
P
os
te
d
on

26
F
eb

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
70
89
67
64
.4
38
32
42
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

GRACE satellite observations of Antarctic Bottom Water transport

variability

Jemma Jeffree1, Andrew McC. Hogg1, Adele K. Morrison1, Aviv Solodoch2, Andrew
Stewart3, and Rebecca McGirr4

1Australian National University
2University of California in Los Angeles
3University of California Los Angeles
4ANU

February 26, 2024

Abstract

Antarctic Bottom Water (AABW) formation and transport constitute a key component of the global ocean circulation. Direct

observations suggest that AABW volumes and transport rates may be decreasing, but these observations are too temporally or

spatially sparse to determine the cause. To address this problem, we develop a new method to reconstruct AABW transport

variability using data from the GRACE (Gravity Recovery and Climate Experiment) satellite mission. We use an ocean

general circulation model to investigate the relationship between ocean bottom pressure and AABW: we calculate both of

these quantities in the model, and link them using a regularised linear regression. Our reconstruction from modelled ocean

bottom pressure can capture 65-90% of modelled AABW transport variability, depending on the ocean basin. When realistic

observational uncertainty values are added to the modelled ocean bottom pressure, the reconstruction can still capture 30-80%

of AABW transport variability. Using the same regression values, the reconstruction skill is within the same range in a second,

independent, general circulation model. We conclude that our reconstruction method is not unique to the model in which it was

developed and can be applied to GRACE satellite observations of ocean bottom pressure. These advances allow us to create

the first global reconstruction of AABW transport variability over the satellite era. Our reconstruction provides information on

the interannual variability of AABW transport, but more accurate observations are needed to discern AABW transport trends.
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Abstract18

Antarctic Bottom Water (AABW) formation and transport constitute a key component19

of the global ocean circulation. Direct observations suggest that AABW volumes and20

transport rates may be decreasing, but these observations are too temporally or spatially21

sparse to determine the cause. To address this problem, we develop a new method to22

reconstruct AABW transport variability using data from the GRACE (Gravity Recov-23

ery and Climate Experiment) satellite mission. We use an ocean general circulation model24

to investigate the relationship between ocean bottom pressure and AABW: we calculate25

both of these quantities in the model, and link them using a regularised linear regres-26

sion. Our reconstruction from modelled ocean bottom pressure can capture 65-90% of27

modelled AABW transport variability, depending on the ocean basin. When realistic ob-28

servational uncertainty values are added to the modelled ocean bottom pressure, the re-29

construction can still capture 30-80% of AABW transport variability. Using the same30

regression values, the reconstruction skill is within the same range in a second, indepen-31

dent, general circulation model. We conclude that our reconstruction method is not unique32

to the model in which it was developed and can be applied to GRACE satellite obser-33

vations of ocean bottom pressure. These advances allow us to create the first global re-34

construction of AABW transport variability over the satellite era. Our reconstruction35

provides information on the interannual variability of AABW transport, but more ac-36

curate observations are needed to discern AABW transport trends.37

Plain Language Summary38

Ocean circulation moves heat and carbon around the globe. Changes in the way39

this circulation moves heat and carbon influence future climate. One part of this ocean40

circulation is Antarctic Bottom Water, which forms around Antarctica and flows north41

along the ocean floor into the Pacific, Atlantic and Indian Oceans. Observations of Antarc-42

tic Bottom Water are sparse. Those which exist suggest that the volume of Antarctic43

Bottom Water is declining, but are insufficient to explain why this is happening.44

We design a new method to try and measure Antarctic Bottom Water transport.45

The physical equations describing fluid flows suggest gravity signals measured by satel-46

lites might be useful. To establish how useful this data is, we simulate the observations47

of these satellites in an ocean model. We also calculate the transport of Antarctic Bot-48

tom Water in the model. This means we can investigate how effective the modelled satel-49
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lite data is at measuring modelled Antarctic Bottom Water. Our method of using the50

satellite data skilfully measures Antarctic Bottom Water transport, so we use this method51

to calculate Antarctic Bottom Water from the real-world satellite observations.52

1 Introduction53

The lower limb of the global meridional overturning circulation is composed of Antarc-54

tic Bottom Water (AABW). AABW is a dense watermass that forms near Antarctica55

and flows northwards along the ocean floor in the Pacific, Indian and Atlantic Oceans56

(Talley, 2013). AABW composes a third of the ocean volume, and covers more than half57

the ocean floor (Johnson, 2008).58

Observations of AABW provide some information about the mean flow and char-59

acteristics of this water mass. Temperature and salinity profiles along research vessel tran-60

sects have been gathered by the WOCE and GOSHIP programs roughly once per decade.61

These transects are temporally sparse compared to the timescales on which AABW trans-62

port varies (Purkey & Johnson, 2012; Stewart et al., 2021). Localised mooring arrays63

have provided information with daily resolution, but only sample a subset of AABW path-64

ways (e.g. Fukamachi et al., 2010; Valla et al., 2019). More recently, deep Argo floats65

have expanded knowledge of AABW in specific areas (e.g. Foppert et al., 2021; John-66

son, 2022). Although deep Argo floats will give more information in the future, their col-67

lected data currently comprises only several years, and over a relatively small fraction68

of the Southern Ocean. As such, there is no source of AABW observations with suffi-69

cient spatial and temporal coverage to constrain the variability of AABW transport.70

Higher resolution observations of AABW could improve understanding of its re-71

sponse to climate change. Recent modelling work suggests a halving of AABW produc-72

tion and transport by 2050 in response to projected Antarctic meltwater forcing (Li et73

al., 2023). Observations also show that the volume of AABW has declined in recent decades74

(Purkey & Johnson, 2012). Recent studies associate this reduction in Bottom Water vol-75

ume with declining production of the precursor Dense Shelf Water, but note that data76

limitations prevent direct observations of this link (Abrahamsen et al., 2019; Zhou et al.,77

2023). Furthermore, natural variability in AABW can produce apparent trends with-78

out the aid of external forcing (Zhang et al., 2019). Further investigation into the tem-79
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poral variability of AABW would shed light on how AABW transport and other related80

processes are changing.81

One option to supplement in-situ observations of AABW is satellite data. Satel-82

lite measurements of horizontal ocean pressure gradients indirectly measure geostrophic83

ocean transport. This link has been utilised to estimate ocean transport in the upper84

1000m of the ocean from satellite altimetry of sea surface height gradients, with some85

correction due to steric variability (e.g. Ivchenko et al., 2011; Kosempa & Chambers, 2014).86

However, deep baroclinic flows are less directly related to surface pressure gradients, and87

deep density observations are too sparse to correct for this. Deep geostrophic flows can88

instead be inferred from ocean bottom pressure (Hughes et al., 2013), which is measured89

by the GRACE (Gravity Recovery and Climate Experiment) satellites. In practice, in90

the ECCO ocean state estimate, almost all (95%) AABW transport at any latitude in91

the Southern Ocean can be reconstructed from ocean bottom pressure using a neural net-92

work (Solodoch et al., 2023), demonstrating that sufficiently accurate and high resolu-93

tion observations of ocean bottom pressure can be used alone to reconstruct AABW trans-94

port.95

The GRACE satellites measure mass anomalies on Earth’s surface. These mass anoma-96

lies correspond, via hydrostatic balance, to ocean bottom pressure anomalies, which sug-97

gests that the GRACE satellite observations could be used to infer AABW transport anoma-98

lies. However, both the resolution and accuracy of GRACE satellite observations of ocean99

bottom pressure limit their potential to reconstruct AABW transport. For example, the100

standard error of GRACE satellite estimates of ocean bottom pressure is 10−2 dbar (Watkins101

et al., 2015), around the same magnitude as ocean bottom pressure variability (Poropat102

et al., 2018). The coarse spatial resolution of GRACE-derived outputs (∼300 km), com-103

bines ocean bottom pressure signals from different depths on the continental slope and104

thus could conflate estimates of ocean transport at different depths (Hughes et al., 2018).105

Bingham and Hughes (2008) suggested that that the depth-dependent part of ocean bot-106

tom pressure anomalies are key to estimating ocean transport.107

However, case studies of North Atlantic Deep Water (NADW; a similar water mass108

to AABW) suggest that satellite-derived ocean bottom pressure can reconstruct ocean109

transport despite these barriers. Bentel et al. (2015) found that ocean bottom pressure110

in a model, coarsened to the the same ∼300 km grid as GRACE satellite observations,111
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could reconstruct the model’s NADW with a correlation coefficient of 0.7. Landerer et112

al. (2015) later compared a reconstruction of NADW from GRACE satellite estimates113

with estimates from an in-situ mooring array, finding a similar correlation coefficient.114

Therefore, although GRACE satellite estimates of ocean bottom pressure are at lower115

resolution and higher uncertainty than model output, they remain a viable proxy for deep116

ocean transport in the North Atlantic.117

In the Southern Hemisphere, only one study has used satellite estimates of ocean118

bottom pressure to reconstruct AABW transport, and no study has done so comprehen-119

sively. Mazloff and Boening (2016) focused on a specific region of the Pacific Ocean, and120

found that ocean bottom pressure can reconstruct 86% of AABW transport variance in121

this region. They gave an estimate of how GRACE satellite estimates of ocean bottom122

pressure might be used to reconstruct AABW. However, Mazloff and Boening (2016) only123

looked at one region, and their uncertainty estimation hinged on a comparison with a124

single in-situ location. No satellite-based basin-wide estimates of AABW transport ex-125

ist. Additionally, no previous work has considered together the impacts of resolution and126

uncertainty when using GRACE observations to reconstruct AABW.127

In this paper we quantify the accuracy that satellite observations of ocean bottom128

pressure can provide for estimation of AABW transport variability. We develop a sim-129

ple empirical method to link modelled ocean bottom pressure with AABW transport (Sec-130

tion 2). This method is tested on AABW transport in a high-resolution ocean model,131

where the ocean bottom pressure observations are degraded by coarsening resolution and132

adding noise to emulate the characteristics of satellite observations (Section 3). We then133

apply this method to GRACE satellite observations of ocean bottom pressure, to esti-134

mate the interannual variability in AABW transport (Section 4).135

2 Reconstruction Method136

We aim to develop a method to reconstruct AABW transport from GRACE satel-137

lite observations of ocean bottom pressure, and to quantify the performance of this method.138

There are insufficient in-situ AABW transport observations against which to test the139

accuracy of the reconstruction method, so we develop and test our method using out-140

put from an ocean general circulation model. We take both AABW transport and ocean141

bottom pressure from the ocean model output, and link these variables with a multivari-142
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ate linear regression. This reconstruction method can then be applied to ocean bottom143

pressure from another numerical model, to test the reconstruction method’s generality,144

and to satellite observations of ocean bottom pressure, to produce an estimate of AABW145

transport variability.146

2.1 Ocean Model147

We develop our reconstruction method using output from ACCESS-OM2-01, a cou-148

pled sea-ice/ocean model with prescribed atmospheric forcing. The model uses a 0.1◦149

Mercator grid; full model configuration is described in Kiss et al. (2020). ACCESS-OM2-150

01 is one of the few models which adequately represents AABW sourced from dense wa-151

ter formed on the Antarctic continental shelf, instead of in the open ocean (Solodoch et152

al., 2022). Additionally, the high resolution allows ACCESS-OM2-01 to represent eddies153

and other mesoscale structures over much of the globe without parameterisation. By ac-154

curately representing more ocean processes, ACCESS-OM2-01 is more likely to correctly155

represent links between AABW transport and ocean bottom pressure.156

We use model output from two model runs of ACCESS-OM2-01, with different pre-157

scribed atmospheric forcing. One model run uses atmospheric forcing from the JRA55-158

do reanalysis dataset from January 1958 to December 2018 (Tsujino et al., 2018). We159

term this the historically forced model run. The other model run uses a continuous cy-160

cling of the May 1990 to April 1991 atmosphere from JRA55-do (Stewart et al., 2021),161

for which we have 230 years of monthly data. We term this the repeat year forced model162

run. These two model runs provide a combined total of 291 years of data.163

Our multivariate linear regression model is fitted to, or trained on, the repeat-year164

forced ACCESS-OM2-01 data. We initially test our method, and empirically refine method-165

ology, on the historical run of ACCESS-OM2-01. In addition, we test the generalisabil-166

ity of our method, trained on ACCESS-OM2-01 output, with the output from two ad-167

ditional models: a historically forced run of ACCESS-OM2 at 0.25◦ resolution (ACCESS-168

