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Abstract

The equatorial Kelvin waves, remotely excited by basin-scale climate modes, and subsequent coastal trapped waves significantly

influence the intraseasonal variations, their low-frequency modulations, and the frequency of extreme sea level events along the

western coast of India. This study demonstrates that the frequency of extreme events are linked to the phase of the Indian

Ocean Dipole mode. The temporal changes in the occurrence frequency of extremes are simulated in an eddy-resolving ocean

model consistently with observations. However, a non-eddying model significantly underestimate the occurrence frequency of

extreme sea level events, suggesting the importance of coastal trapped wave propagations regulated by the horizontal scale

with the Rossby radius of deformation. This result implies that many state-of-the-art climate models with a one-degree ocean

horizontal resolution may underestimate future coastal sea level variability and the frequency of extreme events under global

warming and potential modulations of major internal climate modes.
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• The eddy-resolving model represents the intrasesonal sea level variability along the coast 15 

of India explained by coastal trapped waves. 16 

• The occurrence frequency of extreme intraseasonal sea level anomalies is significantly 17 

underestimated in the non-eddying model. 18 

• Changes in the probability distributions of sea level associated with the Indian Ocean 19 

Dipole are simulated in the eddy-resolving model. 20 
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Abstract 22 

The equatorial Kelvin waves, remotely excited by basin-scale climate modes, and subsequent 23 

coastal trapped waves significantly influence the intraseasonal variations, their low-frequency 24 

modulations, and the frequency of extreme sea level events along the western coast of India. This 25 

study demonstrates that the frequency of extreme events are linked to the phase of the Indian Ocean 26 

Dipole mode. The temporal changes in the occurrence frequency of extremes are simulated in an 27 

eddy-resolving ocean model consistently with observations. However, a non-eddying model 28 

significantly underestimate the occurrence frequency of extreme sea level events, suggesting the 29 

importance of coastal trapped wave propagations regulated by the horizontal scale with the Rossby 30 

radius of deformation. This result implies that many state-of-the-art climate models with a one-31 

degree ocean horizontal resolution may underestimate future coastal sea level variability and the 32 

frequency of extreme events under global warming and potential modulations of major internal 33 

climate modes. 34 

 35 

Plain Language Summary 36 

Sea level variations in the northern Indian Ocean are influenced by ocean waves near the coast, 37 

typically in a horizontal scale less than 100 km.  It remains unclear whether there is a 38 

relationship between extreme events associated with coastal waves and climate variability. Also, 39 

if such a relationship exists, it is uncertain how well it is represented in climate simulations, 40 

which often have relatively coarse horizontal resolution. To highlight the role of relatively small 41 

scale coastal waves, this study compared sea level variations along the western coast of India 42 

using two ocean models with coarse and fine horizontal resolutions. We found that the high-43 

resolution model adequately simulates the generation and propagation of coastal waves, and thus 44 

successfully simulate sea level variations along western India modulated by large scale climate 45 

variability with a 20–150-day time scale. This result suggests that many recent climate 46 

simulations may have underestimated the frequency of extreme sea level events in coastal 47 

regions. 48 

 49 

1 Introduction 50 

The warming climate is projected to cause persistent sea level rise worldwide (IPCC 2022a). 51 
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In addition to the global mean sea level rise owing to thermal expansion, melting of glaciers, etc., 52 

extreme sea level projections associated with changes in atmospheric circulation and river runoff 53 

are also required in coastal regions, especially projections of changes in the occurrence of 54 

extreme events (IPCC 2022b). Given that many of the state-of-art climate models in the Coupled 55 

Model Intercomparison Project Phase 6 (CMIP6) use a relatively coarse horizontal resolution of 56 

approximately 100 km (Tsujino et al., 2020), the projections obtained using these models may 57 

underestimate influence of oceanic mesoscale and coastal processes. Hence, it remains unclear 58 

whether current sea level projections, particularly in coastal regions, adequately capture changes 59 

in extreme sea level events (i.e., as indicated by the tails in probability distributions). 60 

