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Abstract

The representation of turbulent fluxes during oceanic convective events is important to capture the evolution of the oceanic

mixed layer. To improve the accuracy of turbulent fluxes, we examine the possibility of adding a non-gradient component

in their expression in addition to the usual downgradient part. To do so, we extend the $k-\varepsilon$ algebraic second-

moment closure by relaxing the assumption on the equilibrium of the temperature variance $\overline{\theta’ˆ2}$. With this

additional transport equation for the temperature variance, we obtain a $k - \varepsilon - \overline{\theta’ˆ2}$ model (the “$k

\varepsilon t$” model) which includes a non-gradient term for the temperature flux. We validate this new model against Large

Eddy Simulations (LES) in both wind-forced and buoyancy-driven regimes. In both cases, we find that the vertical profile of

temperature is well captured by the $k \varepsilon t$ model. Particularly, for the buoyancy-driven regime, the non-gradient

term increases the portion of the mixed layer that is stably stratified. This is an improvement since this portion is too small

with the $k - \varepsilon$ parameterization. Finally, a comparison of the non-gradient term with the KPP non-local term gives

insights for refining the KPP’s ad hoc shape polynomial.
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Abstract14

The representation of turbulent fluxes during oceanic convective events is impor-15

tant to capture the evolution of the oceanic mixed layer. To improve the accuracy of tur-16

bulent fluxes, we examine the possibility of adding a non-gradient component in their17

expression in addition to the usual downgradient part. To do so, we extend the k − ε18

algebraic second-moment closure by relaxing the assumption on the equilibrium of the19

temperature variance θ′2. With this additional transport equation for the temperature20

variance, we obtain a k−ε−θ′2 model (the ”kεt” model) which includes a non-gradient21

term for the temperature flux. We validate this new model against Large Eddy Simu-22

lations (LES) in both wind-forced and buoyancy-driven regimes. In both cases, we find23

that the vertical profile of temperature is well captured by the kεt model. Particularly,24

for the buoyancy-driven regime, the non-gradient term increases the portion of the mixed25

layer which is stably stratified. This is an improvement since this portion is too small26

with the k−ε parameterization. Finally, comparison of the non-gradient term with the27

KPP non-local term gives insights for refining the KPP’s ad hoc shape polynomial.28

Plain Language Summary29

In the ocean, vertical mixing of water occurs when cold air temperatures create dense30

cold water at the surface that tends to sink in the ocean or when a strong wind induces31

turbulence at the ocean surface. In numerical models, the classic approach to represent32

this vertical mixing is to consider that it is done entirely by diffusion. This means that33

the heat always goes from the warm water to the cold water, i.e. in the opposite direc-34

tion of the gradient of the temperature. However, during intense events called ”convec-35

tion”, some cold water parcels created at the top of the ocean can have enough thermal36

inertia and velocity to flow against the direction of the mean temperature gradient. This37

kind of phenomenon is often referred to coherent eddies or non-local turbulence. In this38

article, we perform an analytical derivation to give a mathematical expression of the im-39

pact of non-local mixing. We then compare our new model with more realistic three-dimensional40

models of convection and conclude that the new term derived here is important to re-41

produce the vertical profile of temperature in the ocean.42
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1 Introduction43

In the realm of climate modeling, the oceanic mixed layer plays a critical role be-44

cause it is responsible for regulating the oceanic heat uptake and carbon storage. Through-45

out much of the year, the mixed layer operates as a dynamic buffer, intimately interact-46

ing with the atmosphere. However, it is in late winter that the true importance of this47

layer becomes evident. In late winter, the mixed layer is deepest and direct contact is48

established with the deep ocean: it is during this period that the ocean effectively stores49

heat and CO2 (a mechanism sometimes pictured as Stommel’s demon, see Luyten et al.,50