OM2-025; Kiss et al., 2020) and a repeat year forced run of GFDL-OM4 at 0.25◦ res-169

olution (GFDL-OM4-025; Adcroft et al., 2019). Output from these models is arguably170

more independent of the training data than output from a separate run of ACCESS-OM2-171

01, and so testing our method on output from these different models increases confidence172

in the estimate of our method uncertainty.173
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2.2 AABW transport definition174

In this paper we define AABW, in each ocean basin, to be water denser than a par-175

ticular density threshold. At a given latitude, the monthly AABW transport (ψt) be-176

low the isopycnal ρ1 at time t is given by177

ψt(ρ1) =

∫ x1

x0

∫ zt(ρ1)

z0

vtdzdx (1)178

where x0, x1 are the longitudinal bounds of a transect, z0 is the height of the ocean floor,179

zt(ρ1) is the height of the density threshold ρ1 at time t, and vt is the meridional veloc-180

ity at time t. Meridional transport in density coordinates is a supplied diagnostic in the181

ACCESS-OM2-01 runs, but at insufficiently high resolution at AABW depths. Instead,182

we bin meridional transport into density bins at 0.01 kgm−3 spacing over the range 1036.5–183

1037.5 kgm−3 using monthly output. The use of monthly averaged density and veloc-184

ity may omit eddy contributions to transport magnitude; we find that this omission is185

not significant at the latitudes tested here. The correlation between 12 months of AABW186

transport calculated using monthly or daily data is ≥0.98 in each basin (not shown). The187

mean ACCESS-OM2-01 AABW transport across 30◦S from the historically forced model188

run is 18.5 Sv (106m3s−1), the same order of magnitude as estimates from observations,189

which range from 10 Sv to 50 Sv (Sloyan & Rintoul, 2001; Lumpkin & Speer, 2007; Tal-190

ley, 2013).191

For each model, at any given latitude, we define the AABW threshold to be the192

isopycnal bounding northward flowing water at the ocean bottom. The one exception193

to this definition is in GFDL-OM4 in the Pacific Ocean, where we overwrite the density194

threshold with that from ACCESS-OM2-01, because our streamfunction definition pro-195

duces unrealistic AABW transport (details in Text S1 and Figure S1). We reconstruct196

AABW at 30◦S in the Atlantic and Indian Oceans, and 40◦S in the Pacific Ocean, be-197

cause these latitudes maximise the skill of our AABW reconstruction (See Section 2.6198

and Figure S5). The attributes of ACCESS-OM2-01 AABW calculated following this199

method are shown in Table 1.200

2.3 Building a Linear Regression Model for AABW Transport201

Ocean bottom pressure gradients along an ocean cross section are linearly related202

to large-scale ocean transport through that cross section, including AABW transport (Hughes203

et al., 2013). This physical link could be used to directly estimate AABW transport from204

–7–



manuscript submitted to JGR: Oceans

Table 1. AABW transport and the definition of AABW in each ocean basin, used to train and

test the regression in ACCESS-OM2-01. The latitudes are chosen separately in each ocean basin

in order to maximise reconstruction skill (See Section 2.6 and Figure S5).

Ocean Latitude Potential density

(σ2) threshold

Mean transport

Pacific 40◦S 1037.08 kgm−3 10.2 Sv

Atlantic 30◦S 1037.08 kgm−3 4.6 Sv

Indian 30◦S 1037.09 kgm−3 3.8 Sv

ocean bottom pressure, in the same way that Landerer et al. (2015) reconstructed NADW.205

However, such an approach limits the ocean bottom pressure to that along a single line206

of latitude, even though ocean bottom pressure to the north and south of a zonal tran-207

sect correlates with transport across the transect (Landerer et al., 2015). Solodoch et208

al. (2023) found meridional averaging didn’t affect reconstruction skill in a noise-free sce-209

nario. Thus, off-transect ocean bottom pressure could provide additional information for210

reconstructing ocean transport.211

Off-transect ocean bottom pressure is not directly physically linked to ocean trans-212

port in the same way that on-transect ocean bottom pressure is, without assuming that213

AABW transport is invariant with latitude. In order to include off-transect ocean bot-214

tom pressure in our reconstruction, we assume that AABW transport anomalies can be215

reconstructed from a weighted sum of ocean bottom pressure anomalies at different lo-216

cations, where these weights can be positive or negative, and arbitrarily large:217

ψ̂t =
∑
i

wipi,t, (2)218

where ψ̂t is the predicted AABW transport at time t, w is the weight for a particular219

gridcell i, and p is the pressure for a gridcell i and time t. Note that i could cover any220

cell in the region of interest, and is not limited to a single dimension. This formulation221

is consistent with the linear relationship from physical theory in a one dimensional ex-222

ample, while also generalising to allow the incorporation of two dimensional ocean bot-223

tom pressure.224

We use a least-squares linear regression with ridge regularisation to estimate weights225

for ocean bottom pressure: regularisation reduces overfitting to the training data by favour-226
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ing solutions with smaller weights, where noise contributes less to the final reconstruc-227

tion (see, for example, McDonald (2009)). We fit the linear regression on 230 years of228

ACCESS-OM2-01 repeat year forced data, at monthly resolution, with the climatology229

removed. This data has, in effect, constant atmospheric forcing and thus the linear re-230

gression captures the ocean bottom pressure signal of unforced internal variability of AABW231

transport.232

2.4 Processing of model output ocean bottom pressure233

Ocean bottom pressure is output by the ACCESS-OM2-01 model. However, the234

output from ACCESS-OM2-01 is at 0.1◦ resolution, and estimating weights at this res-235

olution numerically destabilises the linear regression, resulting in noisy weights and poor236

AABW transport reconstruction. To stabilise our weight calculation, we initially aver-237

age ocean bottom pressure to 1◦ resolution. One degree resolution has been used by pre-238

vious studies to evaluate the links between ocean transport and ocean bottom pressure239

(e.g. Solodoch et al., 2023).240

We aim to not only probe the link between ocean bottom pressure and AABW trans-241

port, but also to apply our calculated weights to satellite observations of ocean bottom242

pressure and thereby estimate AABW transport. For this purpose, the ocean bottom243

pressure grid for which we calculate weights must align with an observational grid. The244

GRACE satellites observe temporal variations in ocean bottom pressure with a spatial245

resolution of around 300km (3◦ at the equator), and temporal resolution of 1 month. We246

use GRACE observations on a mascon (mass concentration) grid, where anomalous mass247

is estimated as discrete homogeneous tiles of equivalent water height. These GRACE ob-248

servations show improved separation of the relevant ocean signals from land signals, com-249

pared to previous GRACE observations estimated as spherical harmonic coefficients (Watkins250

et al., 2015). We base our AABW transport reconstruction on Jet Propulsion Labora-251

tory (JPL) GRACE mascon product RL06.1Mv03 (Watkins et al., 2015). We find this252

product to have the lowest uncertainty of available GRACE mascon products when em-253

pirically validated against in-situ ocean bottom pressure (Section 2.5, Figure S2), though254

in some cases the difference is negligible.255

To convert ACCESS-OM2-01 model output ocean bottom pressure to the same grid256

as satellite observations, we average the ACCESS-OM2-01 ocean bottom pressure to the257
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Figure 1. An example part of the JPL RL06.1Mv03 GRACE mascon grid. Black outlines

represent the circular mascons that compose the grid. Colours indicate which mascon/gridpoint

an ACCESS-OM2-01 gridcell is assigned to.

irregular ∼300km grid used by the JPL RL06.1Mv03 GRACE mascon product (Figure258

1). This allows us firstly to estimate the impact of resolution in the model, and further-259

more to calculate weights for ocean bottom pressure on this grid, which we can then trans-260

fer to satellite observations of ocean bottom pressure. This mascon grid is nominally com-261

posed of circles, which do not entirely cover the surface of the Earth. Nonetheless, ocean262

bottom pressure from the gaps between the circular mascons influences the calculated263

ocean bottom pressure in the mascons (Watkins et al., 2015), and so we average all ocean264

bottom pressure in the model onto the nearest circular mascon (Figure 1).265

We omit ocean bottom pressure at some locations, due to unresolved uncertainty266

or signal contamination. The signals that the GRACE satellites measure on ice-free land267

– mostly changes in soil moisture and groundwater – have greater magnitude than the268

ocean bottom pressure signals. To prevent these land signals from contaminating our AABW269

transport estimate, we discard any mascon with more than 1% land as a fraction of to-270

tal area. Glacial isostatic adjustment (GIA) is a substantial part of the mass change sig-271

nal measured by the GRACE satellites (Caron et al., 2018). As this adjustment results272

from movement of mantle mass rather than ocean mass, it does not contribute to ocean273

bottom pressure. We use the default ICE6G-D model to correct for GIA (Peltier et al.,274

2018). Error from this GIA model will contribute to error in our calculated AABW trends.275

Our reconstructions only use mascons at a latitude north of ∼50◦ S, which should min-276

imise this error (see Figure 3). We omit the impact of GIA in our error estimation, be-277

cause this error is poorly characterised.278
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2.5 Uncertainty in satellite-based bottom pressure estimates279

Measurement uncertainty in ocean bottom pressure leads to uncertainty in the re-280

construction of AABW. We estimate the uncertainty of GRACE satellite observations281

of ocean bottom pressure by empirically comparing GRACE observations to in-situ ocean282

bottom pressure records from the Permanent Service for Mean Sea Level database (Permanent283

Service for Mean Sea Level, 2022). We limit in-situ ocean bottom pressure records to284

those with a length of at least 12 months and no gaps greater than a month: a total of285

1798 months of data from 88 ocean bottom pressure sensor deployments meet this cri-286

teria. All deployments included in this database are from earlier than 2016. We aver-287

age the in-situ records to the same monthly epochs as GRACE and compare each in-288

situ deployment to the GRACE mascon covering its location (Figure 2a). We do not find289

any systematic link between GRACE error and any of latitude, ocean basin or ocean depth,290

and therefore combine the error from all ocean bottom pressure sensor deployments. We291

iteratively estimate a standard deviation, discarding outliers more than three standard292

deviations from the mean until the estimate converges (difference in subsequent error293

estimates is less than 10−3 dbar). Using this method, we estimate that the root mean294

square error (RMSE) of JPL GRACE solutions is 0.015 dbar (Figure 2b). This error is295

added to the AABW transport reconstruction error by Gaussian error propagation (Lo,296

2005), adjusting the sum of squared error to be:297

∑
t

(ψt − ψ̂t)
2 +

∑
t

∑
i

σ2w2
i , (3)298

where σ represents the RMSE of GRACE observations. In applying this formula, we as-299

sume that GRACE error is neither spatially nor temporally correlated. (Note that this300

assumption is not strictly true: error in temporally adjacent mascon estimates has a weak301

correlation of r∼0.3, and error in spatially adjacent mascons is known to be correlated,302

but is difficult to quantify.)303

Ocean bottom pressure sensors, which we use as ground-truth, are known to drift304

with greater magnitude than ocean variability (Polster et al., 2009). This drift is best305

removed with an empirical exponential plus linear trend (Polster et al., 2009), and is al-306

ready removed from the bottom pressure records we use. We elect not to detrend the307

