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Abstract 28 

Surface ozone (O3) is a crucial ambient pollutant gas that poses substantial risks to both human 29 

health and ecosystems. Nonetheless, there is a scarcity of high-spatial-resolution hourly surface O3 30 

data, particularly during the day when this information is needed due to the strong diurnal variations 31 

of O3. We thus determined a best-performing artificial intelligence model to derive 24-hourly 1-km-32 

resolution surface O3 concentrations in China from a large array of satellite and surface data, which 33 

can portray well the diurnal variations of O3 concentration. The overall sample-based cross-34 

validated coefficients of determination (root-mean-square error) are 0.89 (15.74 μg/m3), 0.91 (14.91 35 

μg/m3), and 0.85 (16.31 μg/m3) during the full day (00:00–23:00 local time, or LT), daytime 36 

(08:00–17:00 LT), and nighttime (18:00–07:00 LT), respectively. The surface O3 level generally 37 

rises from sunrise, around 07:00 LT, reaching a peak at ~15:00 LT, then continuously declining 38 

overnight. The magnitude of the diurnal variation amounts to 180% relative to its diurnal mean 39 

level. During daytime, solar radiation in the ultraviolet and shortwave spectral bands, along with 40 

temperature, explain more than half (32% and 24%) of the diurnal variations using the interpretable 41 

SHapley Additive exPlanations (SHAP) method, while nighttime O3 levels are dominated by 42 

temperature (31%) and relative humidity (16%). In 2018, approximately 59%, 93%, and 100% of 43 

populated areas were susceptible to O3 exposure risk for at least one day, with the maximum daily 44 

average 8-h O3 levels surpassing the World Health Organization's recommended daily air quality 45 

standards of 160 µg/m³, 120 µg/m³, and 100 µg/m³, respectively. Approximately 65%, 70%, and 46 

99% of vegetated areas in China exceed the minimum critical levels for O3 mixing ratios, as 47 

determined by the sum of all hourly values ≥ 0.06 μmol mol-1 (SUM06), the sigmoidally weighted 48 

sum of all hourly values (W126), and accumulates over the threshold of 40 nmol mol-1 (AOT40), 49 

respectively. Notably, gross primary productivity stands out as the most responsive indicator to 50 

surface O3 pollution across various vegetated types in China, especially concerning the Hourly O3 51 

Accumulates without Threshold (AOT0, R = -0.37–-0.53, p < 0.001). 52 

 53 

Keywords 54 

Diurnal O3 variations; (Explainable) Artificial Intelligence; SHAP; Air quality; Vegetation 55 

phytotoxicity 56 

  57 
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1. Introduction  58 

Ozone (O3) serves as a crucial trace gas in the atmosphere, primarily distributed in the stratosphere. 59 

It efficiently absorbs ultraviolet radiation, shielding virtually all Earth's living organisms and 60 

ecosystem from harmful effects. However, O3 in the lower troposphere, particularly around the 61 

ground, injures human health and suppresses plant growth. As a greenhouse gas, it exerts radiative 62 

effects that leads to lower evaporation rates and relative humidity, altered precipitation patterns, and 63 

changes in atmospheric circulation (Allen et al., 2012; Fu and Tian, 2019; Lu et al., 2019; 64 

Stevenson et al., 2013). Being a primary air pollutant, its damage to human health is linked to 65 

various respiratory and cardiovascular diseases, such as kidney disease, circulatory disease, 66 

respiratory disease, and stroke (Brauer et al., 2016; Lin et al., 2018; Niu et al., 2022; Cai et al., 67 

2023; C. Chen et al., 2023). Its harmful impacts on vegetation lead to reductions in carbon 68 

assimilation by most plants (Fares et al., 2013), gross primary productivity (GPP) (Yue and Unger, 69 

2014), crop yield (Lin et al., 2018), and thus food supply (Wilkinson et al., 2012). When this highly 70 

reactive oxidant infiltrates leaves through stomata, the generation of additional reactive oxygen will 71 

trigger oxidative stress. Consequently, this hampers photosynthesis, impedes plant growth, therefore 72 

reducing yields (Ainsworth et al., 2012).  73 

 74 

China, as one of the most populous countries with rapid development in the world, has suffered 75 

from significant air quality problems during the last four decades. In recent years, especially since 76 

2013, China has enforced various strict air pollution control policies to significantly reduce 77 

anthropogenic pollutant emissions, leading to a notable air quality improvement, with a large 78 

reduction (39% during 2013–2020) in PM2.5 concentrations (Wei et al., 2021a). On the contrary, 79 

surface O3 pollution has worsened seriously during the same period (Huang et al., 2019; Y. Wang et 80 

al., 2020) at an average increasing rate of 2.49 μg/m3/yr (p < 0.001). The area surpassing the daily 81 

standard [i.e., maximum daily average 8-h (MDA8) O3 = 160 μg/m3] has also expanded 82 

considerably (Wei et al., 2022). In particular, the severity of surface O3 pollution has now exceeded 83 

that of PM2.5, becoming the primary pollutant affecting urban air quality (Wei et al., 2022; Liu et al., 84 

2023; H. Wang et al., 2023). More effective surface O3 control measures in the future are thus 85 

urgently needed. 86 
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 87 

To address the escalating problem of surface O3 pollution, continuously monitoring and ascertaining 88 

its mass concentration is imperative. Ground-based observations have high precision and reliability, 89 

enabling the real-time monitoring of surface O3 concentrations at specific sites. However, due to the 90 

uneven distribution of sites, achieving full coverage of O3 monitoring remains a significant 91 

challenge. Chemical transport models such as the CMAQ, GEOS-Chem, and WRF-Chem models 92 

can simulate surface O3 at a high temporal resolution (every one or several hours), but their 93 

accuracies are highly uncertain, and spatial resolutions are typically coarse, often at the degrees 94 

level. As the resolution increases, computational costs increase drastically. In particular, the surface 95 

O3 from chemical reanalysis products (e.g., MERRA-2 and ERA5) have very large uncertainties in 96 

China compared with ground measurements (e.g., coefficient of determination (R2) < 0.1 and root-97 

mean-square error (RMSE) > 47 μg/m3) (N. Wang et al., 2015; J. Hu et al., 2016; Qiao et al., 2019; 98 

Hou et al., 2022; Wei et al., 2022). Satellite remote sensing can provide O3 retrievals of total 99 

column amount and vertical profiles from a series of instruments, such as the Tropospheric 100 

Monitoring Instrument (TROPOMI) and Ozone Monitoring Instrument (OMI), enabling us to 101 

monitor spatially continuous O3 from space, together with other sources of data pertaining to 102 

surface O3 (Zhu et al., 2022; J. Chen et al., 2022; Kang et al., 2021). 103 

 104 

Trace amounts of O3 are affected by numerous other factors through complex relationships, making 105 

highly accurate retrievals using conventional statistical approaches challenging. In recent years, 106 

considerable efforts have thus been undertaken to obtain surface O3 concentrations using machine-107 

learning (ML) approaches (Capilla, 2016; Ma et al., 2021; Song et al., 2022; Wang et al., 2022). We, 108 

for example, have used advanced ML to develop a long-term surface O3 dataset with high accuracy 109 

in China called ChinaHighO3 (Wei et al., 2022) that has gained widespread adoption for tracking air 110 

pollution (Y. Chen et al., 2022; Xia et al., 2022) and many public health studies (Zhang et al., 2022; 111 

Cai et al., 2023). However, most prior studies, including ours, have mainly concentrated on the 112 

daily (MDA8) scale, with only a handful delving into the diurnal hourly scale. Y. Zhang et al. 113 

