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Abstract

Improved ocean biogeochemistry (BGC) parameters in Earth System Models can enhance the representation of the global

carbon cycle. We aim to demonstrate the potential of parameter estimation (PE) using an ensemble data assimilation method

to optimise five key BGC parameters within the Norwegian Earth System Model (NorESM). The optimal BGC parameter

values are estimated with an iterative ensemble smoother technique, applied a-posteriori to the error of monthly climatological

estimates of nitrate, phosphate and oxygen produced by a coupled reanalysis that assimilates monthly ocean physical observed

climatology. Reducing the ocean physics biases while keeping the default parameters (DP) initially reduces BGC state bias in

the intermediate depth but deteriorates near the surface, suggesting that the DP are tuned to compensate for physical biases.

Globally uniform and spatially varying estimated parameters from the first iteration effectively mitigate the deterioration and

reduce BGC errors compared to DP, also for variables not used in the PE (such as C0$ 2$ fluxes and primary production).

While spatial PE performs superior in specific regions, global PE performs best overall. A second iteration can further improve

the performance of global PE for near-surface BGC variables. Finally, we assess the performance of the global estimated

parameters in a 30-year coupled reanalysis, assimilating time-varying temperature and salinity observations. It reduces error

by 20\%, 18\%, 7\%, and 27\% for phosphate, nitrate, oxygen, and dissolved inorganic carbon, respectively, compared to the

default version of NorESM. The proposed PE approach is a promising innovative tool to calibrate ESM in the future.
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Abstract15

Improved ocean biogeochemistry (BGC) parameters in Earth System Models can en-16

hance the representation of the global carbon cycle. We aim to demonstrate the potential17

of parameter estimation (PE) using an ensemble data assimilation method to optimise five18

key BGC parameters within the Norwegian Earth System Model (NorESM). The optimal19

BGC parameter values are estimated with an iterative ensemble smoother technique, ap-20

plied a-posteriori to the error of monthly climatological estimates of nitrate, phosphate and21

oxygen produced by a coupled reanalysis that assimilates monthly ocean physical observed22

climatology. Reducing the ocean physics biases while keeping the default parameters (DP)23

initially reduces BGC state bias in the intermediate depth but deteriorates near the sur-24

face, suggesting that the DP are tuned to compensate for physical biases. Globally uniform25

and spatially varying estimated parameters from the first iteration effectively mitigate the26

deterioration and reduce BGC errors compared to DP, also for variables not used in the27

PE (such as C02 fluxes and primary production). While spatial PE performs superior in28

specific regions, global PE performs best overall. A second iteration can further improve29

the performance of global PE for near-surface BGC variables. Finally, we assess the per-30

formance of the global estimated parameters in a 30-year coupled reanalysis, assimilating31

time-varying temperature and salinity observations. It reduces error by 20%, 18%, 7%, and32

27% for phosphate, nitrate, oxygen, and dissolved inorganic carbon, respectively, compared33

to the default version of NorESM. The proposed PE approach is a promising innovative tool34

to calibrate ESM in the future.35

Plain Language Summary36

Earth System Models heavily rely on parametrisation that accounts for unresolved pro-37

cesses. Fine-tuning these numerous parameters is challenging because there are multiple38

sources of error, and the parameter’s sensitivity is interlinked. The ocean biogeochemistry39

models are particularly challenging as they are heavily parameterised, and observations are40

sparse. We show that ocean biogeochemistry parameters in an Earth System Model that41

contributed to the Coupled Model Intercomparison Project have been tuned to compensate42

for bias in ocean physics. Reducing these biases yields suboptimal performance in ocean43

biogeochemistry. Here, we demonstrate that data assimilation can provide a successful44

framework for tuning such parameters within the Norwegian Earth System Model. The45

method can effectively reduce error, which is also true for variables not used in training.46

Performance with calibrated parameters and constrained bias in ocean physics achieve supe-47

rior performance than the default version. The new calibration method will be instrumental48

in enhancing the performance of our future model.49
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1 Introduction50

Ocean biogeochemical (BGC) models are crucial for estimating the ocean’s major chem-51

ical elements and biomass, including carbon, oxygen, nitrogen, and phytoplankton. The52

ocean BGC component is essential to Earth System Models (ESM) and simulating and pre-53

dicting our future climate (Flato, 2011; Orr et al., 2017). It plays a pivotal role in regulating54

the atmospheric carbon dioxide concentration and its feedback to the climate system (e.g.,55

J. Tjiputra et al., 2010). The inclusion of ocean BGC in ESM is also crucial in under-56

standing the interactions between the ocean ecosystem and other components of the Earth57

system and their impact, such as ocean deoxygenation and acidification (Kwiatkowski et58

al., 2020; J. F. Tjiputra et al., 2023) and their predictability (Fransner et al., 2020; Doney59

et al., 2012). However, BGC simulations in ESMs are inherently associated with significant60

uncertainty, emphasizing these models’ continuous need for improvement.61

The accuracy of BGC models is limited by various sources of errors, which are domi-62

nated by imperfect descriptions of the physical environment that drives the biology and the63

sub-optimally tuned empirical parameterisations of the biogeochemical dynamics (Doney64

et al., 2004). The BGC model uses numerous poorly known parameters to describe the65

complex biogeochemical process, such as the growth of phytoplankton and their grazing66

rate by zooplankton. These parameters are often obtained from small-scale laboratory ex-67

periments conducted on individual species, but in models, they are employed in a broader68

context to describe entire categories of organisms. For instance, parameter values are as-69

sumed to be constant globally and manually adjusted to capture the observed large-scale70

BGC variability within observational uncertainty. However, such a manual tuning process71

is very complicated and time-consuming, specifically with large models when the number72

of parameters increases with the complexity of biogeochemical models. Furthermore, many73

non-linear physical, chemical, and biological processes influence the marine ocean system,74

making it challenging to isolate the impact of individual biogeochemical parameters on the75

overall system. Finally, biogeochemical parameters are often not completely independent of76

each other and should not be tuned in isolation. For example, changes in one nutrient may77

affect the uptake rate of another nutrient by phytoplankton, making it difficult to isolate78

the effects of each nutrient individually. We explore the potential of advanced computa-79

tional tools and statistical methods to provide an efficient framework to calibrate models80

and improve their accuracy.81

Data assimilation (DA) provides a mathematical framework to estimate model states82

and parameters based on observational data. For state estimation, the model state variables83

are updated after a model integration and are used to produce reanalyses and forecasts. For84

parameter estimation with ensemble methods, the ensemble system is run forward with85
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perturbed parameter values, and DA finds the optimal parameter likelihood that minimizes86

the misfit of the model’s state variables with observations (, e.g., Jazwinski, 2007; Spitz et87

al., 1998; Fennel et al., 2001; Anderson, 2001; Annan et al., 2005; Friedrichs et al., 2006;88

J. F. Tjiputra et al., 2007; Bagniewski et al., 2011). The Ensemble Kalman Filter (EnKF;89

Evensen, 1994) is a sequential DA method that uses a Monte Carlo model forward inte-90

gration to estimate the forecast error covariance. The EnKF has been successfully applied91

in several biological models for the state and the parameter estimation (Eknes & Evensen,92

2002; Allen et al., 2003; Nerger & Gregg, 2008; Simon et al., 2012; Gharamti, Samuelsen,93

et al., 2017; Gharamti, Tjiputra, et al., 2017a; Natvik & Evensen, 2003). Typically BGC94

parameters are estimated with a single-column model and at the few locations where the95

spatial-temporal multivariate observations are good enough (e.g., see Gharamti, Tjiputra,96

et al., 2017b; Mamnun et al., 2022). However, the optimal parameters retrieved from the97

different stations differ substantially (Gharamti, Tjiputra, et al., 2017b), which exhibits98

the complex interactions between multiple parameters and dimensions. It is thus unclear99

whether one can use parameters from a single location in ESMs and achieve optimal per-100

formance globally (e.g., McDonald et al., 2012; Hoshiba et al., 2018; B. Wang et al., 2020).101

