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Abstract

Deep learning (DL) phase picking models have proven effective in processing large volumes of seismic data, including success-

fully detecting earthquakes missed by other standard detection methods. Despite their success, the applicability of existing

extensively-trained DL models to high-frequency borehole datasets is currently unclear. In this study, we compare four es-

tablished models (GPD, U-GPD, PhaseNet and EQTransformer) trained on regional earthquakes recorded at surface stations

(100 Hz) in terms of their picking performance on high-frequency borehole data (2000 Hz) from the Preston New Road (PNR)

unconventional shale gas site, in the United Kingdom (UK). The PNR-1z dataset, which we use as a benchmark, consists of

continuously recorded waveforms containing over 38,000 seismic events previously catalogued, ranging in magnitudes from -2.8

to 1.1. Remarkably, three of the four DL models recall a good fraction of the events and two might satisfy the monitoring

requirements of some users without any modifications. In particular, PhaseNet and U-GPD demonstrate exceptional recall rates

of 95% and 76.6%, respectively, and detect a substantial number of new events (over 15,800 and 8,300 events, respectively).

PhaseNet’s success might be attributed to its exposure to more extensive and diverse instrument dataset during training, as

well as its relatively small model size, which might mitigate overfitting to its training set. U-GPD outperforms PhaseNet during

periods of high seismic rates due to its smaller window size (400-samples compared to PhaseNet’s 3000-sample window). All

models start missing events below Mw -0.5, suggesting that the models could benefit from additional training with microseismic

datasets. Nonetheless, PhaseNet may satisfy some users’ monitoring requirements without further modification, detecting over

52,000 events at PNR. This suggests that DL models can provide efficient solutions to the big data challenge of downhole mon-

itoring of hydraulic-fracturing induced seismicity as well as improved risk mitigation strategies at unconventional exploration

sites.
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SUMMARY1

Deep learning (DL) phase picking models have proven effective in processing large volumes of2

seismic data, including successfully detecting earthquakes missed by other standard detection3

methods. Despite their success, the applicability of existing extensively-trained DL models to4

high-frequency borehole datasets is currently unclear. In this study, we compare four estab-5

lished models (GPD, U-GPD, PhaseNet and EQTransformer) trained on regional earthquakes6

recorded at surface stations (100 Hz) in terms of their picking performance on high-frequency7

borehole data (2000 Hz) from the Preston New Road (PNR) unconventional shale gas site,8

in the United Kingdom (UK). The PNR-1z dataset, which we use as a benchmark, consists9

of continuously recorded waveforms containing over 38,000 seismic events previously cata-10

logued, ranging in magnitudes from -2.8 to 1.1. Remarkably, three of the four DL models recall11

a good fraction of the events and two might satisfy the monitoring requirements of some users12

without any modifications. In particular, PhaseNet and U-GPD demonstrate exceptional recall13

rates of 95% and 76.6%, respectively, and detect a substantial number of new events (over14

15,800 and 8,300 events, respectively). PhaseNet’s success might be attributed to its exposure15

to more extensive and diverse instrument dataset during training, as well as its relatively small16
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model size, which might mitigate overfitting to its training set. U-GPD outperforms PhaseNet17

during periods of high seismic rates due to its smaller window size (400-samples compared to18

PhaseNet’s 3000-sample window). All models start missing events below Mw -0.5, suggesting19

that the models could benefit from additional training with microseismic datasets. Nonetheless,20

PhaseNet may satisfy some users’ monitoring requirements without further modification, de-21

tecting over 52,000 events at PNR. This suggests that DL models can provide efficient solutions22

to the big data challenge of downhole monitoring of hydraulic-fracturing induced seismicity23

as well as improved risk mitigation strategies at unconventional exploration sites.24

Key words: Induced seismicity – Machine learning – Earthquake monitoring and test-ban25

treaty verification – Neural networks, fuzzy logic – Computational seismology – Downhole26

methods.27

1 INTRODUCTION28

Hydraulic-fracturing induced seismicity (HFIS) can pose serious risks to a country’s infrastruc-29

ture, energy security and communities (Li et al., 2019; Atkinson et al., 2020; Schultz et al., 2020).30

Examples of significant HFIS include the 2011 moment magnitude Mw 4.8 Eagle Ford earth-31

quake in Texas, United States (Frohlich & Brunt, 2013), the 2016 Mw 4.1 Fox Creek earthquake32

in Alberta, Canada (Schultz et al., 2017), and the 2017 Mw 4.7 Changning earthquake in South33

Sichuan, China (Lei et al., 2017). The risks extend to wastewater disposal sites (Chen et al., 2017),34

enhanced geothermal sites (Grigoli et al., 2018) and potentially carbon capture and storage (CCS)35

sites (Verdon & Stork, 2016).36

37

Microseismic monitoring of HFIS by operators is critical for potential risk mitigation measures38

and is a legal requirement in many countries (e.g., Wong et al., 2015; Kao et al., 2016; Clarke et al.,39

2019). In addition, high resolution datasets of small events can lead to a better understanding, mod-40

elling and forecasting of the mechanisms and hazards of HFIS (e.g., Eyre et al., 2019; Kettlety &41

Verdon, 2021; Mancini et al., 2022). To that end, arrays of high-frequency geophones installed42

in boreholes close to stimulation wells are particularly useful for detecting and characterising the43
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quickly attenuating high-frequency content of small events (Klinger & Werner, 2022; Holmgren44

et al., 2023).45

46

However, borehole arrays with high sampling frequencies can generate substantial volumes of47

data, as monitoring arrays may include tens to hundreds of seismic stations. Examples of large48

borehole datasets include the ToC2ME dataset in Fox Creek, Alberta (Eaton et al., 2018), the49