GRACE observations, because this would remove one degree of freedom from already308

short timeseries (mean length of 20 months per in-situ record). This choice could lead309
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Figure 2. Empirical validation of JPL GRACE observations using in-situ ocean bottom pres-

sure records. a) Histogram of Pearson’s correlation coefficient between each deployment and the

corresponding GRACE estimate of ocean bottom pressure. Bin width is 0.05. b) Histogram of

GRACE error relative to in-situ ocean bottom pressure observations combined from all in-situ

records. Bin width is 0.001. Black line shows estimated Gaussian error with a RMSE of 0.015

dbar.

to overestimating the error, but detrending the GRACE observations decreases error by310

less than 10%.311

We also assume that any difference between the in-situ measurement and the GRACE312

observation is exclusively due to GRACE measurement error. Additional deviation re-313

lated to the comparison of point measurements to 300km averages, or from error in the314

in-situ records, would result in some overestimation of GRACE error. A comparison of315

high resolution and spatially coarsened ocean bottom pressure anomalies in ACCESS-316

OM2-01 suggests that averaging imparts some error, possibly reducing the raw error by317

30%, but this error is uncorrelated with the total error of any given in-situ record and318

we do not attempt to remove it. This choice means that our uncertainty estimate is more319

conservative than estimates used in previous work (e.g Mazloff & Boening, 2016).320

2.6 Reconstruction optimisation321

To optimise our reconstruction method, we use the coefficient of determination (R2)322

between the validation and reconstructed AABW transport timeseries as a metric of skill.323

There are, confusingly, multiple skill metrics termed R2 (Kvalseth, 1985). Here, we cal-324
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culate:325

R2 = 1−
∑

t(ψt − ψ̂t)
2∑

t(ψt − ψ̄t)2
, (4)326

where an overbar (¯) indicates a time-mean. This measure of skill is not generally equiv-327

alent to the square of Pearson’s correlation coefficient (r2) (Kvalseth, 1985). Addition328

of noise from measurement error adjusts R2 to:329

R2 = 1−
∑

t(ψt − ψ̂t)
2 +

∑
t

∑
i σ

2w2
i∑

t(ψt − ψ̄t)2
, (5)330

The reconstruction method is primarily optimised in an empirical fashion. For each331

component of the reconstruction method (e.g. data used, temporal smoothing, etc), we332

test a range of values and select those which maximise the reconstruction skill in the his-333

torically forced run of ACCESS-OM2-01. The strength of ridge regularisation is empir-334

ically determined for each transect independently – stronger regularisation is required335

for the reconstructions where noise makes up a greater part of the input data. Other op-336

timal architecture choices are used consistently across reconstructions, and are listed as337

follows:338

• The latitudinal range of ocean bottom pressure information is ±10◦ of the tran-339

sect.340

• The ocean bottom pressure and AABW transport are smoothed with a Gaussian341

filter with standard deviation of four months, after removing the seasonal cycle.342

• Instead of fitting a single linear regression to each basin, we fit a regression to cal-343

culate the weights for each AABW pathway through a basin and later combine344

these to full basin transports. For example, we split the Atlantic into two sub-basins345

on each side of the mid-ocean ridge. The subbasins are defined following AABW346

pathways in Figure 4 of Solodoch et al. (2022).347

The reasoning for the first two optimisation choices producing highest skill is unclear;348

they were simply empirically chosen after evaluating a range of values (Figures S3, S4).349

We propose that the third may improve skill by decreasing the number of weights to be350

fitted for the same length of training data. The transects across which AABW transport351

is reconstructed and the ocean bottom pressure range used for this reconstruction is rep-352

resented visually in Figure 3.353

Historical changes in ocean bottom pressure are dominated by ocean mass increase354

from melting ice sheets and glaciers. Ocean mass gain produces an ocean bottom pres-355
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Figure 3. A schematic of the data used for AABW transport reconstruction from ocean bot-

tom pressure. In each ocean basin, the transects across which AABW transport is calculated are

marked in black, as is the mean AABW transport across each of these transects. Colors show

ocean bottom pressure from a single timestep in ACCESS-OM2-01 averaged onto the JPL mas-

con grid, and trimmed to the latitude ranges used to reconstruct AABW.

sure signal of around 0.02 dbar per decade (Johnson & Chambers, 2013); ocean bottom356

pressure variations related to interannual variability in ocean transport are around 0.02357

dbar (Landerer et al., 2015). However, this long-term trend in ocean bottom pressure358

is not incorporated into the ocean model simulations. The linear regression weights need359

to be robust to ocean mass gain, otherwise mass gain will produce a spurious trend in360

the final AABW transport estimate. To ensure this robustness, we duplicate the train-361

ing data for the linear regression and add a basin-wide 1 dbar to ocean bottom pressure362

in the second half of this training data, but leave the AABW transport unmodified. We363

hereby fit a linear regression to a timeseries which is twice as long, and the same ocean364

transport occurs twice in the timeseries, the second time with a basin-wide 1 dbar in-365

crease in ocean bottom pressure. The linear regression is therefore forced to ignore basin-366

wide ocean mass changes. We show that this method is effective at removing all depen-367

dency on basin-wide sea level by adding a 0.5 dbar gradual increase to ocean bottom pres-368

sure and observing the impact (Figure 4).369

3 Evaluation of method370

This section presents our method’s skill at reconstructing AABW transport from371

ocean bottom pressure. We initially illustrate the physical mechanism behind reconstruc-372

tion skill with one example transect. We then quantify reconstruction skill across all basins,373

and explore the impact of realistic bottom pressure measurement constraints – resolu-374
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Figure 4. Reconstructions with and without accounting for basin-wide ocean mass gain. The

black line shows AABW in ACCESS-OM2-01 validation data. Both reconstructions use the same

model ocean bottom pressure output with a trend of 0.5 dbar increase over the full time period.

This trend affects the original non-robust linear regression (green dotted line), but not the one

which is trained to be robust against basin-wide sea level changes (red dashed line).

tion and noise – on reconstruction skill. Finally, we test our reconstruction method on375

output from independent ocean models, to more robustly estimate reconstruction skill,376

including the impact of model biases. These estimates of skill are interpreted to inform377

future improvements in reconstruction.378

3.1 Detailed examination of one specific reconstruction379

To demonstrate the physical reasoning behind our AABW transport reconstruc-380

tion method, we initially examine the method in one sector of the Southern Ocean. For381

this purpose we reconstruct AABW transport in the western Pacific, from model out-382

put ocean bottom pressure averaged onto a 1◦ grid. To reconstruct AABW, our method383

uses a linear regression to estimate a set of weights by which to multiply ocean bottom384

pressure (Section 2). The distribution of these weights can be displayed spatially, to in-385

dicate the patterns of ocean bottom pressure which the linear regression associates with386

AABW transport: Figure 5a shows the weights used to reconstruct AABW transport387

in the western Pacific. Positive weights are found on the western boundary below 3000388

m, approximately the depth of the AABW layer in ACCESS-OM2-01. Conversely, neg-389

ative weights are found towards the mid-ocean ridge on the eastern side of the sub-basin.390

This distribution of weights relates a decrease in pressure with increasing longitude to391

northward AABW transport, in agreement with physical theory derived from geostrophic392

flow (Hughes et al., 2013).393
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In addition to aligning with physical theory, the weights we calculate can be effec-394

tive at reconstructing AABW transport. The weights were derived from ACCESS-OM2-395

01 repeat year forced model output. We test these weights on the historically forced ACCESS-396

OM2-01 run, and generate a reconstruction from this independent ocean bottom pres-397

sure. The reconstruction (black line in Figure 5c) accounts for 88% of AABW transport398

variance in the historically forced run (grey line in Figure 5c). Thus, our reconstruction399

method can produce skilful reconstructions of AABW transport, at least when using ocean400

bottom pressure at 1◦ resolution.401

A more realistic demonstration of our reconstruction method would incorporate402

the constraints imposed by satellite-observed ocean bottom pressure. These constraints403

include two factors: the ∼300 km spatial resolution of existing satellite ocean bottom404

pressure observations, and their measurement uncertainty. We calculate weights for ocean405

bottom pressure averaged onto a grid used operationally for satellite ocean bottom pres-406

sure estimates (see Figures 1 and 3), and with the linear regression regularisation tuned407

to mitigate the effects of observational ocean bottom pressure uncertainty (standard de-408

viation 0.015 dbar; see methods and Figure 2). These new weights (Figure 5b) are con-409

sistent with the weights in Figure 5a, albeit at lower resolution. Therefore, the lower res-410

olution weights still agree with physical theory (Hughes et al., 2013). The coarser res-411

olution of ocean bottom pressure results in a wider band of positive weights on the west-412

ern boundary, which Hughes et al. (2018) argued limit the effectiveness of GRACE satel-413

lite observations. The decrease in resolution, combined with the addition of noise, re-414

duces reconstruction skill to capture 75% of AABW transport variance (see dashed line415

in Figure 5c).416

3.2 Quantifying AABW reconstruction skill417

We now expand our analysis to encompass all three ocean basins, and to further418

test how skill is impacted by the resolution and uncertainty of satellite-measured ocean419

bottom pressure. We perform this analysis using two skill metrics: coefficient of deter-420

mination (R2) and mean square error. R2 shows relative skill as a percentage of variance421

captured. Mean squared error, though less intuitive than root mean squared error, has422

the advantage that independent Gaussian sources of error sum linearly. Higher R2 and423

lower mean squared error each indicate greater skill. These skill metrics are evaluated424
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Figure 5. AABW transport anomaly reconstruction at 40◦S in the west Pacific Ocean from

ACCESS-OM2-01 repeat year forced model output ocean bottom pressure. a) Spatial pattern

of weights from the linear regression of ocean bottom pressure coarsened to 1◦ resolution upon

AABW transport. b) Spatial pattern of weights from the linear regression for ocean bottom pres-

sure which is coarsened onto the ∼300km grid used in JPL GRACE processing. c) Validation

AABW transport, along with reconstructions from the weights in a) and b). These weights re-

construct validation AABW transport with reasonable skill: R2 is 0.88 and 0.75 respectively. The

reconstruction from ocean bottom pressure coarsened to ∼300km has noise added to mimic the

uncertainty of GRACE satellite observations of ocean bottom pressure.
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in Figure 6 as a function of ocean bottom pressure resolution and additional noise, in425

each ocean basin.426
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Figure 6. Skill of AABW reconstructions from each of ocean bottom pressure coarsened to

1 degree resolution (left bars), averaged onto JPL mascon shapes (approximately 3◦ resolution;

centre bars), and averaged onto the JPL mascon shapes with noise added (right bars). a) shows

the coefficient of determination, or R2, which quantifies the fraction of variance captured by the

reconstruction. b) shows mean square error which quantifies the absolute error of the recon-

struction, against a total variance of 0.85, 0.92 and 0.26 Sv2 for the Pacific, Atlantic and Indian

Oceans respectively.