(Simon et al., 2015) attempt to retrieve spatially and time-varying BGC parameters in a102

forced ocean and BGC regional model of the North Atlantic. While the BGC state error103

was reduced in some places, the system diverged due to unrealistic parameter values in some104

regions. Singh et al. (2022) attempted to retrieve spatially varying parameters but constant105

in-time parameters in an idealised framework within an Earth System model. Synthetic106

observations – mimicking the shortage of ocean biogeochemistry observations– were gener-107

ated from the same model run with (spatially) varying perturbed parameter values. The108

dual-one-step-ahead-smoother (DOSA) technique can recover the spatially varying param-109

eter values and perform nearly optimally – i.e., produce errors comparable to the model110

with perfect parameter values. In this study, we follow on Singh et al. (2022) and test the111

parameter estimation technique with a real framework.112

We investigate whether parameter estimation using the ensemble DA method can im-113

prove the representation of ocean biogeochemistry within the Norwegian Earth System114

Model (NorESM). However, our first attempt repeating the method from Singh et al. (2022)115

failed. Hence, the state error inherited from the other components (ocean and atmosphere)116

grows faster than the parametric error from the BGC model, which causes the parameter117

estimation to overshoot realistic ranges. Therefore, we revised our framework and decided118

to train the BGC parameters a-posteriori based on the reanalysis performance with state119

assimilation in the other components to sustain their error to a low level. The optimisation120

is iterative (iterative ensemble smoother, IES Evensen, 2018), and we optimize five BGC121

parameters that play a key role in the carbon cycle. Many studies have demonstrated that122
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resolving local or region-based features of the parameters can be beneficial for the biogeo-123

chemical modelling (Schartau & Oschlies, 2003; Hemmings et al., 2004; Losa et al., 2004;124

J. F. Tjiputra et al., 2007; Roy et al., 2012; Doron et al., 2013). Therefore, we compare the125

performance of globally uniform and spatially varying parameter values. To our knowledge,126

this study is the first to perform the BGC parameter estimation in a state-of-the-art fully-127

coupled ESM with real observations, and we show that a global parameter estimation can128

achieve a substantial error reduction.129

The subsequent sections of this paper are structured as follows. Section 2 provides130

an overview of the parameter estimation framework, encompassing details related to the131

model, assimilation algorithms, observations, and experimental design. Section 3 presents132

and discusses the numerical results. The concluding remarks of this work are outlined in133

Section 4.134

2 Parameter estimation framework and Experimental Design135

This section provides an overview of the Norwegian Climate Prediction Model (NorCPM1,136

Bethke et al., 2021), and outlines the different data assimilation methods used for constrain-137

ing the state of the ocean component and estimating the biogeochemical parameters. We138

then describe the experimental design and the observations used for this study.139

2.1 The Norwegian Climate Prediction Model140

NorCPM1 is a system developed to provide coupled reanalysis (Counillon et al., 2016)141

and seasonal-to-decadal climate prediction (Kimmritz et al., 2019; Y. Wang et al., 2019;142

Bethke et al., 2021). It is based on the Norwegian Earth System Model (NorESM1; Bentsen143

et al., 2013) and provides a suite of data assimilation solutions based on ensemble Kalman144

Filter methods. NorCPM1 contributed to the Decadal Climate Prediction Project (DCPP)145

of the sixth Coupled Model Intercomparison Project (CMIP6; Bethke et al., 2021) and146

to the World Meteorological Organisation “lead centre for operational annual-to-decadal147

prediction” (Hermanson et al., 2022).148

2.1.1 The Norwegian Earth System Model (NorESM)149

NorCPM1 was built on the NorESM version 1 configured at a medium resolution150

(NorESM1-ME; Bentsen et al., 2013; J. Tjiputra et al., 2013), which uses CMIP6 forcing,151

and includes a bug fix in the atmospheric chemistry and was further re-calibrated (Bethke152

et al., 2021). The model is based on the Community Earth System Model (CESM1.0.4;153

Hurrell et al., 2013), but with modified aerosol chemistry in the atmosphere and the ocean154
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component is replaced with an isopycnal coordinate ocean general circulation model. The155

ocean carbon cycle model is based on the Hamburg Ocean Carbon Cycle (HAMOCC5.1;156

Maier-Reimer et al., 2005) model. The marine ecosystem module, which is the focus of this157

study, is based on an NPZD-type (Nutrients-Phytoplankton-Zooplankton-Detritus) ecosys-158

tem model (Six & Maier-Reimer, 1996; J. Tjiputra et al., 2010).159

At the euphotic layer (i.e., top 100m), the model simulates primary productivity driven160

by phytoplankton growth, which is limited by temperature, light, and multi-nutrients (phos-161

phate, nitrate, and dissolved iron) availability. Consumed surface nutrients are assimilated162

into phytoplankton soft tissue and eventually turned into dissolved and particulate organic163

matters (DOM and POM) through a chain of processes such as zooplankton grazing, phy-164

toplankton exudation, zooplankton excretion, and mortality. A single species of DOM is165

implemented and advected by the ocean circulation, while POM primarily sinks into the166

ocean interior. POM and DOM are remineralized to inorganic nutrients, given sufficient167

oxygen concentration, at constant remineralization rates. In this version of NorESM, the168

BGC component does not provide any feedback to the ocean physics component.169

For more details of other components of NorCPM1, including their overall performance,170

the reader is referred to Bethke et al. (2021).171

2.1.2 DOSA-EnKF DA algorithm for ocean reanalysis172

This study employs the dual one-step ahead iterative smoothing ensemble scheme173

(DOSA-EnKF, Gharamti et al., 2015; Gharamti, Tjiputra, et al., 2017b) for the online174

assimilation of ocean physics observations. DOSA-EnKF is an ensemble data assimilation175

technique that uses a dual iteration step, where the state variables undergo both a smooth-176

ing and an analysis step. Here, we implement DOSA-EnKF based on the deterministic177

EnKF DA algorithm (DEnKF; Sakov & Oke, 2008), a square-root version of the EnKF.178

The DEnKF algorithm performs the DA in two sub-steps: in the first step, it estimates the179

ensemble mean (Equation 1) that minimises the distance from the truth based on its dis-180

tance from observations, while in the second sub-step, the ensemble perturbation is updated181

to adjust the ensemble anomaly (Equation 2). This method yields an approximate but de-182

terministic form of the traditional stochastic EnKF and outperforms the latter, particularly183

with small ensembles (Sakov & Oke, 2008). It also inflates the errors by construction and is184

intended to perform well for operational applications. Below, we present the mathematical185

formulations of the DEnKF method in the DOSA framework:186

Consider an ensemble of model state X = [x1,x2, ....xm] ∈ Rn×m, with each column187

xi ∈ Rn representing an individual ensemble member. Here, n denotes the size of the state188
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vector, and m is the ensemble size. Let X denote the ensemble mean, which is a column189

vector in ∈ Rn×1. The ensemble anomaly A ∈ Rn×m of the model state can be computed190

as A = X−X1T
m, with 1m = [1, 1, ..., 1] ∈ R1×n, where the superscript T denotes a matrix191

transpose.192

In the first step of the DOSA scheme, a given ensemble of the analysed model stateXa
k−1193

at time k−1 is integrated forward at time k using the dynamical model (M): Xf
k=M(Xa

k−1);194

with the superscript f denoting the forecast and a the analysis. Observations yk at time k195

are used to produce a smoothed estimate of the ensemble mean and anomaly at the previous196

analysis step k − 1 as follows:197

Xs
k−1 = Xa

k−1 +Kk−1,k(yk −HXf
k). (1)

As
k−1 = Aa

k−1 −
1

2
Kk−1,kHAf

k . (2)

where the superscript s denotes the smooth state, H is the observations operator which198

maps the model state to the observations space, and Kk−1,k is Kalman gain formulated as :199

Kk−1,k = Aa
k−1(A

f
k)

THT
(
HAf

k(A
f
k)

THT +R
)−1

, (3)

where R is the observation error covariance matrix.200

In the second step, the model is integrated forward to time k again but from the201

smoothed ensemble of state Xs
k−1; i.e. X

f2
k =M(Xs

k−1).202

203

The observations at time k, yk, are then used again to produce an analysis of state Xa
k204

and anomaly Aa
k ensemble at time k. Unlike the standard DOSA filter, we have inflated205

R by a factor of 2. Hence, if the model is persistent, the standard formulation would206

assimilate observations twice. Multiplying the error variance by a factor of 2, the scheme207

becomes equivalent to the ES–MDA (Ensemble Smoother with Multiple Data Assimilation,208