(2023) have applied a bagged-tree model to generate hourly (09:00–16:00 LT) ground-level O3 114 

concentrations at a 5-km resolution over China by integrating the hourly Himawari-8 shortwave 115 
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radiation product. B. Chen et al. (2023) built a deep-learning (DL) model to acquire hourly (10:00–116 

15:00 LT) 5-km surface O3 concentrations from Himawari-8 top-of-the-atmosphere radiation. Wang 117 

et al. (2022) explored a self-adaptive geospatially local approach for estimating hourly (09:00–118 

18:00 LT) 2-km surface O3 concentrations across China using Himawari-8 AHI brightness 119 

temperatures at multiple thermal infrared bands. However, these studies have only estimated hourly 120 

surface O3 during the daytime (usually less than 10 hours), failing to provide comprehensive 24-121 

hour coverage. 24-hour data are of utmost importance for the calculation of not only air quality 122 

metrics like MDA8 but also O3-exposure phytotoxicity indices such as 12-hour average surface O3 123 

concentrations (M12), Accumulation of surface O3 concentrations without Threshold (AOT0), and 124 

SUM of surface O3 concentrations ≥ 0.06 μmol mol-1 (SUM06). As far as air quality is concerned, 125 

O3 as a pollutant is as important during daytime as at nighttime. Retrievals from most previous 126 

studies also have large data gaps due to the presence of clouds that handicaps optical satellite 127 

remote sensing, seriously limiting their applications. 128 

 129 

For the first time, we attempt to derive 24-hourly 1-km-resolution gapless surface O3 concentrations 130 

across China using a best-performing model by making use of ample satellite, ground, and model 131 

datasets pertinent to O3, such as surface shortwave radiation from the Himawari-8 geostationary 132 

satellite and temperature retrievals, and many other factors influencing surface O3 concentrations. 133 

The best-performing model was selected from 15 different ML and DL models, considering both 134 

model accuracy and efficiency. After being cross-validated independently against ground 135 

measurements, the O3 products undergo a comprehensive analysis of spatial and temporal variations 136 

throughout both the daytime and nighttime, with their driving factors identified and quantified by 137 

leveraging the Explainable Artificial Intelligence (XAI) - SHAP (SHapley Additive exPlanations) 138 

method. Additionally, using the 24-hour data, we compute both the MDA8 O3 and various O3-139 

exposure phytotoxicity indices and assess the short-term health risks of exposure to surface O3 140 

pollution, as well as the adverse impacts of O3 pollution on vegetation. 141 

 142 

2. Materials and methods  143 

2.1 Data sources 144 
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2.1.1 Surface O3 observations 145 

This study employs ground-level hourly O3 observations (μg/m³) from the Ministry of Ecology and 146 

Environment in China from a total of 1558 monitoring stations in 2018 (c.f. Figure 1 in Wei et al., 147 

2020). Flagged invalid data are first excluded. Note that the observation status transitioned from 148 

standard (273 K, 1013 kPa) to room (298 K, 1013 kPa) conditions after 31 August 2018 (Wei et al., 149 

2022). Data after this date were thus adjusted by multiplying by 1.09375 to maintain data 150 

consistency (MEE, 2018). 151 

 152 

2.1.2 Ancillary data for surface O3 retrievals 153 

Surface O3, an important secondary pollutant in the atmosphere, is influenced by various factors 154 

during its formation and dissipation. Downward shortwave radiation (DSR) and land surface 155 

temperature (LST) are the two most important factors influencing diurnal surface O3 concentrations 156 

(Wei et al., 2022). Here, hourly DSR and LST data from geostationary satellites are adopted by 157 

virtue of their high spatial and temporal variations. The 1-km DSR hourly data are obtained from 158 

the Geostationary-NASA Earth Exchange Level 2 product. It was generated using a physical-based 159 

look-up-table approach from data collected from the new-generation geostationary Advanced 160 

Baseline Imager and Advanced Himawari Imager data (R. Li et al., 2023). Hourly LST data are 161 

derived from the Global Hourly All-sky-LST (GHA-LST) product with a downscaled 1-km-162 

resolution, generated by combining a constellation of geostationary Earth orbit LST retrievals from 163 

the CGLS and MODIS MxD21 LST products. All-sky hourly LSTs are obtained using a 164 

spatiotemporal assimilation to address satellite gaps (Jia et al., 2023). In addition to shortwave 165 

radiation, hourly ultraviolet (UV) radiation, sourced from the ERA5 reanalysis with complete 166 

spatial coverage, has also been incorporated into our modeling, which plays a crucial role in 167 

impacting surface O3 concentrations by catalyzing O3 cycle initiating and controlling O3 generating 168 

rate (Barnard et al., 2003; Seinfeld and Pandis, 2016).  169 

 170 

Anthropogenic emissions of gaseous precursors are key ingredients of the photochemically 171 

generated O3, including NOX, VOCs, and CO, obtained from the 1-km-resolution daily Air Benefit 172 

and Cost and Attainment Assessment System-Emission Inventory version 2.0 (ABaCAS-EI v2.0) 173 
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dataset covering China (S. Li et al., 2023). Population distribution is also employed to represent the 174 

anthropogenic emissions of precursors collected from the 1-km annual LandScan™ product. 175 

Meteorological variables have significant and diverse impacts on air pollutants. Employed in our 176 

model are the following most influential ones from hourly ERA5 global reanalysis data: boundary 177 

layer height (BLH), relative humidity (RH), total precipitation (TP), surface pressure (SP), wind 178 

speed (WS), and wind direction (WD) (calculated from the u- and v-components of winds). The 179 

following variables attributed to surface conditions are also included: the Shuttle Radar Topography 180 

Mission 90-m DEM and MODIS 1-km normalized difference vegetation index (NDVI) products. 181 

Altogether, we have gathered and employed a total of 21 variables for daytime and 19 for nighttime, 182 

with details provided in Table 1. All ancillary data are resampled and reaggregated to match DSR 183 

(0.01° × 0.01°) using the bidirectional interpolation method, following our previous study (Wei et 184 

al., 2023). 185 

 186 

Table 1. An overview of data sources employed in this study, where TR and SR stand for temporal 187 

resolution and spatial resolution, respectively. 188 

Data Full name of the variable Abbreviation Unit TR SR Source 

Ground-level O3 Ground-level O3 measurements O3 sites μg/m³ 1 hour Site CNEMC 

Solar Radiation Downward shortwave radiation DSR W/m2 1 hour 1 km GeoNEX-L2 

Temperature Land surface temperature LST K 1 hour 1 km GHA-LST 

Meteorological 

Factors 

Boundary layer height BLH m 1 hour 0.25° ERA5 

Ultraviolet radiation UV W/m2 1 hour 0.25° 

Relative humidity RH % 1 hour 0.1° 

Total precipitation TP m 1 hour 0.1° 

Surface pressure SP hPa 1 hour 0.1° 

Wind direction WD m/s 1 hour 0.1° 

Wind speed WS m/s 1 hour 0.1° 

O3 Precursor Nitrogen oxides  NOx mol/cm2 1 day 1 km  ABaCAS-EI 

Volatile organic compounds VOC mol/cm2 1 day 1 km  

Carbon monoxide  CO mol/cm2 1 day 1 km  

Other Factors Digital elevation model  DEM m - 90 m SRTM 

 Population POP people 1 year 1 km LandScan™ 

 Normalized difference vegetation 

index  

NDVI / 16 day 1 km MODIS 

 189 

2.2 AI Model establishing and selection 190 

Tropospheric O3 accounts for 8–15% of total O3, and surface O3 constitutes 34–83% of the 191 

troposphere (David and Nair, 2011). As such, the satellite-retrieved total column O3 amount only 192 

plays a minor role in dictating the variations in surface O3 levels, rendering its remote sensing from 193 
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satellite highly challenging. Besides exploiting various pertinent data sources, it is equally 194 

imperative to find the best model that can most effectively and efficiently extract any useful 195 

information for which AI has been proven to be most competent. To find the best-performing one, 196 

we applied 15 models, including eight ML and seven DL models. For the ML ones, we choose the 197 

original Decision Tree (DT) and six DT-derived ensemble-learning models consisting of multiple 198 

base models, falling into two categories of bagging and boosting. Bagging models combine multiple 199 

independent base models through averaging or voting, including random forests (RF; Breiman, 200 

