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Abstract

Future sea level rise under global warming poses serious risks of extreme sea level events in coastal regions worldwide. Numerous

state-of-the-art climate models, with their relatively coarse horizontal resolution, may not adequately resolve coastal wave

dynamics, leading to uncertainties in coastal sea level variability representation. This study compared eddy-resolving and

non-eddying ocean models in reproducing sea level variability, focusing on the probability distribution along the western coast

of India. The eddy-resolving model can simulate intraseasonal sea level variations associated with coastal waves driven by

equatorial wind anomalies. The non-eddying model fails to capture over 81% of observed extreme sea level events, as shown

in the probability distribution for intraseasonal time series. Although capable of simulating Indian Ocean Dipole-related low-

frequency sea level anomalies, the non-eddying model does not replicate their connection to intraseasonal extreme events. The

results suggest that climate model projections may underestimate future changes in extreme sea level events.
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Key Points: 13 

 Reproducibility of sea level variability is compared along the western coast of India using 14 

eddy-resolving and non-eddying ocean models. 15 

 The eddy-resolving model captures coastal Kelvin waves arising from Indian Ocean 16 

dipole and consequent intraseasonal sea level variations. 17 

 The non-eddying model may miss over 81% of the extreme sea level events compared to 18 

observations. 19 
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Abstract 22 

Future sea level rise under global warming poses serious risks of extreme sea level events in 23 

coastal regions worldwide. Numerous state-of-the-art climate models, with their relatively coarse 24 

horizontal resolution, may not adequately resolve coastal wave dynamics, leading to 25 

uncertainties in coastal sea level variability representation. This study compared eddy-resolving 26 

and non-eddying ocean models in reproducing sea level variability, focusing on the probability 27 

distribution along the western coast of India. The eddy-resolving model can simulate 28 

intraseasonal sea level variations associated with coastal waves driven by equatorial wind 29 

anomalies. The non-eddying model fails to capture over 81% of observed extreme sea level 30 

events, as shown in the probability distribution for intraseasonal time series. Although capable of 31 

simulating Indian Ocean Dipole-related low-frequency sea level anomalies, the non-eddying 32 

model does not replicate their connection to intraseasonal extreme events. The results suggest 33 

that climate model projections may underestimate future changes in extreme sea level events. 34 

 35 

Plain Language Summary 36 

Sea level variations in the northern Indian Ocean are influenced by ocean waves near the coast, 37 

typically in a horizontal scale of approximately 100 km. It is not clear if these coastal waves and 38 

their movement are accurate represented in climate simulations, which typically have a relatively 39 

coarse horizontal resolution. This study compared sea level variations along the western coast of 40 

India using two ocean models with coarse and fine horizontal resolutions. We found that the 41 

high-resolution model adequately simulates the generation and propagation of coastal waves, and 42 

thus successfully simulate sea level variations with a 20–150-day time scale along western India. 43 

This result suggests that many recent climate simulations may have underestimated the 44 

frequency of extreme sea level events in coastal regions. 45 

 46 

1 Introduction 47 

Global warming is projected to cause persistent sea level rise worldwide (IPCC 2022a). In 48 

addition to the global mean sea level rise owing to thermal expansion, melting of glaciers, etc., 49 

extreme sea level projections associated with changes in atmospheric circulation and river runoff 50 

are also required in coastal regions, especially projections of changes in the occurrence of 51 
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extreme events (IPCC 2022b). Given that many of the state-of-art climate models in the Coupled 52 

Model Intercomparison Project Phase 6 (CMIP6) use a relatively coarse horizontal resolution of 53 

approximately 100 km, the projections obtained using these models may underestimate influence 54 

of oceanic mesoscale structures and coastal phenomena. Hence, it remains unclear whether 55 

current sea level projections, particularly in coastal regions, adequately capture changes in 56 

extreme sea level events (i.e., as indicated by the tails in probability distributions). 57 

In the densely populated coastal areas of the northern Indian Ocean, projected sea level rises in 58 

the Arabian Sea and the Bay of Bengal (Han et al., 2010; Jyoti et al., 2023) present serious risks, 59 

including coastal storm surges and extreme tidal events. Sea level variability along the coasts of 60 

the northern Indian Ocean is strongly influenced by equatorial waves and their resultant coastal 61 

Kelvin wave. Clarke and Liu (1994) showed that the interannual sea level anomalies (SLA) 62 

along the coasts of the northern Indian Ocean were remotely triggered by equatorial zonal winds. 63 

