 

extensive spatial coverage of flooding, even in areas considered to have a lower risk. In specific 361 

watersheds within Harris, Galveston, and Brazoria counties, the ensemble approach consistently 362 

shows more widespread flooding. This underscores the effectiveness of the model in 363 

representing the potential for extensive flooding in these regions. In the Trinity River Basin, the 364 

ensemble-mean results show significant differences (> 2 m, Fig. 6-e) compared to the 365 

deterministic scenario, attributed to geographical characteristics and contributions from river 366 

discharge and storm surge-induced flooding. This implies both the substantial geographic impact 367 

and the uncertainty associated with the ensemble approach. Additionally, variations of ~ 0 to 1.3 368 

m in flood depth are evident in Chambers and Jefferson counties, indicating a reliable extent and 369 

depth of flooding. The ensemble scenario closely aligns with the deterministic scenario in 370 

Galveston Bay and Barrier Island. Overall, our analysis demonstrates the ability of the SFINCS 371 

model to define flooding patterns, considering both spatial extent and depth variations, 372 

contributing valuable information for flood risk assessment and mitigation strategies. The 373 

analysis focuses on evaluation of maximum flood depths (Fig. 7) within the context of various 374 

ensemble numbers in comparison with deterministic and ensemble mean scenarios. In particular, 375 
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ensembles #167, #169, and #184 exhibit distinct characteristics, displaying a few flooded areas 376 

in Liberty, Jefferson, and Chambers counties. This contrasts with both deterministic and 377 

ensemble mean outcomes, suggesting potential influence from disparate storm tracks and 378 

intensities. These specific cases may lead storm tracks designed to deviate downward from the 379 

best track, potentially explaining the observed wider and higher flooding depths. Furthermore, 380 

ensembles #50, #59, and #88 appear to have storm tracks slightly above the best track, resulting 381 

in less rainfall-induced flooding in Liberty County. This divergence is likely attributed to lower 382 

flood depths observed in the West Bay, Galveston Barrier Island, and Trinity River Basin. Thus, 383 

the interplay of storm tracks and flood depths underscores the significance of ensemble modeling 384 

in capturing the variability of flood scenarios.  385 
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4. Discussion 386 

4.1 Influence of Ensemble Size  387 

Ensemble size plays an important role in probabilistic ensemble simulation, significantly 388 

impacting the reliability and accuracy of the simulation results (Buizza & Palmer, 1998; Milinski 389 

et al., 2020; Tebaldi et al., 2021). In particular, ensemble approaches show significant error 390 

reduction in Stations A1 and A3 (Fig. 8, and Table 2). The diverse ranges within the ensemble 391 

are visually depicted in pink, highlighting the variability encapsulated by different ensemble 392 

sizes. The ensemble approach seems to demonstrate a slightly better error performance when 393 

compared to the deterministic case, although the difference seems quite small (Table 2). This 394 

observation is particularly evident in the USGS hydrographs (Fig. 9), indicating a notable 395 

influence from upstream boundary conditions rather than wind and rainfall, a characteristic 396 

consistently observed across a comparison of six different USGS stations. Notably, when 397 

compared with Fig. 6, it is evident that the majority of flooding in Liberty and Harris counties is 398 

confined to levels below 1 m. Beyond flooding probabilities of 2 m, distinctive variations emerge 399 

in the Trinity River Basin, Chambers, and Jefferson counties. A reduction in ensemble size may 400 

reveal an expanding range in flooding probability, likely indicating an increase in marginal error 401 

attributed to increased uncertainty. Hurricane Ike led to substantial flooding in Chambers County 402 

and the open bay of Jefferson County, featuring a flooding probability exceeding 3 m. Diverse 403 

ensemble sizes consistently depict the elevated flood risks in these specific regions. Although 404 

larger ensemble sizes may yield marginal enhancements in accuracy and convergence rates, they 405 

are associated with increased computational demands. Alternatively, smaller ensemble size, 406 

while conceding a degree of precision, rapidly deliver practical and reasonable information 407 

regarding flood extents and probability maps. The aftermath of Hurricane Ike distinctly revealed 408 

severe flooding in southwestern Chambers and Jefferson counties, highlighting the efficacy of 409 

the ensemble approach in verifying elevated flood risks within these critical areas. 410 