In the densely populated coastal areas of the northern Indian Ocean, projected sea level rises in 61 

the Arabian Sea and the Bay of Bengal (Han et al., 2010; Jyoti et al., 2023) present serious risks, 62 

including coastal storm surges and extreme tidal events (e.g., Needham et al., 2015). Sea level 63 

variability along the coasts of the northern Indian Ocean is strongly influenced by equatorial 64 

waves and their resultant coastal trapped wave (CTW). Clarke and Liu (1994) showed that the 65 

interannual sea level anomalies (SLA) along the coasts of the northern Indian Ocean were 66 

remotely triggered by equatorial zonal winds. More recently, using linear stratified models 67 

(McCreary, 1996), several studies have investigated how wind stress forcing over the Arabian 68 

Sea, the southern tip of Sri Lanka, and the equatorial Indian Ocean impacts intraseasonal-to-69 

interannual sea level variations along the coast of India (Suresh et al., 2013, 2016, 2018). Wind 70 

variations leading to CTWs can be attributed to semiannual basin-scale wind variability that 71 

drives the equatorial jet (Yoshida, 1959; Wyrtki, 1973), intraseasonal anomalies associated with 72 

the Madden-Julian Oscillation (MJO; Madden & Julian, 1977), and interannual anomalies 73 

associated with the Indian Ocean Dipole (IOD) (Saji et al., 1999; Han & Webster, 2002; Aparna 74 

et al., 2012).  75 

Although previous studies suggested the potential role of CTWs in the Northern Indian Ocean, 76 

the extent to which standard climate models reproduce the coastal sea level variations remains 77 

unclear. Therefore, using the coastal sea level variability along the west coast of India as an 78 

illustrative example, this study undertakes a comparative analysis of multiple simulations derived 79 

from the oceanic component utilized in a climate model. Here we show that an eddy-resolving 80 

ocean general circulation model (OGCM) is required to accurately represent sea level variations 81 

along the western coast of India. In particular, since intraseasonal sea level variations have a 82 
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relatively pronounced amplitude and consequently lead to extreme events, this study focuses 83 

mainly on how the intraseasonal variations in coastal sea level are represented in OGCMs. Even 84 

though the non-eddying OGCM simulation is forced by the same atmospheric boundary 85 

conditions as in the eddy-resolving OGCM, the coarse horizontal resolution of the non-eddying 86 

OGCM fails to accurately capture the sea level variability, especially variations originating from 87 

the equator through the coastal wave guide in the Bay of Bengal.  88 

 89 

2 Models, Data, and Methods 90 

This study compares two simulations of CCSR Ocean Component Model (COCO) (Hasumi, 91 

2006); the coarse stand-alone OGCM with a nominal 1° horizontal resolution (COCO-LR) and a 92 

global high-resolution version with a horizontal resolution of 0.1° (COCO-HR). Also, to highlight 93 

the impact of interannual variations in surface wind forcing on the coastal sea level, we also 94 

conducted a sensitivity experiment, referred to as “WIND0”. See Text S1 for the details of model 95 

setups and validations. 96 

In this study, we used the following observational datasets. PCMDI-SST (Hurrell et al., 2008) 97 

was used for the monthly sea surface temperature (SST) data for the period 1993–2019 with a 98 

horizontal resolution 1°×1°, as in Tsujino et al. (2020). CMEMS sea level products (DUACS 99 

DT2014; Pujol et al., 2016) have a daily interval and a horizontal resolution of 0.25°×0.25° for 100 

the period 1993–2019. Drifter-derived monthly climatological surface currents data were also 101 

used (Laurindo et al., 2017). To compare sea level anomalies with the satellite altimeter 102 

products, we mainly analyzed model outputs after 1993. SLAs relative to global mean was 103 

analayzied for both the observation and models. 104 

To examine SLA propagation in the coastal area, we calculated lag composites of SLA for 105 

extreme sea level events. A two-tailed t-test was adapted to the statistical test at 90% confidence 106 

level. To estimate the probability density functions (PDFs) of SLA, Kernel Density estimation 107 

was applied (Dehand, 1987; Marshall & Molteni, 1993). A Butterworth filter was employed to 108 

isolate the intraseasonal variability within the 20-150 day period. 109 

 110 
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3 Sea level variance in the Northern Indian Ocean 111 