2001) and extremely randomized trees (ERT; Geurts et al., 2006). Boosting models entail iteratively 201 

constructing base models, with each model refining its performance based on the feedback from the 202 

preceding model, including Adaptive Boosting (AdaBoost), Gradient Boosting Decision Tree, 203 

eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and 204 

Categorical Boosting (CatBoost). AdaBoost is one of the earliest techniques within the realm of 205 

boosting and assigns a higher weight to misclassified samples from the previous base model in each 206 

iteration (Freund and Schapire, 1997). GDBT constructs base models by progressively improving 207 

the loss function (Friedman, 2001), and both XGBoost and LightGBM are optimizations of the 208 

GDBT framework. XGBoost introduces training loss (second-order Taylor expansion) and 209 

regularization, while LightGBM applies a histogram optimization and gradient-based one-side 210 

sampling method (Chen and Guestrin, 2016; Ke et al., 2017). CatBoost is specially tailored for 211 

handling categorical features (Sagi and Rokach, 2018). 212 

 213 

For DL, we select among the Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), 214 

Long Short Term Memory (LSTM), Deep Belief Networks (DBN), Deep Residual Network 215 

(ResNet), Residual Next (ResNeXt), and Deep Forest (DF) models. The MLP model serves as the 216 

fundamental neural network model capable of approximating complex nonlinear functions (Du et 217 

al., 2022). CNN is employed for grid-pattern data and relies on the core of the convolutional layer 218 

that involves a series of operations like convolution (Yamashita et al., 2018). LSTM is a special 219 

recurrent neural network that effectively handles dependencies over long periods by using gate 220 

functions in its cell structure (Yu et al., 2019). DBN is a multi-layered neural network containing 221 

multiple restricted Boltzmann machines (Hinton et al., 2006). ResNet is designed to address 222 
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network degradation issues in deeper neural networks by using shortcut connections to learn the 223 

residual between desired and current outputs of a specific layer, alleviating problems like gradient 224 

disappearance and network degradation (He et al., 2015). ResNeXt is an upgraded version of 225 

ResNet that introduces a novel building block called the "cardinality bottleneck" (Xie et al., 2017). 226 

DF is a hybrid model combining various tree-based models, rather than neurons, in each middle 227 

layer to handle non-linear relationships, allowing for the capture of complex data structures (Zhou 228 

and Feng, 2019). The above-mentioned total of 15 AI models, each run separately, are adopted here 229 

to identify a best-performing model for retrieving hourly surface O3 by comparing their accuracies 230 

and efficiencies using the same hourly training and validation datasets (i.e., 17:00 LT, N = 476,840). 231 

 232 

Previous studies have indicated that incorporating spatiotemporal factors can enhance the accuracy 233 

of the model in predicting air pollutants, considering their significant spatiotemporal continuity (T. 234 

Li et al., 2017; Wei et al., 2021b). Consequently, here, a novel technique that assigns weighted 235 

effects based on polar coordinates with multidimensions is employed to compute the spatiotemporal 236 

factors (Wei et al., 2023; Sun et al., 2022), leading to the new extended 4-Dimensional Space-Time 237 

AI (4D-STAI) model. Spatial information is described within Euclidean space utilizing spherical 238 

coordinates (Equations 1–3), and temporal information is represented using three helix-shaped 239 

trigonometric vectors (Equations 4–6), encompassing both diurnal variations and seasonal cycles of 240 

air pollution: 241 

𝑆1 = 𝑠𝑖𝑛(2𝜋
𝐿𝑜𝑛

360
),                (1) 242 

𝑆2 = cos(2𝜋
𝐿𝑜𝑛

360
)sin(2𝜋

𝐿𝑎𝑡

180
) ,             (2) 243 

𝑆3 = cos(2𝜋
𝐿𝑜𝑛

360
)𝑐𝑜𝑠(2𝜋

𝐿𝑎𝑡

180
),             (3) 244 

𝑇1 =
𝐷𝑂𝑌

𝑁
,                  (4) 245 

𝑇2 = cos(2𝜋
𝐷𝑂𝑌

𝑁
),                (5) 246 

𝑇3 = 𝑠𝑖𝑛(2𝜋
𝐷𝑂𝑌

𝑁
),                (6) 247 
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where the Lon signifies the longitude of each grid and the Lat signifies the latitude; N indicates a 248 

year's number of days in total and it is 365 for the year 2018; and DOY refers to the day of the year.  249 

 250 

2.3 Validation and analysis methods 251 

Similar to many previous studies (Di et al., 2017; Zhan et al., 2018; Kang et al., 2021; Y. Wang et 252 

al., 2021), the 10-fold cross-validation (10-CV) method is utilized for assessing and comparing the 253 

performance of model, performed at the sample-based (out-of-sample) and station-based (out-of-254 

station) levels. Sample-CV is segregated according to all training data samples to evaluate the 255 

model's overall accuracy, while spatial-CV is divided based on ground-based monitors to measure 256 

the spatial prediction accuracy (T. Li et al., 2017; Wei et al., 2022). These two methods involve 257 

randomly dividing the entire dataset into 10 subsets. In each iteration, the model is trained on nine 258 

data subsets, with the rest for testing. This ensures that the independence of training and test data. 259 

This process runs in turn for 10 iterations, ensuring that all data participate in the model validation 260 

process (Rodriguez et al., 2010).  261 

 262 

Surface O3 concentrations are affected by diverse factors, as stated before, all of which exhibit 263 

variations across time and space. To comprehend the factors driving diurnal fluctuations in surface 264 

O3 levels, we employed the XAI methodology, and the game-theoretic SHAP approach is applied to 265 

explain the model output. Specifically, SHAP quantifies the significance of a feature by contrasting 266 

the predictions of the model when including and excluding that particular feature (Lundberg et al., 267 

2020). We thus assess the importance of all variables for each hour using SHAP's TreeExplainer. 268 

Figure 1 shows the flowchart of retrieving 24-hourly gapless surface O3 concentrations in our study. 269 

 270 
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 271 

Figure 1. Flowchart of how satellite-derived 24-hourly gapless 1-km-resolution surface O3 levels 272 

are retrieved across China in this study using AI. 273 

 274 

2.4 O3 phytotoxicity indices 275 

Many studies have shown surface O3 serves as an notable stressor in natural ecosystems, mainly 276 

affecting soil, biota and ecological processes (Kangasjarvi et al., 2005; Ainsworth et al., 2012; 277 

Super et al., 2015). We have chosen various O3 phytotoxicity indices to investigate how vegetation 278 

responds to damage caused by surface O3 exposure. MX refers to the hourly average value of O3 279 

within the specified period X, where M7 refers to the mean 7-hour O3 concentration between 280 

09:00–16:00 LT, and M12 refers to the mean 12-hour O3 concentration between 08:00–20:00 LT, 281 

which mainly reflects the effects of O3 levels on vegetation growth (Tong et al., 2009). This is 282 

expressed as 283 
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𝑀7 =
∑ [𝑂3]
𝑛
𝑖=1

𝑛
𝑝𝑝𝑏(9 ≪ 𝑖 ≤ 15),            (7) 284 

𝑀12 =
∑ [𝑂3]
𝑛
𝑖=1

𝑛
𝑝𝑝𝑏(8 ≪ 𝑖 ≤ 19) ,            (8) 285 

where the i represents the hours in UTC time, ranging from 0 to 23. 286 

 287 

Fuhrer et al. (1997) and Grünhage et al. (1999) proposed the AOTX index representing O3 the sum 288 

of hourly O3 mixing ratios exceeding a threshold value (X nmol mol-1) between 06:00–21:00 LT. 289 