We start with ocean bottom pressure coarsened to 1◦ resolution, because this re-427

construction is not coarsened beyond what is needed numerically and is not inhibited428

by noisy ocean bottom pressure. Therefore, any error indicates limitations of the recon-429

struction method itself. This reconstruction, using ocean bottom pressure at 1◦ resolu-430

tion with no noise, captures 65-90% of AABW transport variance, depending on the ocean431

basin (Figure 6a, left bars). Reconstructions are generally most skilful in the Atlantic432

Ocean, and least skilful in the Indian Ocean. Variation between basins is dependent on433

the isopycnal used to define AABW (not shown) and the latitude at which AABW trans-434

port is calculated (Figure S5). These two changes would impact AABW variance or tran-435

sect bathymetry, as would changing ocean basins, so we suggest that AABW variance436

or transect bathymetry contribute to changes in reconstruction skill. Our reconstruction437

skill is similar to the reconstructions from Solodoch et al. (2023) that use a linear regres-438

sion with regularisation and we conclude that our method is a viable approach to recon-439

struct AABW transport from precise, high resolution measurements of ocean bottom pres-440

sure.441
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To test the impact of ocean bottom pressure resolution on reconstruction skill, we442

compare reconstructions from ocean bottom pressure coarsened to 1◦ and ∼300 km. The443

percentage of variance captured (R2) by reconstructions using the two different resolu-444

tions of ocean bottom pressure are within 6% (compare left and centre groups of bars445

in Figure 6a). Changes in mean squared error are generally small, with the exception446

that mean squared error in the Pacific Ocean increases by 45% (Figure 6b). This increase447

suggests that the lower resolution ocean bottom pressure doesn’t resolve some relevant448

feature of ocean bottom pressure anomalies in the Pacific Ocean. In the Indian Ocean,449

the lower resolution ocean bottom pressure (∼300 km) produces slightly (∆R2 ≈5%) bet-450

ter reconstructions of AABW transport than the high resolution ocean bottom pressure451

(1◦ ). We hypothesise that having fewer weights numerically stabilises the linear regres-452

sion or reduces overfitting, resulting in a minor increase in skill. In summary, ocean bot-453

tom pressure resolution has some, mostly small, impact on reconstruction skill, consis-454

tent with previous skilful reconstructions from ocean bottom pressure at ∼300km res-455

olution (Bentel et al., 2015; Landerer et al., 2015). In contrast to the suggestion of Hughes456

et al. (2018), we find that ocean bottom pressure at lower resolution can be used to ef-457

fectively estimate AABW transport.458

To test the impact of uncertainty on the reconstruction, we emulate the uncertainty459

of satellite ocean bottom pressure measurements with added noise. The inclusion of re-460

alistic uncertainty increases the mean squared error by up to a factor of 2 (compare cen-461

tre and right groups of bars in Figure 6b), and lowers the R2 by 10-35% (compare cen-462

tre and right groups of bars in Figure 6a). We find that this uncertainty reduces recon-463

struction skill far more than the low spatial resolution does, in all three ocean basins.464

3.3 Evaluation using other ocean models465

We further evaluate our reconstruction method with data from two additional ocean466

models. Any empirical model, including our reconstruction method and weights, is de-467

pendent on the system upon which it is trained being representative of the real world.468

Because we train and test our reconstruction method in ACCESS-OM2-01, any biases469

or misrepresentations in ACCESS-OM2-01 are likely to also exist in our reconstruction470

method. A simple way to test the magnitude of error from these biases is to evaluate the471

method using output from a different ocean model, which we expect to have different472

biases. We use both ACCESS-OM2-025, the same model as our training data but at a473
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different resolution, and GFDL-OM4-025, which has different ocean and sea ice compo-474

nents. We apply the weights calculated from ACCESS-OM2-01 to bottom pressure from475

the other models, and compare the resultant reconstruction to the AABW from these476

models (Figure 7). R2 and MSE vary between reconstructions in different models and477

in different basins. The spread in reconstruction error leads to a range of possible un-478

certainties in our final AABW reconstruction. With the caveat that only two different479

numerical models are used to test generalisability here, we expect our error in reconstruc-480

tions from GRACE observational data to be in the range of errors from validation in dif-481

ferent models. To be conservative, we take the error from the model where reconstruc-482

tion error is largest for our uncertainty estimate in Section 4. Part of the variation in483

error may be explained by changes in the variance of smoothed AABW transport (shown484

explicitly in Figure S6, and implicitly in the way R2 changes in conjunction with MSE).485

Nonetheless, R2 and MSE are of similar magnitude in all models. This result lends con-486

fidence to our method, and to our final reconstructions from GRACE observational data487

in Section 4.488
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Figure 7. Skill of AABW transport reconstructions when evaluated in different ocean models:

two ACCESS-OM2 runs at different resolution, both with historical forcing, and GFDL-OM4

with a repeat year forcing. a) shows the coefficient of determination, or R2, which quantifies the

fraction of variance captured by the reconstruction. b) shows mean square error, which quantifies

the absolute error of the reconstruction. In all three test cases, the weights come from a fit to

ACCESS-OM2-01, and use ocean bottom pressure coarsened to ∼300 km with added noise.
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4 An AABW transport timeseries489

We use our optimised reconstruction method, and observations from the GRACE490

satellites, to create a timeseries of AABW transport anomalies in each ocean basin (Fig-491

ure 8). A two-sigma confidence interval is shaded, where the standard deviation is con-492

servatively taken as the square root of the mean square error in the model with worst493

error (Figure 7b) for each basin. The error in the reconstruction is substantial, such that494

the two-sigma confidence intervals of the reconstructions (shown in red shading) almost495

always encompass the 0 Sv anomaly. Both the two-sigma interval and R2 around 0.5 should496

be considered when interpreting these reconstructions: although the error in our recon-497

struction is substantial, we assume based on the models’ R2 metric of skill (Figure 7)498

that the fraction of ocean MOC variance that our reconstruction captures is around 50%.499
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Figure 8. Reconstructed AABW transport anomaly from satellite observations of ocean bot-

tom pressure. Gaps in data indicate times when no GRACE data is available – specifically when

less than three quarters of the data needed for the temporally smoothed average is available. The

data has been smoothed with a Gaussian filter with a standard deviation of four months. Error-

bars show the two-sigma range – approximately the 95% confidence interval – and include both

observational and methodological uncertainty.
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We can also calculate a trend of our AABW transport reconstruction, from the un-500

smoothed timeseries (Table 2). These trends are, for the most part, not significantly dif-501

ferent from zero, because the estimated error is large. Therefore, they are more useful502

for establishing an upper bound on changes than to actually quantify trends. We do find503

a trend in Atlantic AABW transport outside our quoted uncertainty. However, trends504

in GRACE satellite observations of ocean bottom pressure are impacted by the choice505

of GIA model (Caron et al., 2018), used to correct the GRACE observations for solid506

Earth changes. The GIA uncertainty is not included in our uncertainty estimate. As such,507

our presented trends may be subject to higher error than quoted.508

Our estimates of AABW transport trends are consistent with previous estimates.509

Kouketsu et al. (2011) found trends in AABW volume of -0.71, -0.43 and 0.17 Sv/decade510

changes in AABW transport at 35◦S in the Pacific, Atlantic and Indian Oceans respec-511

tively. These trends are within the uncertainty of our AABW transport trends in the512

Atlantic and Indian Oceans, and of similar magnitude to our uncertainty estimate in the513

Pacific. Consistent with our results in the Atlantic Ocean, Johnson (2022) found a loss514

of 0.9 Sv of geostrophic AABW transport in the Argentine basin over a period of 20-40515

years. The epochs used to calculate trends could impact the trend, given the internal516

variability in AABW transport (Figure 8). The uncertainty in our estimates of AABW517

transport trends encompasses both previous trend estimates and no trend, and so we do518

not provide new information on this particular question. Given our error, we would be519

able to observe a change of ∼1 Sv (after the low-pass filter we employ), which would mean520

the projected AABW response to climate change in Li et al. (2023) would be measur-521

able in the 2040s.522

Table 2. Trends in AABW transport, reconstructed from GRACE satellite observations of

ocean bottom pressure. Uncertainty indicates a 2σ value.

Ocean Trend

Pacific -0.08±0.35 Sv/decade

Atlantic -0.55±0.20 Sv/decade

Indian 0.05±0.20 Sv/decade
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5 Conclusions523

We explore how best to use observations of ocean bottom pressure from the GRACE524

satellites as a proxy to reconstruct AABW, using a linear regression framework. We es-525

timate sources of error in these reconstructions by quantifying reconstruction skill in sce-526

narios of increasing realism, starting with a simple reconstruction of ocean model AABW527

transport from ocean model bottom pressure, and sequentially including error from res-528

olution, measurement uncertainty and ocean model biases. At the end of this process,529

we use our reconstruction method and our combined uncertainty estimate to present a530

timeseries of AABW transport from satellite observations of ocean bottom pressure.531

The sensitivity of the framework to the quality of ocean bottom pressure data high-532

lights several important aspects of this method. First, ocean bottom pressure with lower533

spatial resolution does not unduly affect the output. Conversely, additional noise inserted534

to mimic satellite observation quality degrades the reconstruction skill of AABW trans-535

port. The reconstruction skill in each of the three ocean basins responds similarly to changes536

in the structure of ocean bottom pressure data: in each case the resolution of ocean bot-537

tom pressure has minimal impact on skill, while the addition of noise consistently de-538

creases skill. Finally, we show that the reconstruction method broadly generalises to other539

ocean models – error is the same order of magnitude – but the variability suggests that540

evaluation in additional models or improved dynamical understanding of variations in541

error could improve error estimates.542

AABW transport reconstructions could be most improved by addressing ocean bot-543

tom pressure measurement uncertainty, as we find that the addition of measurement-like544

noise causes the largest reduction in simulated reconstruction skill. Newer releases of GRACE545

products are generally more accurate than older releases, and thus future improvements546

in the accuracy of GRACE satellite observations are likely (Macrander et al., 2010; Cham-547

bers & Bonin, 2012). Mass change is a designated observable by the National Aeronau-548

tics and Space Administration (NASA), and there are plans for future mass change satel-549

lite missions (Wiese et al., 2022). More accurate ocean bottom pressure observations could550

be used for improved estimates of ocean transport. Given the large impact of adding noise551

to the ocean bottom pressure, future work investigating ocean transport reconstruction552

from ocean bottom pressure should incorporate the uncertainty of GRACE observations.553
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We further suggest including additional observables to improve the accuracy of AABW554

transport reconstructions. Some error remains in reconstructions from 1◦ noise-free ocean555

bottom pressure, suggesting that alternate sources of data or reconstruction methods may556

improve AABW transport reconstructions. Stewart et al. (2021) suggest that zonal wind557

stress would be skilful at reconstructing AABW transport, and Solodoch et al. (2023)558

find that combining zonal wind stress with ocean bottom pressure offers slight improve-559

ments in reconstructions over using solely ocean bottom pressure. Given the reduction560

in accuracy from GRACE noise, further exploration of including wind stress measure-561

ments is justified. In-situ observations, such as data from more recent deep Argo data562

or mooring arrays, could be combined with our estimate to constrain AABW interan-563

nual variations.564

This work provides a first estimate of interannual AABW transport variability from565

the currently available GRACE satellite data. Variations in AABW transport of mag-566

nitude >1 Sv over several years (around 1-10% of total AABW transport) would be de-567

tectable with our method. Additionally, we demonstrate a method of using satellite-measured568

ocean bottom pressure to infer AABW transport anomalies, and a method of including569

the impacts of both satellite resolution and measurement uncertainty in our error esti-570

mate. Satellite measurement uncertainty is the largest contributor to uncertainty in our571

AABW transport reconstruction: future work to refine estimates of AABW transport572

from satellite observations of ocean bottom pressure will need to develop methods to min-573

imise the impact of measurement uncertainty.574

6 Open Research575

Code used to perform the analyses and processed model output will be uploaded576

to zenodo once the manuscript is accepted. (Code is currently here: https://github.com/jemmajeffree/grace-577

aabw)578

The JPL GRACE/GRACE-FO Mascon data are available at http://grace.jpl.nasa.gov579

In situ ocean bottom pressure records are available at https://www.psmsl.org/data/bottom pressure/580
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Abstract18

