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Abstract

Peatlands are fundamental deposits of organic carbon. Thus, their protection is of crucial importance to avoid emissions from

their degradation. Peat is a mixture of organic soil that originates from the accumulation of wetland plants under continuous

or cyclical anaerobic conditions for long periods. Hence, a precise quantification of peat deposits is extremely important; for

that, remote- and proximal-sensing techniques are excellent candidates. Unfortunately, remote-sensing can provide information

only on the few shallowest centimeters, whereas peatlands often extend to several meters in depth. In addition, peatlands are

usually characterized by difficult (flooded) terrains. So, frequency-domain electromagnetic instruments, as they are compact and

contactless, seem to be the ideal solution for the quantitative assessment of the extension and geometry of peatlands. Generally,

electromagnetic methods are used to infer the electrical resistivity of the subsurface. In turn, the resistivity distribution can, in

principle, be interpreted to infer the morphology of the peatland. Here, to some extent, we show how to shortcut the process

and include the expectation and uncertainty regarding the peat resistivity directly into a probabilistic inversion workflow.

The present approach allows for retrieving what really matters: the spatial distribution of the probability of peat occurrence,

rather than the mere electrical resistivity. To evaluate the efficiency and effectiveness of the proposed probabilistic approach, we

compare the outcomes against the more traditional deterministic fully nonlinear (Occam’s) inversion and against some boreholes

available in the investigated area.
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Abstract 20 

Peatlands are fundamental deposits of organic carbon. Thus, their protection is of crucial 21 

importance to avoid emissions from their degradation. Peat is a mixture of organic soil that 22 

originates from the accumulation of wetland plants under continuous or cyclical anaerobic 23 

conditions for long periods. Hence, a precise quantification of peat deposits is extremely 24 

important; for that, remote- and proximal-sensing techniques are excellent candidates. 25 

Unfortunately, remote-sensing can provide information only on the few shallowest centimeters, 26 

whereas peatlands often extend to several meters in depth. In addition, peatlands are usually 27 

characterized by difficult (flooded) terrains. So, frequency-domain electromagnetic instruments, 28 

as they are compact and contactless, seem to be the ideal solution for the quantitative assessment 29 

of the extension and geometry of peatlands. Generally, electromagnetic methods are used to infer 30 

the electrical resistivity of the subsurface. In turn, the resistivity distribution can, in principle, be 31 

interpreted to infer the morphology of the peatland. Here, to some extent, we show how to 32 

shortcut the process and include the expectation and uncertainty regarding the peat resistivity 33 

directly into a probabilistic inversion workflow. The present approach allows for retrieving what 34 

really matters: the spatial distribution of the probability of peat occurrence, rather than the mere 35 

electrical resistivity. To evaluate the efficiency and effectiveness of the proposed probabilistic 36 

approach, we compare the outcomes against the more traditional deterministic fully nonlinear 37 

(Occam's) inversion and against some boreholes available in the investigated area.    38 

Plain Language Summary 39 

Wetlands are carbon pools subtracting carbon dioxide from the atmosphere and 40 

accumulating it underground. The processes ongoing in these ecosystems form a dark soil, 41 

extremely rich in organic matter, known as “peat”. Globally, peatlands are responsible for storing 42 

almost as much carbon as the atmosphere. For that reason and to preserve them, it is very 43 

important to develop tools capable of mapping peatlands. A good candidate for this goal is a 44 

geophysical method based on the diffusion of electromagnetic signals into the ground. How the 45 

electromagnetic signals propagate depends on the electrical resistivity of the subsurface. So, by 46 

studying those signals, we can think of reconstructing, point-by-point, the electrical resistivity 47 

variability in the subsurface. Broadly speaking, different resistivities correspond to different 48 

sediments. So, in turn, we can use the reconstructed resistivity distribution to map the peat 49 

deposits. In this study, we show how to translate directly the electromagnetic signal into the 50 

probability of finding peat (rather than in recovering the electrical property of the subsurface). 51 

We tested our approach on a dataset collected across an Alpine peatland in Italy and we verified 52 

our results against direct investigations and against more traditional ways to interpret the 53 

geophysical signals. 54 

1 Introduction 55 

Peatlands are important carbon reservoirs, and some of them are located in mountain 56 

settings for which efficient and reliable methodologies for the detection of their geometry, 57 

bottom morphology, and volumes are still lacking (Silvesti et al., 2019a; Trappe & Kneisel, 58 

2019; Pezdir et al., 2021). Here, we explore the use of ground-based frequency-domain 59 

electromagnetic induction (FDEM) technology to quantify peat thickness and extension in a bog 60 

located in the Italian Dolomites in which peat overlays electrically conductive clay substrate. 61 

Electrical resistivity is the main physical property retrieved via the inversion of the FDEM 62 

measurements (Guillemoteau et al., 2016; Guillemoteau et al., 2019). Unfortunately, per se, this 63 
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physical property of the investigated medium is of little importance to map peatlands. Instead, a 64 

direct estimation of the probability of the occurrence of peat or clay would be preferable. In this 65 

paper, such probability is inferred by means of a probabilistic petrophysical inversion of the 66 

geophysical measurements (Bosch et al., 2010; Grana et al., 2022a; Guo et al., 2023).  67 

Probably, the first attempts to include petrophysical relationships into probabilistic 68 

inversion frameworks date back to the beginning of the 21st century, when such schemes were 69 

proposed for the uncertainty assessment of the spatial distribution of physical properties in 70 

seismic reservoir characterizations (Malinverno & Briggs, 2004; Connolly and Kemper, 2007). 71 

Since then, they gained increasing interest over the years (Hansen et al., 2012; Zunino et al., 72 