More recently, using linear stratified models (McCreary, 1996), several studies have investigated 64 

how wind stress forcing over the Arabian Sea, the southern tip of Sri Lanka, and the equatorial 65 

Indian Ocean impacts intraseasonal-to-interannual sea level variations along the coast of India 66 

(Suresh et al., 2013, 2016, 2018). Wind variations leading to coastal Kelvin waves can be 67 

attributed to semiannual basin-scale wind variability that drives the equatorial jet (Yoshida, 68 

1959; Wyrtki, 1973), intraseasonal anomalies associated with the Madden-Julian Oscillation 69 

(MJO; Madden & Julian, 1977), and interannual anomalies associated with the Indian Ocean 70 

Dipole (IOD) (Saji et al., 1999; Han & Webster, 2002; Aparna et al., 2012).  71 

Although previous studies suggested the potential role of coastal Kelvin waves in the Northern 72 

Indian Ocean, the extent to which standard climate models reproduce the coastal sea level 73 

variations remains unclear. Therefore, using the coastal sea level variability along western India 74 

as an illustrative example, this study undertakes a comparative analysis of multiple simulations 75 

derived from the oceanic component utilized in a climate model. Here we show that an eddy-76 

resolving ocean general circulation model (OGCM) is required to accurately represent sea level 77 

variations along the western coast of India. In particular, since intraseasonal sea level variations 78 

have a relatively pronounced amplitude and consequently lead to extreme events, this study 79 

focuses mainly on how the intraseasonal variations in coastal sea level are represented in 80 

OGCMs. Even though the non-eddying OGCM simulation is forced by the same atmospheric 81 

boundary conditions as in the eddy-resolving OGCM, the coarse horizontal resolution of the non-82 
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eddying OGCM fails to accurately capture the sea level variability, especially variations 83 

originating from the equator through the coastal wave guide in the Bay of Bengal. 84 

2 Models, Data, and Methods 85 

This study compares two simulations of CCSR Ocean Component Model (COCO) (Hasumi, 86 

2006), which serves as the sea ice-ocean component of the sixth version of the Model for 87 

Interdisciplinary Research on Climate (MIROC6; Tatebe et al., 2019) that was developed 88 

cooperatively by the Japanese climate modeling community. The configurations of the coarse 89 

stand-alone OGCM used in the present study are exactly the same as the global OGCM 90 

component of MIROC6. The model employs a nominal 1° horizontal resolution in a tripolar 91 

coordinate system, and there are 63 vertical levels, including the lowermost layer that 92 

incorporates bottom boundary layer parameterization (Nakano & Suginohara, 2002). This 93 

simulation is referred to as “COCO-LR” hereafter. We also used a global high-resolution version 94 

of COCO, which has horizontal resolution of 0.1° (hereafter referred to as COCO-HR). Using 95 

the phase 2 protocol of the Ocean Model Intercomparison Project (OMIP2; Tsujino et al., 2020), 96 

an endorsed Multi-Model Intercomparison Project (MIP) of CMIP6, both models were initialized 97 

using observed temperature and salinity data from the World Ocean Atlas 2013 version 2 98 

(Locarnini et al., 2013; Zweng et al., 2013). The models were driven by JRA55-do 3-hourly 99 

surface forcings (Tsujino et al., 2020) from 1958 to 2019 for COCO-HR and to 2018 for COCO-100 

LR (Komuro, 2019). In the COCO-HR model, regardless of the existence of sea ice, sea surface 101 

salinity (SSS) above the latitudes of 60°N and below 60°S was weakly relaxed to observational 102 

data with a 10-day restoring timescale to avoid model drift. Similarly, temperature and salinity at 103 

depths greater than 1500 m were also restored to observed values with a 5-year timescale. Note 104 

that COCO-HR improved the representation of the mean state in the Indian Ocean (see Text S1 105 

for details). 106 

To highlight the impact of interannual variations in surface wind forcing on the coastal sea 107 

level along the western coast of India, we also conducted a sensitivity experiment, hereafter 108 

referred to as “WIND0”. In this experiment, we used only the 3-hourly climatological mean of 109 

surface wind data for calculating surface wind stresses in COCO-HR. Thus, the surface wind 110 

stresses (i.e., dynamical forcing) in WIND0 incorporate only climatological mean variations, 111 

excluding low-frequency variations that occur over periods longer than 1 year. Other surface 112 
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forcings in WIND0, such as surface heat flux, freshwater flux, and river runoff (i.e., 113 

thermodynamical forcing), are the same as those in COCO-HR. 114 

In this study, we used the following observational datasets. PCMDI-SST (Hurrell et al., 2008) 115 

was used for the monthly sea surface temperature (SST) data for the period 1993–2019 with a 116 

horizontal resolution 1°×1°, as in Tsujino et al. (2020). CMEMS sea level products (DUACS 117 