In this section, we briefly validate the COCO-HR model focusing on sea level variability. 112 

COCO-HR showed noticeable improvements in the northern Indian Ocean, especially in regions 113 

where oceanic mesoscale eddies are dominant (Fig. 1). In addition to the seasonal variations 114 

(Fig. 1a-c, Text S2), COCO-HR more accurately captures detrended interannual and 115 

intraseasonal SLAs compared to COCO-LR (Fig. 1d-i). Note that we refer to the 20-150 day 116 

band-passed timeseries of detrended anomalies from the daily climatology as “intraseasonal 117 

anomalies” hereafter. The noticeable variations in the Somalia-Oman upwelling region are well 118 

represented in COCO-HR, aligning closely with observations, although COCO-HR does slightly 119 

underestimate them. This difference can be explained that the intraseasonal variability associated 120 

with mesoscale eddies and its low-frequency moduration are better represented in COCO-HR 121 

under the influence of the Somali Current. Interannual and intraseasonal sea level variability in 122 

the western Bay of Bengal also tends to be better represented in  COCO-HR, indicating that the 123 

intraseasonal variability of coastal trapped waves and local mesoscale variability is also well 124 

captured by COCO-HR. These results are also confimed by the spatially high-passed sea level 125 

anomalies (Text S2). In the following section, we examined sea level variations along the 126 

western coast of India in greater detail. 127 

 128 

 129 
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Figure 1. Variances in seasonal sea level anomalies (SLAs) [cm2] in the northern Indian Ocean 130 

for (a) observations, (b) COCO-HR, and (c) COCO-LR. Black boxes indicate the area where 131 

area-averaged SLAs are calculated in Section 4 (73°E-75°E, 14°N-16°N for CMEMS and 132 

COCO-HR, 72°E-74°E, 14°N-16°N for COCO-LR). (d)-(f) As in (a)-(c), but for interannual 133 

SLAs. Interannual anomalies are defined as deviations from the climatology for daily-mean 134 

SLAs relative to global-mean. Linear trends are also subtracted. (g)-(i) As in (d)-(f), but for 135 

intraseasonal SLAs, which are defined as the 20-150 day band-passed components of interannual 136 

SLAs. Note that blue colors and different range of color bars from (a)-(f) are used since 137 

variances in intraseasonal SLAs are smaller than those in seasonal or interannual SLAs. 138 

 139 

4 SLAs along the western coast of India 140 

4.1 Intraseasonal sea level variations 141 

In order to investigate sea level variations along the western coast of India, area-averaged sea 142 

level variations are calculated within 2°×2° boxes at 15°N (black boxes in Fig. 1), ensuring that 143 

multiple data points are included in all the boxes. Note that qualitatively similar results are 144 

obtained if we use 1°×1° boxes. The comparison indicates that COCO-HR more accurately 145 

represents both seasonal (Text S3) and intraseasonal SSH variations along the west coast of India 146 

(Fig. 2a-c).  147 

PDFs for 20-150 day band-passed SLA time series are estimated (Fig. 2d,e). In all months, 148 

COCO-HR reproduces PDFs that are similar to the observational data, with standard deviations 149 

that also match those of the observational data. Conversely, COCO-LR exhibits smaller standard 150 

deviations for each PDF compared to the observations, resulting in underestimation of extreme 151 

SLA events. Indeed, in observations , the thresholds employed for positive (negative) extreme 152 

SLA events, which are defined as events exceeding 95% (5.0%) probability, are estimated to be 153 

4.4 cm (-4.8 cm) (Fig. 2d). For COCO-HR, the occurrence rates of positive (negative) extreme 154 