Horn River basin dataset in British Columbia, Canada (Verdon & Budge, 2018), and the FORGE50

geothermal experiment dataset in Utah, United States (Shi et al., 2022). Processing large datasets51

requires significant time and costly computational resources, posing an issue in generating event52

catalogues that are crucial for informing our understanding of subsurface activities, especially in53

real-time.54

55

Deep learning (DL) phase pickers offer a solution to efficiently picking seismic events in large56

volumes of continuous seismic data. Perol et al. (2018), Ross et al. (2018), Zhu & Beroza (2019)57

and Mousavi et al. (2020) demonstrated that DL models can pick events more efficiently than58

standard approaches and human analysts. Specifically, DL neural networks such as GPD (Ross59

et al., 2018), U-GPD (Lapins et al., 2021), EQTransformer (Mousavi et al., 2020) and PhaseNet60

(Zhu & Beroza, 2019) have undergone extensive training to proficiently pick seismic phases within61

large datasets. Moreover, DL phase pickers have detected new events overlooked by conventional62

methods, thereby contributing, for instance, to uncovering the complexities of fault structures (Tan63

et al., 2021) and earthquake swarm dynamics, providing new insights into aseismic crustal pro-64

cesses (Ross & Cochran, 2021).65

66

The aim of this paper is to assess the performances of various existing DL models when picking67

microseismic phases in high-frequency borehole data without training. Most existing DL models,68

including GPD, U-GPD, EQTransformer and PhaseNet,are trained using 100 Hz data collected69

from surface seismic stations. These training sets mainly consist of larger, regional-sized earth-70

quakes (Mw > 0) but also encompass a number of smaller, local earthquakes (Mw < 0). However,71
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Figure 1. A geographical map showing the (A) plan view of the Preston New Road unconventional shale

gas exploration site and a (B) 3-D section of the site including seismicity (coloured circles), geophones (red

triangles), stages (black diamonds) on the PNR-1z (green line) and PNR-2 (black line) wells.

it is not clear that the models can generalise to detect microseismicity in high frequency data in a72

borehole setting. In this study, we apply and compare these models using the Preston New Road 1z73

(PNR-1z) shale gas exploration dataset (Clarke et al., 2019), where the largest earthquake recorded74

was of magnitude Mw 1.1. This benchmark catalogue contained over 38,000 events recorded on75

an array of 24 borehole geophones during injection activities at a sampling rate of 2000 Hz (Fig.76

1). Furthermore, we assess whether DL models identify additional microseismic events, and we77

compare each model in terms of phase detection and picking ability.78

79
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Table 1. The DL phase pickers used in this study.

Models GPD U-GPD EQTransformer PhaseNet

Input window size 400 400 6000 3000

Magnitude range -0.81 to 5.7 -0.81 to 5.7 and -0.4 to 3.6 -0.5 to 7.9 0 to 5

Architecture type CNN + FCNN U-Net CNN + LSTM + attention U-Net

N of params 1,741,003 672,419 376,935 269,675

2 DL MODELS80

We evaluate four DL models (Table 1): the Generalized Seismic Phase Detection (GPD) model by81

Ross et al. (2018), the U-GPD model by Lapins et al. (2021), EQTransformer (EQT) by Mousavi82

et al. (2020) and PhaseNet by Zhu & Beroza (2019). We select these models because they have83

publicly available code, working GitHub repositories, and the models were extensively trained on84

large datasets for generalised phase picking. Additionally, a previous study by Münchmeyer et al.85

(2022) found that GPD, PhaseNet and EQT were the best performing models for earthquake de-86

tection, phase classification and onset time determination for regional and teleseismic datasets (not87

including downhole, high frequency datasets). These models, however, were primarily trained on88

100 Hz 3-component seismograms from surface seismic stations and were not specifically trained,89

nor tested, on high-frequency borehole datasets.90

91

GPD is a convolutional neural network (CNN) trained on 4.5 million waveforms (1.5 million92

each for P, S and noise). Ross et al. (2018) trained this model with magnitudes M from -0.81 to 5.793

recorded by the Southern California Seismic Network. The model uses a 400-sample sliding win-94

dow on continuous three component data to input into convolutional layers for feature extraction.95

These extracted features are then input into a fully connected neural network (FCNN) for phase96

classification. The model outputs single class probability values for P, S and noise (i.e., model out-97

put dimensions are 3 × 1) for each window. When the phase probability is above a user-defined98

threshold, a phase is declared in the middle of the window.99

100

U-GPD is a DL model that modifies the GPD model by using a fully convolutional U-Net101
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architecture and fine-tuning the base GPD weights with an additional dataset. Lapins et al. (2021)102

fine-tuned the weights using a limited volcano-seismic dataset (from the Nabro volcano, Eritrea)103

sampled at 100 Hz. The Nabro dataset contains 2,498 event waveforms with local magnitudes104

ranging from -0.4 to 3.6. U-GPD uses the same input as GPD (3 × 400 sliding window) but105

replaces the FCNN with additional convolutional layers. The new layers were initialised with ran-106

domised weights and then trained on the Nabro dataset. As U-GPD is a fully-convolutional model,107

its output differs from GPD as U-GPD estimates a class probability for each sample in the window108

(i.e., model output dimensions are 3 × 400). The probability traces help the network pick more109

precisely as it removes the ambiguity arising from a single class prediction over an entire signal110

window (Lapins et al., 2021).111

112

The PhaseNet model, similar to U-GPD, is a U-Net fully convolutional neural network de-113

veloped by Zhu & Beroza (2019). However, unlike GPD and U-GPD, PhaseNet uses a larger114

3000-sample sliding window as its input. PhaseNet’s training dataset consists of over 600,000115

event waveforms from the Northern California Earthquake Data Center. Their training dataset116

comprises a magnitude range from M 0 to 5. A unique characteristic of this training dataset is that117