2015). In fact - in addition to directly retrieving the crucial lithological information, rather than 73 

merely the physical property - probabilistic petrophysical inversion has the intrinsic advantage of 74 

providing an estimation of the uncertainty associated with the results, which is often missing in 75 

traditional predictions (e.g., of the electrical resistivity) via deterministic inversions (McLachlan 76 

et al., 2021a). Moreover, the proposed probabilistic approach allows for the formalization of 77 

quite complex prior information (Bai et al., 2021). This is a further advantage with respect to 78 

more standard deterministic schemes in which the ill-posedness of the problem is tackled via the 79 

introduction of a regularizing term, which is often capable of formalizing/enforcing (too) simple 80 

information/constraints related to the presence of smooth/sharp transitions between different 81 

lithologies (Klose et al., 2022; Klose et al., 2023). 82 

In the last decades, several ground geophysical methods have been effective in detecting 83 

and characterizing peat deposits, both laterally and in-depth. Ground penetrating radar (GPR) has 84 

been proven reliable and precise in inferring the deposit thickness (Warner et al., 1990; Comas et 85 

al., 2015). Electrical resistivity tomography has also been found successful (Elijah et al., 2012), 86 

especially, when used to reconstruct the variations of chargeability associated with the presence 87 

of peat (Slater & Reeve, 2002; Comas & Slater, 2004). However, in general, the above-88 

mentioned geophysical methodologies can be applied to relatively small areas and are extremely 89 

difficult to perform in flooded environments like wetlands/peatlands (Zaru et al., 2023). In this 90 

respect, FDEM presents several advantages as it does not require any direct coupling with the 91 

surface. In fact, several FDEM systems are specifically designed to be operated while mounted 92 

on helicopters (Yin & Hodges, 2007; Karshakov et al., 2017) and, probably, soon, on drones 93 

(Mitsuhata et al., 2022). 94 

Due to measurement and modelling errors, and because of the band-limited observations 95 

and finite amount of data points (Qiu et al., 2020), retrieving the spatial distribution of electrical 96 

resistivity from the FDEM observations requires solving an ill-posed problem (Tarantola, 2005). 97 

In both deterministic and probabilistic inversion approaches, the ill-posedness is addressed by 98 

making use of the available prior information. In the deterministic approaches, such prior 99 

information is formalized via the regularization term (Zhdanov, 2002). Traditionally, the L2-100 

norm of the spatial gradient of the model parameters is the most common choice for the 101 

regularization term (implementing the so-called Occam's inversion – Constable et al., 1987). 102 

Hence, in the case of the L2-norm of the gradient, the unique and stable solution of the 103 

regularized inversion is selected to be the smoothest possible model that also fits the data within 104 

the noise level assumed for the measurements. In fact, the inverse problem is reduced to the 105 

minimization of an objective functional consisting of the weighted sum of the regularization term 106 

(the regularizer or stabilizer) and the data misfit. The weight between the two terms (generally, 107 

indicated with the letter 𝜆  and sometimes named Tikhonov’s parameter) is selected to ensure 108 
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adequate matching between observed and calculated responses while minimizing the regularizer 109 

(Zhdanov et al. 2006). In many cases, the geological targets to reconstruct are expected not to be 110 

smooth; in such cases, the L2-norm of the model gradient should not be used, and more 111 

appropriate information (i.e., more consistent with the prior geological expectations) must be 112 

included in the objective functional. In this respect, for example, recently, several regularizers 113 

based on the minimum support of the model are gaining popularity (Vignoli et al., 2015; Rossi et 114 

al., 2022; Guillemoteau et al., 2022). In the case of the minimum gradient support regularization, 115 

the inversion algorithm searches for the model with the minimum number of significant 116 

variations of the physical parameters (and not for the model with the minimum variation). Thus, 117 

the minimum gradient support favors the retrieval of sharp boundaries between the geological 118 

structures (Vignoli et al., 2021). 119 

However, the regularization terms need to meet some (mathematical) requirements: not 120 

all functional can be regularizers able to transform an ill-posed problem into a conditionally 121 

well-posed one (Portniaguine & Zhdanov, 1999). Furthermore, formalizing complex (and 122 

realistic) prior information through a set of functionals might be troublesome (if not impossible). 123 

In this respect, probabilistic approaches have indubitable advantages: prior information can be 124 

described and incorporated into the inversion via the prior distribution, which, in turn, can be 125 

defined by its samples (Hansen & Minsley, 2019; Hansen, 2021a). This leads to the possibility of 126 

creating the samples in accordance with quite arbitrary expectations about the investigated 127 

geology (Bai et al., 2021; Zaru et al., 2023), without the limitations connected to the necessity of 128 

formalizing that information in terms of a functional to be minimized.  129 

Another crucial advantage of probabilistic approaches consists in their capability to 130 

provide an estimation of the result uncertainty in a very natural way. The posterior probability 131 

distribution is the solution of probabilistic inverse problems, and it is typically represented as an 132 

ensemble of models (realizations of the posterior probability distribution) conditioned on the 133 

data. This is different from the solution of deterministic inversions which consists of the unique 134 

model minimizing the objective functional. Hence, in the probabilistic framework, for example, 135 

from the final ensemble of models, the uncertainty of a specific feature can be readily extracted 136 

by simply counting the relative occurrence of that feature (Mosegaard & Tarantola, 1995; 137 

Mosegaard & Sambridge, 2002; Tarantola, 2005; Minsley, 2011; Høyer et al., 2017; Hansen, 138 