4.2 Influence of Lead Time before Landfall 411 

Comparison of the output from 81 ensembles to the output from the deterministic case across 412 

different lead time shows improved performance of the ensemble (RMSE: 0.2, CC: 95.6%, 413 

MAE: 0.14, RIA: 0.82). Overall, the error statistics exhibit a remarkably similar pattern, but as 414 

the lead time decreases, the accuracy is slightly improved. This is particularly evident when 415 

examining stations A1 and A3. In the comparison of USGS hydrographs, the ensemble approach 416 

does not show significant improvement (Fig. 12). However, it shows a slight enhancement 417 

compared to deterministic scenarios (avg. RMSE: 1.6, CC: 88.3%, MAE: 1.13, RIA: 0.43, over 418 

six stations). The average errors for the ensemble approach are RMSE of 1.35, CC of 88.1%, 419 

MAE of 1.02, and RIA of 0.48. Similar to the analysis of ensemble size in section 4.1, there is no 420 

noteworthy variation in hydrographs based on lead times. It appears that the hydrographs are 421 

significantly influenced by upstream boundary forcing. With increasing lead times, the 422 

probability of flooding above 1 m slightly decreases in Chambers and Jefferson counties. 423 

Significant changes are observed in the Trinity River Basin for the above 2 m flooding 424 

probability. A shorter lead time indicates increased variability in flood extent, particularly 425 

observable in the Trinity River Basin, Chambers, and Jefferson counties. Analysis of different 426 

lead times for Hurricane Ike reveals that a relatively long lead time (3-days) results in similar 427 

flood extent and flooding probability, compared with 1-day lead time. This reliability allows us 428 

to rely on the flooding probability prediction three days ahead of flooding, leveraging the 429 
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extended lead time. During Hurricane Ike, Harris County, with its dense population, did not face 430 

significant risks. Drawing a comparison to Hurricane Harvey in 2017, understanding the factors 431 

that caused tremendous damages in Harris County can aid in more effective probabilistic 432 

predictions with sufficient lead times. This consistency in findings aligns with previous research 433 

(Huang et al., 2016; White et al., 2017), supporting preparedness, decision-making (Rezuanul 434 

Islam et al., 2023), and response efforts.  435 

Ultimately, these contributions enhance the safety and well-being of communities. Additionally, 436 

time-series of 95% confidence intervals were estimated for each ensemble scenario. While the 437 

ensemble means of each scenario exhibit relatively similar values, variations in ensemble spread 438 

are noticeable. It is apparent that the 95% bandwidth relative to ensemble members decreases as 439 

the ensemble size increases as shown for NOAA Station 3 (Fig. 14). This suggests a narrower 440 

bandwidth, indicating a smaller margin of error from the mean flood depth within 5% of 441 

ensemble scenarios. Scenarios with different lead times exhibit similar patterns. However, as 442 

lead time decreases (approaching landfall), the ensemble spread tends to increase, and there is a 443 

slight rise in the predicted water levels. This trend is also reflected in a marginal decrease in 444 

MAE (Table 3). Despite differences in ensemble spread and extent of the 95% range, these 445 

trends were consistently observed when comparing water levels across various NOAA stations. 446 

In the Hurricane Ike case study, discernible differences in ensemble means were not apparent 447 

among various ensemble scenarios. The similarity in wind-driven water level changes among 448 

ensemble members can arise when the initial conditions and error matrices used in the Monte 449 

Carlo method exhibit minimal variation with different lead times. Therefore, a stable set of initial 450 

conditions, consistent error matrices, and use of autoregressive techniques collectively contribute 451 

to the production of ensemble members that display comparable wind-driven water level 452 

changes, even with varying lead times in the ensemble approach.  453 

While the spatial patterns of flood inundation remain similar across various ensemble sizes and 454 

lead times, there is a notable increase in uncertainty for the relatively small number of ensembles 455 

(81). Moreover, the 3-days lead time (long lead time) displays a broad confidence interval, 456 

signaling a higher level of uncertainty (Fig. 14). Hurricane Ike is characterized by flooding 457 

predominantly driven by wind-driven storm surge Morss & Hayden, 2010; Rego & Li, 2010. 458 

This is exemplified through diverse ensemble scenarios, particularly evident in the flooding 459 

incidents in West Bay, Galveston Barrier Island, Chambers, and Jefferson counties. 460 