SLA events are 7.3% (4.7%), which is consistent with the observed rates. For COCO-LR, the 155 

occurrence of positive (negative) SLA events is 0.95% (0.21%), which is considerably smaller 156 

than in the observations. This result means that COCO-LR underestmates the occurrence 157 

frequency of the extreme intraseasonal sea level maxima (minima), and underscores the 158 

importance of using an eddy-resolving ocean model to accurately hindcast coastal sea level 159 
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variability. 160 

The narrower PDFs (i.e., indicating less variance) in WIND0 compared to COCO-HR 161 

suggests a reduced occurrence of extreme SLA events. Therefore, dynamical wind forcing 162 

anomalies are necessary for simulating intraseasonal SLA along the western coast of India (Fig. 163 

2d,e). This result also implies that the contribution of factors other than wind stress forcing, such 164 

as buoyancy flux and bartoropic/baroclinic instability associated with West Indian Coastal 165 

Current (e.g., Varna et al., 2023), is not predominant. The above result remains qualitatively 166 

unchanged if the PDFs are calculated for detrended anomalies without 20–150-day bandpass 167 

filtering (Fig. S7). Thus, differences in anomalies with periods shorter (longer) than 20 (150) 168 

days do not explain the reduction in the standard deviation of PDFs in WIND0. Consequently, 169 

the higher frequency of extreme SLA events in COCO-HR can be attributed to interannual-to-170 

decadal changes in the intraseasonal anomalies. Given that the variance in the intraseasonal 171 

component is prominent in both the observation and models (Fig. S8) and contribution of the 172 

intraseasonal anomalies to the total amplitude of extreme SLA events is largest in the 173 

observation and COCO-HR (Fig. S9), we will discuss the processes driving these differences in 174 

PDFs of intraseasonal variability in the next section. 175 
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 176 

Figure 2. Time series of SLAs [cm] along the western coast of India (15°N; black boxes in 177 

Fig. 1) for CMEMS (black), (a) COCO-HR (red), (b) COCO-LR (blue), and (c) WIND0 (green). 178 

All panels show time series filtered into band-pass (20-150 days) frequency. The correlation 179 

coefficients (r) with CMEMS are shown in panels. (d) Probability density functions (PDFs) of 180 

intraseasonal (20-150 days) sea level anomalies (SLA) [cm] along the western coast of India 181 

(15°N) for observations (CMEMS; black bars), COCO-HR (red lines), COCO-LR (blue lines), 182 

and WIND0 (green lines) for all seasons. PDFs are estimated by kernel density estimation. The 183 

standard deviation (𝜎) for each month is given in the legend. All PDFs are normalized and the 184 

vertical axis indicates probability (unit less). Vertical black lines indicate the 5% and 95% 185 

anomalies based on CMEMS data. Areas where anomalies exceed the 5 or 95 percentiles for 186 
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CMEMS are highlighted in red (COCO-HR) and blue (COCO-LR) colors, respectively, with the 187 

corresponding percentile values marked in each model. (e) As in (d), but for each month. 188 

 189 

4.2 Resolution dependency of the propagation of coastal trapped waves 190 

Regarding the remote impacts of CTWs on the western coast of India, the large intraseasonal 191 

SLA variances in COCO-HR may be attributed to the propagation of sea level anomalies. Figure 192 

3 shows a lag composite of SLA from 0 to 40 days before the occurrence of intraseasonal SLA 193 

exceeds +1 standard deviation at the western coast of India (indicated by red symbols in Fig. S8). 194 

Since the composites obtained for the negative anomalies are almost mirror images, we discuss 195 

only the results obtained for positive SLA events. In the observations, a significant SLA 196 

associated with equatorial Kelvin wave is triggered by westerly wind anomalies in the tropical 197 

Indian Ocean 40 days prior. Subsequently, this wave reaches the coast of Sumatra island and 198 

then propagates as CTWs along the coast of the Bay of Bengal. These waves pass through the 199 

southern tip of India, arrive at the western coast of India, and eventually extend into the northern 200 

Arabian Sea (Fig. 3a). Furthermore, SLAs also appear to be radiated from the eastern coast of the 201 