2021b). 139 

The above-mentioned inversion strategies are generally used to image the geophysical 140 

property distribution (in most of the FDEM methods, that is limited to the electrical resistivity of 141 

the subsurface). However, the estimation of petrophysical properties - such as porosity, lithology, 142 

and fluid saturations - can be formulated as an inverse problem. In this case, they are usually 143 

referred to as petrophysical inversions (in seismic exploration, they are sometimes also known as 144 

rock-physics inversion – e.g., Grana et al., 2022b). In the deterministic frameworks, a physical 145 

relationship mapping the rock properties to the geophysical parameters is often necessary 146 

(Mastrocicco et al., 2010; Foged et al., 2014; Cao et al., 2023). Instead, in the probabilistic 147 

context, like the one used in the present research, the connection between lithology and physical 148 

properties is formulated in statistical terms and inherently incorporates the associated 149 

uncertainties (here, the uncertainty is not the one characterizing the geophysical measurements, 150 

but, rather the one associated with the petrophysical link) (Grana & Della Rossa, 2010; Grana, 151 

2016; Grana, 2020; Bai, 2022; Madsen et al., 2023).   152 
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Thus, in the present work, we test a probabilistic petrophysical inversion on an FDEM 153 

dataset originally collected for the characterization of an Alpine peatland. We assess the 154 

performance of the proposed inversion scheme at the locations of the several available boreholes 155 

(not used to constrain the inversion) and by comparing the obtained results against more 156 

traditional deterministic Occam's inversions.  157 

2 Materials and Methods 158 

The forward modelling tools used in electromagnetic inverse problems are, nowadays, 159 

fully nonlinear and, despite 3D forward options could be available (Cox et al., 2012; Oldenburg 160 

et al., 2020), the use of 1D approximations is still the standard in the industry and in the 161 

academia (Viezzoli et al., 2008; Ley-Cooper et al., 2015; Dzikunoo et al., 2020; Bai et al. 2020; 162 

Hansen & Finlay, 2022). The reason is mainly related to the computational costs of 3D 163 

modelling (Guillemoteau et al., 2017; Cai et al., 2022; Kara & Farquharson, 2023). In the present 164 

research, we make use of the fully non-linear 1D forward modelling discussed, for example, in 165 

Elwaseif et al., 2017.  Given a sequence of layers with known electrical, homogeneous properties 166 

– represented by the model 𝐦 – the 1D forward modelling 𝐹(𝐦) maps the resistivity (the sole 167 

electrical property we are investigating) distribution into the observed FDEM response collected 168 

at the surface (described by 𝐝):  169 

𝐝 = 𝐹(𝐦).      (1) 170 

The goal of probabilistic formulations is to infer the posterior probability density (PDF) 171 

function, 𝑝(𝐦|𝐝obs), measuring the probability of the model 𝐦 being compatible with the 172 

observations 𝐝obs. According to Bayes’ theorem, 𝑝(𝐦|𝐝obs) is proportional to the product of the 173 

prior probability density function of the model parameters 𝑝(𝐦) and the conditional probability 174 

density function 𝑝(𝐝obs|𝐦). Thus, 𝑝(𝐦|𝐝obs) ∝ 𝑝(𝐝obs|𝐦)𝑝(𝐦), with 𝑝(𝐝obs|𝐦) connecting 175 

the measured data and the model parameters. In the specific case of normally distributed noise in 176 

the measurements, the conditional probability can be written as 177 

𝑝(𝐝obs|𝐦) = 𝑘d exp (−
1

2
(𝐝obs − 𝐹(𝐦))

𝑇

𝐂d
−1 (𝐝obs − 𝐹(𝐦))),   (2) 178 

where: (i) 𝑘𝑑 is simply a normalization factor and (ii) 𝐂d is a matrix taking into account 179 

the correlated Gaussian data noise. Here, we assume the noise to be uncertain and, consistently, 180 

consider diag(𝛔d)−2 = 𝐂d
−1  in which the 𝑖-th component of the vector 𝛔d is the standard 181 

deviation of the 𝑖-th data component. In our specific case, [𝛔d]𝑖 is the standard deviation of the 182 

quadrature component of the ratio between the induced and the primary fields associated with the 183 

𝑖-th frequency. In fact, during FDEM surveys, the measurements consist of the real and 184 

imaginary parts of the ratio between the secondary (interacting with the subsurface) and the 185 

primary field (generated by the source). Here, we limit our analysis to the imaginary part (the 186 

quadrature component) since it is the one mostly sensitive to the electrical resistivity, whereas 187 

the real (in-phase) component is mainly related to the magnetic susceptibility of the investigated 188 

medium (Hendrickx et al., 2002). 189 

Assuming a Gaussian distribution also for the model parameters, the prior information 190 

about the model 𝐦 can be formalized as follows:  191 

𝑝(𝐦) = 𝑘𝑚 exp (−
1

2
(𝐦 − 𝐦0)𝑇𝐂m

−1(𝐦 − 𝐦0)),     (3) 192 
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with: (i) 𝑘𝑚 being another normalization factor and (ii) the Gaussian being centered on 193 

the reference model 𝐦0.  194 

When Gaussian distributions are assumed both for the data noise (with Gaussian 195 

uncertainties described by the covariance operator 𝐂d ) and the model parameters (with prior 196 

information on 𝐦 described by the a priori reference model 𝐦0 with the associated uncertainty 197 

represented by the covariance operator 𝐂m), the maximization of the probability 𝑝(𝐦|𝐝obs) 198 

corresponds to the minimization of the regularized inversion objective functional ‖𝐂
d