Zhu & Beroza (2019) included different types of instruments (e.g. accelerometers, high gain and118

low gain seismometers) during training, which might help generalise its ability to phase pick in119

different data.120

121

EQT is an attention-based DL model trained using 1 million labelled earthquake waveforms122

and 300,000 noise waveforms Mousavi et al. (2020) from the STanford EArthquake Dataset (STEAD),123

a global dataset of earthquakes. Out of the models in this study, EQT has the largest data in-124

put window of 6000 samples. The model has an encoder, which extracts high level representa-125

tions of the data from the continuous seismic signals and three decoder branches that use these126

data representations to generate three probability traces (for the presence of an earthquake, the127

P-wave and the S-wave, respectively). EQT consists of convolutional layers (CNN), long-short-128

term-memory (LSTM) layers and a hierarchical attention mechanism. EQT’s attention mechanism129
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visually weights sections of data in its 6000-sample input window both globally (full waveform)130

and locally (where it expects the P and S phase). Earthquake magnitudes in STEAD range from131

M -0.5 to 7.9. In the EQT repository, there are two versions of this model. For our study, we use132

the original EQT version that has been optimised to maximise the number of detections.133

134

Applying these diverse DL models allows for a comprehensive comparison considering varia-135

tions in model architecture, input window sizes, training data and the range of trained earthquake136

magnitudes (Table 1). This assessment aims to identify the model specifications that are most ad-137

vantageous for monitoring microseismicity in high frequency borehole data.138

139

3 DATA140

3.1 Preston New Road (PNR-1z) continuous downhole dataset141

Cuadrilla Resources Ltd. monitored the hydraulic stimulation of the PNR-1z well using a borehole142

geophone array in the PNR-2 well (Clarke et al., 2019). Figure 1 shows the downhole array of 24143

Avalon Geochain Slimline 15 Hz geophones that continuously recorded seismic data of the opera-144

tions that took place from 15 October to 17 December 2018. Hydraulic fracturing operations were145

carried out from 15 October to 2 November, followed by an injection hiatus from 3 November to146

7 December 2018 and then further stimulations from 8 to 17 December 2018.147

148

The PNR-1z continuous downhole dataset was recorded at 2000 Hz from 8 October to 18 De-149

cember 2018 and a total data volume of 3.92 Tb was acquired, available in 16-second SEG-Y files.150

Each SEG-Y file contains 3-component seismic data for 24 stations, resulting in 72 traces per file.151

These continuous traces serve as input to the DL models.152

153

From visual inspection of the waveforms, we observe that the amplitudes of events above mo-154

ment magnitude Mw -0.237 are clipped because the operators set a high gain on the recording155

instruments to detect more microseismic events (James Verdon, personal communication). Al-156
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though a lot of the larger events were clipped, this should not greatly affect phase detection as DL157

models primarily focus on the onset of phase arrivals (Ross et al., 2018). Still, we assess whether158

clipping affects phase detection by the deep learning models.159

160

3.2 Existing catalogue and injection data161

We use the Coalescence Microseismic Mapping (CMM) catalogue as a benchmark to compare162

with the other DL models. Schlumberger (Cuadrilla’s contracted processor) produced an event163

origin time catalogue, with locations and magnitudes, from the PNR-1z dataset, using proprietary164

code based on the CMM method (Drew et al., 2013). The CMM catalogue contains event origin165

times and locations of a total of 38,452 events with magnitudes that span -2.839 ≤ Mw ≤ 1.155.166

Fig. 2 shows the events and their magnitudes overlaid with the injection rate data over time.167

168

The CMM method is a computationally intensive multi-station simultaneous detection and169

location approach that generates characteristic functions for each station using STA/LTA ratios170

(Drew et al., 2013). The migration of signals from multiple stations to a coherent source in time171

and space makes CMM a robust method for earthquake detection, with the added advantage of si-172

multaneously determining hypocentres. While it has been proven to be a robust method for micro-173

seismic monitoring (Smith et al., 2015), it is constrained by the sliding time-windows it employs174

on continuous data, detecting only the largest event (energy maxima) within a fixed time window.175

We set the CMM as a good benchmark for these single station DL models while also exploring176

whether they can outperform the CMM method and provide a more efficient alternative for moni-177

toring microseismicity.178

179
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Figure 2. Temporal plot of the injection rates (blue line, left axis) and CMM catalogued events (black

circles) with their respective moment magnitudes, Mw, (right axis) for (A) the whole duration of the PNR-

1z continuous downhole data, (B) during a period of high injection rates (11 December 2018, 9am-10am)

and (C) during a period without injection (11 December 2018, 11am-12pm). The largest earthquake (Mw

1.1) of the catalogue is shown as a yellow star.

4 METHODS180

4.1 Data pre-processing181

We pre-process the raw continuous data by rotating the waveforms from their respective station182

orientations to the E, N and Z components. For each model’s input, we then apply a 50 Hz But-183

terworth high-pass filter. This ensures that the pre-trained models can pick microseismic phases184

within the noisy downhole data as microseismicity typically has low signal-to-noise ratio (SNR).185

We choose a 50 Hz high-pass filter by examining the Fast Fourier Transform (FFT) event spectra186

on the geophones closest to (deepest) and farthest from (most shallow) the source (perforations in187

the PNR-1z well).188

189
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4.2 Classification test190

We first compare each model’s ability to classify seismic phases (P, S and noise) in the PNR-1z191

continuous downhole waveform data from single stations, which we refer to as phase classification192

tests. Our test dataset comprises 750 sections of data from 250 random events (i.e., 250 P, 250 S193

and 250 noise) on random stations. We then record the class labels produced by each model for194

each section. Each section is a 3-second (6000 sample) window of 3-component continuous data195

containing a phase arrival in the window. We filter, visually inspect, and manually select each sec-196

tion from the CMM catalogue. We also randomly select stations to avoid bias, especially as some197

stations are less noisy or closer to events than other stations (e.g., shallow stations are further away198

from the events). If a model produces more than one label in the section, we record the class label199

closest to the manually determined pick time.200

201

We calculate recall, precision and F1-scores for each phase as well as overall metrics to assess202

the classification performance of each model. For overall recall and precision, we compute the203

average values for each class (P, S, and noise). Overall F1-score is calculated by using the average204