Raanes et al., 2019) and results will coincide with the standard EnKF for a linear model.209

Xa
k = Xf2

k +Kk,k(yk −HXf2
k ). (4)

210

Aa
k = Af2

k − 1

2
Kk,kHAf2. (5)
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Here, Af2
k is the ensemble anomaly metrics constructed from second time model forecast211

Xf2
k . Kk,k is the standard Kalman gain and represented similar to Equation 3 (with k instead212

of k-1).213

In this study, the assimilation cycle is monthly, and we update the full ocean state vector214

(Counillon et al., 2016). The adjustment of the other compartments (e.g., atmosphere and215

sea ice) occurs dynamically during the system integration. The model state vector (X) is216

constructed in isopycnal coordinates and includes temperature, salinity, layer thickness and217

velocities of the entire water column (53 layers, see Counillon et al., 2014; Y. Wang et al.,218

2017). We use the upscaling super layer algorithm developed by Y. Wang et al. (2016) to219

update layer thickness, which prevents the analysis from returning negative quantities and220

preserves heat, mass and salt.221

The ocean data assimilation (ODA) yields updates of the BGC mass component because222

of the update of the layer thickness. Bethke et al. (2021) demonstrated that this approach223

conserves well BGC properties and does not introduce spurious upwelling at the Equator,224

an artefact often notified by ODA (While et al., 2010; Park et al., 2018).225

The remaining assimilation configurations are set as in Bethke et al. (2021). Assimi-226

lation is done in a local analysis framework (Sakov et al., 2012). A latitude-varying quasi-227

Gaussian localization function (Gaspari & Cohn, 1999) is used to smooth the assimilation228

impact at the boundary of the localisation radius (Y. Wang et al., 2017). We use the mod-229

eration and a pre-screening technique (Sakov et al., 2012) to sustain the ensemble spread230

during the assimilation.231

2.1.3 Iterative ensemble smoother for offline parameter estimation232

The online parameter estimation from Singh et al. (2022) was initially tested but did not233

work successfully. Parameter values reached unrealistic values, and performance was poorer234

than the default parameter values. Unlike in the perfect twin experiment where the model235

errors are, by construction, only coming from the model parameter, the model errors now236

also originate from the other components (e.g., ocean) or from BGC parameters not consid-237

ered in the parameter estimation. Here, the error inherited from the ocean grows faster than238

that of the parameter considered, which confuses the relation between the parameter values239

and the model-data misfits. Furthermore, as the model error is much larger than internal240

variability, sustaining a consistent ensemble spread level, even with an adaptive inflation241

scheme, is challenging without reaching an unrealistic inflation factor (not shown). This242

is particularly challenging for ocean biogeochemistry because error is primarily dominated243

by sporadic bloom events that occur at different times of the year in different locations.244
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This led to parameter estimation converging to different solutions, depending on when the245

experiment was started (e.g., in winter or summer), where the first bloom occurred.246

We propose an offline approach to estimate parameters using an iterative ensemble247

smoother (Evensen, 2018) based on the DEnKF scheme. First, each ensemble member248

runs with a random parameter value over the entire simulation period, and one can then249

relate the parameter value with the misfit between the state variables and the observations.250

The update is applied a-posteriori on the aggregated innovation vector of the whole period251

in a single analysis step. It differs from the online assimilation method, where analysis252

is performed sequentially with a joint monthly state and parameter update (Singh et al.,253

2022).254

The iterative ensemble smoother scheme nicely handles the challenges mentioned above.255

First, as we continuously assimilate the ocean state with the DOSA scheme, the errors256

inherited from the ocean physic are sustained at a low error level, and errors related to the257

BGC parameter can grow and dominate the overall error term. Second, as the assimilation258

considers all calendar months jointly, there is no longer preferential influence related to the259

start of the cycle.260

Let the ensemble of model parameters be θ ∈ Rp×m, with the ensemble mean θ ∈ Rp
261

and the ensemble anomaly Aθ ∈ Rp×m. Here, p denotes the number of parameters, and m262

is the size of the ensemble. The offline parameter estimation using the iterative ensemble263

smoother is described below.264

The ensemble of the analyzed model state Xa
k−1 ∈ Rn×m at time k − 1, are integrated265

forward sequentially T times using the parameter ensemble θi with the dynamical model266

(Xf
k=M(Xa

k−1, θ
i)) and with ocean assimilation in between each model integration step.267

We denote the aggregated model forecast ensemble members over time; denoted as Xf
1:T =268

[Xf
1
1:T

,Xf
21:T

....Xf
m1:T

] ∈ RnT×m. Here, m is the number of ensemble members, and nT269

denotes the number of model states n times the number of time steps T . For a monthly270

cycle and a yearly optimisation window, T=12. Let the Xf
1:T ∈ RnT is the ensemble271

means, Af
1:T is the ensemble anamoly and observation is y1:T ∈ Ro, aggregated over the272

corresponding time of Xf
1:T . Here, o is the total number of observations aggregated over273

time k = 1 to T . The offline parameter estimation using the DEnKF algorithm is as follows:274

θi+1 = θi +K(y1:T −HXf
1:T ) (6)

Ai+1
θ = Ai

θ −
1

2
KHAf

1:T (7)
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K = Ai
θ(A

f
1:T )

THT
(
HAf

1:T (A
f
1:T )

THT +R
)−1

. (8)

The ensemble of estimated parameters θi+1 can be reconstructed as: θi+1 = θi+1+Ai+1
θ .275

The approach can be repeated iteratively, where the forward model integration M is276

rerun with the estimated parameter values from the previous iteration. For instance, the277

model integration for a second iteration can be expressed as Xf
k=M(Xa

k−1, θ
i+1). Con-278

sequently, we can iterate equations 6 and 7, utilizing the updated ensemble mean Xf
1:T279

and anomaly Af
1:T , both of which are derived from the second model integration. The280

observation error should be multiplied by the number of iterations one intends to perform281

(Evensen, 2018). Consequently, this approach enhances the accuracy of model simulations282

by iteratively refining the non-linear response to the model parameters (in the linear case,283

the solution would be identical). The model starts with the same initial state Xa
k−1 for each284

iteration.285

The approach can estimate global and spatially varying parameters. In global parameter286

estimation, the model parameters are a vector (∈ Rp) and are estimated based on the287

innovation from the entire domain. The spatially varying parameter estimates (∈ Rp ×m)288

are based on the innovation from the local domain, similar to the state estimation of the289

ocean physics state (see section 2.1.2).290

2.2 Observations291

We use two distinct sets of global observations to estimate model parameters: (1)292

ocean physics monthly climatology for state constraints and (2) BGC monthly climatology293

for parameter estimation, both from the World Ocean Atlas 2018 release (WOA18) datasets294

(Locarnini et al., 2018; Zweng et al., 2019; Garcia et al., 2019a, 2019b). The ocean physics295

estimate consists of temperature and salinity (TS), and the BGC includes nutrients (PO4;296

phosphate and NO3; nitrate) and oxygen (O2). Nutrients extend down to 800m depth,297

whereas temperature, salinity and oxygen profiles are available down to 1500m deep. To298

estimate the observation error needed for the assimilation, we use the quadratic sum of the299

error estimate from the WOA18 dataset and add one deseasoned (with the mean seasonal300

cycle removed) time standard deviation from our model computed over 1980-2010 to account301

for representation error (Janjić et al., 2018).302

The WOA18 climatological estimates are available at a regular horizontal grid with a303

spatial resolution of 1°x1°. These gridded datasets are generated through objective analysis,304

which involves interpolating and extrapolating data from individual measurement points to305
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create a continuous gridded product. While the ocean physics climatological estimate is306

quite accurate overall, the situation differs for BGC data. BGC measurements are sparse307

and heterogeneously distributed in space and time. Therefore, for BGC, we only use the308

estimate where at least one measurement is available within the corresponding grid-square309

area. Ocean physics observations in ice-covered regions are excluded. The sea ice mask is310

estimated using the 30-year climatological mean sea ice data from the NorESM historical311

model simulation (1980-2010). BGC measurements that are located within 4 model grid312

points away from the sea ice point are excluded.313

The validation of parameter estimation results involves including additional observa-314

tions not used during the parameter estimation process. It includes silicate (SI), dissolved315

inorganic carbon (DIC), total alkalinity (TA), primary production (PP) and sea-air CO2316

fluxes. These observations, referred to as independent data, play a crucial role in assessing317

the impact of parameter estimation methods.318

This study further utilised the time-varying observations of sea surface temperature319