Antarctic Bottom Water (AABW) formation and transport constitute a key component19

of the global ocean circulation. Direct observations suggest that AABW volumes and20

transport rates may be decreasing, but these observations are too temporally or spatially21

sparse to determine the cause. To address this problem, we develop a new method to22

reconstruct AABW transport variability using data from the GRACE (Gravity Recov-23

ery and Climate Experiment) satellite mission. We use an ocean general circulation model24

to investigate the relationship between ocean bottom pressure and AABW: we calculate25

both of these quantities in the model, and link them using a regularised linear regres-26

sion. Our reconstruction from modelled ocean bottom pressure can capture 65-90% of27

modelled AABW transport variability, depending on the ocean basin. When realistic ob-28

servational uncertainty values are added to the modelled ocean bottom pressure, the re-29

construction can still capture 30-80% of AABW transport variability. Using the same30

regression values, the reconstruction skill is within the same range in a second, indepen-31

dent, general circulation model. We conclude that our reconstruction method is not unique32

to the model in which it was developed and can be applied to GRACE satellite obser-33

vations of ocean bottom pressure. These advances allow us to create the first global re-34

construction of AABW transport variability over the satellite era. Our reconstruction35

provides information on the interannual variability of AABW transport, but more ac-36

curate observations are needed to discern AABW transport trends.37

Plain Language Summary38

Ocean circulation moves heat and carbon around the globe. Changes in the way39

this circulation moves heat and carbon influence future climate. One part of this ocean40

circulation is Antarctic Bottom Water, which forms around Antarctica and flows north41

along the ocean floor into the Pacific, Atlantic and Indian Oceans. Observations of Antarc-42

tic Bottom Water are sparse. Those which exist suggest that the volume of Antarctic43

Bottom Water is declining, but are insufficient to explain why this is happening.44

We design a new method to try and measure Antarctic Bottom Water transport.45

The physical equations describing fluid flows suggest gravity signals measured by satel-46

lites might be useful. To establish how useful this data is, we simulate the observations47

of these satellites in an ocean model. We also calculate the transport of Antarctic Bot-48

tom Water in the model. This means we can investigate how effective the modelled satel-49
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lite data is at measuring modelled Antarctic Bottom Water. Our method of using the50

satellite data skilfully measures Antarctic Bottom Water transport, so we use this method51

to calculate Antarctic Bottom Water from the real-world satellite observations.52

1 Introduction53

The lower limb of the global meridional overturning circulation is composed of Antarc-54

tic Bottom Water (AABW). AABW is a dense watermass that forms near Antarctica55

and flows northwards along the ocean floor in the Pacific, Indian and Atlantic Oceans56

(Talley, 2013). AABW composes a third of the ocean volume, and covers more than half57

the ocean floor (Johnson, 2008).58

Observations of AABW provide some information about the mean flow and char-59

acteristics of this water mass. Temperature and salinity profiles along research vessel tran-60

sects have been gathered by the WOCE and GOSHIP programs roughly once per decade.61

These transects are temporally sparse compared to the timescales on which AABW trans-62

port varies (Purkey & Johnson, 2012; Stewart et al., 2021). Localised mooring arrays63

have provided information with daily resolution, but only sample a subset of AABW path-64

ways (e.g. Fukamachi et al., 2010; Valla et al., 2019). More recently, deep Argo floats65

have expanded knowledge of AABW in specific areas (e.g. Foppert et al., 2021; John-66

son, 2022). Although deep Argo floats will give more information in the future, their col-67

lected data currently comprises only several years, and over a relatively small fraction68

of the Southern Ocean. As such, there is no source of AABW observations with suffi-69

cient spatial and temporal coverage to constrain the variability of AABW transport.70

Higher resolution observations of AABW could improve understanding of its re-71

sponse to climate change. Recent modelling work suggests a halving of AABW produc-72

tion and transport by 2050 in response to projected Antarctic meltwater forcing (Li et73

al., 2023). Observations also show that the volume of AABW has declined in recent decades74

(Purkey & Johnson, 2012). Recent studies associate this reduction in Bottom Water vol-75

ume with declining production of the precursor Dense Shelf Water, but note that data76

limitations prevent direct observations of this link (Abrahamsen et al., 2019; Zhou et al.,77

2023). Furthermore, natural variability in AABW can produce apparent trends with-78

out the aid of external forcing (Zhang et al., 2019). Further investigation into the tem-79
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poral variability of AABW would shed light on how AABW transport and other related80

processes are changing.81

One option to supplement in-situ observations of AABW is satellite data. Satel-82

lite measurements of horizontal ocean pressure gradients indirectly measure geostrophic83

ocean transport. This link has been utilised to estimate ocean transport in the upper84

1000m of the ocean from satellite altimetry of sea surface height gradients, with some85

correction due to steric variability (e.g. Ivchenko et al., 2011; Kosempa & Chambers, 2014).86

However, deep baroclinic flows are less directly related to surface pressure gradients, and87

deep density observations are too sparse to correct for this. Deep geostrophic flows can88

instead be inferred from ocean bottom pressure (Hughes et al., 2013), which is measured89

by the GRACE (Gravity Recovery and Climate Experiment) satellites. In practice, in90

the ECCO ocean state estimate, almost all (95%) AABW transport at any latitude in91

the Southern Ocean can be reconstructed from ocean bottom pressure using a neural net-92

work (Solodoch et al., 2023), demonstrating that sufficiently accurate and high resolu-93

tion observations of ocean bottom pressure can be used alone to reconstruct AABW trans-94

port.95

The GRACE satellites measure mass anomalies on Earth’s surface. These mass anoma-96

lies correspond, via hydrostatic balance, to ocean bottom pressure anomalies, which sug-97

gests that the GRACE satellite observations could be used to infer AABW transport anoma-98

lies. However, both the resolution and accuracy of GRACE satellite observations of ocean99

bottom pressure limit their potential to reconstruct AABW transport. For example, the100

standard error of GRACE satellite estimates of ocean bottom pressure is 10−2 dbar (Watkins101

et al., 2015), around the same magnitude as ocean bottom pressure variability (Poropat102

et al., 2018). The coarse spatial resolution of GRACE-derived outputs (∼300 km), com-103

bines ocean bottom pressure signals from different depths on the continental slope and104

thus could conflate estimates of ocean transport at different depths (Hughes et al., 2018).105

Bingham and Hughes (2008) suggested that that the depth-dependent part of ocean bot-106

tom pressure anomalies are key to estimating ocean transport.107

However, case studies of North Atlantic Deep Water (NADW; a similar water mass108

to AABW) suggest that satellite-derived ocean bottom pressure can reconstruct ocean109

transport despite these barriers. Bentel et al. (2015) found that ocean bottom pressure110

in a model, coarsened to the the same ∼300 km grid as GRACE satellite observations,111
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could reconstruct the model’s NADW with a correlation coefficient of 0.7. Landerer et112

al. (2015) later compared a reconstruction of NADW from GRACE satellite estimates113

with estimates from an in-situ mooring array, finding a similar correlation coefficient.114

Therefore, although GRACE satellite estimates of ocean bottom pressure are at lower115

resolution and higher uncertainty than model output, they remain a viable proxy for deep116

ocean transport in the North Atlantic.117

In the Southern Hemisphere, only one study has used satellite estimates of ocean118

bottom pressure to reconstruct AABW transport, and no study has done so comprehen-119

sively. Mazloff and Boening (2016) focused on a specific region of the Pacific Ocean, and120

found that ocean bottom pressure can reconstruct 86% of AABW transport variance in121

this region. They gave an estimate of how GRACE satellite estimates of ocean bottom122

pressure might be used to reconstruct AABW. However, Mazloff and Boening (2016) only123

looked at one region, and their uncertainty estimation hinged on a comparison with a124

single in-situ location. No satellite-based basin-wide estimates of AABW transport ex-125

ist. Additionally, no previous work has considered together the impacts of resolution and126

uncertainty when using GRACE observations to reconstruct AABW.127

In this paper we quantify the accuracy that satellite observations of ocean bottom128

pressure can provide for estimation of AABW transport variability. We develop a sim-129

ple empirical method to link modelled ocean bottom pressure with AABW transport (Sec-130

tion 2). This method is tested on AABW transport in a high-resolution ocean model,131

where the ocean bottom pressure observations are degraded by coarsening resolution and132

adding noise to emulate the characteristics of satellite observations (Section 3). We then133

apply this method to GRACE satellite observations of ocean bottom pressure, to esti-134

mate the interannual variability in AABW transport (Section 4).135

2 Reconstruction Method136

We aim to develop a method to reconstruct AABW transport from GRACE satel-137

lite observations of ocean bottom pressure, and to quantify the performance of this method.138

There are insufficient in-situ AABW transport observations against which to test the139

accuracy of the reconstruction method, so we develop and test our method using out-140

put from an ocean general circulation model. We take both AABW transport and ocean141

bottom pressure from the ocean model output, and link these variables with a multivari-142
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ate linear regression. This reconstruction method can then be applied to ocean bottom143

pressure from another numerical model, to test the reconstruction method’s generality,144

and to satellite observations of ocean bottom pressure, to produce an estimate of AABW145

transport variability.146

2.1 Ocean Model147

We develop our reconstruction method using output from ACCESS-OM2-01, a cou-148

pled sea-ice/ocean model with prescribed atmospheric forcing. The model uses a 0.1◦149

Mercator grid; full model configuration is described in Kiss et al. (2020). ACCESS-OM2-150

01 is one of the few models which adequately represents AABW sourced from dense wa-151

ter formed on the Antarctic continental shelf, instead of in the open ocean (Solodoch et152

al., 2022). Additionally, the high resolution allows ACCESS-OM2-01 to represent eddies153

and other mesoscale structures over much of the globe without parameterisation. By ac-154

curately representing more ocean processes, ACCESS-OM2-01 is more likely to correctly155

represent links between AABW transport and ocean bottom pressure.156

We use model output from two model runs of ACCESS-OM2-01, with different pre-157

scribed atmospheric forcing. One model run uses atmospheric forcing from the JRA55-158

do reanalysis dataset from January 1958 to December 2018 (Tsujino et al., 2018). We159

term this the historically forced model run. The other model run uses a continuous cy-160

cling of the May 1990 to April 1991 atmosphere from JRA55-do (Stewart et al., 2021),161

for which we have 230 years of monthly data. We term this the repeat year forced model162

run. These two model runs provide a combined total of 291 years of data.163

Our multivariate linear regression model is fitted to, or trained on, the repeat-year164

forced ACCESS-OM2-01 data. We initially test our method, and empirically refine method-165

ology, on the historical run of ACCESS-OM2-01. In addition, we test the generalisabil-166

ity of our method, trained on ACCESS-OM2-01 output, with the output from two ad-167

ditional models: a historically forced run of ACCESS-OM2 at 0.25◦ resolution (ACCESS-168

OM2-025; Kiss et al., 2020) and a repeat year forced run of GFDL-OM4 at 0.25◦ res-169

olution (GFDL-OM4-025; Adcroft et al., 2019). Output from these models is arguably170

more independent of the training data than output from a separate run of ACCESS-OM2-171

01, and so testing our method on output from these different models increases confidence172

in the estimate of our method uncertainty.173
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2.2 AABW transport definition174

In this paper we define AABW, in each ocean basin, to be water denser than a par-175

ticular density threshold. At a given latitude, the monthly AABW transport (ψt) be-176

low the isopycnal ρ1 at time t is given by177

ψt(ρ1) =

∫ x1

x0

∫ zt(ρ1)

z0

vtdzdx (1)178

where x0, x1 are the longitudinal bounds of a transect, z0 is the height of the ocean floor,179

zt(ρ1) is the height of the density threshold ρ1 at time t, and vt is the meridional veloc-180

ity at time t. Meridional transport in density coordinates is a supplied diagnostic in the181

ACCESS-OM2-01 runs, but at insufficiently high resolution at AABW depths. Instead,182

we bin meridional transport into density bins at 0.01 kgm−3 spacing over the range 1036.5–183

1037.5 kgm−3 using monthly output. The use of monthly averaged density and veloc-184

ity may omit eddy contributions to transport magnitude; we find that this omission is185

not significant at the latitudes tested here. The correlation between 12 months of AABW186

transport calculated using monthly or daily data is ≥0.98 in each basin (not shown). The187

mean ACCESS-OM2-01 AABW transport across 30◦S from the historically forced model188

run is 18.5 Sv (106m3s−1), the same order of magnitude as estimates from observations,189

which range from 10 Sv to 50 Sv (Sloyan & Rintoul, 2001; Lumpkin & Speer, 2007; Tal-190

ley, 2013).191

For each model, at any given latitude, we define the AABW threshold to be the192

isopycnal bounding northward flowing water at the ocean bottom. The one exception193

to this definition is in GFDL-OM4 in the Pacific Ocean, where we overwrite the density194

threshold with that from ACCESS-OM2-01, because our streamfunction definition pro-195

duces unrealistic AABW transport (details in Text S1 and Figure S1). We reconstruct196

AABW at 30◦S in the Atlantic and Indian Oceans, and 40◦S in the Pacific Ocean, be-197

cause these latitudes maximise the skill of our AABW reconstruction (See Section 2.6198

and Figure S5). The attributes of ACCESS-OM2-01 AABW calculated following this199

method are shown in Table 1.200

2.3 Building a Linear Regression Model for AABW Transport201

Ocean bottom pressure gradients along an ocean cross section are linearly related202

to large-scale ocean transport through that cross section, including AABW transport (Hughes203

et al., 2013). This physical link could be used to directly estimate AABW transport from204
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Table 1. AABW transport and the definition of AABW in each ocean basin, used to train and

test the regression in ACCESS-OM2-01. The latitudes are chosen separately in each ocean basin

in order to maximise reconstruction skill (See Section 2.6 and Figure S5).

