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Abstract

Diagnosing the role of internal variability over recent decades is critically important for both model validation and projections

of future warming. Recent research suggests that for 1980-2022 internal variability manifested as Global Cooling and Arctic

Warming (i-GCAW), leading to enhanced Arctic Amplification (AA) and suppressed global warming over this period. Here

we show that the observationally derived i-GCAW is rare in CMIP6 large ensembles, but simulations that do produce similar

i-GCAW exhibit a unique and robust internally driven global surface air temperature (SAT) trend pattern. This unique pattern

of SAT change features enhanced warming in Barents and Kara Sea and cooling in the tropical Eastern Pacific and Southern

Ocean. Given that these features are imprinted in the observed record over recent decades, this work suggests that internal

variability makes a crucial contribution to the discrepancy between model-simulated forced SAT trend pattern and observations.
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Key Points: 12 

 Internal variability has enhanced Arctic warming but suppressed global warming over 13 

1980-2022. 14 

 This manifestation of internal variability is rare in model simulations but has a robust 15 

global surface air temperature (SAT) trend pattern.  16 

 This internal SAT pattern features warming in the Barents and Kara Sea and cooling of 17 

the tropical Eastern Pacific and Southern Ocean. 18 
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 20 

Abstract 21 

Diagnosing the role of internal variability over recent decades is critically important for 22 

both model validation and projections of future warming. Recent research suggests that for 1980-23 

2022 internal variability manifested as Global Cooling and Arctic Warming (i-GCAW), leading 24 

to enhanced Arctic Amplification (AA) and suppressed global warming over this period.  Here 25 

we show that the observationally derived i-GCAW is rare in CMIP6 large ensembles, but 26 

simulations that do produce similar i-GCAW exhibit a unique and robust internally driven global 27 

surface air temperature (SAT) trend pattern. This unique pattern of SAT change features 28 

enhanced warming in Barents and Kara Sea and cooling in the tropical Eastern Pacific and 29 

Southern Ocean. Given that these features are imprinted in the observed record over recent 30 

decades, this work suggests that internal variability makes a crucial contribution to the 31 

discrepancy between model-simulated forced SAT trend pattern and observations.  32 

Plain Language Summary 33 

When comparing model simulations of Earth’s recent warming to real-world observations, 34 

differences may arise from several factors. Two important factors are the model errors in the 35 

simulated response to increased greenhouse gases, and natural fluctuations within the climate 36 

system that produced discrepancies between observations and models. Thus, quantifying the role 37 

of these natural fluctuations are important for the assessment of model-observation differences. 38 

Previous studies have shown that natural climate variability has depressed global warming and 39 

enhanced Arctic warming. By compositing simulations in which natural variability warms the 40 

Arctic but has an overall cooling effect globally, we find that the majority of these model 41 

simulations also produce enhanced warming in the Barents and Kara Seas and cooling in the 42 

Tropical Pacific and Southern Ocean due to natural variability. Since these are the exact features 43 

imprinted on observed surface temperature changes over 1980-2022, our work suggests natural 44 

variability is an important component of several noteworthy differences between models and 45 

observations. 46 

 47 

1 Introduction 48 

 Global surface air temperatures (SAT) since 1980 have experienced significant warming 49 

due to increased greenhouse gas concentrations and reduced aerosols (IPCC, 2021). Yet, the 50 

pattern of the observed warming has larger spatial variability than the warming simulated by 51 

climate models (e.g., Hansen et al., 2010). One of the most prominent features of both observed 52 

and simulated warming is Arctic Amplification (AA): the increased rate of Arctic warming 53 

compared to global mean surface temperature change (Manabe and Weatherald, 1975). From 54 

1980 to 2022 observed SAT in the Arctic (defined as the region poleward of 70°N) warmed 55 

about four times faster than the global mean, leading to an AA of about 4.0.  Although models 56 

simulate greater Arctic warming relative to the global mean, the observed values of AA over 57 

1980 to 2022 are larger than AAs from 94% of historical simulations from large ensembles in the 58 

Coupled Model Intercomparison Project Phase 6 (CMIP6) (Hahn et al., 2021; Ye and Messori, 59 

2021; Rantanen et al., 2022; Chylek et al., 2022; Chylek et al., 2023; Sweeney et el., 2023). The 60 

discrepancy between the model predicted AA and that observed from 1980-2022 may be due to a 61 
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model bias in the forced response of the Arctic and/or global climate, leading to concerns 62 

regarding model fidelity (Rosenblum and Eiseman, 2017; Chylek et al., 2022). Another potential 63 

cause of this discrepancy is a rare configuration of internal climate variability in the last four 64 

decades (Deser et al., 2012a; Deser et al., 2012b; Kay et al., 2011; Chylek et al., 2023; Feng et 65 

al., 2021). Key to reconciling this model-observation discrepancy is separating the forced 66 

response from internal variability (e.g., Lehner and Deser, 2023).  67 

Various methodologies have been proposed to partition the forced and internal 68 

components of climate change (e.g., Foster and Rahmstorf, 2011; Wallace et al., 2012; Deser et 69 

al., 2014; Santer et al., 2014; Dai et al., 2015; Barnes et al., 2019; Räisänen, 2021; Gordon et al., 70 

2021; Po-Chedley et al., 2022; Rader et al., 2022). Pattern recognition algorithms have shown 71 

promise with this task (Wills et al., 2020), because the SAT response to external forcing is more 72 

spatially uniform than the more complex patterns associated with internal variability. The 73 

patterns of the forced response and internal variability can be differentiated in large ensembles, 74 

which contain many simulations of the Earth’s climate with varying initial conditions and then 75 

produce unique manifestations of the internal variability (and thus unique patterns of warming) 76 

(Kay et al., 2015; Deser et al., 2020). Large ensembles therefore provide a useful training dataset 77 

for pattern recognition algorithms designed to distinguish between the forced and unforced 78 

climate response. Recently, Sweeney et al. (2023) (referred to herein as S2023) showed that the 79 

pattern recognition algorithms based on machine learning can help partition the role of internal 80 

variability and the forced response to better understand the model-observation discrepancy in AA 81 

from 1980-2022. Their results indicate that internal variability has enhanced AA for 1980-2022 82 

by 38%. After removing the contribution of internal variability from the observations, they can 83 

reconcile differences between simulated and observed AA.  84 

The identified manifestation of internal variability that creates the exceptionally high 85 

value of observed AA features internally driven global-cooling and Arctic-warming (referred to 86 

hereafter as i-GCAW). When this i-GCAW pattern is imprinted onto the Earth’s warming due to 87 

external forcing, the effect is to enhance the rate of Arctic warming while damping the global 88 

mean warming trend during 1980-2022. A number of studies have suggested that internal 89 

variability has warmed the Arctic (e.g., Chen and Dai, 2024) and cooled the globe in the last few 90 

decades, evidenced by rapid sea ice concentration decline (e.g., Ding et al., 2019) and a lack of 91 

warming (or even cooling) in the tropical Eastern Pacific and Southern Ocean (e.g., Kosaka and 92 

Xie, 2013; Po-Chedley et al., 2021; Zhang et al., 2019; Feng et al., 2021). These studies reinforce 93 

the result from S2023 that internal variability produced global-cooling and Arctic-warming 94 

during 1980-2022.  95 

This study aims to investigate model simulations that have an imprint of i-GCAW. These 96 

simulations can provide insight into the global internally driven trend pattern since 1980. It thus 97 

has value for understanding model-observation discrepancies and may help constrain uncertainty 98 

in future patterns of SAT change (Lehner and Deser, 2023). Here we first show that the 99 

observationally derived i-GCAW in S2023 occurs rarely in the ensemble members from various 100 

GCMs and confirm that the machine learning algorithms developed in S2023 have minimal 101 

biases when applied to this subset of rare ensemble members. We then show that the ensemble 102 

members featuring similar i-GCAW to observationally derived values share a preferred 103 

internally driven global SAT trend pattern, including warming in the Barents and Kara Sea and 104 

cooling in the tropical Eastern Pacific and Southern Ocean. We further examine the pattern of 105 

differences between the observed SAT trend pattern and the forced warming pattern derived 106 
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from the CMIP6 multi-model mean scaled by observationally derived forced global-mean SAT 107 

trend in S2023. The difference trend pattern – which represents an estimate of the impact of 108 

internal variability on the pattern of satellite era SAT trends – also shows warming in the Kara 109 