AOT0 refers to AOTX when no threshold value is set (Equation 9), and AOT40 represents AOTX 290 

when the threshold value is set to 40 nmol mol-1 (Equation 10). AOT0 and AOT40 are usually used 291 

to measure the severity of vegetation damage caused by surface O3 exposure. Generally, AOT40 is 292 

effective for assessing O3 damage in highly polluted areas but may be less useful in regions with 293 

lower pollution levels. By contrast, AOT0 is more effectively across a broader range of pollution 294 

levels due to the retention of lower O3 levels. To assess the extent of O3 phytotoxicity, we use the 295 

maximum values of AOT0 and AOT40 over three consecutive months from April to September as 296 

annual results (Hayes and Bangor, 2017). Additionally, AOT40 causes damage to vegetation when 297 

it exceeds the thresholds of 3 ppm for agricultural crops and semi-natural vegetation, 5 ppm for 298 

forest trees, and 6 ppm for horticultural crops (Hayes and Bangor, 2017).  299 

𝐴𝑂𝑇0 = ∑ ([𝑂3])𝑖𝑝𝑝𝑚(6 ≪ 𝑖 ≤ 20)𝑛
𝑖=1            (9) 300 

𝐴𝑂𝑇40 = ∑ ([𝑂3 − 40])𝑖
𝑛
𝑖=1 𝑝𝑝𝑚𝑓𝑜𝑟[𝑂3] > 40𝑝𝑝𝑏(6 ≤ 𝑖 ≤ 20)     (10) 301 

 302 

Heck and Cowling (1997) and Kohut (2007) introduced a SUM06 index representing the maximum 303 

cumulative value of hourly O3 mixing ratios above 60 nmol mol-1 during 8:00–20:00 LT over three 304 

consecutive months from April to October (Equation 11). SUM06 is detrimental to vegetation when 305 

it exceeds the thresholds of 8–12 ppm for natural ecosystems, 10–16 ppm for tree seedings, and 15–306 

20 ppm for crops (Heck and Cowling, 1997).  307 

 308 

W126 index is a sigmoidally weighted hourly concentration (Lefohn and Runeckles 1987), 309 

calculated from the maximum of weighted cumulative values of hourly O3 mixing ratios during 310 
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8:00–20:00 LT over three consecutive months from April to October (Equation 12). It exhibits a 311 

stronger response to elevated O3 concentrations (Lefohn and Runeckles, 1987). W126 denotes 312 

damage to vegetation when it exceeds the specific thresholds of 5.9 ppm, 23.8 ppm, and 66.6 ppm 313 

for highly sensitive, moderately sensitive, and less sensitive species, respectively (Hayes and 314 

Bangor, 2017). 315 

𝑆𝑈𝑀06 = ∑ ([𝑂3])𝑖
𝑛
𝑖=1 𝑝𝑝𝑚𝑓𝑜𝑟[𝑂3] > 60ppb(8 ≪ 𝑖 ≤ 20)      (11) 316 

𝑊126 = ∑ (𝑤 × [𝑂3])𝑖
𝑛
𝑖=1 𝑝𝑝𝑚(8 ≪ 𝑖 ≤ 20)𝑤 =

1

1+4403𝑒(−0.126[𝑂3]𝑖)
    (12) 317 

 318 

To analyze the O3 phytotoxicity to different vegetation types, the MODIS Land Use and Cover data 319 

were used to divide the land surface into three primary categories: forest, grassland, and cropland. 320 

We also assess and quantify the impacts of O3 phytotoxicity on vegetation photosynthetic rate, 321 

growth situation, and yield by comparing six O3 phytotoxicity indices (i.e., M7, M12, AOT0, 322 

AOT40, SUM06, and W126) with four vegetation abundance indices, i.e, NDVI, leaf area index 323 

(LAI), fraction of photosynthetically active radiation (FPAR), and GPP, collected from MODIS 324 

MOD13A2 16-day (1 km), MOD15A2H 8-day (500 m), MOD15A2H 8-day (500 m), and 325 

MOD17A2H 8-day (500 m) products, respectively. 326 

 327 

3. Results and discussion 328 

3.1 Model comparison and validation 329 

3.1.1 Optimal model 330 

Table 2 compares the model performance and efficiency among the 15 AI models in estimating 331 

hourly surface O3 concentrations in China, utilizing the same hourly data samples (17:00 LT, N = 332 

476,840). All eight ML models have fast training speeds and consume relatively small amounts of 333 

memory, of which the AdaBoost model shows the poorest performance. The two original GDBT 334 

and DT models have similar proficiencies in predicting hourly surface O3, while the accuracies for 335 

their derived ensemble-learning models is improved, e.g., Catboost, XGBoost, RF, and LightGBM 336 

(e.g., CV-R2 = 0.768, 0.805, 0.882, and 0.901, respectively). The ERT model operates swiftly (58 s) 337 

and performs the best (e.g., R2 = 0.908) but uses the highest memory (10 GB). Among the seven DL 338 
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models, the DBN model performs the worst and consumes a large amount of memory despite its 339 

fast training speed. The MLP model works better with improved accuracy and minimal memory but 340 

takes a significant amount of time (7300 s). The LSTM model exhibits enhanced performance when 341 

incorporating time series information, delivering results efficiently. With continuous optimization in 342 

both model architectures and loss functions, the accuracy of surface O3 estimates consistently 343 

increases, e.g., CV-R2 = 0.709, 0.749, and 0.755 for the CNN, ResNeXt, and ResNeXt models, 344 

respectively. However, their training speeds and memory requirements continue to increase. DF 345 

outperforms other DL models in terms of performance (e.g., R2 = 0.904), yet it also has the most 346 

running time (15885 s) and memory (17 GB). Interestingly, most DL models perform not as 347 

accurately as and less efficiently than ML models in addressing regression problems (Grinsztajn et 348 

al., 2022) because DL is predominantly designed for handling more intricate computer vision tasks 349 

(e.g., object recognition and detection), requiring a vast amount of data samples (Shinde and Shah, 350 

2018). When compared to the two best-performing ML and DL models, despite very similar 351 

accuracies (CV-R2 = 0.908 versus 0.904, Slope = 0.877 versus 1.009), the ERT model saves 352 

approximately 270 and 2 times less time and memory than the DF model. The ERT model is thus 353 

chosen to estimate surface O3 at the hourly scale in our study. 354 

 355 

Table 2. Performance and efficiency comparison of different 4-dimensional (4D) space-time (ST) 356 

ML and DL models for estimating surface O3 concentrations at 17:00 LT in China, where numbers 357 

in bold indicate the best evaluation indices. 358 

Model Type Model R2 Slope RMSE MAE TSpeed (s) TMemory (GB) 

4D-STML 

AdaBoost 0.461 0.390 41.42 33.32 312.22 0.0020 

GDBT 0.730 0.702 26.56 19.86 690.68 0.0007 

DT 0.756 0.866 26.09 17.55 9.17 0.0500 

CatBoost 0.768 0.741 24.63 18.37 34.036 0.0430 

XGBoost 0.805 0.790 22.53 16.49 250.08 0.8056 

RF 0.882 0.840 17.67 12.55 237.58 5.9900 

LightGBM 0.901 0.877 16.05 11.61 58.13 0.1210 

ERT 0.908 0.877 15.55 10.93 57.06 9.8000 

4D-STDL 

DBN 0.456 0.455 37.65 29.15 665.72 3.5620 

MLP 0.631 0.616 31.01 23.33 7317.21 0.0005 

LSTM 0.699 0.682 28.03 20.98 411.38 0.3700 

CNN 0.709 0.718 27.53 20.71 3518.96 1.7700 

ResNet 0.749 0.761 25.57 19.01 3970.83 1.7600 

ResNeXt 0.755 0.761 25.24 18.85 7918.61 1.8700 

DF 0.904 1.009 15.81 11.14 15885.32 17.1000 

AdaBoost: Adaptive Boosting; GDBT: Gradient Boosting Decision Tree; DT: Decision Trees; CatBoost: Categorical 359 