4.3 Efficiency and Accuracy of Probabilistic Ensemble Modeling 461 

The use of a reduced-complexity probabilistic modeling system in this study facilitates rapid 462 

predictions of surge, flooding levels, and extents. Furthermore, it demonstrates promising 463 

efficiency in statistically representing water surface elevations in coastal areas and water height 464 

in inland regions. For example, when dealing with compound conditions in a 13-day simulation, 465 

the 1,000-, 189-, and 81-ensemble modes required 1.9 days, 8.4 hours, and 3.6 hours of 466 

computational time (using a single multi-core CPU), respectively. The resultant error statistics 467 

(Tables 2 and 3) prove adequate in assessing the model’s reliability and the quality of its 468 

predictions within a condensed timeframe. This highlights the system’s effectiveness in 469 

producing dependable predictions while efficiently managing computational resources. The 470 

choice of ensemble size should be made based on the specific requirements of the application. If 471 

high accuracy is critical and computational resources are available, a larger ensemble, such as 472 

1,000, might be preferred. However, in time-sensitive situations or when computational 473 
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resources are limited, smaller ensembles, such as 189 or 81, may be more practical choices, 474 

providing a balance between accuracy and computational efficiency. Additionally, accurate 475 

representation of boundary conditions, especially water level and tidal conditions, is important 476 

for reliable predictions in coastal and inland regions. 477 

4.4 Future Work  478 

In light of the global impact and growing relevance of compound floods (Eilander et al., 2023; 479 

Gu et al., 2022; Lai et al., 2021; Lee et al., 2023), this study is of continued importance in 480 

understanding the probabilistic nature of compound events, with important implications for 481 

effective flood management strategies. To further advance this field, we will focus on achieving 482 

higher resolutions in bathymetry within localized areas. This will encompass a comprehensive 483 

analysis of infiltration processes and integration of novel data sources, such as bathymetry, wind 484 

patterns, high-resolution curve numbers, updated bottom roughness, river data, and projections 485 

of forthcoming extreme rainfall events. These will enable enhancement of existing models by 486 

investigating frequency and return periods of each driver contributing to compound flooding. As 487 

part of future initiatives, priorities will include development of an advanced river ensemble 488 

system to enhance river management, leveraging artificial intelligence (AI)/machine learning 489 

(ML) for flood-inundation mapping using SFINCS model outputs, and expanding the scope of 490 

hurricane-impact assessment by considering other hurricanes along the Texas Gulf Coast. 491 

Employing AI/ML techniques, as demonstrated by Sun et al., (2023), will facilitate rapid flood-492 

inundation mapping based on model outputs from the SFINCS model. Furthermore, a robust 493 

framework rooted in coastal digital twins will be established, extending the visualization 494 

capabilities for storm surges and compound flooding, offering insights into flood levels and 495 

extents. These progressive steps aim to improve our understanding and response capabilities in 496 

the face of compound flooding scenarios, thereby contributing to more resilient and efficient 497 

disaster management strategies.   498 
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5. Conclusions 499 

Our study demonstrates the effectiveness of SFINCS in providing accurate and timely 500 

predictions of storm surge and flood events. Adopting an ensemble-based approach was pivotal 501 

in reducing errors, leading to substantial improvements across all stations. Similarly, a 502 

comparison of wind speed and direction with NOAA stations affirmed the model’s capability to 503 

accurately capture wind dynamics. Despite some early-stage variances, the robust validation 504 

underscored the model’s reliability, even in challenging scenarios. The validation of hydrographs 505 

revealed a good level of comparability with USGS measurements, albeit with variations among 506 

specific stations. Implementing an ensemble approach resulted in modest error reduction and 507 

improved error statistics (MAE ~ 0.22 m in water level, ~ 0.21 m in hydrograph) relative to the 508 

deterministic case. To assess flood extent, a method of masking water depth based on permanent 509 

water maps was employed. This is in agreement with other Ike products from HCFCD, NOAA 510 

and Al-Attabi et al., (2023), further bolstering confidence in the model predictions, especially 511 

concerning flood dynamics during Hurricane Ike. Chambers and Jefferson counties, along with 512 

the Trinity River Basin, exhibit significant flood risks, particularly exceeding 3 m, highlighting 513 

the importance of ensemble modeling in identifying critical flood-prone areas. While larger 514 

ensemble sizes could potentially result in marginal improvements in accuracy, they also come 515 

with increased computational demands. Therefore, opting for smaller ensemble sizes within our 516 

framework, which incorporate probabilistic sampling errors, could be a more pragmatic approach 517 

for rapid flood risk assessment. In flooding probabilities at different lead times before Hurricane 518 