Bay of Bengal as westward Rossby waves, and are enhanced by easterly wind anomalies along 202 

the southern tip of Sri Lanka. 203 

In COCO-HR, similar to the observations, the equatorial Kelvin wave enters the eastern 204 

boundary and propagates as CTWs from the Bay of Bengal to the western coast of India (Fig. 205 

3b). Westward SLAs also appeared to be radiated from the eastern coast of the Bay of Bengal to 206 

the southern coast of India. On the other hand, COCO-LR does not show SLA propagation in the 207 

coastal region from the equator to the Bay of Bengal. Instead, positive SLAs appear to develop 208 

locally about 10 days prior, before rapidly increasing in the western coast of India. Previous 209 

studies proposed that intraseasonal SLA variations along the western coast of India are 210 

predominantly influenced by the propagation of the CTWs from the equatorial Indian Ocean 211 

(Suresh et al., 2013). Therefore, the results obtained in this study suggest that COCO-HR 212 

effectively captures the propagation of CTWs from the equator. However, the propagation of 213 

CTWs from the equator is not well captured by COCO-LR due to the coarser horizontal 214 

resolution (Text S4), suggesting an exaggerated influence of local wind and/or thermal forcing in 215 

the western coast of India.  216 
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In the WIND0 composites, no SLA propagation originating from the equatorial Kelvin waves is 217 

evident. This is because the wind stress variations with frequency longer than a year are 218 

suppressed in WIND0, and thus interannual modulation of intraseasonal SLAs associated with 219 

the equatorial Kelvin waves are not triggered, consequently, the resultant SLA propagation as 220 

CTWs in the Bay of Bengal are not generated. Whilst, thermal forcing or mesoscale variability 221 

associated with internal oceanic instabilities do not contribute to the intraseasonal SLA 222 

propagation. These results are also supported by the lag-composite analysis of SLA from 0 to 40 223 

days following instances when the SLA exceeds +1 standard deviation at the eastern equatorial 224 

Indian Ocean (Fig. S10). While both COCO-HR and COCO-LR depict the propagation of 225 

equatorial Kelvin waves to the eastern boundary, only the observations and COCO-HR show the 226 

subsequent SLA propagation in the Bay of Bengal. 227 

 228 

Figure 3. Lag-composites of sea level anomalies (SLA) (contour and color) and 10-m wind 229 

(vectors) for area-averaged SLA time series along the western coast of India (black boxes). Data 230 

are shown for (a) CMEMS, (b) COCO-HR, (c) COCO-LR, and (d) WIND0. Colors and vectors 231 

indicate statistically significant SLA and zonal wind anomalies at the 90% confidence level, 232 
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respectively. 233 

 234 

4.3 Influence of Indian Ocean Dipole on the probability distribution of coastal SLA along 235 

the western coast of India 236 

In section 4.2, differences in PDFs of intraseasonal SLA are attributed to the representation of 237 

CTWs. This section examines the origin of the CTWs, particularly their association with wind 238 

variations in the tropical Indian Ocean. Given that basin-scale wind anomalies in the tropical 239 

Indian Ocean are affected by the IOD, it follows that the IOD contributes to interannual low-240 

frequency SLA variations along the western coast of India through CTWs (e.g., Suresh et al., 241 

2018). However, the extent to which interannual wind anomalies associated with the IOD 242 

modulate intraseasonal SLA variations, specifically the probability distribution of coastal SLA 243 

along the western coast of India, remains unclear. We therefore investigated the relationship 244 

between IOD and intraseasonal SLA, and assessed its representation in both COCO-HR and 245 

COCO-LR. In this analysis, the dipole mode index (DMI) is defined as the difference between 246 

area-averaged monthly-mean SST difference between the western (50°E-70°E, 10°S-10°N) and 247 

eastern (90°E-110°E, 10°S-0°) poles, as defined in previous studies (Saji et al., 1999; Tanizaki et 248 

al., 2017). A 3-month running mean is also applied to the DMI. Zonal wind index associated 249 

with IOD (Ueq) is also defined as the daily-mean zonal wind are-averaged over 70°E-90°E, 5°S-250 