(SST) data from the National Oceanic and Atmospheric Administration (NOAA) Optimum320

Interpolation SST version2 (Reynolds et al., 2002), and subsurface ocean temperature and321

salinity hydrographic profile observations from the EN4 dataset (EN4.2.2; Gouretski &322

Reseghetti, 2010) to create a 30 years reanalysis. The aim was to assess the performance of323

estimated parameters within the context of interannually varying ocean physics and with324

ocean variability from an independent period.325

A summary of observations utilized for parameter estimation and validation is provided326

in Table 1.327

2.3 Experimental setup for BGC parameter estimation and verification328

The HAMOCC model in NorESM1 incorporates a range of parameters to effectively329

simulate the biogeochemical characteristics of the ocean, with a comprehensive list pro-330

vided by Maier-Reimer et al. (2005). In this study, our primary objective is to optimize a331

selection of five parameters chosen explicitly for their influences on the carbon cycle and332

with connections to the assimilated BGC observations. These parameters include: 1) the333

half-saturation constant for nutrient uptake during phytoplankton growth (BKPHY), 2)334

the maximum zooplankton grazing rate (GRAZRA), 3) the sinking speed for particulate335

organic carbon (WPOC), 4) the half-saturation constant for silicate uptake during biogenic336

opal production (BKOPAL), and 5) the remineralization rate of particulate organic carbon337

(DREMPOC). The parameter’s acronyms (e.g., BKPHY) are the same as in the model338

source codes to facilitate straightforward tracking.339

–11–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Table 1. List of observations utilized (Column-1), with the second column detailing the data

type; whether time-varying or climatology. The reference period for the latter type is provided in

the third Column. The second-to-last column signifies if data is assimilated (in ODA or PE), while

the last column contains the observational reference.

Observation variables data type Clim. Period Remark References

Temperature climatology 2005–2017 Assimilated (ODA) WOA 2018 (Locarnini et al., 2018)
Salinity climatology 2005–2017 Assimilated (ODA) WOA 2018 (Zweng et al., 2019)
Oxygen climatology 1960–2018 Assimilated (PE) WOA 2018 (Garcia et al., 2019a)
Phosphate climatology 1960–2018 Assimilated (PE) WOA 2018 (Garcia et al., 2019b)
Nitrate climatology 1960–2018 Assimilated (PE) WOA 2018 (Garcia et al., 2019b)
Silicate climatology 1960–2018 Independent WOA 2018 (Garcia et al., 2019b)
Dissolved Inorganic Carbon climatology 2004-–2017 Independent Keppler et al. (2020)
Total Alkalinity climatology 1972-2017 Independent Broullón et al. (2019)
Sea–air CO2 fluxes climatology 1982-–2015 Independent Landschützer et al. (2017)
Net primary production climatology 2003-–2012 Independent Average of the three remote sensing

products (VGPM, Eppley-VGPM,
and CbPM) from the Moderate Res-
olution Imaging Spectroradiometer
(Behrenfeld & Falkowski, 1997;
Westberry et al., 2008)

Sea Surface Temperature Time-varying – Assimilated (ODA) NOAA OI SST version2 (Reynolds
et al., 2002)

Temperature Time-varying – Assimilated (ODA) EN4.2.2 (Gouretski & Reseghetti,
2010)

Salinity Time-varying – Assimilated (ODA) EN4.2.2 (Gouretski & Reseghetti,
2010)

The BGC parameter estimation method uses monthly ocean BGC outputs produced by340

a coupled reanalysis that assimilates ocean physics climatological observations. As such, it341

becomes easier to relate the BGC model error to the BGC parameter values. The monthly342

temperature and salinity climatology observations are repeatably assimilated every year.343

We perform the offline parameter estimation from a yearly cycle of the ocean reanalysis344

after it has reached stable performance.345

We now describe the series of experiments that we have used to estimate parameters346

and assess their performance. Each experiment uses a 30-member model ensemble run and347

is outlined as follows:348

• NorESM DP – an ensemble of historical runs with default parameters (DP). It349

serves as a benchmark to assess the baseline performance of the default version of350

NorESM that contributed to CMIP6. The ensemble was initialised from a random pre-351

industrial state in 1850, run until 2014 with CMIP6 historical forcing, and extended352

with the Shared Socioeconomic Pathway (SSP) 2-4.5 scenario forcing from 2015 to353

2026.354

• REANA DP – a reanalysis using DP and with ocean constrained to follow monthly355

climatology of temperature and salinity repeated every year (section 2.1.2). The356

reanalysis is branched from NorESM DP and runs from 2015 until 2026. It helps to357

estimate how the BGC model responds to reducing bias in ocean physics.358
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• NorESM PP – an ensemble of simulations (as NorESM DP) utilizing perturbed359

BGC parameters (PP). The simulation was branched from NorESM DP in January360

2005 and run until January 2015. The PP is generated by adding Gaussian pertur-361

bation to the default values of five chosen parameters, with the standard deviation362

set at 30% of the default value. A 30-member PP ensemble is generated for every363

chosen parameter, and spatially constant values are assigned to each member. The364

valid range of these parameters is unknown due to our limited understanding and ob-365

servations (J. F. Tjiputra et al., 2007). We employ lower and upper thresholds during366

the ensemble generation process to ensure that the parameter values remain within367

a reasonable range. Lower and upper bounds are defined as percentage changes from368

their respective default values, ranging from 60% to 200% of the default value. This369

experiment serves as a spin-up run to build sensitivity to the perturbed parameters.370

• REANA PP – a reanalysis same as REANA DP, but with perturbed BGC param-371

eters and initialized from NorESM PP. The mismatch of the REANA PP reanalysis372

data with observed BGC climatology is used to estimate the parameters in the first373

iteration (Iteration-1, Section 2.1.3). The estimated parameter values are discussed374

and presented in Section 3.2.375

• REANA GP – a reanalysis (as REANA PP) with global estimated parameters ob-376

tained from Iteration-1. The performance of the REANA GP is assessed to investigate377

the benefit of global parameter estimation (Section 3.3). The output data from this378

experiment is also used to estimate the global parameters in the second iteration379

(Iteration-2) and presented in Section 3.2.380

• REANA SP – a reanalysis (as REANA GP), but with spatial estimated parameters381

(Section 3.2). This experiment is conducted to evaluate the performance of spatially382

varying estimated parameter values and to investigate if there is any benefit over the383

global one (Section 3.3).384

• REANA GP2 – a reanalysis same as REANA GP, but with global estimated pa-385

rameters taken from Iteration-2. This experiment helps to investigate the benefit of386

the multi-iteration approach for parameter estimation (Section 3.4).387

• REANA IAV GP2 – an extended reanalysis using time-varying ocean physics observations-388

i.e., considering internal variability (IAV). It runs from 1985 to 2022 with the same389

global estimated parameter used in REANA GP2. It assimilates time-varying obser-390

vation of SST and TS profiles in a monthly cycle. The initial state was branched from391

NorESM DP in 1982. For REANA IAV GP2, the first eight years of the reanalysis392

(1985-1992) are discarded (considered as a spinup to adjust to the new parameter),393

and the remaining 30 years (1993-2022) are used for validation.394
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A summary of all experiments is given in Table 2.395

Table 2. List of experiments.

Experiment
Name

Observations
(if assimilated)

Starting
initial
ensemble

Parameters used Time period Description

NorESM DP - Pre-
industrial

Default parameters 1850 - 2026 Baseline

REANA DP TEM+SAL clim. NorESM DP Default parameters 2015 - 2026 Reanalysis to evaluate
the impact of reduced
ocean physics bias on
BGC

NorESM PP - NorESM DP Perturbed parame-
ters

2005 - 2015 Spin-up run for PP.