Ocean Latitude Potential density

(σ2) threshold

Mean transport

Pacific 40◦S 1037.08 kgm−3 10.2 Sv

Atlantic 30◦S 1037.08 kgm−3 4.6 Sv

Indian 30◦S 1037.09 kgm−3 3.8 Sv

ocean bottom pressure, in the same way that Landerer et al. (2015) reconstructed NADW.205

However, such an approach limits the ocean bottom pressure to that along a single line206

of latitude, even though ocean bottom pressure to the north and south of a zonal tran-207

sect correlates with transport across the transect (Landerer et al., 2015). Solodoch et208

al. (2023) found meridional averaging didn’t affect reconstruction skill in a noise-free sce-209

nario. Thus, off-transect ocean bottom pressure could provide additional information for210

reconstructing ocean transport.211

Off-transect ocean bottom pressure is not directly physically linked to ocean trans-212

port in the same way that on-transect ocean bottom pressure is, without assuming that213

AABW transport is invariant with latitude. In order to include off-transect ocean bot-214

tom pressure in our reconstruction, we assume that AABW transport anomalies can be215

reconstructed from a weighted sum of ocean bottom pressure anomalies at different lo-216

cations, where these weights can be positive or negative, and arbitrarily large:217

ψ̂t =
∑
i

wipi,t, (2)218

where ψ̂t is the predicted AABW transport at time t, w is the weight for a particular219

gridcell i, and p is the pressure for a gridcell i and time t. Note that i could cover any220

cell in the region of interest, and is not limited to a single dimension. This formulation221

is consistent with the linear relationship from physical theory in a one dimensional ex-222

ample, while also generalising to allow the incorporation of two dimensional ocean bot-223

tom pressure.224

We use a least-squares linear regression with ridge regularisation to estimate weights225

for ocean bottom pressure: regularisation reduces overfitting to the training data by favour-226
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ing solutions with smaller weights, where noise contributes less to the final reconstruc-227

tion (see, for example, McDonald (2009)). We fit the linear regression on 230 years of228

ACCESS-OM2-01 repeat year forced data, at monthly resolution, with the climatology229

removed. This data has, in effect, constant atmospheric forcing and thus the linear re-230

gression captures the ocean bottom pressure signal of unforced internal variability of AABW231

transport.232

2.4 Processing of model output ocean bottom pressure233

Ocean bottom pressure is output by the ACCESS-OM2-01 model. However, the234

output from ACCESS-OM2-01 is at 0.1◦ resolution, and estimating weights at this res-235

olution numerically destabilises the linear regression, resulting in noisy weights and poor236

AABW transport reconstruction. To stabilise our weight calculation, we initially aver-237

age ocean bottom pressure to 1◦ resolution. One degree resolution has been used by pre-238

vious studies to evaluate the links between ocean transport and ocean bottom pressure239

(e.g. Solodoch et al., 2023).240

We aim to not only probe the link between ocean bottom pressure and AABW trans-241

port, but also to apply our calculated weights to satellite observations of ocean bottom242

pressure and thereby estimate AABW transport. For this purpose, the ocean bottom243

pressure grid for which we calculate weights must align with an observational grid. The244

GRACE satellites observe temporal variations in ocean bottom pressure with a spatial245

resolution of around 300km (3◦ at the equator), and temporal resolution of 1 month. We246

use GRACE observations on a mascon (mass concentration) grid, where anomalous mass247

is estimated as discrete homogeneous tiles of equivalent water height. These GRACE ob-248

servations show improved separation of the relevant ocean signals from land signals, com-249

pared to previous GRACE observations estimated as spherical harmonic coefficients (Watkins250

et al., 2015). We base our AABW transport reconstruction on Jet Propulsion Labora-251

tory (JPL) GRACE mascon product RL06.1Mv03 (Watkins et al., 2015). We find this252

product to have the lowest uncertainty of available GRACE mascon products when em-253

pirically validated against in-situ ocean bottom pressure (Section 2.5, Figure S2), though254

in some cases the difference is negligible.255

To convert ACCESS-OM2-01 model output ocean bottom pressure to the same grid256

as satellite observations, we average the ACCESS-OM2-01 ocean bottom pressure to the257
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Figure 1. An example part of the JPL RL06.1Mv03 GRACE mascon grid. Black outlines

represent the circular mascons that compose the grid. Colours indicate which mascon/gridpoint

an ACCESS-OM2-01 gridcell is assigned to.

irregular ∼300km grid used by the JPL RL06.1Mv03 GRACE mascon product (Figure258

1). This allows us firstly to estimate the impact of resolution in the model, and further-259

more to calculate weights for ocean bottom pressure on this grid, which we can then trans-260

fer to satellite observations of ocean bottom pressure. This mascon grid is nominally com-261

posed of circles, which do not entirely cover the surface of the Earth. Nonetheless, ocean262

bottom pressure from the gaps between the circular mascons influences the calculated263

ocean bottom pressure in the mascons (Watkins et al., 2015), and so we average all ocean264

bottom pressure in the model onto the nearest circular mascon (Figure 1).265

We omit ocean bottom pressure at some locations, due to unresolved uncertainty266

or signal contamination. The signals that the GRACE satellites measure on ice-free land267

– mostly changes in soil moisture and groundwater – have greater magnitude than the268

ocean bottom pressure signals. To prevent these land signals from contaminating our AABW269

transport estimate, we discard any mascon with more than 1% land as a fraction of to-270

tal area. Glacial isostatic adjustment (GIA) is a substantial part of the mass change sig-271

nal measured by the GRACE satellites (Caron et al., 2018). As this adjustment results272

from movement of mantle mass rather than ocean mass, it does not contribute to ocean273

bottom pressure. We use the default ICE6G-D model to correct for GIA (Peltier et al.,274

2018). Error from this GIA model will contribute to error in our calculated AABW trends.275

Our reconstructions only use mascons at a latitude north of ∼50◦ S, which should min-276

imise this error (see Figure 3). We omit the impact of GIA in our error estimation, be-277

cause this error is poorly characterised.278
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2.5 Uncertainty in satellite-based bottom pressure estimates279

Measurement uncertainty in ocean bottom pressure leads to uncertainty in the re-280

construction of AABW. We estimate the uncertainty of GRACE satellite observations281

of ocean bottom pressure by empirically comparing GRACE observations to in-situ ocean282

bottom pressure records from the Permanent Service for Mean Sea Level database (Permanent283

Service for Mean Sea Level, 2022). We limit in-situ ocean bottom pressure records to284

those with a length of at least 12 months and no gaps greater than a month: a total of285

1798 months of data from 88 ocean bottom pressure sensor deployments meet this cri-286

teria. All deployments included in this database are from earlier than 2016. We aver-287

age the in-situ records to the same monthly epochs as GRACE and compare each in-288

situ deployment to the GRACE mascon covering its location (Figure 2a). We do not find289

any systematic link between GRACE error and any of latitude, ocean basin or ocean depth,290

and therefore combine the error from all ocean bottom pressure sensor deployments. We291

iteratively estimate a standard deviation, discarding outliers more than three standard292

deviations from the mean until the estimate converges (difference in subsequent error293

estimates is less than 10−3 dbar). Using this method, we estimate that the root mean294

square error (RMSE) of JPL GRACE solutions is 0.015 dbar (Figure 2b). This error is295

added to the AABW transport reconstruction error by Gaussian error propagation (Lo,296

2005), adjusting the sum of squared error to be:297

∑
t

(ψt − ψ̂t)
2 +

∑
t

∑
i

σ2w2
i , (3)298

where σ represents the RMSE of GRACE observations. In applying this formula, we as-299

sume that GRACE error is neither spatially nor temporally correlated. (Note that this300

assumption is not strictly true: error in temporally adjacent mascon estimates has a weak301

correlation of r∼0.3, and error in spatially adjacent mascons is known to be correlated,302

but is difficult to quantify.)303

Ocean bottom pressure sensors, which we use as ground-truth, are known to drift304

with greater magnitude than ocean variability (Polster et al., 2009). This drift is best305

removed with an empirical exponential plus linear trend (Polster et al., 2009), and is al-306

ready removed from the bottom pressure records we use. We elect not to detrend the307

GRACE observations, because this would remove one degree of freedom from already308

short timeseries (mean length of 20 months per in-situ record). This choice could lead309
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Figure 2. Empirical validation of JPL GRACE observations using in-situ ocean bottom pres-

sure records. a) Histogram of Pearson’s correlation coefficient between each deployment and the

corresponding GRACE estimate of ocean bottom pressure. Bin width is 0.05. b) Histogram of

GRACE error relative to in-situ ocean bottom pressure observations combined from all in-situ

records. Bin width is 0.001. Black line shows estimated Gaussian error with a RMSE of 0.015

dbar.

to overestimating the error, but detrending the GRACE observations decreases error by310

less than 10%.311

We also assume that any difference between the in-situ measurement and the GRACE312

observation is exclusively due to GRACE measurement error. Additional deviation re-313

lated to the comparison of point measurements to 300km averages, or from error in the314

in-situ records, would result in some overestimation of GRACE error. A comparison of315

high resolution and spatially coarsened ocean bottom pressure anomalies in ACCESS-316

OM2-01 suggests that averaging imparts some error, possibly reducing the raw error by317

30%, but this error is uncorrelated with the total error of any given in-situ record and318

we do not attempt to remove it. This choice means that our uncertainty estimate is more319

conservative than estimates used in previous work (e.g Mazloff & Boening, 2016).320

2.6 Reconstruction optimisation321

To optimise our reconstruction method, we use the coefficient of determination (R2)322

between the validation and reconstructed AABW transport timeseries as a metric of skill.323

There are, confusingly, multiple skill metrics termed R2 (Kvalseth, 1985). Here, we cal-324
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culate:325

R2 = 1−
∑

t(ψt − ψ̂t)
2∑

t(ψt − ψ̄t)2
, (4)326

where an overbar (¯) indicates a time-mean. This measure of skill is not generally equiv-327

alent to the square of Pearson’s correlation coefficient (r2) (Kvalseth, 1985). Addition328

of noise from measurement error adjusts R2 to:329

R2 = 1−
∑

t(ψt − ψ̂t)
2 +

∑
t

∑
i σ

2w2
i∑

t(ψt − ψ̄t)2
, (5)330

The reconstruction method is primarily optimised in an empirical fashion. For each331

component of the reconstruction method (e.g. data used, temporal smoothing, etc), we332

test a range of values and select those which maximise the reconstruction skill in the his-333

torically forced run of ACCESS-OM2-01. The strength of ridge regularisation is empir-334

ically determined for each transect independently – stronger regularisation is required335

for the reconstructions where noise makes up a greater part of the input data. Other op-336

timal architecture choices are used consistently across reconstructions, and are listed as337

follows:338

• The latitudinal range of ocean bottom pressure information is ±10◦ of the tran-339

sect.340

• The ocean bottom pressure and AABW transport are smoothed with a Gaussian341

filter with standard deviation of four months, after removing the seasonal cycle.342