DT2014; Pujol et al., 2016) have a daily interval and a horizontal resolution of 0.25°×0.25° for 118 

the period 1993–2019. Drifter-derived monthly climatological surface currents data were also 119 

used (Laurindo et al., 2017). To compare sea level anomalies with the satellite altimeter 120 

products, we mainly analyzed model outputs after 1993. 121 

To examine SLA propagation in the coastal area, we calculated lag composites of SLA for 122 

extreme sea level events. A two-tailed t-test was adapted to the statistical test at 90% confidence 123 

level. To estimate the probability density functions (PDFs) of SLA, Kernel Density estimation 124 

was applied (Dehand, 1987; Marshall & Molteni, 1993). A Butterworth filter was employed to 125 

isolate the intraseasonal variability within the 20-150 day period. 126 

 127 

3 Sea level variance in the Northern Indian Ocean 128 

In this section, we briefly validate the COCO-HR model focusing on sea level variability. 129 

COCO-HR showed noticeable improvements in the northern Indian Ocean, especially in regions 130 

where oceanic mesoscale eddies are dominant (Fig. 1). Regarding seasonal variability, 131 

observational data showed large-amplitude sea level variance in the Arabian Sea and the Bay of 132 

Bengal (Fig. 1a). These patterns are explained by the seasonal dynamics of the Lakshadweep 133 

High/Low in the southern Arabian Sea (Vinayachandran et al., 2007) and coastal wave guide 134 

effect in the Bay of Bengal (Clarke & Liu, 1994). The general structure of this seasonal sea level 135 

variability is well represented in the COCO-HR model, both in terms of spatial pattern and 136 

amplitude (Fig. 1b). Although the COCO-LR model showed a similar pattern, the overall 137 

amplitude was smaller than that in COCO-HR (Fig. 1c), suggesting that the coarse resolution 138 

model underestimates the seasonal sea level variability in the northern Indian Ocean. 139 

In addition, COCO-HR more accurately captures detrended interannual SLAs compared to 140 

COCO-LR (Fig. 1d-f). The noticeable interannual variations in the Somalia-Oman upwelling 141 

region are well represented in COCO-HR, aligning closely with observations, although COCO-142 
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HR does slightly underestimate them. This difference is presumably because the interannual 143 

variability of the mesoscale variability associated with the Somali Current is well represented in 144 

COCO-HR. Interannual sea level variability in the western Bay of Bengal also tends to be better 145 

represented in  COCO-HR, indicating that the interannual variability of coastal trapped waves 146 

and local mesoscale variability is also well captured by COCO-HR. In the following section, we 147 

examined sea level variations along the western coast of India in greater detail. 148 

 149 

 150 

Figure 1. Variances in seasonal sea level anomalies (SLAs) [cm
2
] in the northern Indian Ocean 151 

for (a) observations, (b) COCO-HR, and (c) COCO-LR. (d)-(f) As in (a)-(c), but for interannual 152 

SLAs. Interannual anomalies are defined as detrended anomalies from the climatology. 153 

4 SLAs along the western coast of India 154 

4.1 Intraseasonal sea level variations 155 

In order to investigate sea level variations along the western coast of India, area-averaged sea 156 

level variations are calculated within 2°×2° boxes at 15°N (black boxes in Fig. 1). Note that 157 

qualitatively similar results are obtained if we use 1°×1° boxes. The comparison indicates that 158 

COCO-HR more accurately represents both seasonal (Text S2) and intraseasonal SSH variations 159 

along the west coast of India.  160 

PDFs for 20-150 day band-passed SLA time series are estimated (Fig. 2). Note that we refer to 161 

the 20-150 day band-passed timeseries of detrended anomalies from the daily climatology as 162 