Sea and cooling of the tropical Eastern Pacific and Southern Ocean. Both approaches indicate a 110 

common imprint of internal variability on the pattern of surface warming during recent decades. 111 

Finally, we examine the evolution of AA over the ensuing 20 years in the ensemble members 112 

that exhibit i-GCAW over a 43-year period (matching the length of the observational record from 113 

1980-2022). These simulations suggest a decrease of the mean AA from 4.2 to 3.4, supporting 114 

the claim in S2023 that the exceptional AA over 1980 to present will not persist into the future. 115 
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2 Data 116 

Data used here is the same as from S2023. The model simulations come from large 117 

ensembles included in CMIP6 using 10 different models that contain 10 to 50 ensemble 118 

members. Aside from the CMIP6 models, we also include the CESM2 large ensemble with 119 

updated biomass burning aerosol emissions (Rodgers et al., 2021; Fasullo et al., 2022). Using 120 

these 11 large ensembles, SAT trend maps are calculated using 43-year periods separated by five 121 

years spanning 1850-2047 (i.e., 1850-1892, 1855-1897, …, 1980-2022, …, 2005-2047). 122 

Historical simulations for the large ensembles end in 2014. For those models where more than 10 123 

ensemble members have data through 2047 using the Shared Socioeconomic Pathways 3 or 5 124 

(SSP3-7.00 or SSP5-8.5), the simulations are extended (using SSP5-8.5 when both are available) 125 

(O’Neill et al., 2016). Of the 11 large ensembles used, 7 have extensions past the 2014 period, 126 

while 4 end in 2014 (see Table S1 for information regarding the large ensembles).  127 

We use 43-year trend periods to match the length of the observational SAT record from 128 

1980-2022. Observational SAT trends shown here are the average of four datasets, including the 129 

Met Office Hadley Centre/Climate Research Unit’s global surface temperature dataset version 5, 130 

Berkeley Earth Land/Ocean Temperature Record, GISS Surface Temperature Analysis version 4, 131 

and the NOAA Merged Land Ocean Global Surface Temperature Analysis version 5 (Morice et 132 

al., 2021; Rhode and Hausfather, 2020; Lenssen et al., 2019; Zhang et al., 2019). All SAT trend 133 

maps are regridded to a common 2.5x2.5 latitude-by-longitude grid.  134 

3 Internally Generated Global-Cooling and Arctic-Warming 135 

 Quantifying the internal component of recent SAT trends remains a crucial problem in 136 

climate science (Schlesinger and Ramankutty, 1994; Kosaka and Xie, 2013; Wanatabe et al., 137 

2021; Wills et al., 2022). In this section, we show that a robust pattern of internal variability can 138 

be obtained by compositing model simulations with i-GCAW similar to observational derived 139 

values. As noted earlier, S2023 estimated that between 1980-2022, internal variability reduced 140 

observed global warming by 0.024 K/dec and enhanced Arctic warming by 0.145 K/dec. Across 141 

all 43-year SAT trends from the large ensembles between 1850-2047, the standard deviation of 142 

internally generated SAT trends over the globe and in the Arctic are 0.025 K/dec and 0.157 143 

K/dec, respectively. Thus, when viewed individually, the observationally inferred estimates of 144 

internal variability are about one standard deviation from the mean, and thus not rare.  145 

   146 
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 147 

Figure 1: Arctic versus global internal trends from all large ensembles between 1850-2047. Each 148 

grey circle represents an internal trend from one ensemble member over one 43-year period. 149 

Thin black lines show the normalized probability density functions of all global and Arctic 150 

internal trends with the corresponding standard deviations provided. The orange pentagon shows 151 

the observationally derived internal trends for 1980-2022 with one-standard deviation error bars 152 

from S2023. The red line shows the linear regression of the Arctic internal trend onto that of the 153 

global internal trend, which has a slope of 4.5 and a correlation coefficient of 0.72. Roman 154 

numerals denote the quadrant number. 155 

 Given that internal variability both enhanced Arctic warming and depressed global 156 

warming, it is useful to examine the frequency of these events concurrently. Figure 1 shows the 157 

Arctic versus global mean internal trends for 43 years from all large ensembles over 1850-2047, 158 

indicating that Arctic and global internal trends are positively correlated in model simulations 159 

(r=0.72). While many studies have examined the coupling between global and Arctic 160 

temperature as a response to forced climate change, internal variability is also important to the 161 

coupling of global and Arctic temperature (Screen and Deser, 2019). The thick red line in Fig. 1 162 

shows that the linear fit of Arctic to global internal trends has a slope of 4.5, meaning that an 163 

internally driven change in global SAT is typically amplified by a factor of 4.5 in the Arctic. 164 

This is analogous to Arctic Amplification but operating through multidecadal internal variability 165 

alone. 74% of all simulated 43-year trends are confined to quadrants I and III (top-right and 166 

bottom-left) in Fig. 1, where Arctic and global internal variability have the same sign. Only 26% 167 

of simulations exist in quadrants II and IV (top-left and bottom-right), where the Arctic and 168 

global internal trends have opposing signs. The observationally inferred trends of internal 169 

variability from S2023 sits in quadrant II (top-left). Quadrant II is a sparsely populated region, 170 

and the observational estimate is near the edge of the distribution suggesting that Earth 171 

experienced a rare configuration of internal variability over 1980-2022.  172 
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To gain confidence in the estimate from S2023 shown in Fig. 1, we deployed the 173 

previously trained algorithm used in S2023 to the subset of simulations which are in quadrant II 174 

and occur during 1980-2022. The resulting estimates of the internally driven component of the 175 

Arctic and global SAT trends only exhibit a small bias relative to their actual internal variability 176 

component.  Note that the algorithm in S2023 was trained on cases from all quadrants. With this 177 

small bias, the inferred forced AA is very similar to results of S2023. For example, after 178 

accounting for this bias the inferred forced AA is 3.21, compared to the stated value of 3.03 in 179 

S2023. This indicates that the algorithm used in S2023 to estimate the role of global and Arctic 180 

internal variability can do so accurately in model simulations, even when those simulations occur 181 

with rare configurations of internal variability, including the observed manifestation of i-GCAW. 182 

This provides confidence that the estimated effects of internal variability are accurate.  183 

 The observationally inferred estimate from S2023 suggests that from 1980-2022 the 184 

Earth experienced i-GCAW. However, it does not provide information on the accompanying 185 

spatial pattern of the SAT trends. To investigate the SAT trend pattern associated with i-GCAW, 186 

we select 43-year trends in quadrant II with internally generated global cooling and Arctic 187 

warming magnitudes larger than Global/2 and Arctic/2, respectively (Fig. 1). We note that this 188 

threshold of i-GCAW is less than the observational estimate in Fig. 1 but is a lower limit.  It is 189 

also chosen to make sure there is a sufficient number of samples in the subset. This subset 190 

contains 136 samples out of the original 8470 points in Fig. 1. These i-GCAW cases are thus a 191 

rare configuration of internal variability. These selected simulations show no obvious propensity 192 

for onset between 1850-2047, nor are these cases limited to a small subset of climate models (see 193 

Figure S1 and Table S1). Figure 2 shows the global internal SAT trend pattern averaged over the 194 

136 i-GCAW cases. We repeated this calculation to produce average trend maps for quadrant I 195 

(internal Global Warming and Arctic Warming; i-GWAW), quadrant III (internal Global Cooling 196 

and Arctic Cooling; i-GCAC), and quadrant IV (internal Global Warming Arctic Cooling; i-197 

GWAC), which are provided in Figure S2. 198 
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 199 

Figure 2: The 43-year SAT trend pattern due to internal variability averaged over 136 cases 200 

which have internally driven global cooling and Arctic warming (i-GCAW) magnitudes larger 201 

than Global/2 and Arctic/2 (see Fig. 1), respectively. Hatching represents the regions where over 202 