• Instead of fitting a single linear regression to each basin, we fit a regression to cal-343

culate the weights for each AABW pathway through a basin and later combine344

these to full basin transports. For example, we split the Atlantic into two sub-basins345

on each side of the mid-ocean ridge. The subbasins are defined following AABW346

pathways in Figure 4 of Solodoch et al. (2022).347

The reasoning for the first two optimisation choices producing highest skill is unclear;348

they were simply empirically chosen after evaluating a range of values (Figures S3, S4).349

We propose that the third may improve skill by decreasing the number of weights to be350

fitted for the same length of training data. The transects across which AABW transport351

is reconstructed and the ocean bottom pressure range used for this reconstruction is rep-352

resented visually in Figure 3.353

Historical changes in ocean bottom pressure are dominated by ocean mass increase354

from melting ice sheets and glaciers. Ocean mass gain produces an ocean bottom pres-355

–13–



manuscript submitted to JGR: Oceans

200 150 100 50 0 50 100
longitude

80

60

40

20

0

la
tit

ud
e

10.2 Sv 0.0 Sv

4.0 Sv 0.6 Sv 0.3 Sv 3.5 Sv

0.04

0.02

0.00

0.02

0.04

Oc
ea

n 
bo

tto
m

 p
re

ss
ur

e
 a

no
m

al
y 

(d
ba

r)

Figure 3. A schematic of the data used for AABW transport reconstruction from ocean bot-

tom pressure. In each ocean basin, the transects across which AABW transport is calculated are

marked in black, as is the mean AABW transport across each of these transects. Colors show

ocean bottom pressure from a single timestep in ACCESS-OM2-01 averaged onto the JPL mas-

con grid, and trimmed to the latitude ranges used to reconstruct AABW.

sure signal of around 0.02 dbar per decade (Johnson & Chambers, 2013); ocean bottom356

pressure variations related to interannual variability in ocean transport are around 0.02357

dbar (Landerer et al., 2015). However, this long-term trend in ocean bottom pressure358

is not incorporated into the ocean model simulations. The linear regression weights need359

to be robust to ocean mass gain, otherwise mass gain will produce a spurious trend in360

the final AABW transport estimate. To ensure this robustness, we duplicate the train-361

ing data for the linear regression and add a basin-wide 1 dbar to ocean bottom pressure362

in the second half of this training data, but leave the AABW transport unmodified. We363

hereby fit a linear regression to a timeseries which is twice as long, and the same ocean364

transport occurs twice in the timeseries, the second time with a basin-wide 1 dbar in-365

crease in ocean bottom pressure. The linear regression is therefore forced to ignore basin-366

wide ocean mass changes. We show that this method is effective at removing all depen-367

dency on basin-wide sea level by adding a 0.5 dbar gradual increase to ocean bottom pres-368

sure and observing the impact (Figure 4).369

3 Evaluation of method370

This section presents our method’s skill at reconstructing AABW transport from371

ocean bottom pressure. We initially illustrate the physical mechanism behind reconstruc-372

tion skill with one example transect. We then quantify reconstruction skill across all basins,373

and explore the impact of realistic bottom pressure measurement constraints – resolu-374
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Figure 4. Reconstructions with and without accounting for basin-wide ocean mass gain. The

black line shows AABW in ACCESS-OM2-01 validation data. Both reconstructions use the same

model ocean bottom pressure output with a trend of 0.5 dbar increase over the full time period.

This trend affects the original non-robust linear regression (green dotted line), but not the one

which is trained to be robust against basin-wide sea level changes (red dashed line).

tion and noise – on reconstruction skill. Finally, we test our reconstruction method on375

output from independent ocean models, to more robustly estimate reconstruction skill,376

including the impact of model biases. These estimates of skill are interpreted to inform377

future improvements in reconstruction.378

3.1 Detailed examination of one specific reconstruction379

To demonstrate the physical reasoning behind our AABW transport reconstruc-380

tion method, we initially examine the method in one sector of the Southern Ocean. For381

this purpose we reconstruct AABW transport in the western Pacific, from model out-382

put ocean bottom pressure averaged onto a 1◦ grid. To reconstruct AABW, our method383

uses a linear regression to estimate a set of weights by which to multiply ocean bottom384

pressure (Section 2). The distribution of these weights can be displayed spatially, to in-385

dicate the patterns of ocean bottom pressure which the linear regression associates with386

AABW transport: Figure 5a shows the weights used to reconstruct AABW transport387

in the western Pacific. Positive weights are found on the western boundary below 3000388

m, approximately the depth of the AABW layer in ACCESS-OM2-01. Conversely, neg-389

ative weights are found towards the mid-ocean ridge on the eastern side of the sub-basin.390

This distribution of weights relates a decrease in pressure with increasing longitude to391

northward AABW transport, in agreement with physical theory derived from geostrophic392

flow (Hughes et al., 2013).393
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In addition to aligning with physical theory, the weights we calculate can be effec-394

tive at reconstructing AABW transport. The weights were derived from ACCESS-OM2-395

01 repeat year forced model output. We test these weights on the historically forced ACCESS-396

OM2-01 run, and generate a reconstruction from this independent ocean bottom pres-397

sure. The reconstruction (black line in Figure 5c) accounts for 88% of AABW transport398

variance in the historically forced run (grey line in Figure 5c). Thus, our reconstruction399

method can produce skilful reconstructions of AABW transport, at least when using ocean400

bottom pressure at 1◦ resolution.401

A more realistic demonstration of our reconstruction method would incorporate402

the constraints imposed by satellite-observed ocean bottom pressure. These constraints403

include two factors: the ∼300 km spatial resolution of existing satellite ocean bottom404

pressure observations, and their measurement uncertainty. We calculate weights for ocean405

bottom pressure averaged onto a grid used operationally for satellite ocean bottom pres-406

sure estimates (see Figures 1 and 3), and with the linear regression regularisation tuned407

to mitigate the effects of observational ocean bottom pressure uncertainty (standard de-408

viation 0.015 dbar; see methods and Figure 2). These new weights (Figure 5b) are con-409

sistent with the weights in Figure 5a, albeit at lower resolution. Therefore, the lower res-410

olution weights still agree with physical theory (Hughes et al., 2013). The coarser res-411

olution of ocean bottom pressure results in a wider band of positive weights on the west-412

ern boundary, which Hughes et al. (2018) argued limit the effectiveness of GRACE satel-413

lite observations. The decrease in resolution, combined with the addition of noise, re-414

duces reconstruction skill to capture 75% of AABW transport variance (see dashed line415

in Figure 5c).416

3.2 Quantifying AABW reconstruction skill417

We now expand our analysis to encompass all three ocean basins, and to further418

test how skill is impacted by the resolution and uncertainty of satellite-measured ocean419

bottom pressure. We perform this analysis using two skill metrics: coefficient of deter-420

mination (R2) and mean square error. R2 shows relative skill as a percentage of variance421

captured. Mean squared error, though less intuitive than root mean squared error, has422

the advantage that independent Gaussian sources of error sum linearly. Higher R2 and423

lower mean squared error each indicate greater skill. These skill metrics are evaluated424
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Figure 5. AABW transport anomaly reconstruction at 40◦S in the west Pacific Ocean from

ACCESS-OM2-01 repeat year forced model output ocean bottom pressure. a) Spatial pattern

of weights from the linear regression of ocean bottom pressure coarsened to 1◦ resolution upon

AABW transport. b) Spatial pattern of weights from the linear regression for ocean bottom pres-

sure which is coarsened onto the ∼300km grid used in JPL GRACE processing. c) Validation

AABW transport, along with reconstructions from the weights in a) and b). These weights re-

construct validation AABW transport with reasonable skill: R2 is 0.88 and 0.75 respectively. The

reconstruction from ocean bottom pressure coarsened to ∼300km has noise added to mimic the

uncertainty of GRACE satellite observations of ocean bottom pressure.

–17–



manuscript submitted to JGR: Oceans

in Figure 6 as a function of ocean bottom pressure resolution and additional noise, in425

each ocean basin.426
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Figure 6. Skill of AABW reconstructions from each of ocean bottom pressure coarsened to

1 degree resolution (left bars), averaged onto JPL mascon shapes (approximately 3◦ resolution;

centre bars), and averaged onto the JPL mascon shapes with noise added (right bars). a) shows

the coefficient of determination, or R2, which quantifies the fraction of variance captured by the

reconstruction. b) shows mean square error which quantifies the absolute error of the recon-

struction, against a total variance of 0.85, 0.92 and 0.26 Sv2 for the Pacific, Atlantic and Indian

Oceans respectively.

We start with ocean bottom pressure coarsened to 1◦ resolution, because this re-427

construction is not coarsened beyond what is needed numerically and is not inhibited428

by noisy ocean bottom pressure. Therefore, any error indicates limitations of the recon-429

struction method itself. This reconstruction, using ocean bottom pressure at 1◦ resolu-430

tion with no noise, captures 65-90% of AABW transport variance, depending on the ocean431

basin (Figure 6a, left bars). Reconstructions are generally most skilful in the Atlantic432

Ocean, and least skilful in the Indian Ocean. Variation between basins is dependent on433

the isopycnal used to define AABW (not shown) and the latitude at which AABW trans-434

port is calculated (Figure S5). These two changes would impact AABW variance or tran-435

sect bathymetry, as would changing ocean basins, so we suggest that AABW variance436

or transect bathymetry contribute to changes in reconstruction skill. Our reconstruction437

skill is similar to the reconstructions from Solodoch et al. (2023) that use a linear regres-438

sion with regularisation and we conclude that our method is a viable approach to recon-439

struct AABW transport from precise, high resolution measurements of ocean bottom pres-440

sure.441
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To test the impact of ocean bottom pressure resolution on reconstruction skill, we442

compare reconstructions from ocean bottom pressure coarsened to 1◦ and ∼300 km. The443

percentage of variance captured (R2) by reconstructions using the two different resolu-444

tions of ocean bottom pressure are within 6% (compare left and centre groups of bars445

in Figure 6a). Changes in mean squared error are generally small, with the exception446

that mean squared error in the Pacific Ocean increases by 45% (Figure 6b). This increase447

suggests that the lower resolution ocean bottom pressure doesn’t resolve some relevant448

feature of ocean bottom pressure anomalies in the Pacific Ocean. In the Indian Ocean,449

the lower resolution ocean bottom pressure (∼300 km) produces slightly (∆R2 ≈5%) bet-450

ter reconstructions of AABW transport than the high resolution ocean bottom pressure451

(1◦ ). We hypothesise that having fewer weights numerically stabilises the linear regres-452

sion or reduces overfitting, resulting in a minor increase in skill. In summary, ocean bot-453

tom pressure resolution has some, mostly small, impact on reconstruction skill, consis-454

tent with previous skilful reconstructions from ocean bottom pressure at ∼300km res-455

olution (Bentel et al., 2015; Landerer et al., 2015). In contrast to the suggestion of Hughes456

et al. (2018), we find that ocean bottom pressure at lower resolution can be used to ef-457

fectively estimate AABW transport.458

To test the impact of uncertainty on the reconstruction, we emulate the uncertainty459

of satellite ocean bottom pressure measurements with added noise. The inclusion of re-460

alistic uncertainty increases the mean squared error by up to a factor of 2 (compare cen-461

tre and right groups of bars in Figure 6b), and lowers the R2 by 10-35% (compare cen-462

tre and right groups of bars in Figure 6a). We find that this uncertainty reduces recon-463

struction skill far more than the low spatial resolution does, in all three ocean basins.464

3.3 Evaluation using other ocean models465

We further evaluate our reconstruction method with data from two additional ocean466

models. Any empirical model, including our reconstruction method and weights, is de-467

pendent on the system upon which it is trained being representative of the real world.468