REANA PP TEM+SAL clim. NorESM PP Perturbed parame-
ters

2015 - 2026 Input data to perform
first iteration PE

REANA GP TEM+SAL clim. NorESM PP Global estimated
parameters from
Iteration-1

2015 - 2026 Reanalysis to evalu-
ate the first iteration
global PE and also in-
put data to perform
the second iteration

REANA SP TEM+SAL clim. NorESM PP Spatial estimated
parameters from
Iteration-1

2015 - 2026 Reanalysis to evaluate
if any benefit of spatial
PE over global one

REANA GP2 TEM+SAL clim. NorESM PP Global estimated
parameters from
Iteration-2

2015 - 2026 Reanalysis to evaluate
benefit of second itera-
tion global PE

REANA IAV GP2 TEM+SAL time-
varying

NorESM DP Global estimated
parameters from
Iteration-2

1985 - 2022 Reanalysis to evaluate
second iteration global
PE with interannually
varying ocean forcings.

2.4 Statistical Metrics396

The performance of the numerical experiments is analyzed based on the following mea-397

sures -398

RMSE =

√√√√ N∑
i=1

Wi(x
f
i − yi)2 (9)

Bias =

N∑
i=1

Wi(x
f
i − yi), (10)

where RMSE is the area-weighted root mean square error, Wi is the area of ith model399

grid cell, and N is the total number of data points. xf represents the model ensemble400

mean, and y corresponds to the observed values. We perform bi-linear interpolation of the401

observations to the model grid.402
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3 Results and Discussions403

3.1 Impact of reduced ocean physics bias on BGC404

The accuracy of the underlying ocean physics strongly influences the accuracy of BGC405

simulations. Utilizing data assimilation techniques to reduce ocean physics bias is expected406

to improve the performance of BGC simulations. However, the performance of BGC simula-407

tions can also be negatively impacted by inaccurate parameters, which may have been tuned408

to account for bias in the physics component. We compare the performance of REANA DP409

and NorESM DP, which both utilise default model parameters but with REANA DP con-410

straining the bias in the ocean’s physical state. The monthly climatological observations411

are used for verification. Error in NorESM DP temperature and salinity is large and similar412

every year (Figure 1). REANA DP rapidly reduces error in temperature and salinity and413

sustains it at a low level (to about 44% for temperature and 50% for salinity).414

Temperature RMSE Temperature RMSE

Salinity RMSE Salinity RMSE

oC

psu

(a) (b) 

(c) (d) 

FREE_DP REANA_DP   

NorESM_DP
REANA_DP 

Figure 1. Hovmöller diagram of global monthly RMSE in NorESM DP (left column) and RE-

ANA DP (right column) computed against WOA18 climatological temperature (top) and salinity

(bottom). The black dotted and solid lines represent the monthly vertically-averaged RMSE (right

y-axis) in NorESM DP and REANA DP, respectively.

REANA DP yields a pronounced improvement initially for phosphate, nitrate and oxy-415

gen (see Figure 2) within the first two years – particularly evident below 400m. However,416

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

NorESM_DP REANA_DP               REANA_GP REANA_SP

Phosphate Phosphate Phosphate Phosphate
NorESM_DP REANA_DP   REANA_GP REANA_SP

Nitrate Nitrate Nitrate Nitrate

Oxygen Oxygen Oxygen Oxygen

mmol/m3

mmol/m3

mmol/m3

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

Figure 2. Global Hovmöller diagram of RMSE in NorESM DP (column-1), REANA DP

(column-2), REANA GP (column-3) and REANA SP (column-4) computed again WOA18 monthly

climatology of phosphate, nitrate and oxygen (shown in rows 1 to 3, respectively). The lines are

the vertically monthly averaged RMSE (right y-axis).

after that period, the error starts to grow in the top 500meters, and the vertically and417

globally averaged RMSE is degraded beyond 10 years. A similar behaviour is also evident418

for dissolved inorganic carbon (DIC), silicate and total alkalinity (TA) (Figure 3). The419

degradation is quickest for silicate, for which the overall error is already degraded after a420

couple of years, while there are still some improvements for alkalinity after ten years. The421

errors below ≈500m are consistently reduced for DIC, TA and silicate in the REANA DP422

experiment.423

To investigate the degradation issue, we further examine the REANA DP nutrients424

spatial distribution in the euphotic zone (0-100m). REANA DP brings an excessive con-425

centration of nutrients (phosphate and nitrate) to the euphotic zone (see Figure 4), which is426

too high roughly everywhere in the globe. Phosphate and nitrate concentrations are higher427

over the Atlantic than in other regions (Figure 4c,h). Consequently, the REANA DP ex-428

hibits higher phytoplankton growth and primary production rate than the NorESM DP (not429

shown). Regions experiencing elevated phytoplankton growth accumulate larger amounts of430

particulate organic matter, which subsequently sinks to deeper ocean layers. This increases431

the input of organic matter and leads to enhanced remineralization, which consumes oxy-432

gen and releases nutrients. The enhanced remineralization in REANA DP leads to oxygen433
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(i) (j) (k) (l) 

(a) (b) (c) (d) Silicate Silicate Silicate Silicate
NorESM_DP REANA_DP   REANA_GP REANA_SP

Dissolved Inorganic Carbon Dissolved Inorganic Carbon Dissolved Inorganic Carbon Dissolved Inorganic Carbon 

Total Alkalinity Total Alkalinity Total Alkalinity Total Alkalinity

mmol/m3

mmol/m3

mmol/m3

(e) (f) (g) (h) 

NorESM_DP REANA_DP               REANA_GP REANA_SP

Figure 3. Same as Figure 2 but for silicate, dissolved inorganic carbon and total alkalinity.

depletion below the euphotic layer, which further increases the negative oxygen bias at in-434

termediate ocean depths (approximately 100-500 meters) in biological active regions (Figure435

4r). In summary, the improved ocean physics leads to increased nutrient transport to the436

ocean surface, improving the subsurface nutrient distribution (Figure 2b,f). However, the437

accumulation of nutrients in surface waters stimulates drift at near-surface layers over time.438

In addition to the mean states, as presented so far, we also evaluate the performance439

of the upper-ocean process seasonal cycle (biological production and air-sea CO2 fluxes).440

The biases in the seasonal cycles of biological production have been identified as one of441

the key factors contributing to the uncertainty in projected carbon sinks and storage in442

the ESMs participating in CMIP5/6 (Kessler & Tjiputra, 2016; Goris et al., 2018; Rodgers443

et al., 2023), and their improvements have been prioritized in recent model development444

(J. F. Tjiputra et al., 2020).445

For primary production, the NorESM DP simulates considerably lower winter produc-446

tion (January–March in the Northern Hemisphere and July–September in the Southern447

Hemisphere) within the extratropical oceans (between 30° and 65°N and south of 30°S)448

compared to observational data (Figure 5a,b). Further, NorESM DP depicts an excessively449

strong spring bloom over the Southern Ocean and registers lower production in the trop-450

ical region relative to the observed estimates. REANA DP enhances primary production451

near the equator but tends to overestimate the seasonal blooms in temperate regions of452
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both hemispheres (Figure 5c). Notably, in the Northern Hemisphere, the bloom initiates453

too early, in February, as opposed to April in observation. The production is also too454

strong in the Southern Hemisphere, extending from the equator to the extratropical region,455

a behaviour that significantly deviates from NorESM DP and observational data.456

We also analyse the sea-air CO2 fluxes (Figure 5). NorESM DP performs well in repre-457

senting the seasonal cycle of sea-air CO2 fluxes. However, REANA DP significantly degrades458

its performance compared to NorESM DP in the tropical and Southern Hemisphere regions459

due to an overestimation of outgassing. This issue, which is consistent with the higher460

upwelling rate (i.e., of carbon-rich deep water to surface), is further evident from the high461

RMSE values (Figure 5l).462

The above results suggest that while reducing the ocean physical bias yields some benefit463

initially, the performance is overall degraded as the default BGC parameters were tuned to464

compensate for the biases in the ocean physics. Tuning BGC parameters to account for bias465

in the physical components is challenging when developing community code such as an Earth466

System Model. If the performance of the ocean physics were to be improved, the system467

would result in degraded performance of the BGC component unless a new calibration was468

to be repeated again, which may slow down the model upgrade. Furthermore, large biases469

in ocean physics can lead to inaccuracies in the representation of BGC processes and their470

interactions. Thus, we can expect to achieve superior performance by re-tuning the BGC471

parameters while reducing the bias in the ocean physics.472

3.2 Offline global and spatial BGC parameter estimation473

We present the globally uniform and spatially varying estimated parameters resulting474

from the offline iterative ensemble smoother technique. The output of REANA PP (with475

perturbed parameters) is used to estimate the parameters (Section 2.3).476

Table 3 displays the default and ensemble mean of global estimated values for the477

five chosen BGC parameters. In Iteration-1, two parameters, the half-saturation constant478

for nutrient uptake (BKPHY) and the remineralization rate (DREMPOC), exhibit a re-479

duction (of 49% and 60%, respectively) from their default values. The remaining three480

parameters, the maximum grazing rate (GRAZRA), the sinking speed (WPOC), and the481

half-saturation constant for silicate uptake (BKOPAL), are increased (by 13%, 20% and482