“intraseasonal anomalies” hereafter. In all months, COCO-HR reproduces PDFs that are similar 163 
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to the observational data, with standard deviations that also match those of the observational 164 

data. Conversely, COCO-LR exhibits smaller standard deviations for each PDF compared to the 165 

observations, resulting in underestimation of extreme SLA events. Indeed, in the observational 166 

data, the thresholds employed for positive (negative) extreme SLA events, i.e., events exceeding 167 

95% (5.0%) probability, are estimated to be 4.4 cm (-4.8 cm) (Fig. 2a). For COCO-HR, the 168 

occurrence rates of positive (negative) extreme SLA events are 7.3% (4.7%), which is consistent 169 

with the observed rates. For COCO-LR, the occurrence of positive (negative) SLA events is 170 

0.95% (0.21%), which is considerably smaller than in the observations. This result means that 171 

COCO-LR misses 81% (96%) of the extreme intraseasonal sea level maxima (minima), and 172 

underscores the importance of using an eddy-resolving ocean model to accurately hindcast 173 

coastal sea level variability. 174 

The narrower PDFs (i.e., indicating less variance) in WIND0 compared to COCO-HR 175 

suggests a reduced occurrence of extreme SLA events. Therefore, dynamical wind forcing 176 

anomalies are necessary for simulating intraseasonal SLA along the western coast of India (Fig. 177 

2b-m). This result also implies that the contribution of factors other than wind stress forcing, 178 

such as buoyancy flux and baroclinic instability associated with West Indian Coastal Current 179 

(e.g., Varna et al., 2023), is not predominant. The above result remains qualitatively unchanged 180 

if the PDFs are calculated for detrended anomalies without 20–150-day bandpass filtering (Fig. 181 

S5). Thus, differences in anomalies with periods shorter (longer) than 20 (150) days do not 182 

explain the reduction in the standard deviation of PDFs in WIND0. Consequently, the higher 183 

frequency of extreme SLA events in COCO-HR can be attributed to interannual-to-decadal 184 

changes in the intraseasonal amnomalies. Given that the variance in the intraseasonal component 185 

is prominent in both the observation and models (Fig. S6), compared to the total variance, we 186 

will discuss the processes driving these differences in PDFs of intraseasonal variability in the 187 

next section. 188 
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 189 

Figure 2. Probability density functions (PDFs) of intraseasonal (20-150 days) sea level 190 

anomalies (SLA) [cm] along the western coast of India (15°N) for observations (CMEMS; black 191 

bars), COCO-HR (red lines), COCO LR (blue lines), and WIND0 (green lines) for (a) all seasons 192 

and (b)-(m) each month. PDFs are estimated by kernel density estimation. The standard 193 

deviation (𝜎) for each month is given in the legend accompanying each graph. All PDFs are 194 

normalized and the vertical axis indicates probability (unit less). In (a), vertical black lines 195 

indicate the 5% and 95% anomalies based on CMEMS data. Areas where anomalies exceed the 5 196 

or 95 percentiles for CMEMS are highlighted in red (COCO-HR) and blue (COCO-LR) colors, 197 

respectively, with the corresponding percentile values marked in each model. 198 

 199 

4.2 Resolution dependency of the propagation of coastal Kelvin waves 200 

Regarding the remote impacts of coastal Kelvin waves on the western coast of India, the large 201 
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intraseasonal SLA variances in COCO-HR may be attributed to the propagation of sea level 202 

anomalies. Figure 3 shows a lag composite of SLA from 0 to 40 days before the occurrence of 203 

intraseasonal SLA exceeds +1 standard deviation at the western coast of India (indicated by red 204 

symbols in Fig. S6). Since the composites obtained for the negative anomalies are almost mirror 205 

images, we discuss only the results obtained for positive SLA events. In the observations, a 206 

significant SLA associated with equatorial Kelvin wave is triggered by westerly wind anomalies 207 

in the tropical Indian Ocean 40 days prior. Subsequently, this wave reaches the coast of Sumatra 208 

island and then propagates as coastal Kelvin waves along the coast of the Bay of Bengal. These 209 

waves pass through the southern tip of India, arrive at the western coast of India, and eventually 210 

extend into the northern Arabian Sea (Fig. 3a). Furthermore, SLAs also appear to be radiated 211 

from the eastern coast of the Bay of Bengal as westward Rossby waves, and are enhanced by 212 

easterly wind anomalies along the southern tip of Sri Lanka. 213 

In COCO-HR, similar to the observations, the equatorial Kelvin wave enters the eastern 214 

boundary and propagates as coastal Kelvin waves from the Bay of Bengal to the western coast of 215 