Because we train and test our reconstruction method in ACCESS-OM2-01, any biases469

or misrepresentations in ACCESS-OM2-01 are likely to also exist in our reconstruction470

method. A simple way to test the magnitude of error from these biases is to evaluate the471

method using output from a different ocean model, which we expect to have different472

biases. We use both ACCESS-OM2-025, the same model as our training data but at a473
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different resolution, and GFDL-OM4-025, which has different ocean and sea ice compo-474

nents. We apply the weights calculated from ACCESS-OM2-01 to bottom pressure from475

the other models, and compare the resultant reconstruction to the AABW from these476

models (Figure 7). R2 and MSE vary between reconstructions in different models and477

in different basins. The spread in reconstruction error leads to a range of possible un-478

certainties in our final AABW reconstruction. With the caveat that only two different479

numerical models are used to test generalisability here, we expect our error in reconstruc-480

tions from GRACE observational data to be in the range of errors from validation in dif-481

ferent models. To be conservative, we take the error from the model where reconstruc-482

tion error is largest for our uncertainty estimate in Section 4. Part of the variation in483

error may be explained by changes in the variance of smoothed AABW transport (shown484

explicitly in Figure S6, and implicitly in the way R2 changes in conjunction with MSE).485

Nonetheless, R2 and MSE are of similar magnitude in all models. This result lends con-486

fidence to our method, and to our final reconstructions from GRACE observational data487

in Section 4.488
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Figure 7. Skill of AABW transport reconstructions when evaluated in different ocean models:

two ACCESS-OM2 runs at different resolution, both with historical forcing, and GFDL-OM4

with a repeat year forcing. a) shows the coefficient of determination, or R2, which quantifies the

fraction of variance captured by the reconstruction. b) shows mean square error, which quantifies

the absolute error of the reconstruction. In all three test cases, the weights come from a fit to

ACCESS-OM2-01, and use ocean bottom pressure coarsened to ∼300 km with added noise.
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4 An AABW transport timeseries489

We use our optimised reconstruction method, and observations from the GRACE490

satellites, to create a timeseries of AABW transport anomalies in each ocean basin (Fig-491

ure 8). A two-sigma confidence interval is shaded, where the standard deviation is con-492

servatively taken as the square root of the mean square error in the model with worst493

error (Figure 7b) for each basin. The error in the reconstruction is substantial, such that494

the two-sigma confidence intervals of the reconstructions (shown in red shading) almost495

always encompass the 0 Sv anomaly. Both the two-sigma interval and R2 around 0.5 should496

be considered when interpreting these reconstructions: although the error in our recon-497

struction is substantial, we assume based on the models’ R2 metric of skill (Figure 7)498

that the fraction of ocean MOC variance that our reconstruction captures is around 50%.499
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Figure 8. Reconstructed AABW transport anomaly from satellite observations of ocean bot-

tom pressure. Gaps in data indicate times when no GRACE data is available – specifically when

less than three quarters of the data needed for the temporally smoothed average is available. The

data has been smoothed with a Gaussian filter with a standard deviation of four months. Error-

bars show the two-sigma range – approximately the 95% confidence interval – and include both

observational and methodological uncertainty.
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We can also calculate a trend of our AABW transport reconstruction, from the un-500

smoothed timeseries (Table 2). These trends are, for the most part, not significantly dif-501

ferent from zero, because the estimated error is large. Therefore, they are more useful502

for establishing an upper bound on changes than to actually quantify trends. We do find503

a trend in Atlantic AABW transport outside our quoted uncertainty. However, trends504

in GRACE satellite observations of ocean bottom pressure are impacted by the choice505

of GIA model (Caron et al., 2018), used to correct the GRACE observations for solid506

Earth changes. The GIA uncertainty is not included in our uncertainty estimate. As such,507

our presented trends may be subject to higher error than quoted.508

Our estimates of AABW transport trends are consistent with previous estimates.509

Kouketsu et al. (2011) found trends in AABW volume of -0.71, -0.43 and 0.17 Sv/decade510

changes in AABW transport at 35◦S in the Pacific, Atlantic and Indian Oceans respec-511

tively. These trends are within the uncertainty of our AABW transport trends in the512

Atlantic and Indian Oceans, and of similar magnitude to our uncertainty estimate in the513

Pacific. Consistent with our results in the Atlantic Ocean, Johnson (2022) found a loss514

of 0.9 Sv of geostrophic AABW transport in the Argentine basin over a period of 20-40515

years. The epochs used to calculate trends could impact the trend, given the internal516

variability in AABW transport (Figure 8). The uncertainty in our estimates of AABW517

transport trends encompasses both previous trend estimates and no trend, and so we do518

not provide new information on this particular question. Given our error, we would be519

able to observe a change of ∼1 Sv (after the low-pass filter we employ), which would mean520

the projected AABW response to climate change in Li et al. (2023) would be measur-521

able in the 2040s.522

Table 2. Trends in AABW transport, reconstructed from GRACE satellite observations of

ocean bottom pressure. Uncertainty indicates a 2σ value.

Ocean Trend

Pacific -0.08±0.35 Sv/decade

Atlantic -0.55±0.20 Sv/decade

Indian 0.05±0.20 Sv/decade
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5 Conclusions523

We explore how best to use observations of ocean bottom pressure from the GRACE524

satellites as a proxy to reconstruct AABW, using a linear regression framework. We es-525

timate sources of error in these reconstructions by quantifying reconstruction skill in sce-526

narios of increasing realism, starting with a simple reconstruction of ocean model AABW527

transport from ocean model bottom pressure, and sequentially including error from res-528

olution, measurement uncertainty and ocean model biases. At the end of this process,529

we use our reconstruction method and our combined uncertainty estimate to present a530

timeseries of AABW transport from satellite observations of ocean bottom pressure.531

The sensitivity of the framework to the quality of ocean bottom pressure data high-532

lights several important aspects of this method. First, ocean bottom pressure with lower533

spatial resolution does not unduly affect the output. Conversely, additional noise inserted534

to mimic satellite observation quality degrades the reconstruction skill of AABW trans-535

port. The reconstruction skill in each of the three ocean basins responds similarly to changes536

in the structure of ocean bottom pressure data: in each case the resolution of ocean bot-537

tom pressure has minimal impact on skill, while the addition of noise consistently de-538

creases skill. Finally, we show that the reconstruction method broadly generalises to other539

ocean models – error is the same order of magnitude – but the variability suggests that540

evaluation in additional models or improved dynamical understanding of variations in541

error could improve error estimates.542

AABW transport reconstructions could be most improved by addressing ocean bot-543

tom pressure measurement uncertainty, as we find that the addition of measurement-like544

noise causes the largest reduction in simulated reconstruction skill. Newer releases of GRACE545

products are generally more accurate than older releases, and thus future improvements546

in the accuracy of GRACE satellite observations are likely (Macrander et al., 2010; Cham-547

bers & Bonin, 2012). Mass change is a designated observable by the National Aeronau-548

tics and Space Administration (NASA), and there are plans for future mass change satel-549

lite missions (Wiese et al., 2022). More accurate ocean bottom pressure observations could550

be used for improved estimates of ocean transport. Given the large impact of adding noise551

to the ocean bottom pressure, future work investigating ocean transport reconstruction552

from ocean bottom pressure should incorporate the uncertainty of GRACE observations.553
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We further suggest including additional observables to improve the accuracy of AABW554

transport reconstructions. Some error remains in reconstructions from 1◦ noise-free ocean555

bottom pressure, suggesting that alternate sources of data or reconstruction methods may556

improve AABW transport reconstructions. Stewart et al. (2021) suggest that zonal wind557

stress would be skilful at reconstructing AABW transport, and Solodoch et al. (2023)558

find that combining zonal wind stress with ocean bottom pressure offers slight improve-559

ments in reconstructions over using solely ocean bottom pressure. Given the reduction560

in accuracy from GRACE noise, further exploration of including wind stress measure-561

ments is justified. In-situ observations, such as data from more recent deep Argo data562

or mooring arrays, could be combined with our estimate to constrain AABW interan-563

nual variations.564

This work provides a first estimate of interannual AABW transport variability from565

the currently available GRACE satellite data. Variations in AABW transport of mag-566

nitude >1 Sv over several years (around 1-10% of total AABW transport) would be de-567

tectable with our method. Additionally, we demonstrate a method of using satellite-measured568

ocean bottom pressure to infer AABW transport anomalies, and a method of including569

the impacts of both satellite resolution and measurement uncertainty in our error esti-570

mate. Satellite measurement uncertainty is the largest contributor to uncertainty in our571

AABW transport reconstruction: future work to refine estimates of AABW transport572

from satellite observations of ocean bottom pressure will need to develop methods to min-573

imise the impact of measurement uncertainty.574

6 Open Research575

Code used to perform the analyses and processed model output will be uploaded576

to zenodo once the manuscript is accepted. (Code is currently here: https://github.com/jemmajeffree/grace-577

aabw)578

The JPL GRACE/GRACE-FO Mascon data are available at http://grace.jpl.nasa.gov579

In situ ocean bottom pressure records are available at https://www.psmsl.org/data/bottom pressure/580
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1. Modification of density threshold in GFDL-OM4

We found that defining AABW according to maximum overturning in the Pacific Ocean

in GFDL-OM4-025 lead to an unrealistic representation of AABW location and corre-

spondingly poor reconstruction skill. The density threshold that maximises mean AABW

transport in GFDL-OM4-025 is 1037.02 kg/m3, but this shifts the AABW to include

shallower depths than in ACCESS-OM2-01, and to include water in the eastern Pacific

(Figures S1 a and b). Using the ACCESS-OM2-01 definition of AABW in GFDL-OM4-

025 produces an estimate of AABW which is of similar volume and location to AABW

in ACCESS-OM2-01. Observations suggest there is minimal net AABW transport in the

east Pacific (Cimoli et al., 2023, Fig 5), supporting the use of a higher density threshold.

The higher density threshold also improves the skill of AABW transport reconstructions

(Figures S1 c and d).
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Figure S1. The influence of AABW density threshold in the Pacific Ocean on the physical

location of AABW and reconstruction skill of AABW transport. a) ρ2 potential density (colors)

and the defining contour (in black) of of AABW in ACCESS-OM2-01 historically forced run,

for reference. b) ρ2 potential density (colors) and the defining contour (grey/black) of AABW

in GFDL-OM4-025, defined using both the maximum overturning (1037.02 kg/m3, black) and

ACCESS-OM2-01 definition (1037.08 kg/m3, grey). c) and d) show the R2 and RMSE respec-

tively for AABW transport reconstructions in GFDL-OM4-025, using each AABW definition.
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Figure S2. Empirical error estimation of four different GRACE products. The Jet Propulsion

Laboratory (JPL) GRACE mascon product RL06mv3 (a,b) has lower RMSE than other products

tested. c,d) Centre for Space Research (CSR) mascon product RL06.2 (Save et al., 2016; Save,

2020) e,f) Goddard Space Flight Centre (GSFC) mascon product RL06v2.0(Loomis et al., 2019)

g,h) Australian National University solutions (ideally we’ll have a ref sometime soon). All except

the ANU solutions are taken from a regridded product.
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Figure S3. Influence of different latitude widths of ocean bottom pressure data used to

reconstruct AABW transport on a) reconstruction skill and b) mean squared error. Grey shading

indicates the width of latitude used in the rest of this work.
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Figure S4. Influence of different temporal filtering length on a) reconstruction skill and b)

mean squared error. Grey shading indicates the temporal filter used in the rest of this work.
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Figure S5. Influence of location at which transport is calculated on a) reconstruction skill and

b) mean squared error. Black outlines indicate the transects used in the rest of this work.
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Figure S6. As per Figure 7b: MSE of AABW transport reconstruction in different models, but

with grey shading indicating the total AABW variance after temporal smoothing, for comparison.
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