80% of the cases agree on sign. The domain averaged Arctic and global mean temperature trends 203 

are provided on the top left.  204 

The global trend pattern shown in Fig. 2 is derived entirely from model simulated internal 205 

variability based on simulations exhibiting internally generated global cooling and Arctic 206 

warming. The results suggest that i-GCAW has a preferred internal SAT trend pattern, which is 207 

unique compared to other configurations of internal variability shown in Fig. S2. Notable 208 

warming is featured in the Barents and Kara Sea relative to other locations in the Arctic, while 209 

cooling is evident throughout the tropical Eastern Pacific in addition to continental cooling in 210 

northern South America, central Africa, and parts of central Asia. A region of strong cooling is 211 

also located in the Amundsen Sea, linking tropical cooling of the Eastern Pacific into the 212 

Southern Ocean (Ding and Steig, 2013; Hwang et al., 2017; Stuecker et al., 2017; Dong et al., 213 

2022). Interestingly, many of these features are sufficiently strong that they are imprinted onto 214 

the observed warming pattern (shown in Fig. 3a); namely, enhanced Barents and Kara Sea 215 

warming, Eastern Pacific cooling, and Southern Ocean cooling (and even cooling in continental 216 

Eurasia). Figure S2 shows that the average trend map for i-GWAC (quadrant IV) is essentially 217 

the mirror of i-GCAW. While both i-GCAW and i-GWAC patterns have global features agreed 218 

upon by over 80% of ensemble members (signified by hatching in Fig. 2), the average i-GWAW 219 

and i-GCAC (quadrants I and III) trend maps are focused on the Northern Hemisphere, and do 220 

not share consistent global features (see Fig. S2). Note that the trend pattern in Fig. 2 has a mean 221 

Arctic warming of 0.126 K/dec and global cooling of -0.021 K/dec, which are roughly 15% 222 
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weaker than those from the observational estimates in S2023. Using more stringent criterion of 223 

global cooling and Arctic warming magnitudes larger than 
𝟑

𝟒
𝝈𝑮𝒍𝒐𝒃𝒂𝒍 and 

𝟑

𝟒
𝝈𝑨𝒓𝒄𝒕𝒊𝒄 shows similar 224 

but stronger features (see Figure S3). 225 

 The forced SAT trend pattern over 1980-2022 can be obtained from the multi-model 226 

mean (MMM) from all large ensembles for the same period. This MMM, however, may have 227 

biases due to errors in climate sensitivity and radiative forcings (Tokarska et al., 2020; IPCC 228 

chapter 4, 2021). Here we attempt to minimize the impact of these biases by scaling the MMM 229 

trend pattern with the observationally estimated forced global trend of 0.213 K/dec for 1980-230 

2022 from S2023. A rough estimate of the global internal trend pattern for 1980-2022 can then 231 

be obtained as the difference between observed trends and the scaled MMM trend. Figure 3 232 

shows the SAT trend patterns for 1980-2022 from (A) observations, (B) the scaled MMM, and 233 

(C) the difference between A and B. While scaling gives us more confidence in the magnitude of 234 

the forced trend, it does not change the trend pattern. If the scaled MMM correctly captures the 235 

forced pattern of climate change, then the difference in panel C represents the internal trend 236 

contribution to the observational record. On the other hand, biases in the simulated forced pattern 237 

of warming would produce errors in this estimate of the impact of internal variability.  238 
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 239 

Figure 3: The SAT trend pattern from 1980-2022 in (A) observations, (B) the MMM forced trend 240 

scaled by observationally derived global mean forced trend from S2023, and (C) the difference 241 

between A and B. Observations are the mean over four observational datasets (see Section 2), 242 

and the MMM is the average forced trend from CMIP6 large ensembles scaled so that the global 243 

mean warming is equal to 0.213 K/dec (see text).  244 

Observations show many features in the SAT trends not seen in the CMIP6 MMM. While 245 

the scaled MMM suggests that external forcing should have produced weak warming throughout 246 

the tropical Eastern Pacific and Southern Ocean from 1980-2022, observations exhibit weak 247 

cooling in these regions. The difference panel in Fig. 3C shows Arctic warming and cooling in 248 

the tropical Eastern Pacific that connects to extensive cooling of the Southern Ocean and is 249 

strongest in the Amundsen Sea. Fig. 3C also shows cooling in the northern hemisphere 250 

extratropical continents. Notably, many of the features present in the difference pattern of Fig. 251 
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3C are also seen in the climate model composite of the internally forced signal shown in Fig. 2. 252 

Both figures show warming around the Kara Sea, and cooling throughout the tropical Eastern 253 

Pacific and Southern Ocean. The area weighted spatial correlation between the composite trend 254 

pattern in Fig. 2 and the difference pattern in Fig. 3C is r=0.49, which may be surprising given 255 

that the trend pattern in Fig. 2 is based on model simulated internal variability pre-conditioned 256 

only on i-GCAW. The similarity of the global trend patterns from the two methods that are 257 

constrained by observations in very different ways strongly suggests that the trend pattern shown 258 

in Fig. 3C is significantly impacted by the trend pattern of internal variability in the last few 259 

decades if not all caused by the internal variability.  260 

The analysis shown here suggests that from 1980-2022 internal variability manifested as 261 

i-GCAW, a rare configuration of internal variability in model simulations. This configuration of 262 

internal variability exhibits a unique but robust SAT trend pattern, agreed upon by simulations 263 

from different models and over different time periods. Many of the i-GCAW pattern features are 264 

also visible in the differences between the observations and the scaled MMM, suggesting that the 265 

pattern associated with i-GCAW is imprinted onto the observed SAT trend pattern from 1980-266 

2022. This also suggests that a plausible trend pattern of internal variability can be obtained by 267 

solely restricting simulations based on i-GCAW. We next evaluate the implications of this 268 

finding and attempt to predict the future evolution of internal variability. 269 

3.2 Implications for Future Arctic Amplification 270 

 Fig. 1 suggests that Earth’s recent manifestation of internal variability is rare, implying 271 

that this configuration cannot persist indefinitely. Fig. 2 showed that this i-GCAW has a robust 272 

spatial pattern, with several regions showing strong model agreement. If models also agree on 273 

the SAT evolution after the i-GCAW period considered (i.e., 43 years), it may then be possible to 274 

predict how this pattern affects future SAT changes. In this section, we attempt to use the 275 

simulated i-GCAW cases to predict the future evolution of these patterns and evaluate their 276 

implications for AA.  277 

To do this, we take all 136 cases of i-GCAW used to compose Fig. 2 and evaluate the 278 

SAT trend evolution over the subsequent 20-years after the i-GCAW was identified. These 279 

evolutions of the simulated internal variability are referred to as trajectories and are used to 280 

evaluate the potential evolution from the recent observed instance of i-GCAW. Because we only 281 

use data from 1850-2047, GCAW patterns that are identified after the 1990-2032 period do not 282 

have the full 20-year trajectories available. In these cases, we use the abbreviated trajectory, e.g., 283 

if a i-GCAW case is identified over 2000-2042, we just use the trajectory for the following five 284 

years. Figure 4A shows the predicted SAT trend patterns after extending the i-GCAW 285 

trajectories by 5, 10, 15, and 20 years. Results of Fig. 4A suggest that while cooling trends in the 286 

tropical Eastern Pacific degrade after the first decade, the Amundsen Sea cooling trend remains a 287 

persistent feature with over 80% of trajectories agreeing on this cooling even when trends are 288 

calculated with another 20 years of data. While the trajectories suggest that internally generated 289 

Arctic warming will persist in future trend calculations, this signal loses its significance during 290 

the second decade of projections. Figure S4 shows a recreation of Fig. 4 using 43-year trends at 291 

5, 10, 15, and 20 years after the initial i-GCAW is identified, (i.e., the 43-year window is shifted 292 

by 5, 10, 15, and 20 years to recalculate the role of internal variability). Results of Fig. S4 293 
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indicate that the degradation of significance in the Arctic signal shown in Fig. 4 is due to 294 

internally driven Arctic trends quickly reverting to near-zero.   295 

 296 

Figure 4: (A) Internally generated SAT trends extended by 5, 10, 15, and 20 years after the i-297 