India (Fig. 3b). Westward SLAs also appeared to be radiated from the eastern coast of the Bay of 216 

Bengal to the southern coast of India. On the other hand, COCO-LR does not show SLA 217 

propagation in the coastal region from the equator to the Bay of Bengal. Instead, positive SLAs 218 

appear to develop locally about 10 days prior, before rapidly increasing in the western coast of 219 

India. Previous studies proposed that intraseasonal SLA variations along the western coast of 220 

India are predominantly influenced by the propagation of the coastal Kelvin waves from the 221 

equatorial Indian Ocean (Suresh et al., 2013). Therefore, the results obtained in this study 222 

suggest that COCO-HR effectively captures the propagation of coastal Kelvin waves from the 223 

equator. However, the propagation of Kelvin waves from the equator is not well captured by 224 

COCO-LR due to the coarser horizontal resolution (Text S3), suggesting an exaggerated 225 

influence of local wind and/or thermal forcing in the western coast of India.  226 

In the WIND0 composites, no SLA propagation originating from the equatorial Kelvin waves 227 

is evident. This is because the suppressed wind stress anomalies do not trigger intraseasonal 228 

anomalies of the equatorial Kelvin waves and, consequently, the coastal Kelvin waves in the Bay 229 

of Bengal. These results are also supported by the lag-composite analysis of SLA from 0 to 40 230 

days following instances when the SLA exceeds +1 standard deviation at the eastern equatorial 231 

Indian Ocean (Fig. S7). While both COCO-HR and COCO-LR depict the propagation of 232 
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equatorial Kelvin waves to the eastern boundary, only the observations and COCO-HR show the 233 

subsequent SLA propagation in the Bay of Bengal. 234 

 235 

Figure 3. Lag-composites of sea level anomalies (SLA) (contour and color) and 10-m wind 236 

(vectors) for area-averaged SLA time series along the western coast of India (black boxes). Data 237 

are shown for (a) CMEMS, (b) COCO-HR, (c) COCO-LR, and (d) WIND0. Colors and vectors 238 

indicate statistically significant SLA and zonal wind anomalies at the 90% confidence level, 239 

respectively. 240 

 241 

4.3 Influence of Indian Ocean Dipole on the probability distribution of coastal SLA along 242 

the western coast of India 243 

In section 4.2, differences in PDFs of intraseasonal SLA are attributed to the representation of 244 

coastal Kelvin waves. This section examines the origin of the coastal Kelvin waves, particularly 245 

their association with wind variations in the tropical Indian Ocean. Given that basin-scale wind 246 

anomalies in the tropical Indian Ocean are affected by the IOD, it follows that the IOD 247 

contributes to interannual low-frequency SLA variations along the western coast of India through 248 

coastal Kelvin waves (e.g., Suresh et al., 2018). However, the extent to which interannual wind 249 
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anomalies associated with the IOD modulate intraseasonal SLA variations, specifically the 250 

probability distribution of coastal SLA along the western coast of India, remains unclear. We 251 

therefore investigated the relationship between IOD and intraseasonal SLA, and assessed its 252 

representation in both COCO-HR and COCO-LR. In this analysis, the dipole mode index (DMI) 253 

is defined as the difference between area-averaged monthly-mean SST difference between the 254 

western (50°E-70°E, 10°S-10°N) and eastern (90°E-110°E, 10°S-0°) poles, as defined in 255 

previous studies (Saji et al., 1999; Tanizaki et al., 2017). A 3-month running mean is also applied 256 

to the DMI. 257 

Since SST anomalies associated with the IOD typically peak in October (e.g., Saji et al., 258 

1999), we focus on the relationship between the IOD and intraseasonal SLA along the western 259 

coast of India during this month. During positive IOD events, equatorial easterly wind anomalies 260 

trigger positive (negative) SLAs along the southern tip of Sri Lanka (in the eastern equatorial 261 

Indian Ocean) and, subsequently, positive (negative) coastal Kelvin waves along the western 262 

coast of India (coastal region of the Bay of Bengal) as observed (Fig. 4a). The SLAs associated 263 

with the IOD affects the interannual modulation of intraseasonal SLAs along the western coast of 264 

India (Fig. 4d). The correlation between the October-mean of intraseasonal SLAs and the DMI is 265 