P and R values.205

206

Recall R measures the completeness of positive predictions and is calculated as207

208

R =
(TP )

(TP + FN)
(1)209

where TP is the number of true positives and FN is the number of false negatives.210

211

For example, when calculating the recall value for the ‘P’ phase of a model, we determine that:212

true positives (TP) are the number of ‘P’ labels correctly identified as ‘P’; false negatives (FN) are213

the number of ‘P’ labels that the model misclassified as ‘S’ or ‘noise’; and their sum (TP + FN) is214

the total number of actual ‘P’ labels in the test dataset, which is fixed at 250.215

216
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R values close to 1 signify that the model produces a low number of false negatives. For ex-217

ample, a high R value for the P phase shows that the model does not miss a lot of P labels that are218

in the test set.219

Precision P measures the accuracy of positive predictions by the model and is calculated as220

221

P =
(TP )

(TP + FP )
(2)222

where FP is the number of false positives. When calculating the precision value for the ‘P’ phase223

of a model, we define: true positives (TP) are the number of ‘P’ labels correctly identified as ‘P’;224

false positives (FP) are the number of ‘S’ or ‘noise’ labels that the model misclassified as ‘P’; their225

sum (TP + FP) is the total number of ‘P’ classifications that the model predicted in the test dataset.226

227

High precision P (close to 1) signifies a low number of false positive classifications (i.e., a228

high P shows that the model does not falsely classify S or noise labels as P phases). The F1-score229

weighs the P and R values equally and represents the harmonic mean of both values. F1-scores230

close to 1 suggest a good balance of high P and R for the model. The F1-score is given by231

232

F1 =
2TP

2TP + FP + FN
= 2× P ×R

P +R
(3)233

4.3 Catalogue comparison234

4.3.1 PNR-1z downhole dataset235

To complement the phase classification tests, we also compare the origin time catalogue generated236

from arrival picks of each model when applied to the PNR-1z continuous downhole dataset. The237

initial (CMM) method catalogue serves as our benchmark. We analyse the proportion of events238

recalled from the CMM catalogue, new candidate seismic events (i.e., prior to quality control of239

the events) and the events missed by the DL models.240

241

Our workflow is structured to group phase picks into events, associate phases (P to S) and then242
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locate events to produce an origin time catalogue. We start by constructing an event catalogue243

using model phase picks across multiple stations. Here, we define a candidate seismic event as a244

group of P phase picks from at least four different stations within a fixed 0.2 second time window.245

We choose a 0.2 second window because it corresponds to the longest travel time for a phase of246

the same event to travel from one end to the other end of the borehole array, given the available247

velocity model (https://github.com/cindylimsy/PNR run). We set the event defining threshold to248

at least four different stations because it is the typical minimum number of stations required to249

constrain location in time and space.250

251

Next, we employ a straightforward approach for P to S phase association. We impose a fixed-252

time window from the initial P arrival time at each station. Specifically, we use a time difference253

of 0.3 seconds. This assumes that any S phase that is picked within the time range tp < ts ≤ tp +254

0.3 will be associated with the initial P pick. The fixed time difference of 0.3 seconds theoretically255

corresponds to a 1.8 km radius. This time window for phase association adequately encompasses256

all the events in the target area (see Fig. S1, Supporting Information). Finally, we use the Non-257

Linear Location (NonLinLoc) algorithm (Lomax et al., 2000) to obtain origin times. For the full258

workflow, we conduct the model tests with one GeForce GTX 1080 GPU on a cluster node with259

one CPU.260

261

Each DL model has a user-defined detection threshold parameter. When the probability of a262

phase (P or S) crosses that threshold, the model picks and labels the arrival in time. As Zhu &263

Beroza (2019) recommended the lowest threshold (0.3) compared to the other models, we set the264

same probability threshold for most of the models (GPD, U-GPD and PhaseNet). After initial pa-265

rameter testing, we find that EQT requires a very low threshold to be able to detect any events on266

the PNR-1z dataset, so we use a threshold of 0.01 for EQT.267

268

We compare the event origin times derived from DL model phase picks with the CMM cata-269

logue. We assume that DL events within a window of ± 0.25 seconds of an origin time listed in the270

https://github.com/cindylimsy/PNR_run
Supplementary.tex
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benchmark (CMM) catalogue are considered matches. We label any event that is not a match in271

the CMM catalogue as a new candidate event. In Fig. S2 (Supporting Information), we show that272

the small origin time residuals between the PhaseNet and CMM catalogues validate the adequacy273

of the ± 0.25-second window for matching DL phase pick-derived event origin times with the274

catalogued events.275

276

4.3.2 Selected time series277

To provide a more detailed comparison, we focus on two different periods of interest to assess278

each model: on 11 December 2018, from 9am to 10am, and from 11am to 12pm. We select an279

hour of data when the injection rate and seismicity were high (9am to 10am, Fig. 2b) and an hour280

when the seismicity was relatively quiet and injection was paused (11am to 12pm, Fig. 2c). We281

can thus observe which models are able to pick phases during a very active period (i.e. with high282

event rates) and during a quieter period of seismicity. The 11am to 12pm period also contains the283

largest (Mw 1.1) earthquake in the dataset. We additionally use this period to assess whether the284

models detect more aftershocks after the Mw 1.1 event.285

286

4.4 Candidate seismic event validation using LinMEF: a Linear Moveout Event Filter287

As DL models have demonstrated the ability to detect a substantial number of new events (Beroza288

et al., 2021; Garcı́a et al., 2022), we develop an automated validation method to ensure that the289

new events originate from our target area, i.e., from within the zone of the hydraulic fracturing290

stimulations. We visually evaluate the subsets of the new events to ensure that we do not exclude291

potentially interesting events (see Results section: 5.2)292

293

Our method exploits the expected move-out of phase arrivals across a near-linear borehole ar-294

ray (Fig. 3). By imposing the near-linear moveout pattern, we filter the model detections (candidate295

events) to focus on events arriving from the PNR-1z well stimulations. This method leverages the296
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information gathered from multiple geophones, taking advantage of the wealth of data obtained297

from a borehole array of individual geophone observations. We restrict our approach to just the P298

picks of each new event, as the DL models picked more P phases compared to S phases.299