GCAW pattern has been identified. Hatching indicates regions where over 80% of the cases 298 

agree on sign (B) Impact of predicted future configurations of internal variability for Arctic 299 

Amplification (AA). Colored dots show model derived AA values given the forced trend (dashed 300 

line) from S2023. The orange pentagon shows the AA during the 1980-2022 period from 301 

observations. Error bars show the two-sigma confidence interval of future AA using all available 302 

trajectories. The black dashed line shows the estimate of the forced AA ratio (3.03) over 1980-303 

2022 from S2023.  304 

Figure 4B shows the future values of AA based on the trajectories of the i-GCAW. The 305 

observed AA (shown in orange pentagon) during the 1980-2022 period is inflated above the 306 

dashed black line due to internal variability. Based on the mean evolution of the internal trend 307 

pattern associated with i-GCAW in Fig. 4A, future values of AA are shown as colored points in 308 

Fig 4B. Given that each realization of GCAW in model simulations may have different 309 

magnitudes of global-cooling and/or Arctic-warming when identified, all trajectories are 310 

computed relative to their initial magnitudes. While on average, the AA metric tends to relax 311 

toward the forced trend as the length of time used for the AA calculation increases, the model 312 

trajectories indicate that elevated values of AA may persist into the 2040s (England et al., 2015). 313 

Fig. 4B suggests that the rare configuration of internal variability that produced large observed 314 

values of AA will moderate and AA will subside over the next two decades.  315 

4 Discussion and Conclusions 316 

 The observationally inferred trend of internal variability from 1980-2022 suggests global 317 

cooling and Arctic warming. Model simulations infrequently simulate this observationally 318 

derived variability, suggesting that the Earth experienced a rare configuration of internal 319 

variability from 1980 to 2022. To investigate the spatial pattern of SAT trends associated with 320 
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the i-GCAW, large ensemble simulations were used to identify cases with the i-GCAW. The 321 

spatial SAT trend pattern associated with the i-GCAW is unique, spanning the globe with many 322 

robust features, which are distinct from other multi-decadal internal SAT trend patterns (see Fig. 323 

S2). These unique and robust features associated with the i-GCAW are also imprinted on the 324 

observational record, providing strong evidence that the Earth indeed experienced the  i-GCAW 325 

from 1980-2022. 326 

Whether discrepancies between climate models and observations are due to a rare 327 

configuration of internal variability or model biases in the forced response is a crucial issue in 328 

climate science. Of particular importance are the observed cooling trends in the tropical Eastern 329 

Pacific over recent decades. These cooling trends generally disagree with simulations which 330 

predict a warming response (e.g. Seager et al., 2019). Due to the myriad of teleconnections 331 

between this region and higher latitudes (e.g., Trenberth et al., 1998; Baxter et al., 2019), 332 

understanding the causes of this discrepancy is important (e.g., Scaife and Smith, 2018; 333 

Wanatabe et al., 2021; Wills et al., 2022; Lee et al., 2022). Another area where observations 334 

diverge from model predictions is the Southern Ocean. While models predict weak warming (see 335 

CMIP6 MMM in Fig. 3), observations show a distinct cooling trend (Kang et al., 2023b). Many 336 

plausible drivers have been proposed to explain cooling of the Southern Ocean and its possible 337 

connection to the tropical Eastern Pacific, but the relative contribution of different mechanisms is 338 

not fully understood (e.g., Latif et al., 2013; Ferreira et al., 2015; Meehl et al., 2016; Hwang et 339 

al., 2017; Schneider and Deser, 2017; Zhang et al., 2019; Dong et al., 2022; Hartmann et al., 340 

2022; Dong et al., 2023; Luongo et al., 2023; Roach et al., 2023; Kang et al., 2023a). At the same 341 

time, parts of the Arctic have been warming ~7x faster than the global mean over 1980-2022, 342 

which may implicate the role of internally driven sea-ice decline associated with atmospheric 343 

circulation anomalies (e.g., Ding et al., 2014; England et al., 2019; Day et al., 2012; Svendsen et 344 

al., 2021; Isaksen et al., 2022; Roach and Blanchard-Wrigglesworth, 2022). Furthermore, many 345 

studies have indicated the potential connection between Arctic warming and Northern 346 

Hemisphere continental cooling and the role of internal variability (Cohen et al., 2014; Palmer et 347 

al., 2014; Blackport et al., 2019; Fyfe et al., 2019).  Our study suggests that the internal 348 

variability has made an important contribution together to observed Arctic warming, Eastern 349 

Pacific cooling, and Southern Ocean cooling over 1980-2022. 350 

 Another notable result of this study is that the model-simulated internal SAT trend 351 

pattern associated with the i-GCAW has remarkable similarity to the inferred internal trend 352 

pattern by taking the difference between the observed SAT trend and that of the scaled CMIP6 353 

MMM trend (c.f., Fig. 2, and Fig. 3C). These features include many of the aforementioned 354 

discrepancies between observations and CMIP6 simulated warming, namely a warming of the 355 

Kara Sea concurrent with cooling of the tropical Eastern Pacific and Amundsen Sea, and cooling 356 

of parts of central Asia. Importantly, all these features are agreed upon in sign by more than 80% 357 

of the simulations considered. This study is consistent with previous research that indicates that 358 

internal variability has a strong imprint in these regions individually (e.g., Chen and Dai, 2024; 359 

Wanatabe et al., 2021; Zhang et al., 2019) and that internal variability in these regions may even 360 

be linked via atmospheric and oceanic teleconnections (Dong et al., 2022; Ding et al., 2014; 361 

England et al., 2020). However, it is not necessary that all these features be connected through 362 

the same mode of internal variability (Feng et al., 2021). Instead, results here suggest that these 363 

internally driven trend patterns are related to the rare manifestation of the i-GCAW, which is 364 

responsible for the inflation of AA over recent decades. This also does not preclude the role of 365 



manuscript submitted to Geophysical Research Letters 

 

biases in the forced response of models or errors in the historical forcings (Wills et al., 2022; 366 

Dong et al., 2022; Tseng et al., 2023; Espinosa et al., 2024), but provides strong evidence that 367 

internal variability is a significant contributor to the observed trend pattern.  368 

 One noteworthy point is that while the spatial pattern associated with the i-GCAW (Fig. 369 

2) is largely consistent with the difference between observations and the forced response (Fig. 370 

3C), its magnitude is underestimated. This is particularly true in the tropical Eastern Pacific (see 371 

comparison of the i-GCAW composite using different thresholds and Fig. 3C in Fig. S3). This 372 

discrepancy in the magnitude of the simulated internal variability trend associated with the i-373 

GCAW and the difference pattern may be due to biases in the forced response of climate models 374 

(e.g., Seager et al., 2019), biases in the historical forcing exerted to models (e.g., Fasullo et al., 375 

2022), insufficient amplitude of multidecadal internal variability in models (e.g., Laepple et al., 376 

2023), or that other components of internal variability are operating over 1980-2022 that are not 377 

captured by the i-GCAW composite.  378 

If part of this discrepancy between Fig. 2 and Fig. 3C (see Fig. S3) in the tropical Eastern 379 

Pacific is caused by a bias in the modeled forced response, then this would suggest that the 380 

correction of forced response bias has a similar pattern to that of the internal variability in this 381 

region. This possibility might complicate efforts to separate forced and unforced climate 382 

variability, because many disentanglement techniques are dependent on pattern recognition 383 

methodologies (Wills et al. 2020; Po-Chedley et al., 2022). This possibility, however, would not 384 

affect our results because a forced response bias with an overestimation of warming in the 385 

tropical Eastern Pacific but underestimation of warming in the Arctic at the same time is very 386 

unlikely. As previously stated, it is also possible that models do not correctly represent the 387 

magnitude of internal variability at multi-decadal timescales (Laepple and Huybers, 2014; 388 

Parsons et al., 2017; Kravstov et al., 2018; Feng et al., 2021; Laepple et al., 2023; Stout et al., 389 