−
1

2 (𝐝obs −199 

𝐹(𝐦))‖
𝐿2

2

+ ‖𝐂m

−
1

2(𝐦 − 𝐦0)‖
𝐿2

2

. This is a well-known result (e.g., Tarantola & Valette, 1982; 200 

Tarantola, 1987; Zhdanov, 2002) that bridges the gap between probabilistic and deterministic 201 

approaches. For example, if the inverse of the model covariance 𝐂𝑚
−1 is taken equal to 𝜆2𝑳𝑻𝑳 - 202 

with the positive scalar  𝜆  weighting the relative importance of the regularizer and the data 203 

misfit, and 𝑳 being a discrete approximation of the spatial derivative - then, the minimization of 204 

the objective functional implements the standard Occam’s inversion (Constable et al. 1987). In 205 

this specific case, the objective functional 𝑃(𝜆)(𝐦, 𝐝obs) to be minimized during the 206 

deterministic inversion is: 207 

  𝑃(𝜆)(𝐦, 𝐝obs) ∝ ‖𝐂d
−1/2

(𝐝obs − 𝐹(𝐦))‖
𝐿2

2
+ 𝜆‖𝑳(𝐦 − 𝐦0)‖𝐿2

2 .    (4) 208 

On one hand, the strategy we are proposing here relaxes one of these working 209 

hypotheses; in particular, in the following, we do not make any assumptions on the Gaussianity 210 

of the model parameters distribution 𝑝(𝐦) as we consider quite general prior distributions 211 

defined via their realizations, which are generated through a geologically informed procedure. 212 

On the other hand, we keep considering the noise contaminating the observed quadrature 213 

components to be frequency-by-frequency, and location-by-location, independent, even though it 214 

is clearly not (Mitsuhata at al., 2001; Minsley et al., 2012; Liu et al., 2023). Consistently with 215 

this assumption, we still approximate 𝐂d
−1/2

 with a diagonal matrix, whereas, for example, with 216 

the availability of a 3D FDEM forward modelling, we could have included the noise component 217 

attributable to the modeling error associated with the 1D modelling approximation. Bai et al., 218 

2021 showed, for the time-domain electromagnetic case (and following the prescriptions in 219 

Hansen et al. 2014), how the inclusion of that additional source of data uncertainty into a 220 

probabilistic inversion via a more complex (non-diagonal) approximation of 𝐂d  can prevent 221 

misinterpretations and artifacts even in the case of environments where the 1D approximation 222 

seems reasonable (so, even in the case of settings where the assumption of the absence of 223 

significant 3D effects contaminating neighboring 1D soundings seems acceptable). This is 224 

something to be investigated in future research; in the present manuscript, we simply evaluate 225 

the probability associated with a certain model by using uniquely Eq. 2.  226 

Moreover, as it will be discussed below, each resistivity component of 𝐦 will be a 227 

function of a specific lithology, allowing the assessment of the probability of occurrence of a 228 

lithological category rather than the mere prediction of a resistivity value characterizing a 229 

discretizing layer. 230 

 231 
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2.1 Generation of the prior models 232 

The prior distribution can be defined via its realizations. In the case under investigation, 233 

the hypothesis is that the subsurface consists of a sequence of two lithologies: peat and clay. It is 234 

true that, in some cases, peat might overlay more resistive bedrock (Boon et al., 2008; Comas et 235 

al., 2015; Kowalczyk et al., 2017), but our assumption is that, anyhow, even in the case of a 236 

shallow bedrock, a clay unit is present due to the rock weathering or alluvial/glacial origins 237 

(Osman 2018). In addition, we assume that, for each sounding location, the associated model can 238 

be composed of three lithological units, with no restrictions concerning their vertical sequence. 239 

So, for example, a clay unit comprised between a shallower and a deeper peat layer can, in 240 

principle, be allowed. Consequently, each 1D model of the prior distribution is discretized with 241 

200 layers with a thickness of 0.1 m, and two interface depths are picked from a uniform 242 

distribution with values ranging from 0 to 20 m. This procedure defines the three units. 243 

Subsequently, a lithology (either peat or clay) is randomly associated to each of the layers. 244 

Therefore, prior sample models - consisting of 200 layers (gathered in 3 lithological units) - are 245 

generated. For each layer, it is now possible to match a resistivity value drawn from two 246 

distributions describing the ranges of resistivity values expected for each lithology (bar plots in 247 

Figure 1a). In order to ensure some additional vertical spatial coherence, the original 200-layer 248 

resistivity models are smoothed by means of a 5-layer sliding average filter. In this way, the 249 

assumption of independence between neighboring layers is loosened up and a vertical spatial 250 

correlation between the 1D model parameters is introduced. The rationale behind this choice is 251 

that renouncing the high entropy choice generates more geological plausible 1D resistivity 252 

profiles. After this model parameters conditioning, , the associated resistivity distributions for the 253 

peat and clay units are different from the original ones (solid lines in Figure 1). The 5-layer 254 

width for the filter has been chosen by inspecting the effect on the final resistivity vertical 255 

profiles: a shorter span would have not satisfactorily reduced the erratic behavior of the original 256 

resistivity (thick lines in Figure 1), whereas a filter window larger than 0.5 m would have 257 

smeared out the sharp interfaces between the lithologies.       258 

 259 
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 260 

Figure 1. Resistivity distributions associated with each lithology. Panel (a) displays, as green 261 

bars, the probability density distribution (PDF) of having a peat layer with a specific resistivity, 262 

and, as yellow bars, the corresponding PDF for the clay layers. The solid lines show the 263 

corresponding distributions after a 5-layer vertical moving average filtering of the samples of the 264 

prior. In panel (b), the corresponding cumulative density functions (CDFs) are shown: the solid 265 

lines are related to the CDF obtained after the 5-layer vertical filtering and highlight that 266 

resistivity values lower than 200 Ωm are almost certainly associated with clay, whereas layers 267 

with resistivities higher than 400 Ωm, most likely, are peat. Resistivities around 270 Ωm have 268 

the same probability of being clay or peat. 269 

 270 

The resistivity ranges in Figure 1 have been deduced from the examples in the literature. 271 