Ike's landfall, significant changes were found in the Trinity River Basin for probabilities above 519 

2~3 m. In addition, the uncertainty quantification and long lead times play important roles in 520 

enhancing flood preparedness efforts. The study highlights the importance of estimating time-521 

series of 95% confidence intervals for each ensemble scenario, which provide valuable insights 522 

into the variability and reliability of flood predictions. As the ensemble size increases, the 95% 523 

confidence interval narrows, indicating a smaller margin of error in predicting flood depths. 524 

However, as lead time decreases, there is a tendency for the ensemble spread to increase, 525 

accompanied by a slight rise in predicted water levels. While spatial patterns of flood inundation 526 

remain consistent across various ensemble sizes and lead times, there is a notable increase in 527 

uncertainty with smaller ensemble sizes and longer lead times. Specifically, the 3-days lead time 528 

exhibits a broad confidence interval, indicating higher uncertainty. However, this study 529 

underscores the critical role of ensemble size in probabilistic ensemble simulation, with both 530 

small and large member ensembles yielding similar results. The analysis demonstrates that 531 

ensembles with lead times ranging from 1 day to 3 days provide comparable statistics, 532 

suggesting reliable flood extent and depth predictions three days in advance. This analysis 533 

underscores the reliability of flood extent predictions three days before landfall, particularly 534 

beneficial for preparedness and response efforts. Sensitivity studies on ensemble size and lead 535 

times provided valuable insights into forecasting precision. Ensemble approaches demonstrated 536 

better performance (relative to a single deterministic approach) across different lead times, 537 

contributing to enhanced accuracy and reliability in hurricane forecasting methodologies. 538 

The utilization of reduced-complexity model-based probabilistic modeling systems facilitated 539 

rapid predictions while efficiently managing computational resources with up to 1,000 members 540 

of ensemble simulations in 1.9 days (e.g., with ~100 member ensembles totaling ~ 4 hour). 541 

Depending on specific requirements and computational constraints, the choice of ensemble size 542 

can be varied, offering a balance between accuracy and efficiency. Overall, our study highlights 543 

the effectiveness of ensemble approaches in improving model accuracy and reliability, offering 544 
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valuable insights into flood dynamics and enhancing preparedness and response efforts for 545 

water-related events.  546 
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Figures  794 

 795 

 796 
Fig. 1. Probabilistic modeling framework for storm surge and compound flooding at the regional scale. 797 

Acronym – Super-Fast INundation of CoastS (SFINCS), National Land Cover Database (NLCD), Global 798 

Curve Number (GCN).    799 
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 800 
Fig. 2. a) Model extent and boundaries, including the watershed, nine upstream boundaries (R1: Clear 801 

Creek, R2: Sims Bayou, R3: Brays Bayou, R4: White Oak Bayou, R5: Little White Oak, R6: Green Bayou, 802 

R7: West Fork of San Jacinto River, R8: Cedar Bayou, R9: Trinity River). The best track of Hurricane Ike 803 

2008 is shown with the time (mm.dd.hh). The observation stations used in this study include NOAA tide 804 

gages (denoted as A1~A6), and USGS gage-height stations (denoted as G1~G6), b) Maps for digital 805 

elevation model (DEM) bathymetry, c) global curve number (GCN), and d) National Land Cover 806 

Database (NLCD) Manning bottom frictions.  807 
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 808 
Fig. 3. Generation of ensemble wind-pressure field, rainfall and upstream river discharge. Ensemble 809 

wind-generations with different lead-times (1-day, 2-days, 3-days before) of Ike landfall.  810 
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 811 
Fig. 4. Comparisons of precipitation rates (mm/hr) between Interagency Performance Evaluation Task 812 

Force (IPET) method and other reanalysis data, during Hurricane Ike (09/03/2008-09/15/2008). Please 813 

see Fig. 2 for site locations.  814 
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 815 
Fig. 5. Comparisons of water levels and winds speeds and directions at six NOAA stations (A1: 8770971 816 

Rollover Pass TX, A2: 8770613 Morgans Point Barbours Cut TX, A3: 8770777 Manchester TX, A4: 817 