2023; Espinosa et al 2024). Similarly, extreme events such as the 2022 heatwave in Antarctica 390 

continue to suggest that the observational record is too short in many instances to fully 391 

encapsulate the range of internal variability, and that models may not always simulate the full 392 

extent of real-world natural variability (Blanchard-Wrigglesworth et al., 2023).  393 

 While more research is needed to fully attribute the causes of modeled-versus-observed 394 

differences in the pattern of SAT change, the identified pattern of internal variability and its 395 

similarity to features in the observational record suggests that the Earth did indeed experience an 396 

internally generated global cooling and Arctic warming pattern from 1980-2022. Quantifying the 397 

contribution of internal variability to differences in the simulated and observed pattern of SAT 398 

change is important because without knowing the relative contribution of internal variability 399 

versus biases in the simulated forced response, we are left with significant uncertainties in 400 

decadal climate projections (Hu and Deser, 2013; Deser, 2020; Lehner et al., 2020; Wills et al., 401 

2022). This study shows that the internal trend pattern associated with the i-GCAW can account 402 

for a significant amount of the discrepancy between observed and CMIP6 simulated patterns of 403 

warming from 1980 to 2022. Importantly, this internally generated trend pattern can be obtained 404 

by constraining simulations based only on their internally generated global cooling and Arctic 405 

warming and calls for further studies focused on this rare manifestation of internal variability.  406 

Acknowledgments 407 



manuscript submitted to Geophysical Research Letters 

 

This research was supported by the U.S. Department of Energy (DOE), Office of Science, Office 408 

of Biological and Environmental Research, Regional and Global Model Analysis (RGMA) 409 

program area, as part of the HiLAT-RASM project. This research was also supported by the 410 

NASA FINESST Grant 80NSSC22K1438 and NSF Grant AGS-2202812. Additional funding 411 

was provided by the Calvin Professorship in Atmospheric Sciences. S.P.-C was supported 412 

through the PCMDI Project, which is funded by the RGMA program area of the Office of 413 

Science at DOE. M. Wang is funded with support of the Arctic Research Program of the NOAA 414 

Global Ocean Monitoring and Observing (GOMO) office through the Cooperative Institute for 415 

Climate, Ocean, & Ecosystem Studies (CICOES) under NOAA Cooperative Agreement 416 

NA20OAR4320271, Contribution No 2024-yyyy, and Pacific Marine Environmental Laboratory 417 

Contribution No zzzz. Research at Lawrence Livermore National Laboratory was performed 418 

under the auspices of U.S. DOE Contract DE-AC52-07NA27344. The Pacific Northwest 419 

National Laboratory (PNNL) is operated for DOE by Battelle Memorial Institute under contract 420 

DE-AC05-76RLO1830. We would like to acknowledge high-performance computing support 421 

from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR’s Computational and Information 422 

Systems Laboratory, sponsored by the National Science Foundation, for the analyses presented 423 

in this study and for data management, storage, and preservation. 424 

 425 

Open Research 426 

The data on which this article is based is the same as was used in S2023 and be found at 427 

https://zenodo.org/records/8286633.  428 

 429 

References 430 

Barnes, E. A., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., & Anderson, D. (2019). Viewing 431 

Forced Climate Patterns Through an AI Lens. Geophysical Research Letters, 46(22), 432 

13389–13398. https://doi.org/10.1029/2019GL084944 433 

Baxter, I., Ding, Q., Schweiger, A., L’Heureux, M., Baxter, S., Wang, T., et al. (2019). How 434 

Tropical Pacific Surface Cooling Contributed to Accelerated Sea Ice Melt from 2007 to 435 

2012 as Ice Is Thinned by Anthropogenic Forcing. Journal of Climate, 32(24), 8583–8602. 436 

https://doi.org/10.1175/JCLI-D-18-0783.1 437 

Blackport, R., Screen, J. A., van der Wiel, K., & Bintanja, R. (2019). Minimal influence of 438 

reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nature Climate Change, 439 

9(9), 697–704. https://doi.org/10.1038/s41558-019-0551-4 440 

https://doi.org/10.1029/2019GL084944
https://doi.org/10.1175/JCLI-D-18-0783.1
https://doi.org/10.1038/s41558-019-0551-4


manuscript submitted to Geophysical Research Letters 

 

Blanchard-Wrigglesworth, E., Cox, T., Espinosa, Z. I., & Donohoe, A. (2023). The Largest Ever 441 

Recorded Heatwave—Characteristics and Attribution of the Antarctic Heatwave of March 442 

2022. Geophysical Research Letters, 50(17), e2023GL104910. 443 

https://doi.org/10.1029/2023GL104910 444 

Chylek, P., Folland, C., Klett, J. D., Wang, M., Hengartner, N., Lesins, G., & Dubey, M. K. 445 

(2022). Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 446 

Climate Models. Geophysical Research Letters, 49(13), e2022GL099371. 447 

https://doi.org/10.1029/2022GL099371 448 

Chylek, P., Folland, C. K., Klett, J. D., Wang, M., Lesins, G., & Dubey, M. K. (2023). High 449 

Values of the Arctic Amplification in the Early Decades of the 21st Century: Causes of 450 

Discrepancy by CMIP6 Models Between Observation and Simulation. Journal of 451 

Geophysical Research: Atmospheres, 128(23), e2023JD039269. 452 

https://doi.org/10.1029/2023JD039269 453 

Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., et al. (2014). 454 

Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9), 455 

627–637. https://doi.org/10.1038/ngeo2234 456 

Dai, A., Fyfe, J. C., Xie, S.-P., & Dai, X. (2015). Decadal modulation of global surface 457 

temperature by internal climate variability. Nature Climate Change, 5(6), 555–559. 458 

https://doi.org/10.1038/nclimate2605 459 

Day, J. J., Hargreaves, J. C., Annan, J. D., & Abe-Ouchi, A. (2012). Sources of multi-decadal 460 

variability in Arctic sea ice extent. Environmental Research Letters, 7(3), 034011. 461 

https://doi.org/10.1088/1748-9326/7/3/034011 462 

https://doi.org/10.1029/2023GL104910
https://doi.org/10.1029/2022GL099371
https://doi.org/10.1029/2023JD039269
https://doi.org/10.1038/ngeo2234
https://doi.org/10.1038/nclimate2605
https://doi.org/10.1088/1748-9326/7/3/034011


manuscript submitted to Geophysical Research Letters 

 

Deser, C. (2020). “Certain Uncertainty: The Role of Internal Climate Variability in Projections 463 

of Regional Climate Change and Risk Management.” Earth’s Future, 8(12), 464 

e2020EF001854. https://doi.org/10.1029/2020EF001854 465 

Deser, C., Knutti, R., Solomon, S., & Phillips, A. S. (2012). Communication of the role of 466 

natural variability in future North American climate. Nature Climate Change, 2(11), 775–467 

779. https://doi.org/10.1038/nclimate1562 468 

Deser, C., Phillips, A., Bourdette, V., & Teng, H. (2012). Uncertainty in climate change 469 

projections: the role of internal variability. Climate Dynamics, 38(3), 527–546. 470 

https://doi.org/10.1007/s00382-010-0977-x 471 

Deser, C., Phillips, A. S., Alexander, M. A., & Smoliak, B. V. (2014). Projecting North 472 

American Climate over the Next 50 Years: Uncertainty due to Internal Variability. Journal 473 

of Climate, 27(6), 2271–2296. https://doi.org/10.1175/JCLI-D-13-00451.1 474 

Deser, C., Phillips, A. S., Simpson, I. R., Rosenbloom, N., Coleman, D., Lehner, F., et al. (2020). 475 

Isolating the Evolving Contributions of Anthropogenic Aerosols and Greenhouse Gases: A 476 

New CESM1 Large Ensemble Community Resource. Journal of Climate, 33(18), 7835–477 

7858. https://doi.org/10.1175/JCLI-D-20-0123.1 478 

Ding, Q., & Steig, E. J. (2013). Temperature Change on the Antarctic Peninsula Linked to the 479 

Tropical Pacific. Journal of Climate, 26(19), 7570–7585. https://doi.org/10.1175/JCLI-D-480 