Boosting; XGBoost: eXtreme Gradient Boosting; RF: Random Forest; LightGBM: Light Gradient Boosting Machine; 360 
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ERT: ExtraTrees; DBN: Deep Belief Network; MLP: Multilayer Perceptron; LSTM: Long Short Term Memory; CNN: 361 

Convolutional Neural Network; ResNet: Deep Residual Network; ResNeXt: ResNet Next; DF: Deep Forest. 362 

 363 

3.1.2 Model performance 364 

Figure 2 shows the sample-based overall accuracy of surface O3 estimates at each hour from 0:00 to 365 

23:00 LT using the 4-dimensional space-time extra-trees (4D-STET) model. The model accuracy 366 

varies for different hours. At 00:00 LT, O3 estimates generally align closely with ground 367 

measurements, with a CV-R2 of 0.78 and an RMSE of 17.08 μg/m³. The model performance slightly 368 

improves with comparable CV-R2 (0.77–0.78) and lower RMSE values (14–17 μg/m³) until 07:00 369 

LT. During the daytime, the model shows significant improvements, with increasing CV-R2 (slopes 370 

closer to 1) and decreasing RMSEs. At 17:00 LT, the performance reaches its peak with a CV-R2 of 371 

0.91, a slope of 0.88, and a RMSE of 15.76 μg/m³. Subsequently, the performance of model 372 

deteriorates gradually. Overall, the model performs well across all hours, with CV-R2 values above 373 

0.75 and RMSE (MAE) values below 18 (13) μg/m³. Similar trends can be found in the station-374 

based CV results. The model accuracy exhibits a gradual upward trend from midnight (0:00 LT) to 375 

the afternoon with increasing CV-R2 and reduced RMSE values, reaching a peak at 17:00 LT (e.g., 376 

CV-R2 = 0.89 and RMSE = 17.17 μg/m³), followed by a gradual decrease thereafter (Figure 3).  377 

 378 

 379 
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Figure 2. Out-of-sample cross-validation results of hourly O3 estimates (μg/m³) from 00:00 to 380 

23:00 LT for 2018 in China using the 4D-STET model. Black dashed lines denote 1:1 lines, and red 381 

solid lines denote best-fit lines from linear regression. The sample size (N), coefficient of 382 

determination (R2), root-mean-square error (RMSE, μg/m3), mean absolute error (MAE, μg/m3), 383 

and mean relative error (MRE, %) are also given. 384 

 385 

Figure 3. Same as Figure 2 but for out-of-station cross-validation results. 386 

 387 

Overall, on the national scale, the model achieves a high overall (predictive) accuracy in retrieving 388 

hourly surface O3 concentrations throughout the day, with average sample (spatial) CV-R2 and 389 

RMSE values of 0.89 (0.86) and 15.74 (17.39) μg/m³. The superior performance of the model is 390 

also maintained during both daytime (e.g., CV-R2 = 0.91 and 0.90, and RMSE = 14.91 and 16.31 391 

μg/m³) and nighttime (e.g., CV-R2 = 0.85 and 0.81, and RMSE = 16.31 and 18.14 μg/m³) (Table 3). 392 

The model also performs well in estimating and predicting all day, daytime, and nighttime hourly 393 

surface O3 concentrations at the regional scale, especially in the Beijing-Tianjin-Hebei (BTH) 394 

region [e.g., sample (spatial) CV-R2 = 0.90–0.94 (0.88–0.93)]. 395 

 396 

Table 3. Cross-validation (CV) statistics of hourly O3 estimates (μg/m³) for all day, daytime, and 397 

nighttime periods in China and each typical region, using the 4D-STET model. All day represents 398 

00:00–23:00 LT, daytime represents 08:00–17:00 LT, and nighttime represents the other hours. 399 
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Region Period Sample-CV Spatial-CV 

 R2 RMSE MAE R2 RMSE MAE 

China All day 0.89 15.74 11.10 0.86 17.39 12.33 

Daytime 0.91 14.91 10.38 0.90 16.31 11.41 

Nighttime 0.85 16.31 11.62 0.81 18.14 12.99 

BTH All day 0.93 15.53 10.62 0.91 17.10 11.38 

Daytime 0.94 14.66 9.78 0.93 16.67 10.52 

Nighttime 0.90 16.14 11.23 0.88 17.41 12.01 

YRD All day 0.88 16.80 11.40 0.87 17.51 11.98 

Daytime 0.90 17.37 11.67 0.89 17.99 12.18 

Nighttime 0.83 16.38 11.21 0.82 17.16 11.83 

PRD All day 0.88 17.21 11.85 0.86 18.46 12.79 

Daytime 0.89 18.38 12.56 0.88 19.29 13.24 

Nighttime 0.83 16.30 11.33 0.80 17.84 12.46 

 400 

Figure 4 shows the model’s accuracy of all hourly retrievals in 2018 across China at individual 401 

sites. Overall, our model demonstrates strong performance and adaptability in estimating surface 402 

hourly O3 levels at most sites, without weak spatial patterns. At ~86% of the sites, sample-based 403 

CV-R2 values exceed 0.80, and 80% (68%) of the sites have sample-based RMSE (MAE) values 404 

below 18 (13) μg/m³, particularly in locations within eastern and central China (CV-R2 > 0.9) where 405 

the ground observation network is denser (Figure 4a-c). Spatial patterns for the spatial-CV results 406 

are similar, but the model exhibits an overall reduced accuracy in its predictive capability, with 407 

decreasing CV-R2 values and increasing uncertainties for most sites across China (Figure 4d-f). 408 

Nevertheless, more than 81% and 82% (75%) of the sites still maintain reliability, with high spatial 409 

CV-R2 > 0.80 and low RMSE (MAE) < 20 (14) μg/m³. Poor performance is primarily located at a 410 

few sites in western and northwestern China. This variance in the model’s predictive ability is 411 

mainly caused by large differences in meteorological conditions and pollutant types and the small 412 

number of sites in western China. In general, surface O3 retrievals are highly consistent across 413 

national, regional, and site scales, reaffirming the model's robust performance. 414 

 415 
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 416 

Figure 4. Individual-site-scale (a-c) out-of-sample (top row) and (d-f) out-of-station (bottom row) 417 

cross-validation results (including CV-R2, RMSE, and MAE) for surface O3 retrievals (μg/m³) 418 

collected from all hours in 2018 in China using the 4D-STET model. 419 

 420 

3.2 Diurnal variations in surface O3 and driving factors 421 

Figure 5 shows satellite-derived gapless surface O3 concentrations at a 1-km resolution for each 422 

hour throughout the day in China during the year 2018. As expected, surface O3 has strong diurnal 423 

variations. At 08:00 LT, it is at its lowest level (average = 49.71 ± 9.37 μg/m³), gradually increasing 424 

as the Sun continues to rise. The increasing rate of surface O3 concentrations is faster in northern 425 

China than in southern China, followed by a widespread growing trend in central and eastern China 426 

from 10:00 to 12:00 LT. It continues to rise notably over most regions in the domain, with a 427 

majority of values surpassing 100 μg/m³, reaching a peak at 15:00 LT (average = 96.64 ± 9.53 428 