0.68, indicating that the IOD modulates the interannual variations in intraseasonal SLA. During 266 

the positive IOD phases, the PDF of the intraseasonal SLA shifts positively (Fig. 4g). 267 

Conversely, the PDFs during negative IOD and neutral years are less distinct, which may be 268 

attributed to the asymmetry in the IOD, with negative events having a smaller amplitude than 269 

positive events (e.g., Nakazato et al., 2021, An et al., 2023). 270 

COCO-HR can simulate positive SLAs along the west Indian coast during the positive IOD 271 

(Fig. 4b). Also, the relatively strong correlation between intraseasonal SLA and DMI (r=0.48) 272 

are moderately represented (Fig. 4e), and the PDF shifts positively during positive IOD phases, 273 

as observed (Fig. 4h). On the other hand, although the SLA patterns along the west coast of India 274 

are similar during the IOD (Fig. 4a-c), intraseasonal SLAs are not correlated with the DMI 275 

(r=0.03) and the PDF does not shifts positively in COCO-LR (Fig. 4f, i). 276 

While both COCO-HR and COCO-LR are driven by the same surface forcings, leading to 277 

similar large-scale SLA variation patterns in October, there are notable differences at a local 278 

scale. This discrepancy is particularly evident when focusing on the local SLA along the western 279 

coast of India, where COCO-LR fails to represent the interannual variations. Additionally, 280 
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COCO-LR underestimates the variability in SLAs associated with intraseasonal variations, and 281 

the differences in PDFs between the IOD phases are not adequately represented (Fig. 4; Fig. S9). 282 

This issue in COCO-LR is likely due to its inability to adequately represent the propagation 283 

process of coastal waves originating from the equator, as discussed in the previous section. 284 

Therefore, we conclude that interannual wind anomalies associated with the IOD influence the 285 

occurrence of extreme SLAs along the western coast of India, and that this effect is represented 286 

in the eddy-resolving ocean model. Furthermore, while the non-eddying model can represent the 287 

low-frequency SLA patterns associated with the IOD, it lacks the necessary resolution to 288 

simulate modulations in extreme intraseasonal SLAs.  289 

 290 

Figure 4. (a) Regressions of October-mean sea level anomalies (SLAs) and 10 m wind 291 

anomalies to September-October-November (SON)-mean dipole mode index (DMI) for CMEMS 292 

and JRA55-do data. Colors and vectors indicate statistically significant regression coefficients 293 

for SLAs and zonal winds at the 90% confidence level, respectively. (d) Time series of the DMI 294 

(bar) and intraseasonal SLA (i.e., bandpassed for 20-150 days) (line) during October along the 295 

western Indian coast (15°N; black box in (a)), based on observational data. The correlation 296 

between DMI and October-mean intraseasonal SLA is shown in the legend of each graph. Red 297 

(blue) bars indicate positive (negative) IOD, while gray bars indicate neutral years. Daily 298 

intraseasonal SLAs for a 31-day period, October, are depicted using box-whisker plots, where 299 

boxes span the 25% to 75% ranges in the data, the line indicates the monthly mean, and the 300 



manuscript submitted to Geophysical Research Letters 

 

whiskers indicate the 5% to 95% ranges in the data. (g) PDFs for intraseasonal SLAs based on 301 

observational data for October, as in Fig. 2, but for during positive IOD years (red line), negative 302 

IOD years (blue line), and neutral years (gray bars). (b),(e),(h) As in (a), (d), (g), but for COCO-303 

HR. (c),(f),(i) As in (a),(d),(g), but for COCO-LR. 304 

 305 

5 Summary and discussion 306 

This study showed that only the eddy-resolving OGCM (COCO-HR) is capable of 307 

reproducing the intraseasonal variability of SLAs along the western coast of India. The results 308 

indicate that COCO-HR effectively represents extreme SLA events along the western coast of 309 

India. Conversely, the non-eddying model (COCO-LR) fails to capture more than 81% of these 310 

extreme intraseasonal sea level events. In the COCO-HR model, equatorial Kelvin waves 311 

originating in the equatorial ocean enter the eastern boundary and subsequently propagate along 312 

the coast of the Bay of Bengal and western India, while COCO-LR fails it due to the coarser 313 

horizontal resolution. Furthermore, changes in the PDFs of intraseasonal SLAs associated with 314 

the IOD are captured only in the COCO-HR model. This suggests that basin-scale wind 315 

anomalies in the equatorial Indian Ocean can modulate the occurrence of extreme SLA events 316 

along the western coast of India. 317 

The underestimation of coastal extreme sea level events in the non-eddying OGCM further 318 

implies that such extremes may be underestimated in CMIP6 models. In the context of recent 319 

research on extreme weather events and their links to a warming climate, several studies have 320 

emphasized the large-scale drivers of local extreme events (Kawase et al., 2019; Imada et al., 321 