12-00729.1 481 

Ding, Q., Wallace, J. M., Battisti, D. S., Steig, E. J., Gallant, A. J. E., Kim, H.-J., & Geng, L. 482 

(2014). Tropical forcing of the recent rapid Arctic warming in northeastern Canada and 483 

Greenland. Nature, 509(7499), 209–212. https://doi.org/10.1038/nature13260 484 

https://doi.org/10.1029/2020EF001854
https://doi.org/10.1038/nclimate1562
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.1175/JCLI-D-13-00451.1
https://doi.org/10.1175/JCLI-D-20-0123.1
https://doi.org/10.1175/JCLI-D-12-00729.1
https://doi.org/10.1175/JCLI-D-12-00729.1
https://doi.org/10.1038/nature13260


manuscript submitted to Geophysical Research Letters 

 

Ding, Q., Schweiger, A., L’Heureux, M., Steig, E. J., Battisti, D. S., Johnson, N. C., et al. (2019). 485 

Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations. 486 

Nature Geoscience, 12(1), 28–33. https://doi.org/10.1038/s41561-018-0256-8 487 

Dong, Y., Pauling, A. G., Sadai, S., & Armour, K. C. (2022). Antarctic Ice-Sheet Meltwater 488 

Reduces Transient Warming and Climate Sensitivity Through the Sea-Surface Temperature 489 

Pattern Effect. Geophysical Research Letters, 49(24), e2022GL101249. 490 

https://doi.org/10.1029/2022GL101249 491 

England, M., Jahn, A., & Polvani, L. (2019). Nonuniform Contribution of Internal Variability to 492 

Recent Arctic Sea Ice Loss. Journal of Climate, 32(13), 4039–4053. 493 

https://doi.org/10.1175/JCLI-D-18-0864.1 494 

England, M. H., Kajtar, J. B., & Maher, N. (2015). Robust warming projections despite the 495 

recent hiatus. Nature Climate Change, 5(5), 394–396. https://doi.org/10.1038/nclimate2575 496 

England, M. R., Polvani, L. M., & Sun, L. (2020). Robust Arctic warming caused by projected 497 

Antarctic sea ice loss. Environmental Research Letters, 15(10), 104005. 498 

https://doi.org/10.1088/1748-9326/abaada 499 

Fasullo, J. T., Lamarque, J.-F., Hannay, C., Rosenbloom, N., Tilmes, S., DeRepentigny, P., et al. 500 

(2022). Spurious Late Historical-Era Warming in CESM2 Driven by Prescribed Biomass 501 

Burning Emissions. Geophysical Research Letters, 49(2), e2021GL097420. 502 

https://doi.org/10.1029/2021GL097420 503 

Feng, X., Ding, Q., Wu, L., Jones, C., Baxter, I., Tardif, R., et al. (2021). A Multidecadal-Scale 504 

Tropically Driven Global Teleconnection over the Past Millennium and Its Recent 505 

Strengthening. Journal of Climate, 34(7), 2549–2565. https://doi.org/10.1175/JCLI-D-20-506 

0216.1 507 

https://doi.org/10.1038/s41561-018-0256-8
https://doi.org/10.1029/2022GL101249
https://doi.org/10.1175/JCLI-D-18-0864.1
https://doi.org/10.1038/nclimate2575
https://doi.org/10.1088/1748-9326/abaada
https://doi.org/10.1029/2021GL097420
https://doi.org/10.1175/JCLI-D-20-0216.1
https://doi.org/10.1175/JCLI-D-20-0216.1


manuscript submitted to Geophysical Research Letters 

 

Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S., & Plumb, A. (2015). Antarctic Ocean and 508 

Sea Ice Response to Ozone Depletion: A Two-Time-Scale Problem. Journal of Climate, 509 

28(3), 1206–1226. https://doi.org/10.1175/JCLI-D-14-00313.1 510 

Foster, G., & Rahmstorf, S. (2011). Global temperature evolution 1979–2010. Environmental 511 

Research Letters, 6(4), 044022. https://doi.org/10.1088/1748-9326/6/4/044022 512 

Fyfe, J. C. (2019). Midlatitudes unaffected by sea ice loss. Nature Climate Change, 9(9), 649–513 

650. https://doi.org/10.1038/s41558-019-0560-3 514 

Gordon, E. M., Barnes, E. A., & Hurrell, J. W. (2021). Oceanic Harbingers of Pacific Decadal 515 

Oscillation Predictability in CESM2 Detected by Neural Networks. Geophysical Research 516 

Letters, 48(21), e2021GL095392. https://doi.org/10.1029/2021GL095392 517 

Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. M., & Donohoe, A. (2021). Contributions to 518 

Polar Amplification in CMIP5 and CMIP6 Models. Frontiers in Earth Science, 9. Retrieved 519 

from https://www.frontiersin.org/articles/10.3389/feart.2021.710036 520 

Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global Surface Temperature Change. Reviews 521 

of Geophysics, 48(4). https://doi.org/10.1029/2010RG000345 522 

Hartmann, D. L. (2022). The Antarctic ozone hole and the pattern effect on climate sensitivity. 523 

Proceedings of the National Academy of Sciences, 119(35), e2207889119. 524 

https://doi.org/10.1073/pnas.2207889119 525 

Hu, A., & Deser, C. (2013). Uncertainty in future regional sea level rise due to internal climate 526 

variability. Geophysical Research Letters, 40(11), 2768–2772. 527 

https://doi.org/10.1002/grl.50531 528 

https://doi.org/10.1175/JCLI-D-14-00313.1
https://doi.org/10.1088/1748-9326/6/4/044022
https://doi.org/10.1038/s41558-019-0560-3
https://doi.org/10.1029/2021GL095392
https://www.frontiersin.org/articles/10.3389/feart.2021.710036
https://doi.org/10.1029/2010RG000345
https://doi.org/10.1073/pnas.2207889119
https://doi.org/10.1002/grl.50531


manuscript submitted to Geophysical Research Letters 

 

Hwang, Y.-T., Xie, S.-P., Deser, C., & Kang, S. M. (2017). Connecting tropical climate change 529 

with Southern Ocean heat uptake. Geophysical Research Letters, 44(18), 9449–9457. 530 

https://doi.org/10.1002/2017GL074972 531 

Intergovernmental Panel on Climate Change (IPCC) (Ed.). (2023). Future Global Climate: 532 

Scenario-based Projections and Near-term Information. In Climate Change 2021 – The 533 

Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of 534 

the Intergovernmental Panel on Climate Change (pp. 553–672). Cambridge: Cambridge 535 

University Press. https://doi.org/10.1017/9781009157896.006 536 

Isaksen, K., Nordli, Ø., Ivanov, B., Køltzow, M. A. Ø., Aaboe, S., Gjelten, H. M., et al. (2022). 537 

Exceptional warming over the Barents area. Scientific Reports, 12(1), 9371. 538 

https://doi.org/10.1038/s41598-022-13568-5 539 

Kang, S. M., Shin, Y., Kim, H., Xie, S.-P., & Hu, S. (2023). Disentangling the mechanisms of 540 

equatorial Pacific climate change. Science Advances, 9(19), eadf5059. 541 

https://doi.org/10.1126/sciadv.adf5059 542 

Kang, S. M., Yu, Y., Deser, C., Zhang, X., Kang, I.-S., Lee, S.-S., et al. (2023). Global impacts 543 

of recent Southern Ocean cooling. Proceedings of the National Academy of Sciences, 544 

120(30), e2300881120. https://doi.org/10.1073/pnas.2300881120 545 

Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., et al. (2015). The Community 546 

Earth System Model (CESM) Large Ensemble Project: A Community Resource for 547 

Studying Climate Change in the Presence of Internal Climate Variability. Bulletin of the 548 

American Meteorological Society, 96(8), 1333–1349. https://doi.org/10.1175/BAMS-D-13-549 

00255.1 550 

https://doi.org/10.1002/2017GL074972
https://doi.org/10.1017/9781009157896.006
https://doi.org/10.1038/s41598-022-13568-5
https://doi.org/10.1126/sciadv.adf5059
https://doi.org/10.1073/pnas.2300881120
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1175/BAMS-D-13-00255.1


manuscript submitted to Geophysical Research Letters 

 