300

Because the hydraulic fracturing stimulations occur below the borehole array, we make two301

key assumptions: firstly, the P picks should exhibit moveout from the deepest to the most shallow302

geophone, and secondly, the P-wave velocity across the array should approximately be the velocity303

of a P-wave travelling through shale (4,700 m/s). These assumptions allow us to filter candidate304

events that deviate from the expected near-linear moveout, thereby retaining only the seismicity305

originating from the stimulated volume of rock (i.e., from the in-zone).306

307

To validate the thousands of new machine learning-picked detections, we utilise the above in-308

formation and apply a method we call the Linear Moveout Event Filter (LinMEF) to the seismic309

phase picks of each event. LinMEF is a simple and robust method consisting of three steps.310

311

Firstly, for each new event, we use the group of P picks across the borehole array associated312

with the specific event origin time. We obtain a list of time differences tdiff between each pick313

time in the group, tpick, and the earliest arrival time, t0:314

tdiff = tpick − t0 (4)315

When plotting each tdiff against each corresponding station depth, we observe that the data points316

roughly follow a straight line for events arriving from the in-zone. The inverse of this gradient is317

representative of the P-wave velocity.318

319

Secondly, after calculating tdiff from all available picks across the array for all events, we320

choose a random subset of 250 newly identified candidate events as our calibration dataset. We321

visually check the pick moveouts for each event and labelled this calibration dataset as either ’tar-322

get’ or ’non-target’ events depending on their moveout. ‘Target’ events refer to events that: have a323

near-linear moveout; arrive from the bottom to the top of the array; and have apparent velocities324
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Figure 3. (A) An example of a new event picked by PhaseNet with P (red) and S (green) arrival picks

arriving across the borehole array (geophones numbered on the side of each seismogram from 1 to 24).

The vertical blue line represents the event origin time. (B) Time differences between the earliest P arrival

pick time (t0) and each individual pick time (tpick) of the new event against station depth. We fit an L1-

norm best-fit line to the datapoints. (C) A histogram of estimated linear regression slopes (slowness) of 250

random new candidate seismic events. The target events (blue) and non-target events (orange) labelled from

manual visual inspection. The dotted lines represent the median value of the gradients for each label (target

and non-target HFIS).

close to the P-wave velocity in shale (4,700 m/s) shown in Fig. 3(a).325

326

‘Non-target’ events are candidate events that characteristically deviate from the ‘target’ events.327

We further discuss these non-target events in the Results section: 5.2.328

329
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Figure 4. The left column of panels shows the (A) overall precision, (C) overall recall and (E) overall F1-

scores of each model. The right column shows the individual P (pink), S (dark blue) and Noise (purple)

phases of the (B) precision, (D) recall and (F) F1-scores.

We use this dataset to constrain the range of gradients (i.e., the approximate inverse of P-wave330

velocity) of the P picks that belong to ’target’ and ’non-target’ labelled events. We estimate the L1-331

norm best-fit line of the arrival pick times across all stations for every event. The L1-norm reduces332

undesired effects from pick time outliers on the arrival time gradient estimates, as compared to333

the L2-norm. Fig. 3(c) shows that the linear regression slopes of ’target’ and ’non-target’ labelled334

events fall into a bimodal distribution.335

336

Lastly, we calculate the 90% range (using the 5th and 95th percentiles) of the resulting gra-337

dients around the ‘target events’ labelled distribution to define our event filter. We subsequently338

classify any new candidate events with a linear moveout slope within this 90% range as ‘target’339

events and any that fall outside this range as ‘non-target’ events.340

341
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5 RESULTS342

5.1 Picking assessment: classification test results343

We compute precision (P ), recall (R), and F1-scores from the confusion matrices of each model344

(see Supporting Information). The classification test results show that PhaseNet outperforms other345

models in terms of precision and recall (Fig. 4). Notably, EQT exhibits low P and R, resulting346

in the lowest F1-score, demonstrating a tendency to misclassify phases as noise. The U-GPD and347

GPD models have P and R values ranging between 0.44 and 0.64, implying occasional misclas-348

sifications. Overall, PhaseNet consistently demonstrates the highest P , R and F1-score values,349

highlighting its accuracy in classifying known seismic phases. Most models exhibited superior350

performance in classifying individual P phases compared to S phases (Fig. 4f). Higher F1-scores351

for P phase classifications also suggest that the DL models more successfully identified P phases352

than S.353

354

Visual inspection of PhaseNet’s phase misclassifications revealed heightened noise levels around355

the phase in the data or when a larger event was present within the normalised window, making356

the smaller magnitude target phase located in the middle of the window appear smaller and more357

challenging to detect.358

359

In terms of the picking precision of each model, PhaseNet consistently demonstrates the most360

precise and accurate picks (Fig. 5). In contrast, the GPD model exhibits less precise picking due to361

its output of a single phase probability value for each data window shift, leading to ambiguity in the362

arrival timing. The PhaseNet and U-GPD models, which follow a U-Net styled architecture, show363

precise picking with temporally continuous probability traces. Fig. 5 illustrates the phase arrival364

picks from each model, clearly indicating the precise phase picking by the U-GPD and PhaseNet365

models, while the GPD model produces imprecise picks. It should be noted that the EQT model,366

although capable of picking phases precisely, frequently misses phase arrivals in general.367

368
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Figure 5. Seismograms (Z component) of the same event across the borehole array from Stations 1 (top

row, most shallow) to 24 (bottom row, deepest) showing the phase classification and picking precision

with P picks (red vertical lines) and S picks (green vertical lines) from the (A) GPD, (B) U-GPD, (C)

EQTransformer and (D) PhaseNet models. The blue vertical line across all stations is the inferred event

origin time.