μg/m3). After that, areas with high O3 pollution shrink rapidly, with average values dropping from 429 

94.83 ± 9.52 μg/m3 at 17:00 LT to 61.29 ± 9.51 μg/m3 at 23:00 LT. The decreasing rate in southern 430 

China outpaces that in northern China, with the fastest decline observed in southeast China. During 431 

the daytime, surface O3 concentrations in most areas exceed 80 μg/m³, with particularly high levels 432 

observed in the North China Plain and northwest China. By contrast, during the nighttime, surface 433 

O3 levels consistently fall below 50 μg/m³, except in a few western and central regions. In general, 434 

surface O3 concentrations during the daytime (08:00–17:00 LT) (average = 79.54 ± 7.98 μg/m³) are 435 

notably higher, ~1.3 times, than that at the nighttime (18:00–07:00 LT) (average = 62.72 ± 8.83 436 
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μg/m³). This difference is primarily ascribed to the complex interplay of various atmospheric 437 

processes, emissions, and photochemical reactions, e.g., higher oxidant OX (O3 and NO2) levels 438 

during the daytime (S. Han et al., 2011) and lower nighttime boundary layer height facilitating NO 439 

titration reactions that deplete nighttime O3 (Liao et al., 2023). Similar diurnal variations in surface 440 

O3 are observed at regional scales, with the highest values typically occurring around 15:00 LT 441 

(Figure 7). However, the BTH region seems to show more significant changes with substantial 442 

fluctuations in hourly surface O3 variations. 443 

 444 

 445 

Figure 5. Satellite-derived 1-km-resolution surface O3 concentrations for each hour throughout the 446 

day (00:00–23:00 LT, surrounding subplots), along with average maps during the (a) daytime 447 

(08:00–17:00 LT) and (b) nighttime (18:00–07:00 LT) in 2018 across China.  448 

 449 

To gain a deeper insight into the driving factors affecting diurnal variations in surface O3, we 450 

utilized XAI technology to compute the SHAP value for each of the variables and investigate their 451 

contributions at different hours throughout the day (Figure 6). In the morning hours (08:00 and 452 

09:00 LT), the influencing factors are more intricate, with boundary layer height, wind, surface 453 

radiation (UV + shortwave), and temperature emerging as more significant contributors (SHAP = 454 

10–18%). This can be explained by sunlight elevating solar radiant energy and near-surface 455 

temperatures, facilitating the photochemical reaction process (David and Nair, 2011; S. Han et al., 456 

2011). Additionally, the intermittent vertical turbulent motion associated with boundary layer height 457 



20 

 

and wind transport contributes to residual layer O3 moving to near-surface, consequently elevating 458 

surface O3 concentrations (Hu et al., 2012; Morris et al., 2010; Xu et al., 2020). During 10:00–17:00 459 

LT, radiation (27–39%), temperature (13–32%), and RH (10–14%) consistently stand out as the 460 

three most influential factors. As the day progresses, however, the contribution of radiation 461 

gradually weakens, the role of temperature undergoes a significant upswing, and RH remains a 462 

relatively stable impact factor. The primary cause lies in increased human activities (R. Zhang et al., 463 

2004), with heightened radiation and elevated temperatures substantially stimulating the production 464 

of atomic oxygen and oxidants and increasing photochemical reactions (Bloomer et al., 2009; Zhao 465 

et al., 2016; Wei et al., 2022; Zhang et al., 2023). RH can also impact the reaction process by 466 

interacting with water vapor, atomic oxygen, and cloud cover, and also affecting the dissipation of 467 

surface O3 through dry deposition (Otero et al., 2018; Vautard et al., 2012). After solar radiation 468 

disappears towards evening, temperature becomes the most critical variable, but its contribution 469 

gradually decreases from ~44% (18:00 LT) to ~19% (07:00 LT). Other meteorological (e.g., RH = 470 

16%, WS = 10%) and surface-related (e.g., DEM =11%) factors become increasingly more 471 

important in influencing surface O3 variations. This may be caused by the dissipation of surface O3 472 

dominated by higher RH and lower WS at night (Tu et al., 2007; Gagliardi and Andenna, 2020). 473 

 474 

In general, during the daytime, over half (56%) of the diurnal variations in surface O3 can be 475 

attributed to surface radiation (32%) and surface temperature (24%). Other meteorological factors 476 

contribute ~35%, with RH (~11%), BLH (~9%), and WS (~5%) having a relatively larger influence. 477 

However, during the nighttime, LST contributes the most (~31%), accounting for nearly one-third, 478 

7% higher than the daytime (24%). Other meteorological factors comprise approximately half 479 

(49%) of the influence, with the same three primary variables, i.e., RH, WS, and BLH, contributing 480 

at 16%, 9%, and 8%, respectively. Note that surface-related factors become more important during 481 

the nighttime compared to the daytime (13% versus 5%). Nevertheless, differences exist at the 482 

regional scale (Figure 7). In the BTH and YRD regions, LST contributions (36% and 27%) surpass 483 

radiation (21% and 22%) during the daytime, while WD, TP, and SP are more important 484 

meteorological factors during the nighttime. By contrast, in the PRD region, BLH and RH 485 

contribute the most (30% and 20%, respectively) during the daytime and nighttime, and 486 



21 

 

meteorological factors contribute more significantly to surface O3 variations compared to other 487 

regions. This region is closer to the sea, with southwest and southeast monsoons prevailing in the 488 

summer, and is affected by more weather systems (e.g., southwesterly wind, typhoons, and weak 489 

cyclones) (Jiang et al., 2015; H. Han et al., 2020). 490 

 491 

 492 

Figure 6. Time series of hourly surface O3 variations (boxplots) and top-three driving factors 493 

(colored dots) throughout the day in 2018 in China. The two pie charts illustrate the contributions of 494 

driving-factor categories during the daytime (08:00–17:00 LT) and nighttime (18:00–07:00 LT), 495 

respectively. Surface radiation includes DSR and UV. Other meteorology includes BLH, RH, TP, 496 

SP, WD, and WS. Emission inventory includes NOx, VOC, and CO.  497 

 498 
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 499 

Figure 7. Box plots of diurnal surface O3 concentrations (top row) and the sorted SHAP importance 500 

of each variable during the daytime (08:00–17:00 LT) and nighttime (18:00–07:00 LT) in 2018 for 501 

(a) the Beijing–Tianjin–Hebei region, (b) the Yangtze River Delta region, and (c) the Pearl River 502 

Delta region. In each box, the middle, lower, and upper horizontal black lines represent the mean 503 

bias, 25th percentile, and 75th percentile, respectively. 504 

 505 

3.3 MDA8 O3 levels and exposure risk 506 

Using 24-hour data, we first calculate MDA8 O3 concentrations across China and evaluate the 507 

population risk exposure to short-term O3 pollution using World Health Organization (WHO) air 508 

quality standards updated in 2021 (WHO, 2021) (Figure 8). MDA8 O3 concentrations mostly fall 509 

within the range of 79 to 109 μg/m³ (95th percentile), with a population-weighted (PWO3) average 510 

of 96.8 μg/m³ in 2018 (Figure 8a). Serious pollution situations are mainly distributed in the North 511 

China Plain (especially in major parts of Shandong, Hebei, and Henan provinces: PWO3 > 120 512 

μg/m³) and north-central regions. By contrast, the remaining areas generally experience low levels, 513 

especially in northeast and southwest China (PWO3 < 80 μg/m³). For the daily population risk of O3 514 

exposure, we found that ~44% (59%) of all (populated) areas in China encounter severe O3 515 

pollution, with at least one day surpassing the WHO’s recommended short-term interim target 1 516 

(i.e., IT1: MDA8 = 160 µg/m3). However, the exposure risk is usually low (less than 10% of days) 517 

in most regions (Figure 8b). Regarding the short-term interim target 2 (i.e., IT2: MDA8 = 120 518 