Peat soil has a wide resistivity range spanning from tens to a few hundred Ωm, depending on the 272 
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moisture content, salt concentration, degree of decomposition, and mineral composition 273 

(Silvestri et al., 2019a; Silvestri et al. 2019b; Valois et al. 2021; Mohamad et al., 2021). Also the 274 

resistivity of clay sediments may vary significantly depending on the soil conditions (in 275 

particular, the water content and its salinity) (Samouëlian et al. 2005; Solberg et al. 2014; Cheng 276 

et al. 2019). However, for the fresh-water-saturated clay expected in the Alpine peatland, low 277 

resistivity values of the order of a few tens Ωm seem to be reasonable (Binley & Slater, 2020). 278 

Therefore, based on these assumptions concerning the possible lithological stratification 279 

and the resistivities associated with such geological units, the samples of the prior distribution 280 

can be easily generated. Figure 2 displays two examples of the prior distribution models. It might 281 

be worth noticing that three lithological units provide additional flexibility since the case of two 282 

effective units (e.g., peat covering clay – Figure 2a) is still a feasible option, but, at the same 283 

time, it is also possible to experience a clay substrate with a peat intrusion (Figure 2b). Clearly, a 284 

very informative prior (e.g., only two units) might be misleading in case of wrong initial 285 

assumptions, whereas, to a certain extent, allowing a higher variability in the prior assumptions 286 

cannot be detrimental (the only drawback is connected to the higher computational time). 287 

 288 

 289 
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Figure 2. Samples of the prior distribution. Each prior model consists of 200 layers characterized 290 

by different resistivity values (thin green or orange solid lines) gathered in three lithological units 291 

(of either clay or peat). The original 200 resistivities have been subsequently filtered to obtain 292 

1D model samples with some vertical correlation (thick blue or red solid lines). The mean 293 

resistivity calculated from the filtered values over each lithological unit is shown as a black thin 294 

straight segment. Panel (a) displays a sample with the following lithological sequence: peat-clay-295 

clay; consequently, the mean resistivities for the two deepest units are almost indistinguishable 296 

(their interface occurs at around 5.5 m depth). Panel (b) illustrates another example of a prior 297 

sample characterized by a peat unit sandwiched between two clay units. 298 

 299 

Following this strategy, we populated (and defined) the prior ensemble with 105 samples. 300 

For each of them, the associated FDEM response has been calculated by taking into account the 301 

geometry parameters, frequencies, and elevation of the employed sensor. In this respect, the 302 

measured dataset consists of 153621 soundings collected by using the following 11 frequencies: 303 

1025, 1525, 2875, 5825, 7775, 12775, 15325, 25525, 36225, 63025, 80225 Hz, with the 304 

recording device assumed at 1.0 m height from the surface. During the survey, we used a GEM-2 305 

(Haoping & Won, 2003) in the horizontal co-planar configuration. This device has a receiver-306 

transmitter inter-coil distance of 1.6 m. Performing the standard FDEM processing procedure 307 

preliminary to the inversion, we laterally stacked and averaged between adjacent soundings in 308 

order to remove the outliers and assess the noise in the data (cf., e.g., Zaru et al., 2023). 309 

For every sounding, the response 𝐹(𝐦) of each of the prior realizations is evaluated 310 

against the observed data 𝐝obs through the Eq. 2. The posterior distribution is then defined by 311 

replicas of the models based on their probability. Hence, the probabilistic inversion consists of an 312 

independent extended Metropolis algorithm, which is analogous to the standard extended 313 

Metropolis algorithm (Mosegaard & Tarantola, 1995; Hansen et al., 2016) with an infinitely long 314 

step-length; this is equivalent to state that every new model proposal from the prior distribution 315 

is a completely independent realization: indeed, in our specific case, it is precalculated. The 316 

proposed inversion scheme is implemented in the SIPPI toolbox (Hansen et al. 2013a; Hansen et 317 

al. 2013b). 318 

3 Results 319 

Figure 3 shows the horizontal slices at different depths (namely: 0.5 m, 3.0 m, 5.0 m, 8.0 320 

m) of: i) the realization of the posterior distribution with the maximum likelihood (first column 321 

on the left); ii) the mean model obtained by averaging the realizations of the posterior models 322 

(second column from the left); iii) the probability of encountering peat; and iv) the probability of 323 

clay occurrence. Clearly, since we are simply assuming two lithological categories (peat and 324 

clay), the two probabilities are complementary: the maximum probability of having peat 325 

corresponds to the minimum probability of clay. It is fundamental to clarify that across the 326 

present paper, for the sake of conciseness, we use the term maximum likelihood model to 327 

indicate the model of the prior ensemble which is characterized by the highest likelihood; strictly 328 

speaking, that is not the actual maximum likelihood model since it relates to the prior 329 

distribution. However, in this context, and after this caveat, there should be no room left for 330 

ambiguities.     331 
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From Figure 3, it is evident that peat is mainly present in the northern-central portion of 332 

the investigated area and its evolution can be followed from the surface to significant depths 333 

(more than 8.0 m). In addition, a shallower peat deposit can be detected in the southern part of 334 

the study area. It is worth highlighting the spatial coherence of the result (including the 335 

maximum likelihood one) despite each sounding has been inverted separately without 336 

introducing any horizontal constraint (again, prior information is provided uniquely via the prior 337 

distribution). 338 

In order to verify our result, we compare the probabilistic outcome against the available 339 

boreholes and electrical resistivity models obtained by a deterministic inversion. In this respect, 340 