68%, respectively). The estimated values from Iteration-2 demonstrate changes in a similar483

direction as Iteration-1, except for DREMPOC, which shows nearly no changes between484

Iteration-1 and -2.485
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Observation NorESM_DP REANA_DP                 REANA_GP                REANA_SP
Climatology                              Bias Bias Bias Bias

(a) (b) (c) (d)                                  (e)

(f) (g) (h) (i)                                   (j)

(k) (l) (m) (n)                                  (o)

mmol/m3 mmol/m3

mmol/m3 mmol/m3

mmol/m3 mmol/m3

(p) (q) (r) (s)                                  (t)

Phosphate (0-100m) Phosphate (0-100m) Phosphate (0-100m)                 Phosphate (0-100m)                Phosphate (0-100m)

Nitrate (0-100m) Nitrate (0-100m) Nitrate (0-100m)                     Nitrate (0-100m)                    Nitrate (0-100m)

Silicate (0-100m) Silicate (0-100m) Silicate (0-100m).                  Silicate (0-100m) Silicate (0-100m)

Oxygen (100-500m) Oxygen (100-500m) Oxygen (100-500m)                 Oxygen (100-500m)               Oxygen (100-500m)

mmol/m3 mmol/m3

Figure 4. WOA18 climatological estimate of (a) phosphate, (f) nitrate and (k) silicate averaged

over euphotic zone (0-100m depth) and over 100-500m depth for oxygen. The second column

depicts the corresponding climatological biases [2017-2026] in NorESM DP. The third, fourth and

fifth columns are for REANA DP, REANA GP and REANA SP, respectively.

NorESM_DP
REANA_DP
REANA_GP             
REANA_SP

Primary Production [mol C m-2 year-1]

Sea-air CO2 fluxes [mol C m-2 year-1]

La
tit
ud
e

La
tit
ud
e

months

months

Observation NorESM_DP REANA_DP                  REANA_GP                   REANA_SP RMSE 

(a) (b) (c) (d) (e) (f) 

(g) (h) (i) (j) (k) (l) 

Corr. = 0.36 Corr. = 0.39 Corr. = 0.42 Corr. = 0.48

Corr. = 0.68 Corr. = 0.53 Corr. = 0.72 Corr. = 0.71

Zonally averaged seasonal cycle

Figure 5. Hovmöller plots of the zonally averaged seasonal cycle of (a) observed climatology of

primary production, and corresponding simulated climatology based on 2017-2026 period for (b-e)

NorESM DP, REANA DP, REANA GP and REANA SP, respectively, together with (f) latitudinal

varying RMSE from all experiments. The RMSE is computed using longitudinal and monthly

climatology data. (g-l) same as for primary production but for sea-air CO2 fluxes. Negative values

show a sink to sea, whereas positive values indicated net outgassing of CO2 fluxes from the ocean.
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Figure 6. Global RMSE profile for monthly climatological [2017-2026] value of (a) phosphate

(b) Nitrate (c) Oxygen (d) Silicate (e) dissolved inorganic carbon and (f) total alkalinity in all

four experiments NorESM DP (black dashed lines), REANA DP (black solid lines), REANA GP

(purple lines) and REANA SP (magenta lines).

The spatial distributions of the parameter values obtained from the offline spatial pa-486

rameter estimation method in Iteration-1 are shown in Figure 7. Changes are significant for487

all five parameters compared to their default ones. Some parameters exceed the specified488

upper or lower boundaries, which were enforced to remain within the prescribed bounds.489

Some regional patterns clearly emerge from the map of all parameters, and estimates from490

the biologically active region are in agreement with the global estimation. Singh et al. (2022)491

found that the NorESM model is merely insensitive to parameter values in the biologically492

less active region, and we should thus be cautious in over-interpreting parameter values493

there. Increased values of the WPOC parameter can be seen over many biologically active494

regions, which agrees well with the global estimation. Similarly, lower values for DREMPOC495

are found over most regions, which is also in line with the global estimate.496

3.3 Performances of reanalysis with estimated BGC parameters497

We evaluate the performance of ocean reanalysis rerun with the spatially varying and498

global estimated BGC parameters from Iteration-1 (REANA SP, and REANA GP). Per-499

formances are compared to the free run with the default parameter (NorESM DP) and the500

reanalysis with the default parameter (REANA DP). We start by analysing the RMSE of501
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Table 3. Default and global estimated BGC parameters values.

Parameter
Name

unit Default
values

Global estimated values (ensemble mean)

Iteration-1 Iteration-2

BKPHY mmol P m−3 2.0x10−7 1.02x10−7 0.60x10−7

GRAZRA day−1 1.0 1.13 1.27

BKOPAL mmol Sim−3 1.5x10−6 2.52x10−6 3.30x10−6

WPOC day−1 5.0 6.0 6.5

DREMPOC day−1 3.0x10−2 0.90x10−2 0.91x10−2

(a) (b) 

(c) (d) (e) 

Figure 7. Parameters values obtained from the spatial parameter estimate in the first itera-

tion. The background colour represents the percentage change from their default values for each

parameter [100*(estimated value - default value)/default value].

the monthly climatological estimate. The observations of phosphate, nitrate, and oxygen502

were used for the parameter estimation and, therefore, are not independent variables for503

evaluating the performance of estimated parameters. On the contrary, silicate, DIC, TA,504

primary production and CO2 flux are fully independent.505

REANA GP improves the performance of all state variables used in the parameter506

estimation and effectively mitigates the drifting issues observed with default parameters507

(Figures 2, 6, and Table 4). The drift in performance that led to a degradation in the508

surface down to approximately 500m in REANA DP is also effectively reduced. Errors509

continue to decrease for phosphate and nitrate, but there is still a slight increase for oxygen.510

The latter seems to stabilize, and the vertically integrated error settles at a lower error511

level than in NorESM DP. Similar improvements are also verified for independent variables512

DIC and TA (Figures 3, 6). The global error in REANA GP is reduced by 15.6%, 16.4%,513

7.9%, 7.7% and 1.9% for phosphate, nitrate, oxygen, dissolved inorganic carbon and total514
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alkalinity, respectively, than NorESM DP (Table 4). However, REANA GP degrades per-515

formance compared to NorESM DP and even REANA DP for silicate. It is unexpected to516

see improvements in nitrate and phosphate and degradation in silicate, which suggests an517

internal inconsistency between the formulation of the silicate cycle and other nutrients in518

the ocean BGC model. This is analysed in more detail below.519

REANA GP reduces error nearly everywhere compared to REANA DP, and also re-520

duces the error compared to NorESM DP (Figures 8, 9). This is important because it521

implies that the model with reduced bias in ocean physics and re-tuned parameters can522

perform better than the default model. We previously observed that REANA DP accumu-523

lates excessive nutrients in the upper ocean layers. In REANA GP, this issue is effectively524

mitigated, and phosphate and nitrate concentrations are reduced (Figure 4c,d,h,i). The525

phosphate and nitrate concentration dynamics are primarily influenced by three parame-526

ters considered in this study: the half-saturation constant for nutrient uptake (BKPHY),527

sinking speed (WPOC), and remineralization rate (DREMPOC). The estimated value of528

BKPHY is notably lower than the default values in the REANA GP (as listed in Table 3),529

facilitating the higher consumption of near-surface phosphate and nitrate concentrations530

for phytoplankton growth compared to the default values. Additionally, the increase in531

the sinking speed (WPOC) accelerates the export of organic matter (containing an excess532

of nutrients) from the surface into depth. Similarly, the third parameter, DREMPOC, is533

reduced substantially, slowing the pace of nutrients released into the deeper ocean. It re-534

duces the nutrient availability in the ocean interior, leading to reduced nutrient transport535

to the surface. These three estimated parameter values jointly act to balance phosphate536

and nitrate concentrations at the surface, preventing the excessive accumulation observed537

in REANA DP. Consequently, this leads to improved phosphate and nitrate concentrations538

in the euphotic zones, showing the adequate impact of the parameter adjustment.539