Kay, Jennifer E., Holland, M. M., & Jahn, A. (2011). Inter-annual to multi-decadal Arctic sea ice 551 

extent trends in a warming world. Geophysical Research Letters, 38(15). 552 

https://doi.org/10.1029/2011GL048008 553 

Kosaka, Y., & Xie, S.-P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface 554 

cooling. Nature, 501(7467), 403–407. https://doi.org/10.1038/nature12534 555 

Kravtsov, S., Grimm, C., & Gu, S. (2018). Global-scale multidecadal variability missing in state-556 

of-the-art climate models. Npj Climate and Atmospheric Science, 1(1), 1–10. 557 

https://doi.org/10.1038/s41612-018-0044-6 558 

Labe, Z. M., & Barnes, E. A. (2022). Predicting Slowdowns in Decadal Climate Warming 559 

Trends With Explainable Neural Networks. Geophysical Research Letters, 49(9), 560 

e2022GL098173. https://doi.org/10.1029/2022GL098173 561 

Laepple, T., & Huybers, P. (2014). Global and regional variability in marine surface 562 

temperatures. Geophysical Research Letters, 41(7), 2528–2534. 563 

https://doi.org/10.1002/2014GL059345 564 

Laepple, T., Ziegler, E., Weitzel, N., Hébert, R., Ellerhoff, B., Schoch, P., et al. (2023). Regional 565 

but not global temperature variability underestimated by climate models at supradecadal 566 

timescales. Nature Geoscience, 16(11), 958–966. https://doi.org/10.1038/s41561-023-567 

01299-9 568 

Latif, M., Martin, T., & Park, W. (2013). Southern Ocean Sector Centennial Climate Variability 569 

and Recent Decadal Trends. Journal of Climate, 26(19), 7767–7782. 570 

https://doi.org/10.1175/JCLI-D-12-00281.1 571 

Lee, S., L’Heureux, M., Wittenberg, A. T., Seager, R., O’Gorman, P. A., & Johnson, N. C. 572 

(2022). On the future zonal contrasts of equatorial Pacific climate: Perspectives from 573 

https://doi.org/10.1029/2011GL048008
https://doi.org/10.1038/nature12534
https://doi.org/10.1038/s41612-018-0044-6
https://doi.org/10.1029/2022GL098173
https://doi.org/10.1002/2014GL059345
https://doi.org/10.1038/s41561-023-01299-9
https://doi.org/10.1038/s41561-023-01299-9
https://doi.org/10.1175/JCLI-D-12-00281.1


manuscript submitted to Geophysical Research Letters 

 

Observations, Simulations, and Theories. Npj Climate and Atmospheric Science, 5(1), 1–15. 574 

https://doi.org/10.1038/s41612-022-00301-2 575 

Lehner, F., & Deser, C. (2023). Origin, importance, and predictive limits of internal climate 576 

variability. Environmental Research: Climate, 2(2), 023001. https://doi.org/10.1088/2752-577 

5295/accf30 578 

Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., et al. (2020). 579 

Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. 580 

Earth System Dynamics, 11(2), 491–508. https://doi.org/10.5194/esd-11-491-2020 581 

Lenssen, N. J. L., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A., Ruedy, R., & Zyss, D. 582 

(2019). Improvements in the GISTEMP Uncertainty Model. Journal of Geophysical 583 

Research: Atmospheres, 124(12), 6307–6326. https://doi.org/10.1029/2018JD029522 584 

Manabe, S., & Wetherald, R. T. (1975). The Effects of Doubling the CO2 Concentration on the 585 

climate of a General Circulation Model. Journal of the Atmospheric Sciences, 32(1), 3–15. 586 

https://doi.org/10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2 587 

Meehl, G. A., Arblaster, J. M., Bitz, C. M., Chung, C. T. Y., & Teng, H. (2016). Antarctic sea-588 

ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. 589 

Nature Geoscience, 9(8), 590–595. https://doi.org/10.1038/ngeo2751 590 

Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E., Killick, R. E., et al. (2021). 591 

An Updated Assessment of Near-Surface Temperature Change From 1850: The HadCRUT5 592 

Data Set. Journal of Geophysical Research: Atmospheres, 126(3), e2019JD032361. 593 

https://doi.org/10.1029/2019JD032361 594 

Palmer, T. (2014). Record-breaking winters and global climate change. Science, 344(6186), 803–595 

804. https://doi.org/10.1126/science.1255147 596 

https://doi.org/10.1038/s41612-022-00301-2
https://doi.org/10.1088/2752-5295/accf30
https://doi.org/10.1088/2752-5295/accf30
https://doi.org/10.5194/esd-11-491-2020
https://doi.org/10.1029/2018JD029522
https://doi.org/10.1175/1520-0469(1975)032%3c0003:TEODTC%3e2.0.CO;2
https://doi.org/10.1038/ngeo2751
https://doi.org/10.1029/2019JD032361
https://doi.org/10.1126/science.1255147


manuscript submitted to Geophysical Research Letters 

 

Parsons, L. A., Loope, G. R., Overpeck, J. T., Ault, T. R., Stouffer, R., & Cole, J. E. (2017). 597 

Temperature and Precipitation Variance in CMIP5 Simulations and Paleoclimate Records of 598 

the Last Millennium. Journal of Climate, 30(22), 8885–8912. https://doi.org/10.1175/JCLI-599 

D-16-0863.1 600 

Po-Chedley, S., Fasullo, J. T., Siler, N., Labe, Z. M., Barnes, E. A., Bonfils, C. J. W., & Santer, 601 

B. D. (2022). Internal variability and forcing influence model–satellite differences in the 602 

rate of tropical tropospheric warming. Proceedings of the National Academy of Sciences, 603 

119(47), e2209431119. https://doi.org/10.1073/pnas.2209431119 604 

Rader, J. K., Barnes, E. A., Ebert-Uphoff, I., & Anderson, C. (2022). Detection of Forced 605 

Change Within Combined Climate Fields Using Explainable Neural Networks. Journal of 606 

Advances in Modeling Earth Systems, 14(7), e2021MS002941. 607 

https://doi.org/10.1029/2021MS002941 608 

Räisänen, J. (2021). Effect of atmospheric circulation on surface air temperature trends in years 609 

1979–2018. Climate Dynamics, 56(7), 2303–2320. https://doi.org/10.1007/s00382-020-610 

05590-y 611 

Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., et 612 

al. (2022). The Arctic has warmed nearly four times faster than the globe since 1979. 613 

Communications Earth & Environment, 3(1), 1–10. https://doi.org/10.1038/s43247-022-614 

00498-3 615 

Roach, L. A., & Blanchard-Wrigglesworth, E. (2022). Observed Winds Crucial for September 616 

Arctic Sea Ice Loss. Geophysical Research Letters, 49(6), e2022GL097884. 617 

https://doi.org/10.1029/2022GL097884 618 

https://doi.org/10.1175/JCLI-D-16-0863.1
https://doi.org/10.1175/JCLI-D-16-0863.1
https://doi.org/10.1073/pnas.2209431119
https://doi.org/10.1029/2021MS002941
https://doi.org/10.1007/s00382-020-05590-y
https://doi.org/10.1007/s00382-020-05590-y
https://doi.org/10.1038/s43247-022-00498-3
https://doi.org/10.1038/s43247-022-00498-3
https://doi.org/10.1029/2022GL097884


manuscript submitted to Geophysical Research Letters 

 

Roach, Lettie A., Mankoff, K. D., Romanou, A., Blanchard-Wrigglesworth, E., Haine, T. W. N., 619 

& Schmidt, Gavin. A. (2023). Winds and Meltwater Together Lead to Southern Ocean 620 

Surface Cooling and Sea Ice Expansion. Geophysical Research Letters, 50(24), 621 

e2023GL105948. https://doi.org/10.1029/2023GL105948 622 

Rohde, R. A., & Hausfather, Z. (2020). The Berkeley Earth Land/Ocean Temperature Record. 623 

Earth System Science Data, 12(4), 3469–3479. https://doi.org/10.5194/essd-12-3469-2020 624 