5.2 Characterisation of non-target events369

We observe that the DL models consistently detect events or phase arrivals that we do not believe370

to be induced seismic events associated with the injection. Figs. 5 and 6 illustrate the two types of371

candidate events detected, namely ’target events’ and ’non-target events’, respectively. The non-372

target events belong to at least four types of events that do not exhibit characteristics indicative of373
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Figure 6. Seismograms of the four types of non-target events: (A) ’zig-zag’, (B) ’tube waves 1’, (C) ’tube

waves 2’ and (D) ’emergent’ events across the borehole array from Stations 1 (top row, most shallow) to

24 (bottom row, deepest) showing the P picks (red vertical lines) and S picks (green vertical lines) from

PhaseNet. The blue vertical line across all stations is the inferred event origin time.

induced seismicity resulting from the hydraulic fracturing stimulations through the PNR-1z bore-374

hole. We label these signals as ‘zig-zag’ events, ‘tube waves 1’, ‘tube waves 2’ and ‘emergent’375

events. Through visual observations and event characterisation based on apparent velocities and376

angle of incidence, we determine that these signals are likely unrelated to our target events.377

378

‘Zig-zag’ events are waves that arrive from the opposite direction (from shallow to deep) com-379
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pared to induced seismicity (from deep to shallow). They have an average apparent velocity of380

7,500 m/s. This is significantly faster than the P-wave velocity in shale (4,700 m/s) and in the381

steel casing (4,500 m/s). Most of these events do not have S picks, and they we only occur during382

working hours, between 8am to 4pm.383

384

’Tube waves 1’ are low frequency and travel at an average apparent velocity of 1,445 m/s,385

which is slower than the P-wave velocity in shale but close to the velocity of P-waves in water386

(1,500 m/s). Tube waves are a product of Rayleigh waves interacting with the wellbore, propagat-387

ing along the walls of a fluid-filled borehole (Sheriff, 2002; Gadallah & Fisher, 2008).388

389

‘Tube waves 2’ are higher frequency tube waves that appear to arrive at the broadside of the390

borehole array and travel from between the geophones on the PNR-2 well throughout the array.391

They do not arrive at any particular single station and their average velocity is similar to that of392

tube waves (1,445 m/s).393

394

The ‘emergent’ events, which occur at high frequencies and do not follow a consistent move395

out, present a unique challenge. We observe a gradual energy buildup in these arrivals, rendering396

it challenging for the models to precisely identify the phase onset. The emergent nature of these397

events complicates picking, which results in an inconsistent moveout pattern. These events ar-398

rive almost instantaneously, though the arrival patterns vary randomly along the array. In addition,399

both the frequency content and amplitude of these events deviate characteristically among the geo-400

phones. None of these events correspond to any catalogued regional earthquakes in the UK. Given401

the unusual observations, we conclude that these ‘emergent’ events are not HFIS.402

403

We visually label a random sample of 250 candidate seismic events detected by the best-404

performing DL model, PhaseNet. Our observations show that 48.4% (121) of these events were405

induced seismicity with a near-linear P-wave moveout (i.e., target events), while 40.8% (102) were406

‘zig-zag’, 2.8% (7) corresponded to ‘tube waves 1’ or ’tube waves 2’, and 2.4% (6) were ‘emer-407
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gent’ events. To verify the detection of HFIS using these DL models, we implement the Linear408

Moveout Event Filter (LinMEF) method (detailed in the Methods section: 4.4) to eliminate these409

non-target events from the DL event catalogues.410

411

5.3 Model catalogue comparison412

Fig. 7 shows that PhaseNet successfully recalls the most previously catalogued events (36,375413

events, 94.6%) from the full continuous dataset, missing only 5.4% (2077 events) of the CMM414

events. Additionally, PhaseNet detects the highest number of undetected events (+41.2%), corre-415

sponding to 15,835 new events after filtering out non-target events using LinMEF. Comparatively,416

U-GPD outperforms GPD as it recalls more catalogued events (76.6% and 59.5%, respectively)417

and detects more new events (8,302 events, +21.6% and 1,918 events, +4.99%, respectively). On418

the other hand, EQT struggles to detect events, identifying less than 1% of the CMM catalogue419

(392 events) and 8 new events.420

421

Most of the models begin to miss events at magnitudes below Mw -0.5 (Fig. 8). Additionally,422

we note the magnitude ranges for the recalled and missed events of each model. Fig. 8 shows that423

EQT was unable to detect events over the -3 ≥Mw ≥ 1 range, suggesting its limitation in recognis-424

ing microseismic phases within the higher frequency dataset. We also remark that the DL models’425

phase picks are not affected by clipping by visually checking the picks of 100 of the largest events426

with clipped amplitudes. The modelled P and S phase picks are still picked accurately and pre-427

cisely.428

429

Results from the selected hours show that during the injection period (Fig. 9), both PhaseNet430

and U-GPD successfully recall a majority (>90%) of the CMM catalogue, while also detecting the431

highest number of new events within the hour. During high injection rates, U-GPD detects more432

new events than PhaseNet, whereas the reverse is true during the quieter period. We also observe433

increases in seismicity rates during both selected hours for PhaseNet and U-GPD compared to the434
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Figure 7. A comparison of the total number of model event detections in the full continuous PNR-1z dataset,

including the new (yellow), recalled (blue) and missed (red) events. We filtered the new candidate seismic

events using the LinMEF method, so the cross-hatched yellow sections represent the number of non-target

events, and the non-hatched yellow sections illustrate the number of target events (i.e., QC’ed new events).

The annotations in squares refer to the percentage with respect to the total number of CMM-detected events.