2020). Our results show that the probability of local sea level extremes along the western coast 322 

of India is also affected by large-scale wind anomalies associated with the IOD, thus 323 

demonstrating a "global-to-local" approach in oceanic cntexts. While this study focused on the 324 

IOD, future studies should examine the impacts of intraseasonal atmospheric variability, such as 325 

the MJO and the Boreal Summer Intraseasonal Oscillation (Wang & Xie, 1997) on coastal SLAs. 326 

Consequently, a reassessment of the risk of extreme sea level events, such as storm surges and 327 

floods in the coastal areas of the North Indian Ocean, may be needed. This reassessment should 328 

focus on the resolution of ocean models to better understand the relationship between changes in 329 

local coastal sea level extremes and basin-scale climate variability under global warming. 330 
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Text S1 

Model validation 

We provide a brief validation of the COCO-HR model. When compared to 

observational data, COCO-HR simulations effectively reproduce the mean thermal and 

mechanical fields in the Indian Ocean. Model biases in SST are reduced in COCO-HR 

(Fig. S1). The model also realistically simulates key features of the mean circulation in 

the Indian Ocean, such as Indonesian Throughflow (12.2 ± 2.9 Sv compared to about 13 

Sv in observations; Gordon et al., 2010) and the Mozambique Channel flow (16.3 ± 5.6 

Sv compared to about 16.7 ± 8.9 Sv in observations; Ridderinkhof et al., 2010). In 

addition, tropical equatorial stratification is also realistically reproduced in COCO-HR, 

showing slight improvements compared to COCO-LR (Fig. S2). The seasonal cycle in 

the tropical Indian Ocean, which is characterized by semiannual surface velocity 

variations known as the Wyrtki jet (Yoshida, 1959; Wyrtki, 1973), was also reproduced 

in both COCO-HR and COCO-LR (Fig. S3). The zonal surface velocities in both models 

are smaller compared to those derived from drifters, with COCO-HR exhibiting a slight 

improvement in this bias. This result suggests that the basin-wide resonance between 

forced and reflected equatorial waves might be captured in these models (Han et al., 

2011). 
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Figure S1. Sea surface temperature (SST) biases compared to PCMDI-SST for (a) 

COCO-HR and (b) COCO-LR for the period 1993-2018. Contours indicate the 

climatology in the models. (c) Difference in SST between COCO-HR and COCO-LR.  
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Figure S2. Temperature biases to WOA13v2 along the equator for (a) COCO-HR and (b) 

COCO-LR during the period 1993-2018 in the Indo-Pacific Ocean. The vertical axis 

represents depth [m] and contours indicate the climatology in the models. (c) Difference 

in temperature between COCO-HR and COCO-LR. 
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Figure S3. Zonal surface velocity bias along the equator (2.5°S-2.5°N) to the drifter-

derived observation (Laurindo et al., 2017) for (a) COCO-HR and (b) COCO-LR during 

the period 1993-2018. Shaded areas show the difference from observations, and contours 

indicate the climatology for each model with 0.1 m/s intervals. The vertical axis indicates 

the seasonal progression, while the horizontal axis indicates longitude. (c) As in (a), but 

for the difference between COCO-HR and COCO-LR. 
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Text S2 

Seasonal variations in SLAs for COCO-HR and COCO-LR 

According to observations, the seasonal variations peak during winter (January) and 

reach their lowest in summer (August) (Fig. S4). The seasonal variations in COCO-HR 

closely align with the observations, with slight differences in the timing of the minimum. 