Excess surface nutrients in REANA DP induce high phytoplankton growth, which leads540

to excessive oxygen depletion below the mixed layer through organic matter remineral-541

ization. One parameter that indirectly regulates phytoplankton growth is the maximum542

zooplankton grazing rate (GRAZRA), which is increased in REANA GP. This, combined543

with reduced surface levels of nutrients, reduces the primary production in upper oceans.544

As such, REANA GP compares more favourably with observation than REANA DP (not545

shown). Furthermore, this reduces the flux of particulate organic carbon and oxygen con-546

sumption below the mixed layer (in REANA GP) and further alleviates the anomalously547

low oxygen simulated in the tropical upwelling system (REANA DP; Figure 4r,s).548

For silicate, a slight degradation is seen in REANA GP compared to REANA DP549

(Figure 4n) and a strong degradation is found compared to NorESM DP. It suggests that550
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the degradation caused by correcting the ocean’s physical bias could not be counteracted551

by adjusting the parameters selected. Hence, our selection of BGC parameters was tailored552

to focus on the carbon cycle and have negligible impact on silicate. Only BKOPAL, among553

the parameters selected, can influence the surface silicate. Our global parameter estimation554

resulted in an increase of BKOPAL, which led to a reduction of the silicate uptake during555

biogenic opal production and resulted in increasing surface silicate compared to REANA GP.556

Another factor contributing to the silicate degradation is the reduction of phytoplankton557

concentrations, which implicitly reduces diatom production in REANA GP compared to558

REANA DP. This leads to an excess of surface silicate concentrations as diatom consumes559

silicate. There are several approaches in which we can improve the silicate simulation.560

One would be to include the silicate observations in the parameter estimation training.561

Another possibility is to extend the list of selected parameters to include those influencing562

the silicate cycle. For instance, the vertical sinking speed of biogenic opal (WOPAL) and563

deep remineralization constant for the opal (DREMOPAL) in the HAMOCC model will have564

a comparable impact on silicate than what WPOC and DREMPOC (used in this study)565

has on the nitrate cycle at depth.566

The simulation REANA SP, which uses spatial varying parameters, overall demon-567

strates very comparable performance to REANA GP (Figures 2, 3, 4, 8, and 9). The North568

Atlantic stands out as a region where REANA SP improved performance compared to RE-569

ANA GP (for example, nitrate, Figures 8i,j) ). Conversely, performances are degraded570

compared to REANA GP in the Southern Ocean. This coincides well with the density of571

the observation network, which is much higher in the North Atlantic than in the rest of the572

domain and that is particularly poor in the Southern Ocean. We suspect that the training573

period is too short and that the estimation fails in regions where the monthly climatological574

estimates are too inaccurate due to a lack of data.575

Table 4. The overall global RMS error reduction (in %) for the BGC simulated climatology [2017-

2026] by global and spatially estimated parameters w.r.t REANA DP (column-2,3, respectively)

and NorESM DP (column-4,5, respectively). The green colour represents improvement, and red

represents degradation.

Variables % error reduction w.r.t REANA DP % error reduction w.r.t. NorESM DP
(0-800m) REANA GP REANA SP REANA GP REANA SP

Phosphate 12.2% 9.3% 15.6% 12.9%

Nitrate 14.4% 10.3% 16.4% 12.3%

Oxygen 6.7% 4.9% 7.9% 6.1%

Silicate -3.1% -4.3% -7.3% -8.4%

Dissolved Inorganic Carbon 17.5% 15.8% 7.7% 5.8%

Total Alkalinity 7.8% 7.6% 1.9 1.6%
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Phosphate 
[mmol/m3]

Nitrate
[mmol/m3]

Oxygen
[mmol/m3]

NorESM_DP

NorESM_DP
minus

REANA_DP

REANA_DP
minus

REANA_GP

REANA_DP
minus

REANA_SP

NorESM_DP
minus

REANA_GP

NorESM_DP
minus

REANA_SP

(a) (g) (m) 

(b) (h) (n) 

(c) (i) (o) 

(e) (k) (q) 

(f) (l) (r) 

(d) (j) (p) 

Figure 8. Average of RMSE in the top 800m, (Row-1) for NorESM DP monthly climatology

[2017-2026] of (a) phosphate, (g) nitrate, and (m) oxygen. the second row shows the RMSE differ-

ence between NorESM DP and REANA DP (green colour indicates that REANA DP outperforms

NorESM DP). Similarly, the third and fourth rows display the RMSE difference of NorESM DP

with that of REANA GP and REANA SP. Finally, rows five and six depict the RMSE difference

of NorESM DP with that of REANA GP and REANA SP.

For primary production, REANA GP and REANA SP improve the performance com-576

pared to REANA DP and NorESM DP (Figure 5d,e), particularly in the tropical and the577

Southern Ocean. The pattern correlation is also increased, and the RMSE is lower in578

REANA GP and REANA SP than in REANA DP (Figure 5f). Both REANA GP and579

REANA SP enhance winter production (particularly within the Southern Hemisphere) and580

exhibit improvements during all seasons in the tropics. Moreover, spatially varying parame-581
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Silicate 
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REANA_DP
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REANA_SP
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(a) (g) (m) 

(b) (h) (n) 

(d) (j) (p) 

(e) (k) (q) 

(f) (l) (r) 

(c) (i) (o) 

Figure 9. Same as Figure 8 but for silicate, dissolved inorganic carbon and total alkalinity.

ter estimation (REANA SP) demonstrates a better Southern Hemisphere spring bloom than582

the global estimates (REANA GP). In fact, REANA SP shows the lowest RMSE compared583

to the other three experiments for the southern bloom (Figure 5f).584

The seasonal cycle of sea-air CO2 fluxes is also improved in REANA GP and RE-585

ANA SP, and they correct the degradation seen in REANA DP in the tropical and South-586

ern Hemisphere (Figure 5). While a slight degradation is observed in the high latitudes587

of the Northern Hemisphere, both estimated parameter simulations slightly improve the588

pattern correlation compared to NorESM DP (0.68, 0.53, 0.72, and 0.71 for NorESM DP,589

REANA DP, REANA GP, and REANA SP, respectively). REANA GP performs slightly590
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better than REANA SP in the tropics. This underscores the improvement achieved through591

the estimated parameters in simulating the mean seasonal variations in CO2 fluxes.592

To conclude, we can see that the parameter estimation clearly improves performance593

compared to both simulations with default parameters (NorESM DP and REANA DP)594

already at the first iteration. A small degradation remains near the surface (Figure 6).595

The global parameter estimation provides overall better and more stable performance. We596

will, therefore, continue with that scheme and assess whether further improvements can be597

achieved with more iterations.598

3.4 Benefit of a second iteration with global estimation599

We now analyse the performance of REANA GP2, which is a new reanalysis produced600

with the parameter estimated from REANA GP output in the second iteration (Section601

2.1.3 and 2.3). It should be noted that we have not increased the observation error for602

the two iterations as we would from the DA theory with the iterative ensemble smoother603

(Section 2.1.3). The motivation for that choice was that the BGC monthly climatology604

observation error is very uncertain. We saw the multi-iteration as a way to iterate until605

performance degrades for independent data (criteria for stopping iteration). However, as a606

consequence, we cannot directly compare the performance of the second iteration with the607

first one because they do not use the same observation error.608

We focus on the top 100m where REANA GP shows a degradation compared to609

NorESM DP. The performance below that depth is nearly identical between REANA GP610

and REANA GP2 (not shown). The REANA GP2 RMSE profile in the 0-100m depth range611

shows some improvements over REANA GP, particularly for phosphate, nitrate and DIC612

(Figure 10). The reduction is most pronounced for phosphate in the surface and subsurface613

layers of the Northern Hemisphere and tropical regions. For nitrate, REANA GP2 matches614

the performance of NorESM DP near the surface in the tropical regions. The improvement615

of REANA GP over NorESM DP for oxygen is further enhanced, particularly for the south-616

ern region. However, there is no improvement in silicate and total alkalinity (not shown).617

Nevertheless, We can conclude that the second iteration has further reduced the error. The618

improvement of parameter estimation with the iterative ensemble method may relate to619

the non-linear response of the model error to the parameter values (Evensen, 2018) or to620

the effective reduction of observation error caused by the second iteration. While we could621

have continued with more iterations, we stopped here as the error reduction is already much622

smaller than the first iteration.623
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Figure 10. Northen Hemisphere (NH; column-1), Tropics (TP; column-2), Southern Hemishare

(SH; column-3) and global (column-4) mean vertical RMSE profile for climatology [2017-2026]

phosphate (row-1), nitrate (row-2), oxygen (row-3) and dissolved inorganic carbon (row-4). The

profiles are extended from the surface to 100m depths (euphoric zone) for NorESM DP (black

dashed lines), REANA DP (black solid lines), REANA GP (purple lines) and REANA GP2 (dashed

purple lines).