8771450 Galveston Pier 21 TX, A5: Galveston Bay Entrance, North Jetty TX, A6: 8771013 Eagle Point, 818 

Galveston Bay TX ) and hydrographs at six USGS gage-height stations (labeled A1-A6: NOAA, G1-G6: 819 

USGS stations in Fig. 2). Error statistics indicate: deterministic- case / ensemble (1,000, 189, 81) 820 

average.  821 
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 822 

Fig. 6. Comparisons of flood-inundation depth during Hurricane Ike: a) Inundation depth (ft) from 823 

Harris County Flood Control District, b) Inundation estimate (ft) from NOAA, c) SFINCS modeled flood-824 

inundation depth (m): deterministic scenario, d) ensemble (mean) scenario, e) Differences between 825 

ensemble mean and deterministic scenarios in SFINCS showing lower depths in the ensemble, 826 

particularly near the coast and in the Trinity River Basin.  827 
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 828 

Fig. 7. Comparisons of the maximum flooding depth from ensemble members, ensemble-mean, and 829 

deterministic cases.  830 
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 831 

Fig. 8. Comparison of water levels at the NOAA stations (A1 through A6) from different ensemble sizes: 832 

NOAA observed data depicted in black, tidal signal in blue, deterministic case in red, ensembles visually 833 

filled in pink, and ensemble mean in green.  834 
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 835 

Fig. 9. Comparison of hydrographs at the USGS stations (G3 and G5): USGS data depicted in black, 836 

deterministic case in red, ensembles visually filled in pink, and ensemble mean: 1,000, 189 and 81 837 

presented in green, cyan and magenta, respectively.  838 
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 839 

Figure 10. A comprehensive comparison of flooding probability with different ensemble sizes: > 1 m, >2 840 

m, and > 3 m flooding during Hurricane Ike.  841 
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 842 

Fig. 11. Comparison of water levels at the NOAA stations (A1 through A6) with different lead time of Ike 843 

landfall: NOAA data depicted in black, tidal signal in blue, deterministic case in red, ensembles visually 844 

filled in pink, and ensemble mean presented in green.  845 
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 846 

Fig. 12. Comparison of hydrographs at the USGS stations (G3 and G5): USGS data depicted in black, 847 

deterministic case in red, ensembles visually filled in pink, and ensemble mean: 3-days, 2-days and 1-day 848 

before Ike landfall presented in green, cyan and magenta, respectively.  849 
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 850 

Fig. 13. Comparison of flooding probability with different lead times: > 1 m, 2 m, and 3 m flooding 851 

during Hurricane Ike.  852 
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 853 
Fig. 14. SFINCS water level results at station A3: 1,000, 189, and 81 ensembles; 3-days, 2-days, and 1-854 

day before landfall. Deterministic case in red; ensemble mean in green; tidal signal in blue; NOAA 855 

station data in black; the mint-green band is the ensemble members; the pink band is the 95% CI.  856 
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 857 

Fig. 15. Maps of uncertainty bandwidth within 95% confidence interval for Hurricane Ike: across 858 

different ensemble sizes (1,000, 189, 81) and different lead times (3-days, 2-days, 1-day) before landfall.  859 
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Tables  860 

 861 

Table 1. Summary of the combination of ensembles in winds, pressure, precipitation and river discharges. 862 

Vmax is the maximum wind speed (intensity). 863 

Cases Total Ensemble 

Number of Cross 

Track Error 

(CTE) 

Number of Along 

Track Error 

(ATE) 

Number of Vmax River Streamflow 

Case 1 1,000 8 5 5 5 

Case 2 189 7 3 3 3 

Case 3 81 3 3 3 3 

Total 1,270 1-day +  (2-days, 3-days before landfall) using Case 3 = 1,270 + 2× 81 = 1,432 

  864 
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Table 2. Summary of skill scores in different ensemble members (RMSE, correlation coefficient, mean 865 

absolute error, refined index of agreement) for water levels from NOAA stations, hydrographs from 866 

USGS stations, including station labels. 867 

 
NOAA Stations - Water Level (m) USGS Stations – Hydrograph (m) 