µg/m3), areas exposed to a one-day risk expand significantly, reaching 85% in all areas and 93% in 519 
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populated areas. The frequency also increases rapidly, with some eastern areas experiencing 520 

pollution for up to half of the year (Figure 8c). Most notably, when looking at the expected short-521 

term air quality guidance (AQG) level (MDA8 = 100 µg/m3), 100% of areas and the entire 522 

population are exposed to unhealthy air for at least one day, with a substantial risk intensity ranging 523 

from 20% to 70% across the domain (Figure 8d). These findings signify a serious risk of short-term 524 

O3 exposure, underscoring the urgent requirement for environmental protection measures to control 525 

surface O3 pollution, improve air quality, and promote future health benefits, especially in densely 526 

populated regions. 527 

 528 

 529 

Figure 8. Spatial distribution of (a) MDA8 O3 concentrations (μg/m³) and the percentage (%) of 530 

days exceeding the WHO-recommended short-term (b) interim target 1 (IT1: daily MDA8 O3 = 160 531 

µg/m3), (c) interim target 2 (IT2: daily MDA8 O3 = 120 µg/m3), and (d) air quality guideline level 532 

(AQG: daily MDA8 O3 = 100 µg/m3) for 2018 in China. The inserted lower-left plots show 533 

probability density curves. The red number in (a) is the annual population-weighted average of 534 

MDA8 O3 in China, and the black and red numbers in (b-d) indicate the percentages of pollution 535 

days for all and populated (population density > 0) regions, respectively. 536 

 537 
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3.4 Surface O3 phytotoxicity indices and impacts 538 

Figure 9 illustrates the spatial distribution of six main surface O3 phytotoxicity indices calculated 539 

from 24-hour data in China for the year 2018. Specifically, M7 (mean 7-h O3 concentration) and 540 

M12 (mean 12-h O3 concentration) have similar spatial patterns, ranging between 30 to 43 ppb and 541 

32 to 44 ppb (95th percentile), with an average of 36.8 and 37.3 ppb, respectively. Elevated values 542 

are predominantly concentrated in the western regions of Shandong province and scattered areas in 543 

northern China (Figure 9a-b). Conversely, most other areas maintain low levels, especially in 544 

western, southwest, and northeastern China (M7 and M12 < 35 ppb). There is a substantial disparity 545 

between AOT0 and AOT40, where the former ranges from 48 to 78 ppm (95th percentile), with an 546 

average of 62.6 ppm, and the latter is mostly within 27 ppm (average = 12.7 ppm). This distinction 547 

is attributed to AOT40 incorporating a threshold for hourly O3 accumulation, while there is no 548 

criterion in AOT0. Nevertheless, extremely high AOT0 values are present in the North China Plain 549 

(particularly in Shandong and Tianjin), as well as in the western and central regions of Inner 550 

Mongolia and certain areas in northeastern China like Liaoning (Figure 9c). Similar spatial patterns 551 

are observed for AOT40, albeit with significantly lower levels. Note that ~85%, 91%, and 99% of 552 

vegetated areas in China exceed the defined critical levels of AOT40 at 6 ppm, 5 ppm, and 3 ppm, 553 

respectively. The spatial patterns of SUM06 (ranging from 0.12 to 45, average = 16.6 ppm) and 554 

W126 (ranging from 3 to 35, average = 12.9 ppm) are generally in close alignment with that of 555 

AOT40, but with higher levels in the North China Plain (Figure 9e-f). However, about 46%, 58%, 556 

and 65% of vegetated areas in China surpass the SUM06 critical levels of 15 ppm, 10 ppm, and 8 557 

ppm, respectively. Furthermore, ~18% and 70% of vegetated areas in China are above the W126 558 

critical levels of 23.8 ppm and 5.9 ppm, respectively. In general, the majority of vegetated areas in 559 

China experienced surface O3 phytotoxicity, with the North China Plain being the most severely 560 

impacted region. 561 

 562 
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 563 

Figure 9. Spatial distributions of estimated (a) M7 (ppb), (b) M12 (ppb), (c) AOT0 (ppm), (d) 564 

AOT40 (ppm), (e) SUM06 (ppm), and (f) W126 (ppm) across China in 2018. The inserted lower-565 

left plots show cumulative area percentages for vegetated areas in China. The red dotted lines in (d-566 

f) show the lowest critical levels (i.e., 3, 8, and 5.9 ppm). The red numbers in (d-f) indicate 567 

cumulative percentages exceeding the specific critical level. 568 

 569 

Additionally, we quantitatively investigated the influence of surface O3 pollution on various types 570 

of vegetation (Figure 10), observing predominantly negative correlations between six O3 571 

phytotoxicity indices and four vegetation abundance indices. It is clear that vegetation growth and 572 

development are susceptible to exposure to surface O3 pollution through phytotoxicity, with the 573 

extent of damage depending on the plant species, as implied by the varying strengths of the 574 

correlations. For croplands, AOT0, AOT40, and W126 are more associated with various vegetation 575 

abundance indices, particularly GPP, with Rs of -0.37 (p < 0.001), -0.31 (p < 0.001), and -0.26 (p < 576 

0.001), respectively. Forests have stronger responses to O3 pollution compared to croplands, 577 

showing heightened sensitivities, especially with AOT0 (R = -0.35–-0.53, p < 0.001), AOT40 (R = -578 

0.27–-0.41, p < 0.001), and W126 (R = -0.25–-0.36, p < 0.001). For grasslands, the correlations 579 

between phytotoxicity indices and abundance indices are continuously strengthened, particularly 580 

with AOT0 (R = -0.47–-0.53, p < 0.001), M12 (R = -0.36–-0.42, p < 0.001), and AO40 (R = -0.31–-581 

0.36, p < 0.001). Among all types of vegetation, AOT0 exhibits the most pronounced response to 582 

variations in vegetation growth, displaying the highest correlations with various abundance indices 583 

(R = -0.21–-0.53, p < 0.001), followed by M12 (R = -0.10–-0.42, p < 0.001), and AOT40 (R = -584 

0.18–-0.41, p < 0.001). By contrast, M7 has a much weaker impact on vegetation, with the lowest 585 
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correlations in nearly all cases, even exhibiting a positive correlation in croplands. In general, GPP 586 

has the strongest sensitivity to surface O3 exposure, particularly in conjunction with AOT0, with the 587 

strongest correlation across all vegetated areas (R = -0.49, p < 0.001), as well as in croplands (R = -588 

0.37, p < 0.001) and forests (R = -0.53, p < 0.001). This is further supported by its consistently 589 

strongest correlations with other O3-exposure phytotoxicity indices. This can be attributed to 590 

ambient O3’s ability to enter leaves through stomata, causing damage to biological macromolecules 591 

and cell death (Kangasjarvi et al., 2005). This, in turn, reduces leaf stomatal conductance and 592 

photosynthetic rates (Ainsworth et al., 2012), ultimately leading to a decline in primary metabolism, 593 

leaf area, biomass, and a further reduction in GPP (Proietti et al., 2016; Jin et al., 2023).  594 

 595 
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 596 

Figure 10. Correlation analysis between vegetation abundance indices (i.e., NDVI, LAI, FPAR, and 597 

GPP) and O3-exposure phytotoxicity indices (i.e., AOT0, AOT40, M12, M7, SUM06, and W126) 598 

for various vegetated types, i.e., all vegetated areas (sample size, N = 9,461,375), forest (N = 599 

1,827,010), grassland (N = 5,414,700), and cropland (N = 2,219,665) in China in 2018. All 600 

correlations are statistically significant at the 99.9% (p < 0.001) confidence level. 601 