Figures 4c-f shows a vertical section extracted from the (pseudo-)3D volume in Figure 3. All the 341 

boreholes were drilled aiming at reaching the clay bottom unit (more difficult to penetrate); 342 

however, that was not always possible. So, the depth of the boreholes is supposed to be 343 

shallower or match the top of the clay substrate. For sake of clearness, the names of the 344 

boreholes reaching the top of the clay unit contain an asterisk (for example, B26*). From Figures 345 

4c-f, it is evident that the geophysical reconstruction can detect quite precisely the morphology 346 

of the peat unit as it appears from the boreholes. In particular, that is true for the boreholes B26* 347 

and B11, in the middle of the section. On the other hand, a possible explanation for the mismatch 348 

with the borehole B31* is that it is actually quite off the profile. In fact, the borehole B31* is 349 

approximately 4 meters apart from the profile. It is worth mentioning that the borehole B26* is 350 

the most reliable well as, differently from the others, its core has been extracted and analyzed 351 

(Poto et al., 2013). Concerning the much shallower B33, that borehole simply confirms that, at 352 

that location, the peat substrate is thicker than 2.5 m, and this evidence is compatible with what 353 

is inferred from geophysics. On the contrary, accordingly to the borehole B6*, at that location, 354 

the top of the clay unit should be found at 1 m depth, whereas the probable peat thickness 355 

(Figure 4e) is supposed to be around 4 m. A plausible justification for such a mismatch will 356 

require further investigations; however, because of the noticeable lateral consistency of the 357 

geophysical solution, despite the fact that each individual sounding is inverted separately, it is 358 

hard to believe in a systematic artefact in the inversion process. In addition, as it will be 359 

discussed in the following, similar conclusions about the B6* location can be drawn also by 360 

looking at the alternative deterministic reconstruction (Figure 4b).   361 

In general, as it should be, many of the details visible in the maximum likelihood model 362 

(Figure 4c) disappear when we check the mean model (Figure 4d) or the peat probability (Figure 363 

4e). This is particularly evident at depth, below the conductive clay, where the model parameters 364 

do not have a significant sensitivity with respect to the (noisy) measurements; in other terms, 365 

those layers are below the DOI (Depth Of Investigation – e.g. Zhdanov, 2002; Vignoli et al., 366 

2021) and the details retrieved in some specific realizations of the posterior distribution are, 367 

indeed, artifacts and are characterized by a low occurrence probability.  368 

When we check the data fitting of the different models in terms of  𝜒2 =369 

(1
𝑁⁄ )‖𝐂d

−1/2
(𝐝obs − 𝐹(𝐦))‖

𝐿2

2
, in which 𝑁 is the number of data points per sounding (so, in 370 

this specific case, 𝑁 = 11, with 11 being the number of used frequencies), we can see that, not 371 

surprisingly, the maximum likelihood model  (Figure 4a – red “+” markers) is characterized by 372 

responses closer to the observations than the mean model (green “×” markers). Besides, the 373 

maximum likelihood model generally fits the data below the optimal threshold 𝜒2=1. 374 
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Interestingly, also the mean model, which does not have any physical meaning, sensu stricto, is 375 

associated to reasonable 𝜒2 values.     376 

The maximum likelihood solution is equivalent to an inversion obtained by minimizing 377 

the data misfit in which the well-posedness of the inversion is enforced by selecting the solution 378 

among the prior models (Zaru et al., 2023) rather than via the regularization term. The impact of 379 

the prior information is evident as the maximum likelihood reconstruction is characterized by a 380 

significant lateral coherence (i.e., the solution turns out to be stable with respect to perturbations 381 

in the data – i.e., moving from one sounding to the adjacent one) without an explicit 382 

regularization term, and this while the data misfit is comparable with alternative, “more 383 

standard", inversions. In this perspective, it might be worth it to compare our probabilistic 384 

outcome with the deterministic Occam's inversion (Figure 4b). In doing that, we used the 385 

extremely valuable open-source McLachlan et al., 2021b’s implementation: EMagPy, with a 386 

parameterization similar to the one used for the probabilistic inversion. Hence, for example, 30 387 

layers discretize each 1D model; 30 layers seemed to be a good compromise between using a 388 

too-coarse discretization (with the risk of introducing an additional, unwanted, regularization 389 

parameter: the number of layers) and the practical impossibility of running 200-layer inversions 390 

in a reasonable amount of time. In the deterministic approaches, the calculation of the Jacobian is 391 

generally the computational bottleneck of the minimization process (Christiansen et al., 2016); 392 

even if, in the present research, we have not profusely investigated this aspect, most likely, 393 

within the conjugate gradient minimization utilized, the Jacobian’s update makes the cost of the 394 

deterministic inversion too high to be able to run it for the entire survey (even with a relatively 395 

small number of layers). For this reason, we performed the deterministic inversion uniquely 396 

along the section highlighted in Figure 3 and shown in Figure 4b. The starting model for each of 397 

the 1D deterministic inversions along the investigated profile is the same, with a decreasing 398 

resistivity with depth, ranging from around 500 Ωm at the surface to approximately 100 Ωm at 399 

the bottom. The regularization weight, 𝜆 (Eq. 4), is set for all soundings equal to 0.07. This 400 

uniform value of 𝜆  along the entire profile guaranties an optimal mean data fitting (𝜒2=1) 401 

across the section (cf. the horizontal blue dotted line in Figure 4a), despite, in principle, it should 402 