On the other hand, COCO-LR shows that the peak maximum occurs in April, and 

significantly underestimates the amplitude during winter, suggesting a lack of the key 

physical processes that explain these seasonal variations. Since the seasonal SLA 

variations are primarily driven by wind forcing over the southern tip of Sri Lanka, the 

Bay of Bengal, and the equator (Suresh et al., 2016), these results imply that COCO-LR 

may underestimate the adjustments by coastal Kelvin waves along the western coast of 

India. 
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Figure S4. Seasonal variations in SLAs [cm] along the western coast of India (15°N; 

black boxes in Fig. 1) for the observations (CMEMS; black line), COCO-LR (blue line), 

and COCO-HR (red line). Bars and shaded areas indicate ±1 standard deviation. The 

annual mean has been subtracted from each time series to highlight the seasonal 

variations. 
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Figure S5. As in Figure 2, but for detrended SLAs without applying a bandpass filter. 
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Figure S6. Variations in SLAs [cm] along the western coast of India (15°N; black boxes 

in Fig. 1) for (a) observations (CMEMS), (b) COCO-HR (blue line), and (c) COCO-LR. 

Top panels show detrended daily anomalies, while lower panels show the time series 

filtered into three frequency bands: high-pass (shorter than 20 days), band-pass (20-150 

days), and low-pass (longer than 150 days). The variance for timeseries is shown in each 

panel. 
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Figure S7. As in Figure 3, but for lag-composites for area-averaged SLA timeseries in 

the equatorial Indian Ocean (80°-90°E, 5°S-5°N; black boxes).  
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Text S3 

Sufficient resolution for simulating coastal Kelvin waves 

In this section, to examine the resolution dependency on representing coastal Kelvin 

waves, the model horizontal resolution is compared to the simulated Rossby deformation 

radius. Internal coastal Kelvin waves have a typical spatial scale of the Rossby 

deformation radius (e.g., Gill, 1982). The phase speed (𝑐!) and deformation radius (𝜆!) of 

the first mode of the baroclinic Rossby wave, under the WKB approximation, are defined 

as follows (Chelton et al., 1998): 

𝑐! ≈
!
" ∫ 𝑁(𝑧)	𝑑𝑧#

$%    (1), 

𝜆! =

⎩
⎨

⎧
𝑐!

|𝑓(𝜗)| 				𝑖𝑓	
|𝜗| ≥ 5°

?
𝑐!

2𝛽(𝜗)A
! &⁄

		𝑖𝑓	|𝜗| < 5°
	(2). 

Where 𝐻 is the depth of the ocean, 𝑁(𝑧) is the buoyancy frequency, 𝜗 is latitude, 𝑓(𝜗) is 

the Coriolis parameter, and 𝛽(𝜗) is the meridional gradient of 𝑓(𝜗). Figure S8 shows the 

estimated deformation radius for both COCO-HR and COCO-LR models. Both models 

have similar 𝑐! throughout the North Indian Ocean because of the similar stratification 

structure. However, since only COCO-HR can resolve continental shelves and steep 

ridges, the values differ around the atolls of the Maldives, in coastal areas of the Bay of 

Bengal, and along the western coast of India. 

When comparing the nominal resolution of COCO-HR (COCO-LR), defined as 𝛥𝑥 =

0.1°	(1.0°), with the deformation radius, there is a significant difference between the two. 

In COCO-HR, the resolution is sufficient (i.e., λ! > 2Δx) throughout the North Indian 

Ocean, except over the shallow continental shelf region, suggesting that COCO-HR is 

sufficient to represent coastal Kelvin waves. However, COCO-LR satisfies λ! > 2Δx 

only in the equatorial regions, suggesting that the model lacks sufficient resolution in the 

North Indian Ocean. 

We note that the comparison between deformation radius and resolution provides only 

a rough estimate. This is because rapid variations in 𝑁(𝑧) due to mixed layers in the 

upper ocean can introduce errors in the estimation of 𝑐! under the WKB approximation 

(Chelton et al., 1998). It is also important to note that SLA propagation from the equator 
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may be transformed into continental shelf waves, and local dynamics such as local 

coastal winds, instability, and river runoff can interrupt this propagation. However, 

previous studies have shown that coastal Kelvin waves are a key factor in explaining 

SLA variations along the western coast of India (e.g., Suresh et al., 2013). This suggests 

that the ability of COCO-HR to resolve coastal Kelvin waves contributes significantly to 

its reasonable representation of extreme SLA variations in this region. 
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Figure S8. Deformation radius (𝜆!) of the first mode of the baroclinic Rossby wave (Eq. 

2) for (a) COCO-HR and (b) COCO-LR. The color indicates the area where the nominal 

horizontal resolution (𝛥𝑥) is finer than the deformation radius (i.e., λ! > 2Δx). 
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Figure S9. As for Figure 4, but for SLA timeseries without applying a bandpass filter.  

 

 