 602 

3.5 Comparison with related studies 603 

Last, we compared our results with related research focusing on surface O3 retrievals across China 604 

(Table 4). Most previous studies were concerned with the daily level, using MDA8 O3 605 

measurements calculated from hourly data as the baseline for model training (Liu et al., 2020; Xue 606 
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et al., 2020; Song et al., 2022; Wei et al., 2022). In fact, MDA8 is not a straightforward multi-hour 607 

average but an iterative daily maximum 8-hour average, which can lead to substantial deviations in 608 

modeling interpolated results, particularly in remote areas lacking measurements. Accurate MDA8 609 

calculations require 24 hours of retrievals, but few studies have addressed this issue (Y. Wang et al., 610 

2022; Xue et al., 2022; B. Chen et al., 2023; Zhang et al., 2023). All of these studies have also 611 

exclusively focused on retrieving daytime surface O3 concentrations, with durations (< 10 hours) 612 

falling significantly short of the requirements to calculate air quality and O3-exposure phytotoxicity 613 

indices. Nevertheless, our model exhibits comparable or superior overall accuracy compared to the 614 

performance of AI models in previous studies conducted during the same daytime hours. In 615 

addition, their retrieved hourly surface O3 concentrations often have sparse spatial resolutions (2–9 616 

km), with severe spatial discontinuities due to large gaps of missing values in critical input satellite 617 

optical variables (e.g., Himawari-8 top-of-the-atmosphere radiation and brightness temperatures) 618 

caused by cloud contamination (Y. Wang et al.; 2022, B. Chen et al., 2023). These limitations 619 

significantly constrain their applicability in small-scale areas such as urban environments. Our 620 

study presents substantial improvements on all the abovementioned key aspects by first offering a 621 

spatially (100% coverage) continuous dataset of 24-hour surface O3 concentrations across China, 622 

encompassing the full temporal range (0:00–23:00 LT) at a high resolution of 1 km. 623 

 624 

Table 4. Model performance comparison in estimating hourly surface O3 concentrations in China 625 

from previous studies. 626 

Model Duration 
Spatial 

resolution 

Overall accuracy Missing 

values 
Literature 

CV-R2 RMSE MAE 

BT Daytime (09:00-16:00 LT) 5 km 0.87 18.30 13.30 No Zhang et al., 2023 

DF Daytime (10:00-15:00 LT) 5 km 0.91 12.74 8.25 Yes B. Chen et al. 2023 

SGLboost Daytime (09:00-18:00 LT) 2 km 0.85 19.04 - Yes Y. Wang et al., 2022 

4D-STET Daytime (09:00-16:00 LT) 1 km 0.91 15.00 10.45 No This study 

 Daytime (10:00-15:00 LT) 0.90 15.15 10.56 

Daytime (09:00-18:00 LT) 0.91 15.19 10.60 

Daytime (08:00-17:00 LT) 0.91 14.91 10.38 

Nighttime (18:00-07:00 LT) 0.85 16.31 11.62 

All day (00:00-23:00 LT) 0.89 15.74 11.10 

BT: bagged-tree; DF: deep forest; SGLboost: self-adaptive geospatially local categorical boosting; 4D-STET: 4-627 

dimensional space-time extra-trees. 628 

 629 

4. Summary and conclusions 630 

Surface O3 is a critical atmospheric pollutant gas influencing air quality, posing a major human 631 



29 

 

health risk, as well as plant well-being risk. To overcome limitations encountered in previous 632 

studies, e.g., low temporal resolution (mostly daily, with only a few hourly observations during the 633 

daytime), sparse spatial resolution, and substantial spatial gaps in data retrievals, we refined a total 634 

of 15 AI models by introducing multidimensional spatiotemporal information to enhance their 635 

capabilities. The best-performing model (i.e., the 4D-STET model) was then selected to derive for 636 

the first time gapless surface O3 concentrations in China at 24-hour temporal and 1-km spatial 637 

resolutions from the GEO DSR and LST products and many other ancillary data. Cross-validations 638 

demonstrate the robustness of our model in capturing the diurnal variations of surface O3 639 

concentrations, with an overall sample-based (station-based) CV-R2 of 0.89 (0.86), 0.91 (0.90), and 640 

0.85 (0.81), and RMSE values of 15.74 (17.39) μg/m3, 14.91 (16.31) μg/m3, and 16.31 (18.14) 641 

μg/m3 during all times (00:00–23:00 LT), daytime (08:00–17:00 LT), and nighttime (18:00–07:00 642 

LT), respectively. The availability of temporally continuous surface O3 data facilitates our capacity 643 

to analyze diurnal variations, daily exposure risks, and phytotoxicity impacts at different 644 

spatiotemporal scales throughout China. 645 

 646 

Surface O3 levels showed strong diurnal variations, steadily rising from sunrise, peaking around 647 

15:00 LT, and continuously decreasing thereafter. The XAI-SHAP analysis results revealed that 648 

shortwave and UV radiation, along with LST, explain about 56% of the surface O3 variations during 649 

the daytime, while LST plays the most significant role during the nighttime, contributing 650 

approximately 31%. In 2018, approximately 59% (44%), 93% (85%), and 100% (100%) of 651 

populated areas (entire areas) faced short-term surface O3 exposure risk for at least one day, with 652 

MDA8 O3 surpassing the WHO's air quality standards of 160 µg/m³, 120 µg/m³, and 100 µg/m3, 653 

respectively. Furthermore, ~99%, 91%, and 85% of vegetated areas in China exceeded the critical 654 

levels of AOT40 at 3 ppm, 5 ppm, and 6 ppm, respectively. For SUM06, ~65%, 58%, and 46% of 655 

vegetated areas surpassed the critical levels of 8 ppm, 10 ppm, and 15 ppm, respectively. As for 656 

W126, ~70% and 18% of vegetated areas exceeded the critical levels of W126 at 5.9 ppm and 23.8 657 

ppm, respectively. These findings highlight the urgent need for environmental protection measures 658 

to mitigate surface O3 pollution and promote the health of both the public and vegetation in the 659 

future. Furthermore, despite the consistent negative correlations, GPP demonstrates the strongest 660 
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response to surface O3 pollution among all vegetation (ozone-exposure) phytotoxicity indices, 661 

encompassing various vegetated types, especially when combined with AOT0 (R = -0.21–-0.53, p < 662 

0.001). In a future study, we intend to apply our methodology to generate a long-term hourly 663 

surface O3 dataset and provide more detailed insights into air quality and phytotoxic damage caused 664 

by surface O3 pollution. 665 

 666 

Data availability 667 

CNEMC O3 measurements are available at http://www.cnemc.cn. The Himawari-8 DSR product is 668 

available at https://zenodo.org/record/7023863. The GHA Land Surface Temperature product is 669 

available at http://glass.umd.edu/allsky_LST/GHA-LST/2018/. The ERA5 reanalysis is available at 670 

https://cds.climate.copernicus.eu/. The ABaCAS-EI v2.0 O3 Precursor data is available at 671 

https://doi.org/10.6084/m9.figshare.21777005.v1. The SRTM DEM is available at 672 

https://www2.jpl.nasa.gov/srtm/. LandScanTM population information is available at 673 

https://landscan.ornl.gov/. NDVI data is available at 674 

https://lpdaac.usgs.gov/products/mod13a2v061/. GPP data is available at 675 

https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD17A2H. 676 

LAI data is available at https://ladsweb.modaps.eosdis.nasa.gov/missions-and-677 

measurements/products/MOD15A2H. The MODIS Land Cover Type product is available at 678 

https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD12Q1. 679 

 680 

Data Sharing 681 

The generated 24-hour 1-km surface O3 datasets and codes can be found at 682 

https://doi.org/10.5281/zenodo.10035857. They will be made publicly available once the paper is 683 

accepted. 684 
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