be adjusted in order to ensure that similar condition being fulfilled sounding-by-sounding and 403 

not merely on average. Figure 4b shows the deterministic reconstruction, whereas the associated 404 

data fitting levels can be checked in Figure 4a. In a few sounding locations, the deterministic 405 

inversion has difficulties in fitting the data to a reasonable level. Possible reasons for that could 406 

be related: to local minimization issues of the objective functional, and/or to the inconsistency 407 

between the prior information enforced by the stabilizer, which promotes smoothly varying 408 

solutions, not really compatible with the geology characterized by quite a sharp peat-clay 409 

interface (sometimes occurring at shallow depths). In this perspective, a sounding-by-sounding 410 

optimization of the 𝜆  value might have been useful even if extremely time and computationally 411 

consuming. The deterministic inversion has a data misfit that is largely overlapping with the one 412 

of maximum likelihood model; still, it is more laterally erratic, while, not surprisingly, favors the 413 

retrieval of vertically elongated structures. On this matter, the comparison, for example, of the 414 

portion of the sections between B26* and B11 as inferred by the two alternative inversion 415 

schemes, demonstrates the impact of the different prior information incorporated in the 416 

probabilistic approach and in the deterministic regularization: the complex information 417 

formalized via the prior distribution samples allows the retrieval of a spatially consistent 418 

morphology of the peat unit, whereas this is prevented by the smooth regularization (even in case 419 

of similar data fitting).  420 
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In addition, the good correspondence between the probabilistic result and the 421 

deterministic reconstruction in the vicinity of borehole B6* questions the reliability of the direct 422 

measurement of the peat thickness deduced by the drilling. 423 

In terms of inversion performances, the probabilistic inversion basically requires only the 424 

forward calculations of the samples of the prior distribution, which can be performed 425 

independently and, so, are massively and easily parallelizable. The calculation of the conditional 426 

probability of Eq. 2 is, then, straightforward and, in the specific case of the entire Danta's dataset 427 

(consisting of around 150000 soundings - a size comparable with an airborne survey; cf., e.g., 428 

Viezzoli et al., 2009; Christiansen et al., 2016), with a prior ensemble of 100000 samples, took 429 

approximately one hour (on a quite standard laptop equipped with an Intel i7-10750H/2.60GHz). 430 

Clearly, on top of that, for a fair comparison, the time used for generating the prior samples and 431 

the associated measurements must be considered (for the 100000 samples, on the same laptop, it 432 

took around one additional hour). However, it should be stressed that for similar geological 433 

settings (and the same configurations of the geophysical instrumentation), the prior models do 434 

not need to be recalculated every time and can be generated once and for all. On the other hand, 435 

at least with the parameterization we used, the deterministic inversion of the entire Danta's 436 

dataset was not feasible (it would have needed weeks of calculation), and, for each of the several 437 

2D profiles it was tested on (like in Figure 4), required more than one day. Furthermore, it might 438 

be relevant to stress that even if populating the prior distribution might be difficult, similar 439 

troubles might be encountered with deterministic inversion schemes, not only in the definition of 440 

the most appropriate stabilizer, but also in the selection of the optimal regularization weight and 441 

in addressing all the issues connected with the optimization of the objective functional 442 

(including, e.g., the definition of a suitable starting model). It is worth stressing once more that 443 

the high performances characterizing the proposed probabilistic approach relate to the proposal 444 

strategy: since all the evaluated models are mutually independent, they can be precalculated in 445 

advance (in parallel) (Hansen, 2021a).     446 

  447 
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Figure 3. Horizontal slices of the inversion results of the FDEM data collected across the Danta 449 

peatland (Italy). Each row displays, from left to right: i) the resistivity solution with the 450 

maximum likelihood; ii) the mean model of the samples of the posterior probability; iii) the 451 

probability of peat; and iv) the probability of clay. Rows (a-d) shows the horizontal slices of 452 

those models and probabilities, respectively, at depth 0.5 m, 3.0 m, 5.0 m, and 8.0 m. In the 453 

column 3, on top of the peat probability, the location of the profile in Figure 4 is shown (in 454 

magenta), together with the position of the related boreholes (green circles). 455 

 456 
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 457 

Figure 4. Inversion results. Panel (b) shows the fully nonlinear deterministic Occam's 458 

inversion performed with the software package EMagPy (McLachlan et al. 2021b). Panels (c-f) 459 

display the results of the probabilistic petrophysical inversion; in particular, panel (c) shows the 460 
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maximum likelihood resistivity solution, whereas panel (d) exhibits the resistivity section 461 

obtained by averaging the resistivity samples of the posterior distribution. Panels (e) and (f) 462 

show respectively the probability of peat and clay occurrences for each of the 200 layers 463 

discretizing each 1D model. Panel (a) shows the 𝜒2 value obtained by comparing, against the 464 

observed data, the FDEM responses of: i) the deterministic solution (blue dots); ii) the maximum 465 

likelihood model (red crosses); and iii) the mean model (green "×" markers); the horizontal 466 

dotted lines are simply the mean 𝜒2 value across the section for the three models in panels (b-d). 467 

The parameterization for the two kinds of inversion is different: 200 layers are used for the 468 

probabilistic inversion; 30 for the deterministic one.  469 

 470 

4 Discussion 471 

Even if, in presenting the inversion results we referred repeatedly to the mean map 472 

(Figure 4d), clearly, the actual probabilistic outcome (the posterior PDF) contains much more 473 

information than the mean model and its associated standard deviation. In this respect, it is 474 

important to stress, that, also because of the non-linearity of the forward modelling, the resulting 475 