3.5 Performance of global estimated parameters with time-varying ocean624

forcing625

The training and verification of the estimated parameter were performed until now with626

ocean conditions constrained to observed climatology. We verify whether the improvements627

are sustained in a reanalysis that assimilates time-varying ocean observations – i.e., in a628

system that depicts realistic internal variability but where the ocean state error is still con-629

strained to a low error level. The reanalysis REANA IAV GP2 experiments are conducted630

for 1985-2020 with the BGC parameters obtained from Iteration-2 (Section 2.3). As BGC631

observations are lacking, we will still perform our validation towards BGC climatology, and632

the reanalysis is validated for the period 1993–2020 to leave the system time to adjust to633

the new parameters (Section 2.3).634
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The results are overall in very good agreement with the previous analysis. The errors in635

the REANA IAV GP2 climatological BGC mean state profiles are reduced well for all vari-636

ables except for silicate that is still degraded near the surface compared to the NorESM DP637

(as previously). Interestingly, the degradation near the surface compared to NorESM DP638

for phosphate and nitrate is no longer noticeable. We suspect that the assimilation of cli-639

matological temperature and salinity may have caused a spurious effect near the surface640

that is not present when assimilating joint SST and high-resolution vertical profile data.641

Compared to NorESM DP, REANA IAV GP2 shows a reduction in the overall RMS errors642

for 0-800m depth by 20%, 18%, 7%, 27%, and 17% for phosphate, nitrate, oxygen, dissolved643

inorganic carbon and total alkalinity, respectively.644

This comparison is highly promising, considering that the model with default param-645

eters was carefully tuned to get the best possible fit with observations and contributed to646

CMIP6.647
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Figure 11. Global mean vertical RMSE profile for climatology [averaged over 1993-2022] (a)

phosphate (b) Nitrate (c) Oxygen (d) Silicate (e) dissolved inorganic carbon and (f) total alkalinity

in NorESM DP (black dashed lines) and REANA IAV GP2 (orange solid lines).
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4 Summary and conclusions648

Enhancing the representation of ocean biogeochemistry in a fully coupled Earth System649

Model (ESM) is challenging due to its dependence on various factors, such as the accuracy650

of underlying ocean physics and numerous poorly constrained biogeochemical (BGC) pa-651

rameters governing the intricate biogeochemical processes. Data assimilation methods such652

as the Ensemble Kalman Filter have recently been shown to offer an automatic and efficient653

framework for optimizing these parameters (Eknes & Evensen, 2002; Allen et al., 2003;654

Nerger & Gregg, 2008; Simon et al., 2012; Gharamti, Samuelsen, et al., 2017; Gharamti,655

Tjiputra, et al., 2017a), and tested within a full ESM in idealised twin experiment frame-656

work (Singh et al., 2022). The methods can estimate multiple parameters jointly based on657

several observation data sets, considering their respective uncertainty.658

Here, we follow on Singh et al. (2022) and demonstrate the potential of ensemble data659

assimilation parameter estimation for full ESM with real observations for the first time. This660

framework is based on an iterative ensemble smoother, and we assimilate multivariate BGC661

climatological observations in offline mode to estimate jointly a set of BGC parameters.662

This study uses the NorCPM system, which combines the fully coupled NorESM model663

with ensemble data assimilation methods. We focus on five key BGC parameters influencing664

the ocean carbon cycle. The chosen parameters characterize the major surface biological665

processes such as phytoplankton growth, zooplankton grazing, sinking and remineralization666

of organic matter and nutrient uptake.667

A key challenge with tuning the model is that these parameters may have been tuned to668

compensate for errors not intrinsic to the component to which the parameter belongs. This669

can be challenging with community codes such as ESMs because if errors are reduced in670

another component, the performance of the other components will degrade without returning671

and slow down the model development. In our application, ocean physics plays a significant672

role in driving the ocean BGC variability. Here, we show that if we sustain error to a low673

level in ocean physics, constraining the ocean physical bias errors initially yields a substantial674

reduction of error; there is first a strong reduction of error followed by subsequent growth675

of error near the surface because of an excessive nutrient up-welling at the ocean surface.676

This suggests that BGC parameters in the default version of NorESM have been tuned to677

compensate for oceanic physical biases.678

We have tested two versions of parameter estimation, one with globally uniform pa-679

rameters and one where parameters can vary spatially. The parameters are trained based680

on the error of monthly climatology estimates of nitrate, phosphate and oxygen from a681

coupled reanalysis, which assimilates temperature and salinity monthly climatology. Re-682
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running the reanalysis with updated parameters shows that both versions yield substantial683

improvements for quantities used in the training but also for independent quantities (Total684

alkalinity, DIC, sea-air CO2 fluxes and primary production). A degradation is found for685

silicate, which primarily relates to our selection of BGC parameters that cannot fully con-686

trol the silicate cycle. Overall, reanalysis with global parameter estimates performed better687

than the one with spatial parameters. This is likely a consequence of inaccuracy in the688

monthly climatological observations of BGC in regions where data is very sparse (such as in689

the Southern Ocean). Using several iterations to estimate the parameters can improve the690

result. A final long reanalysis was performed from 1982-2022 with updated parameters, and691

it is shown that improvements are sustained with transient historical forcing and with ocean692

physics having realistic time variability. The parameter estimation reduces the error of BGC693

in the coupled reanalysis by 20%, 18%, 7%, 27%, and 17% for phosphate, nitrate, oxygen,694

dissolved inorganic carbon and total alkalinity, respectively, for the period 1993-2020.695

This study highlights the potential of our parameter estimation framework to facili-696

tate the calibration of ESM. The method can ingest as many observations as available and697

optimally account for the respective uncertainty of the observation and model. It can also698

converge with multiple parameters simultaneously and with the coupled model that will be699

used at the end. This practice differs from the conventional approach, where uncertain pa-700

rameters from each model component are often trained in forced configuration first and are701

often tested in isolation. Some of these parameters need to be re-tuned in the coupled config-702

uration, requiring substantial human and computational resources. Our proposed approach703

is fully automated, requires fewer human decisions than standard calibration techniques and,704

in principle, can be applied for different model components simultaneously and, therefore, is705

computationally more efficient. The iterative ensemble smoother simplifies the portability706

of the method to other models. One only needs to implement the input/output routines707

(reading and writing of the model variables and parameters) within the data assimilation708

code to apply the method.709

We show that parameter estimation can substantially reduce errors in the system when710

we correct the ocean physics bias. Another test (not presented here) found that a comparable711

improvement can be achieved without correcting for the ocean physics bias –i.e. adjusting712

model parameters in the ESMs free ensemble run. We still advocate that a preferable713

pathway would be to train each component of the ESM with the bias of the other components714

sustained to a low level, e.g. using data assimilation. Following up on the training of the715

BGC parameter, here we have only constrained errors in the ocean physics, but depending on716

the objectives, e.g., improving the representation of air-sea CO2 fluxes, including land and717
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atmospheric constraints, could be valuable. This is now possible with the recent development718

of NorCPM (Nair et al., 2024; Garcia-Oliva et al., 2023).719

Unlike in Singh et al. (2022), we had to reduce the complexity of our ensemble data720

assimilation method (with the iterative ensemble smoother rather than the dual one step721

ahead smoother), and we pursued global estimates rather than spatially varying ones. These722

were motivated by the challenges of our application – which are characterized by sparse723

and inaccurate observations in some locations, variability and error dominated by sporadic724

events and slower sensitivity to model parameters compared to error growth from other725

independent sources. We are still confident that with an improved observation network, one726

should be able to achieve superior performance with spatially varying parameters.727
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