CMM method.435

436

Figs. 10(b) and (d) demonstrate that PhaseNet outperforms U-GPD during the quieter period,437

with the exception of struggling to detect small events after the initial largest event when a cluster438

of aftershocks occurred. This suggests that PhaseNet’s performance is adversely affected by high439

seismicity rates. Furthermore, we notice that PhaseNet begins missing more small events during440

high seismic activity, likely due to the smaller amplitudes of these events as normalisation may be441

biased towards the increased presence of larger events.442

443
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Figure 8. Cumulative frequency of each model against magnitude for the recalled (solid lines) and missed

(dotted lines) events from the GPD (blue), U-GPD (red), EQT (green) and PhaseNet (orange) models com-

pared to the CMM (black) catalogue. We used the estimated magnitudes from the CMM catalogue so new

events are not included in this plot.

5.4 Model runtimes and computational efficiency444

We present the model runtime statistics and performance metrics based on one hour of continuous445

borehole data (Table 2). We use the NVIDIA Tesla K80 12 GB GPU on Google Colab for these446

tests. Our findings reveal that that all DL models take less time to process than the given data win-447

dow length (one hour of data). In ascending order, EQT, PhaseNet, GPD and U-GPD demonstrate448

processing speeds surpassing real time by 2.88, 3.72, 4.94 and 12.75 times faster, respectively.449

Although these figures might seem modest, it’s crucial to consider the high sampling frequency450

of our test data (2000 Hz). One hour of 2000 Hz data is equivalent to 20 hours of 100 Hz data.451

When scaled to standard 100 Hz data, the processing speed of the models are 57.6, 74.4, 98.8 and452

255 times faster, respectively. These results highlight the remarkable efficiency of these models,453

highlighting their suitability to real-time microseismic monitoring.454

455
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Figure 9. Temporal plots of the cumulative number of model detections (right y-axis) (A) across the PNR-

1z continuous dataset with injection rates overlaid (in grey, left y-axis) for PhaseNet (orange), U-GPD (red),

CMM (black), GPD (blue) and EQT (green). The solid lines represent the cumulative number of events in

the LinMEF-filtered catalogue whereas the dashed lines show the cumulative number of the pre-filtered

catalogue. Cumulative number for each model (B) during high injection rate and high event rate, and (C)

during no injection and when the largest PNR-1z event occurred. The inset list of models in (B) and (C)

represent the performance ranking of the DL models and CMM method.

Table 2. Model runtime statistics for GPD, U-GPD, EQTransformer and PhaseNet on Google Colab, using

an NVIDIA Tesla K80 12 GB GPU. These processing times are for one hour of PNR-1z data (2000 Hz),

which is equivalent to 20 hours of 100 Hz data. We also include results (recall rate and number of new

events) for the selected hour during high injection.

Models Time taken (24 stations) Data window length
Time taken Recall rate (n events) Number of new events

GPD 12 min 8.53 s 4.94 87.5% (863) 143 (+14.5%)

U-GPD 4 min 42.37 s 12.75 99.5% (981) 632 (+64.1%)

EQT 20 min 50.19 s 2.88 0.41% (4) 0

PhaseNet 16 min 5.88 s 3.72 91.6% (903) 396 (+40.2%)
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Figure 10. Time-magnitude plots of the high injection rate hour (A, C) and the quieter period (B, D) with

injection rates (black line, left axis) for the U-GPD (top row) and PhaseNet (bottom row) models. Missed

(red) and recalled (blue) events are plotted with their respective moment magnitudes, Mw (right axis). The

largest earthquake (Mw 1.1) is plotted as a star and is denoted with a dashed line.

6 DISCUSSION456

The results demonstrate the applicability of GPD, U-GPD and PhaseNet to high frequency bore-457

hole data, although to varying degrees. Our study shows that, in particular, PhaseNet outperforms458

the CMM method, as it recalls up to 95% of the catalogue and detected approximately 15,800459

new events. In total, PhaseNet detects over 52,000 target events. Although U-GPD and GPD de-460

tect fewer earthquakes than the CMM method, both DL models still identify a significant number461

of events within the dataset (over 37,800 and over 24,900 respectively). All models had no issue462

picking phases on amplitude-clipped events.463

464

In contrast, EQT might encounter challenges with its attention mechanism in effectively detect-465

ing events within the high frequency borehole data. This issue arises from the data representations466

learned by the deeper, more complex model and that may not generalise well to higher frequency467

data. The attention mechanism in EQT, which predicts the arrival of seismic phases after determin-468
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ing the presence of an earthquake, may face difficulties when the P and S phase arrive at different469

positions and appear differently in the 2000 Hz data compared to the 100 Hz training data. Conse-470

quently, the complex transformer-based EQT model struggles to interpret the data, resulting in its471

inability to detect events effectively.472

473

The precision of phase picking heavily depends on the network architecture. Models like U-474

GPD and PhaseNet, which utilise fully convolutional networks, provide more precise picks by475

leveraging higher resolution continuous probability phase traces. The pick precision of the GPD476

model is influenced by its combination of convolutional and fully connected neural networks,477

which output a single probability value per class for each data-window shift. Therefore, in GPD’s478

case, pick precision is significantly dependent on the size of the window shift across the data.479

480

PhaseNet outperforms other models in terms of precision, recall and F1-score for microseismic481

phase classification. It exhibits high metric scores for both P and S arrivals, while other models482

show inconsistencies in classifying P and S phases. GPD, U-GPD and EQT have better metric483

scores for classifying P phases compared to S phases due to S waves characteristically having484

lower signal-to-noise ratio.485

486

PhaseNet’s success on this dataset may be attributed to its exposure to different types of instru-487

ment data during training. The model’s training incorporated seismic data from several frequency488

bands and instruments (Zhu & Beroza, 2019), resulting in an apparently improved generalisation489

for phase picking in the HFIS setting. Furthermore, the relatively small model size of PhaseNet (10490

layers, 269,675 parameters) combined with a large training dataset reduces the risk of overfitting491

to its initial training set (623,054 training samples). Although U-GPD has a similar architecture492

and model size to PhaseNet (9 layers, 672,419 parameters), it displays signs of overfitting to the493

small volcanic dataset (in 100 Hz) used to fine-tune the model (Lapins et al., 2021). Overfitting494

can be mitigated through stronger data augmentation, such as resampling the training data to lower495

and higher sample rates to vary the number of samples between a P and S phase and expanding496