PDF might be non-Gaussian. Therefore, the possible multi-modality would make the reduction 476 

of the probabilistic result to its mean and standard deviation misleading. In this respect, four 477 

sounding locations (Figure 5a) have been selected to show the risk of taking just the mean as an 478 

immediately interpretable result; in particular, in Figures 5b-e, the posterior resistivity PDFs 479 

associated with those four locations are plotted and compared against the mean resistivity 480 

vertical profile (red solid line), together with the corresponding standard deviation band 481 

(between the green solid lines). Consistently with the previous caveat, the resistivity PDFs 482 

present, at depth (specifically, where the occurrence of clay is more probable), a bi-modal 483 

pattern, which, in turn, makes the mean resistivity move between the probability maxima. 484 

Hence, panels in Figure 5 confirm once more the importance of a probabilistic approach 485 

as, in this multi-modal situation, also deterministic approaches (e.g., orange dashed line in Figure 486 

5b) could merely provide a local assessment of the uncertainty (based on the Jacobian) 487 

associated with the unique retrieved solution. And, of course, the same risk may take place if we 488 

draw our conclusions merely based on the mean model. 489 

Also, it is worth noticing how the probability of peat occurrence (magenta solid line) 490 

drops rapidly when the gyttja starts to be encountered (on the left side of Figure 5b, the detailed 491 

lithological description of borehole B26* can be found). 492 

In Figure 5, the vertical resistivity profile corresponding to the maximum likelihood 493 

solution (black solid line) is also plotted for each of the picked sounding locations. The 494 

maximum likelihood solutions are those (within the prior ensemble) better fitting the data, not 495 

the most probable. Indeed, the maximum likelihood model is the maximizer of the conditional 496 

probability density function, 𝑝(𝐝obs|𝐦), in Eq. 2, and not of the posterior PDF, 𝑝(𝐦|𝐝obs). In 497 

the presented framework, since the prior is defined uniquely via its samples and there is no 498 

closed form for it, the calculation of the most probable model is not possible.   499 

Despite the maximum likelihood model being simply the model better fitting the 500 

observations, in the present scheme, to some extent, it is still a regularized solution as the 501 

prescriptions infused by the prior distribution impose a non-arbitrary final model. As mentioned 502 

before, this is clear, for example, from Figure 4c: even though neighboring soundings 503 
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(characterized by similar measurements) are independently inverted, the corresponding results 504 

are similar (demonstrating a continuity of the models with respect to the data). And this is 505 

particularly remarkable because no lateral constraints have been enforced. In other 506 

circumstances, it might be useful to constrain the inversion also horizontally. An extension of the 507 

present scheme capable of considering the expected lateral continuity might consist of adding a 508 

term taking into account the probability of a 1D model being different from some reference 509 

model (possibly, the reference model can result from the previously considered adjacent 1D 510 

sounding inversion). Similar attempts are described, for example, in Ardid et al. 2021 and Zaru 511 

et al. 2023. 512 
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Figure 5. Comparison of individual soundings. Panel (a) shows the locations of the 514 

selected FDEM soundings and the position of the borehole B26*. Panels (b-e) display the 515 

electrical resistivity PDFs as a function of depth for each of the four selected locations 516 

(respectively associated with soundings no. 26805, 50000, 100000, and 150000); for each of the 517 

selected soundings, the posterior PDF is compared against the corresponding mean model 518 

resistivity (solid red line) and the relative standard deviation limits (the band between the solid 519 

green lines), and, for completeness, also with the maximum likelihood model (black solid line) 520 

and the peat probability (solid magenta line, whose x-axis is shown on the top of each panel). For 521 

the sounding 26805, the deterministic inversion is also available and, consistently, is plotted in 522 

panel (b) as a dashed orange line. Sounding 26805 was selected since it is the closest to the 523 

borehole B26* whose stratigraphy is known and appears alongside panel (b).  524 

 525 

5 Conclusions 526 

We presented a workflow for the probabilistic petrophysical 1D inversion of FDEM 527 

measurements and tested it on a dataset consisting of 11 frequencies collected throughout an 528 

Alpine peatland in northern Italy. The retrieved posterior distribution has been analyzed in terms 529 

of maximum likelihood and mean models, and via the associated peat (and clay) occurrence 530 

probability. It turned out that the peat probability can effectively reconstruct the geometry of the 531 

peat layer and satisfactorily match the additional ancillary pieces of evidence about the 532 

investigated site. In particular, the probabilistic results have been compared against the available 533 

boreholes and their capability was confirmed at least for the deepest (and most reliable) direct 534 

investigations. Furthermore, the probabilistic scheme was also verified against the most standard 535 

deterministic Occam's inversion implemented in a very well-known open-source software 536 

package. The deterministic and the probabilistic inversion show remarkable differences due to 537 

the different prior information formalized in the two schemes (smooth vertical constraints in the 538 

deterministic inversion; three lithological units with specific resistivity ranges in the probabilistic 539 

approach). We also highlight that the adopted probabilistic approach can be extremely efficient 540 

paving the way to quasi-real-time inversion in the field and on-the-fly optimization of the survey 541 

plans. 542 

Future developments should involve the assessment of the modelling error and the inclusion of 543 

such an inevitable source of uncertainty into the inversion scheme as has already been done for 544 

the time-domain counterpart (Bai et al., 2021). 545 

 546 
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forward responses can be retrieved from https://github.com/elwaseif/FEMIC-Code   (Elwaseif et 550 

al., 2017b), whereas the probabilistic inversion scheme is implemented in the SIPPI toolbox 551 

(Hansen et al. 2013a; Hansen et al. 2013b), available at https://github.com/cultpenguin/sippi 552 
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