Rosenblum, E., & Eisenman, I. (2017). Sea Ice Trends in Climate Models Only Accurate in Runs 625 

with Biased Global Warming. Journal of Climate, 30(16), 6265–6278. 626 

https://doi.org/10.1175/JCLI-D-16-0455.1 627 

Scaife, A. A., & Smith, D. (2018). A signal-to-noise paradox in climate science. Npj Climate and 628 

Atmospheric Science, 1(1), 1–8. https://doi.org/10.1038/s41612-018-0038-4 629 

Schlesinger, M. E., & Ramankutty, N. (1994). An oscillation in the global climate system of 630 

period 65–70 years. Nature, 367(6465), 723–726. https://doi.org/10.1038/367723a0 631 

Schneider, D. P., & Deser, C. (2018). Tropically driven and externally forced patterns of 632 

Antarctic sea ice change: reconciling observed and modeled trends. Climate Dynamics, 633 

50(11), 4599–4618. https://doi.org/10.1007/s00382-017-3893-5 634 

Screen, J. A., & Deser, C. (2019). Pacific Ocean Variability Influences the Time of Emergence 635 

of a Seasonally Ice-Free Arctic Ocean. Geophysical Research Letters, 46(4), 2222–2231. 636 

https://doi.org/10.1029/2018GL081393 637 

Seager, R., Cane, M., Henderson, N., Lee, D.-E., Abernathey, R., & Zhang, H. (2019). 638 

Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising 639 

greenhouse gases. Nature Climate Change, 9(7), 517–522. https://doi.org/10.1038/s41558-640 

019-0505-x 641 

https://doi.org/10.1029/2023GL105948
https://doi.org/10.5194/essd-12-3469-2020
https://doi.org/10.1175/JCLI-D-16-0455.1
https://doi.org/10.1038/s41612-018-0038-4
https://doi.org/10.1038/367723a0
https://doi.org/10.1007/s00382-017-3893-5
https://doi.org/10.1029/2018GL081393
https://doi.org/10.1038/s41558-019-0505-x
https://doi.org/10.1038/s41558-019-0505-x


manuscript submitted to Geophysical Research Letters 

 

Stout, R. C., Proistosescu, C., & Roe, G. (2023). Fingerprinting Low-Frequency Last Millennium 642 

Temperature Variability in Forced and Unforced Climate Models. Journal of Climate, 643 

36(20), 7005–7023. https://doi.org/10.1175/JCLI-D-22-0810.1 644 

Stuecker, M. F., Bitz, C. M., & Armour, K. C. (2017). Conditions leading to the unprecedented 645 

low Antarctic sea ice extent during the 2016 austral spring season. Geophysical Research 646 

Letters, 44(17), 9008–9019. https://doi.org/10.1002/2017GL074691 647 

Svendsen, L., Keenlyside, N., Muilwijk, M., Bethke, I., Omrani, N.-E., & Gao, Y. (2021). 648 

Pacific contribution to decadal surface temperature trends in the Arctic during the twentieth 649 

century. Climate Dynamics, 57(11), 3223–3243. https://doi.org/10.1007/s00382-021-05868-650 

9 651 

Sweeney, A. J., Fu, Q., Po-Chedley, S., Wang, H., & Wang, M. (2023). Internal Variability 652 

Increased Arctic Amplification During 1980–2022. Geophysical Research Letters, 50(24), 653 

e2023GL106060. https://doi.org/10.1029/2023GL106060 654 

Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F., & Knutti, R. 655 

(2020). Past warming trend constrains future warming in CMIP6 models. Science Advances, 656 

6(12), eaaz9549. https://doi.org/10.1126/sciadv.aaz9549 657 

Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N.-C., & Ropelewski, C. 658 

(1998). Progress during TOGA in understanding and modeling global teleconnections 659 

associated with tropical sea surface temperatures. Journal of Geophysical Research: 660 

Oceans, 103(C7), 14291–14324. https://doi.org/10.1029/97JC01444 661 

Tseng, H.-Y., Hwang, Y.-T., Xie, S.-P., Tseng, Y.-H., Kang, S. M., Luongo, M. T., & Eisenman, 662 

I. (2023). Fast and Slow Responses of the Tropical Pacific to Radiative Forcing in Northern 663 

https://doi.org/10.1175/JCLI-D-22-0810.1
https://doi.org/10.1002/2017GL074691
https://doi.org/10.1007/s00382-021-05868-9
https://doi.org/10.1007/s00382-021-05868-9
https://doi.org/10.1029/2023GL106060
https://doi.org/10.1126/sciadv.aaz9549
https://doi.org/10.1029/97JC01444


manuscript submitted to Geophysical Research Letters 

 

High Latitudes. Journal of Climate, 36(16), 5337–5349. https://doi.org/10.1175/JCLI-D-22-664 

0622.1 665 

Watanabe, M., Dufresne, J.-L., Kosaka, Y., Mauritsen, T., & Tatebe, H. (2021). Enhanced 666 

warming constrained by past trends in equatorial Pacific sea surface temperature gradient. 667 

Nature Climate Change, 11(1), 33–37. https://doi.org/10.1038/s41558-020-00933-3 668 

Wills, R. C. J., Battisti, D. S., Armour, K. C., Schneider, T., & Deser, C. (2020). Pattern 669 

Recognition Methods to Separate Forced Responses from Internal Variability in Climate 670 

Model Ensembles and Observations. Journal of Climate, 33(20), 8693–8719. 671 

https://doi.org/10.1175/JCLI-D-19-0855.1 672 

Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C., & Battisti, D. S. (2022). Systematic 673 

Climate Model Biases in the Large-Scale Patterns of Recent Sea-Surface Temperature and 674 

Sea-Level Pressure Change. Geophysical Research Letters, 49(17), e2022GL100011. 675 

https://doi.org/10.1029/2022GL100011 676 

Xie, S.-P. (2020). Ocean Warming Pattern Effect On Global And Regional Climate Change. 677 

AGU Advances, 1(1), e2019AV000130. https://doi.org/10.1029/2019AV000130 678 

Xie, S.-P., & Kosaka, Y. (2017). What Caused the Global Surface Warming Hiatus of 1998–679 

2013? Current Climate Change Reports, 3(2), 128–140. https://doi.org/10.1007/s40641-680 

017-0063-0 681 

Ye, K., & Messori, G. (2021). Inter-model spread in the wintertime Arctic amplification in the 682 

CMIP6 models and the important role of internal climate variability. Global and Planetary 683 

Change, 204, 103543. https://doi.org/10.1016/j.gloplacha.2021.103543 684 

Zhang, J. H. L., B. Huang, M. J. Menne, X. Yin, A. Sánchez-Lugo, B. E. Gleason, Russell Vose, 685 

D. Arndt, J. J. Rennie, C. N. (2019, July 19). Updated Temperature Data Give a Sharper 686 

https://doi.org/10.1175/JCLI-D-22-0622.1
https://doi.org/10.1175/JCLI-D-22-0622.1
https://doi.org/10.1038/s41558-020-00933-3
https://doi.org/10.1175/JCLI-D-19-0855.1
https://doi.org/10.1029/2022GL100011
https://doi.org/10.1029/2019AV000130
https://doi.org/10.1007/s40641-017-0063-0
https://doi.org/10.1007/s40641-017-0063-0
https://doi.org/10.1016/j.gloplacha.2021.103543


manuscript submitted to Geophysical Research Letters 

 

View of Climate Trends. Retrieved May 30, 2023, from http://eos.org/science-687 

updates/updated-temperature-data-give-a-sharper-view-of-climate-trends 688 

Zhang, L., Delworth, T. L., Cooke, W., & Yang, X. (2019). Natural variability of Southern 689 

Ocean convection as a driver of observed climate trends. Nature Climate Change, 9(1), 59–690 

65. https://doi.org/10.1038/s41558-018-0350-3 691 

 692 

http://eos.org/science-updates/updated-temperature-data-give-a-sharper-view-of-climate-trends
http://eos.org/science-updates/updated-temperature-data-give-a-sharper-view-of-climate-trends
https://doi.org/10.1038/s41558-018-0350-3