5°N (Saji et al., 1999) using JRA55-do. Note that the influence of El Niño/Southern Oscillation 251 

is less than IOD (figures not shown), which is consistent to the previous studies discussing 252 

interannual variations of equatorial thermocline (Rao and Behera, 2005; Yu et al., 2005).   253 

Since SST anomalies associated with the IOD typically peak in October (e.g., Saji et al., 254 

1999), we focus on the relationship between the IOD and intraseasonal SLA along the western 255 

coast of India during this month. During positive IOD events, equatorial easterly wind anomalies 256 

trigger positive (negative) SLAs along the southern tip of Sri Lanka (in the eastern equatorial 257 

Indian Ocean) and, subsequently, positive (negative) CTWs along the western coast of India 258 

(coastal region of the Bay of Bengal) as observed (Fig. 4a). The IOD affects the interannual 259 

modulation of intraseasonal equatorial zonal wind and SLAs along the western coast of India 260 

(Fig. 4d). The correlation between the October-mean of intraseasonal SLAs (Ueq) and the DMI 261 

is 0.68 (-0.62), indicating that the IOD modulates the interannual variations in intraseasonal 262 
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equatorial winds and consequently SLA. During the positive IOD phases, the PDF of the 263 

intraseasonal SLA shifts positively (Fig. 4g). Conversely, the PDFs during negative IOD and 264 

neutral years are less distinct, which may be related to the asymmetry in the IOD, with negative 265 

events having a smaller amplitude than positive events (e.g., Nakazato et al., 2021, An et al., 266 

2023). 267 

COCO-HR can simulate positive SLAs along the west Indian coast during the positive IOD 268 

(Fig. 4b). Also, the relatively strong correlation between intraseasonal SLA and DMI (r=0.48) 269 

are moderately represented (Fig. 4e), and the PDF shifts positively during positive IOD phases, 270 

as observed (Fig. 4h). On the other hand, although the SLA patterns along the west coast of India 271 

are similar during the IOD (Fig. 4a-c), intraseasonal SLAs are not correlated with the DMI 272 

(r=0.03) and the PDF does not shifts positively in COCO-LR (Fig. 4f, i). 273 

While both COCO-HR and COCO-LR are driven by the same surface forcings, leading to 274 

similar large-scale SLA variation patterns in October, there are notable differences at a local 275 

scale. This discrepancy is particularly evident when focusing on the local SLA along the western 276 

coast of India. COCO-LR underestimates the variability in SLAs associated with intraseasonal 277 

variations, and the differences in PDFs of intraseasonal SLAs between the IOD phases are not 278 

adequately represented (Fig. 4; Fig. S13). This issue in COCO-LR is likely due to its inability to 279 

adequately represent the propagation process of coastal waves originating from the equator, as 280 

discussed in the previous section. Therefore, we conclude that interannual wind anomalies 281 

associated with the IOD influence the occurrence of extreme SLAs along the western coast of 282 

India, and that this effect is represented in the eddy-resolving ocean model. Furthermore, while 283 

the non-eddying model can represent the low-frequency SLA patterns associated with the IOD, it 284 

lacks the necessary resolution to simulate modulations in extreme intraseasonal SLAs.  285 

Although IOD is mainly characterized by interannual variations, IOD also highly correlates 286 

with intraseasonal equatorial wind anomalies and we suggest that influences of IOD on MJO 287 

could be implicated (Izumo et al., 2010; Suematsu and Miura, 2018). The large-scale equatorial 288 

zonal SST gradient associated with IOD may modulate the characteristics of MJO, potentially 289 

driving intraseasonal zonal winds in equatorial Indian Ocean. 290 

 291 
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 292 

Figure 4. (a) Regressions of October-mean sea level anomalies (SLAs) and 10 m wind 293 

anomalies to September-October-November (SON)-mean dipole mode index (DMI) for CMEMS 294 

and JRA55-do data. Colors and vectors indicate statistically significant regression coefficients 295 

for SLAs and zonal winds at the 90% confidence level, respectively. Black boxes indicate the 296 

area where area-averaged SLAs and zonal equatorial wind (Ueq) are calculated, respectively. (d) 297 