A1 A2 A3 A4 A5 A6 G1 G2 G3 G4 G5 G6 

Deter-

ministic 

RMSE 0.22 0.16 1.11 0.15 0.11 0.14 0.45 1.38 2.05 2.48 1.90 1.36 

CC 0.94 0.94 0.82 0.98 0.98 0.98 0.90 0.84 0.90 0.89 0.79 0.98 

MAE 0.16 0.12 0.48 0.11 0.09 0.11 0.22 0.96 0.90 2.09 1.27 1.31 

RIA 0.71 0.79 0.58 0.87 0.85 0.89 0.74 0.48 0.67 -0.17 0.42 0.45 

Mean  

Ens-81 

RMSE 0.17 0.15 0.4 0.14 0.11 0.17 0.6 1.05 1.41 2.2 1.46 1.34 

CC 0.96 0.94 0.91 0.97 0.98 0.98 0.78 0.89 0.93 0.92 0.83 0.98 

MAE 0.14 0.12 0.24 0.1 0.09 0.13 0.25 0.87 0.67 1.97 1.08 1.27 

RIA 0.75 0.79 0.78 0.87 0.84 0.87 0.7 0.54 0.76 -0.12 0.51 0.47 

Mean 

Ens-189 

RMSE 0.19 0.15 0.51 0.13 0.11 0.16 0.47 1.10 1.52 2.25 1.53 1.34 

CC 0.96 0.95 0.88 0.98 0.98 0.98 0.74 0.87 0.92 0.92 0.83 0.98 

MAE 0.15 0.12 0.28 0.09 0.09 0.13 0.22 0.88 0.71 2.00 1.11 1.28 

RIA 0.73 0.79 0.75 0.88 0.84 0.87 0.73 0.53 0.75 -0.13 0.50 0.47 

Mean 

Ens-1000 

RMSE 0.19 0.15 0.45 0.13 0.11 0.16 0.47 1.15 1.49 2.28 1.47 1.40 

CC 0.96 0.95 0.90 0.98 0.98 0.98 0.74 0.86 0.93 0.90 0.85 0.97 

MAE 0.14 0.12 0.26 0.09 0.09 0.13 0.22 0.92 0.69 2.03 1.09 1.32 

RIA 0.74 0.79 0.77 0.88 0.84 0.87 0.74 0.51 0.75 -0.15 0.51 0.45 

  868 
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Table 3. Summary of skill scores in different lead time of landfall (root mean square error (RMSE), 869 

correlation coefficient (CC), mean absolute error (MAE), refined index of agreement (RIA)) for water 870 

level from NOAA stations, hydrographs from USGS stations, including station labels. 871 

Ensemble 81 
NOAA Stations - Water Level (m) USGS Stations - Hydrograph 

A1 A2 A3 A4 A5 A6 G1 G2 G3 G4 G5 G6 

3-days 

before 

landfall 

RMSE 0.19 0.15 0.49 0.13 0.11 0.16 0.49 1.09 1.50 2.24 1.52 1.34 

CC 0.96 0.95 0.88 0.98 0.98 0.98 0.71 0.88 0.92 0.91 0.83 0.98 

MAE 0.15 0.12 0.27 0.09 0.09 0.12 0.23 0.88 0.70 1.99 1.10 1.27 

RIA 0.73 0.79 0.76 0.88 0.84 0.87 0.73 0.53 0.75 -0.13 0.50 0.47 

2-days 

before 

landfall 

RMSE 0.19 0.15 0.51 0.13 0.11 0.16 0.56 1.05 1.41 2.20 1.47 1.33 

CC 0.96 0.94 0.90 0.97 0.98 0.98 0.75 0.89 0.93 0.92 0.83 0.98 

MAE 0.14 0.12 0.25 0.10 0.09 0.13 0.23 0.87 0.67 1.97 1.08 1.27 

RIA 0.74 0.79 0.78 0.88 0.84 0.87 0.73 0.54 0.76 -0.12 0.51 0.47 

1-day 

before 

landfall 

RMSE 0.17 0.15 0.4 0.14 0.11 0.17 0.6 1.05 1.41 2.2 1.46 1.34 

CC 0.96 0.94 0.91 0.97 0.98 0.98 0.78 0.89 0.93 0.92 0.83 0.98 

MAE 0.14 0.12 0.24 0.1 0.09 0.13 0.25 0.87 0.67 1.97 1.08 1.27 

RIA 0.75 0.79 0.78 0.87 0.84 0.87 0.7 0.54 0.76 -0.12 0.51 0.47 

 872 