How well do DL pickers detect hydraulic-fracturing induced seismicity? 27

the training dataset to include more diverse events with different P to S time differences. Lastly,497

as the deepest of all models tested (56 layers, 376,935 parameters), EQT might be susceptible to498

overfitting because of its number of layers and the lack of data diversity of its original training set499

(1.3 million samples). The deep transformer-based model might have learned more complex and500

abstract features that is more tailored to the 100 Hz training data as the number of layers increase501

(Goodfellow et al., 2016) and therefore, EQT might struggle to recognise any extracted features in502

higher frequency data.503

504

As observed in Fig. 10, U-GPD performs better at picking events during high seismic rates505

due to its smaller window size (400 samples) compared to PhaseNet (3000 samples). This enables506

U-GPD to handle the presence of multiple events within the same temporal data window more507

effectively. Although PhaseNet struggles (relative to U-GPD) during higher event rates, it still de-508

tects more small events (Mw ≤ -2) than U-GPD overall (Fig. 10).509

510

The limitations of the CMM method become apparent when multiple events overlap within511

the same user-defined time window (see Fig. S3, Supporting Information). When there is more512

than one event within this window, CMM detects only the largest event based on energy maxima513

(Drew et al., 2013), potentially missing smaller events. Reducing the time step window in the514

CMM method could enhance its performance, but this would increase its computational intensity515

and overall cost, thereby limiting its feasibility.516

517

In contrast, DL models have the potential to pick out overlapping events (see Fig. S3, Support-518

ing Information). However, our current approach to phase association and event grouping lacks519

the sophistication needed to differentiate multiple closely arriving events within in a fixed time520

window. Future research should consider more advanced phase associators such as REAL (Zhang521

et al., 2019), an optimised grid-search algorithm, GaMMA (Zhu et al., 2022), which considers522

arrival time moveout and amplitude decay with distance or PyOcto (Münchmeyer, 2023), a 4D523

space time partitioning algorithm to separate overlapping events in time. These more advanced524

Supplementary.tex
Supplementary.tex
Supplementary.tex
Supplementary.tex
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techniques could leverage DL-detected phases arriving in close temporal proximity, thereby sig-525

nificantly enhancing event detection.526

527

GPD, U-GPD and PhaseNet might benefit from additional training or exposure through fine-528

tuning with microseismic datasets (-3 ≤ Mw ≤ 0) to improve their ability to recognise smaller529

events recorded at higher sampling rates. However, PhaseNet already exhibits promising perfor-530

mance and can be deployed without any modification. The events missed by PhaseNet are primar-531

ily small events (Mw ≤ -0.5) that occur during high seismic rates, where larger events may over-532

shadow the smaller earthquakes. Shortening PhaseNet’s input window length could potentially533

isolate smaller events for detection, but there would be a trade-off with increased computational534

time due to the greater number of windows to be processed. Since these models can be employed535

in near real-time, finding a balance between efficiency and effectiveness is crucial. The efficiency536

of DL models makes them suitable for automated detection methods in real-time monitoring.537

538

7 CONCLUSIONS539

In this study, we compare the ability of four DL models (GPD, U-GPD, EQT and PhaseNet) to540

detect hydraulic fracturing induced seismicity through phase picking in high frequency (2000 Hz)541

downhole data. We find that PhaseNet is most suitable for microseismic monitoring applications,542

when comparing the phase classification abilities of the models and their resulting event detec-543

tions. PhaseNet shows the best phase classification results and the most precise picking compared544

to the other models.545

546

Based on our evaluation, we conclude that while additional transfer learning might further en-547

hance the performance of PhaseNet, it can still be readily applied ’off-the-shelf’ (recall rate of548

94.6%) for downhole monitoring of induced seismicity with moment magnitudes Mw greater than549

-0.5. Models such as GPD and U-GPD (recall rate of 59.5% and 76.6% respectfully) require trans-550

fer learning to improve their microseismic detection, to detect events with Mw below -0.5. EQT,551
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on the other hand, currently requires retraining to be applied to high frequency downhole data.552

553

We infer that model architecture and exposure to different training data influences microseis-554

mic phase detection and picking precision, which are important for event location and moment555

magnitude estimation. Network architectures such as fully convolutional U-Nets with a small556

model size that provide continuous high-resolution probability traces offer more precise phase557

picking and better generalisation to pick events in high frequency data compared to more complex558

transformer models (e.g., EQT) or models comprising fully-connected layers (e.g., GPD).559

560

In addition to the over 38,000 catalogued earthquakes already detected on site, PhaseNet identi-561

fied about 15,800 new events occurring within the PNR-1z dataset. The identification of thousands562

of additional events could lead to improved observations of the spatio-temporal characteristics of563

HFIS within the context of various driving mechanisms (e.g., Kettlety & Verdon, 2021; Herrmann564

et al., 2022) and facilitate the real-time tracking of seismicity during well stimulations.565

566
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DATA AVAILABILITY579

All seismic data and microseismic catalogue for PNR-1z operations are publicly are available580

through the North Sea Transition Authority (https://www.nstauthority.co.uk/exploration-production/581

onshore/onshore-reports-and-data/preston-new-road-pnr-1z-hydraulic-fracturing-operations-data/).582

All code and data to run the classification tests are available at https://github.com/cindylimsy/PNR run.583

The model earthquake catalogues for PNR-1z and velocity models are also available in the same584

repository.585
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