Time series of the DMI (bar) and intraseasonal (i.e., bandpassed for 20-150 days) SLA along the 298 

western Indian coast (15°N; black box in (a)) (black line) and normalized intraseasonal Ueq 299 

multiplied by -1 (red line) during October, based on observational data. The correlation between 300 

DMI and October-mean intraseasonal SLA is shown in the legend of each graph. Red (blue) bars 301 

indicate positive (negative) IOD, while gray bars indicate neutral years. Daily intraseasonal 302 

SLAs for a 31-day during October are depicted using box-whisker plots, where boxes span the 303 

25% to 75% ranges in the data, the line indicates the monthly mean, and the whiskers indicate 304 

the 5% to 95% ranges in the data. (g) PDFs for intraseasonal SLAs based on observational data 305 

for October, as in Fig. 2, but for during positive IOD years (red line), negative IOD years (blue 306 

line), and neutral years (gray bars). As in (a), (d), (g), but for (b),(e),(h) COCO-HR and (c),(f),(i) 307 

COCO-LR. 308 

 309 
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5 Summary and discussion 310 

This study showed that the eddy-resolving OGCM (COCO-HR) is capable of reproducing the 311 

intraseasonal variability of SLAs along the western coast of India. The results indicate that 312 

COCO-HR effectively represents extreme SLA events along the western coast of India. 313 

Conversely, the non-eddying model (COCO-LR) significantly underestimate the occurence 314 

frequency of these extreme intraseasonal sea level events. In the COCO-HR model, equatorial 315 

Kelvin waves originating in the equatorial ocean reach the eastern boundary and subsequently 316 

propagate along the coast of the Bay of Bengal and western India, while COCO-LR fails it due to 317 

the coarser horizontal resolution. Furthermore, changes in the PDFs of intraseasonal SLAs 318 

associated with the IOD are captured only in the COCO-HR model.  319 

This study shows that CTWs are crucial for representing the occurrence of extreme sea level 320 

events influenced by basin-scale climate variability, highlighting the importance of representing 321 

CTWs in climate models to further improve simulations of coastal sea level extremes. The 322 

underestimation of coastal extreme sea level events in the non-eddying OGCM further implies 323 

that such extremes may be underestimated in CMIP6 models. For example, the intraseasonal 324 

variability along the western coast of India is also underestimated in one of the CMIP6 models 325 

(MIROC6) that employs COCO-LR as the ocean component (Fig. S14). Therefore, even when 326 

comparisons are made in coupled models, qualitatively similar results can be expected as in this 327 

study. Whilst, since evaluating the role of submesoscale eddies is still challenging using global 328 

OGCMs, this study should be revisited using OGCMs with the submesocale-resolving 329 

resolution.  330 

In the context of recent research on extreme weather events and their links to a warming 331 

climate, several studies have emphasized the large-scale drivers of local extreme events (Kawase 332 

et al., 2019; Imada et al., 2020). Han et al. (2022) also pointed out the large-scale climate 333 

variability drives on local sea level extrems and marine heatwaves in the Indian Ocean. Our 334 

results show that the probability of local sea level extremes along the western coast of India is 335 

also affected by large-scale wind anomalies associated with the IOD, thus demonstrating a 336 

"global-to-local" approach in oceanic contexts. While this study focused on the IOD, future 337 

studies should examine the impacts of intraseasonal atmospheric variability, such as the MJO 338 

and the Boreal Summer Intraseasonal Oscillation (Wang & Xie, 1997) on coastal SLAs. 339 

Consequently, a reassessment of the risk of extreme sea level events, such as storm surges and 340 
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floods in the coastal areas of the North Indian Ocean, may be needed. This reassessment should 341 

focus on the resolution of ocean models to better understand the relationship between changes in 342 

local coastal sea level extremes and basin-scale climate variability under global warming. 343 
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