1983; Williams et al., 1995). Accurately representing the mixed layer is thus crucial be-51

cause it directly affects our ability to make accurate predictions about future climate pat-52

terns (Treguier et al., 2023).53

The depth of the mixed layer changes in response to various factors: it deepens when54

turbulent mixing is triggered by the mechanical effect of the wind and/or waves; or trig-55

gered by buoyancy effects: heat flux (cooling) and freshwater flux (evaporation, sea-ice56

formation). Conversely, the mixed layer becomes shallower typically during calm weather57

where there is less turbulence and restratifying mixed layer instabilities can develop, or58

when there is a stabilizing buoyancy flux due to warming (e.g. sunny condition) and/or59

freshwater input (e.g. precipitation, sea-ice melt, or river discharge). This restratifica-60

tion allows the surface layer to separate from the denser, deeper water (Stull, 1988). The61

explicit representation of the small-scale turbulence causing the mixing occurring in the62

mixed layer is of course impossible in climate models where the horizontal grid is often63

on the order of tens of kilometers. Instead, the ocean modeling community has devel-64

oped parameterizations whose goal is to represent the mean effect of the turbulent fluc-65

tuations (Gaspar et al., 1990; Large et al., 1994; Burchard & Bolding, 2001; Umlauf &66

Burchard, 2003; Fox-Kemper et al., 2008; Reichl & Hallberg, 2018). The main purpose67

of a mixed layer parameterization is to propose a closure for the turbulent vertical fluxes68

w′x′, where w′ is the turbulent vertical velocity, x′ the turbulent fluctuation of a prop-69

erty x (momentum, temperature, salinity, phytoplankton, etc...) and the overline denotes70

the ensemble averaging over small-scale fluctuations (see Stull, 1988). These turbulent71

fluxes, and all the other covariances x′y′, are called the second-order moments. The tra-72

ditional approach to close this problem consists of expressing these turbulent fluxes as73

a function of the vertical gradient of the mean property X = x (i.e. a downgradient74

parameterization), as shown here for the temperature75

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

w′θ′ = −Kt∂zΘ , (1)

with Kt being an eddy diffusivity coefficient. Among all the possibilities to compute Kt76

we would like to emphasize the Generic Length Scale (GLS) approach (Umlauf & Bur-77

chard, 2003) and more precisely the k−ε closure (Burchard & Bolding, 2001). This clo-78

sure consists in deriving two equations: one for the evolution of turbulent kinetic energy79

k, and one for dissipation ε. The downgradient formulation (1) also results from more80

complex algebraic second-moment closures even if it is not assumed a priori (Burchard81

& Baumert, 1995). The eddy diffusivity is obtained analytically and is a function of tur-82

bulent kinetic energy, dissipation, buoyancy frequency, and shear frequency. While this83

eddy diffusivity approach has been successfully applied in the oceanic and atmospheric84

modeling communities, it has also been quickly recognized that the shape of the tem-85

perature profile during a convective event is not well captured by this closure. In fact,86

Deardorff (1972) was among the first to realize that after a convective event, the strat-87

ification profile in the mixed layer is not neutral as one would expect for a perfectly well-88

mixed layer but is instead slightly stable. To illustrate this observation, we plot in Fig-89

ure 1.a the typical shape of a normalized temperature profile in the mixed layer from a90

numerical model that explicitly resolves convection (see Mironov et al. (2000); details91

about the normalization are provided henceforth; we only wish to focus here on the shape92

of the temperature profile). This profile can be decomposed into two well-defined zones.93

Just below the air-sea interface, there is an unstable zone with cold water above warmer94

water (∂zΘ < 0). Such layer is sometimes called the thermal layer (Lazier, 2001) and95

we define it here as the layer between the surface and the depth ht at which ∂zΘ = 0.96

Below that depth ht, we find the convective layer ; a slightly stable layer that extends97

until the base of the mixed layer hm. Both layers form the mixed layer. The position of98

ht has been documented to be near z = −0.4hm (see Zhou et al., 2018) such that more99

than half of the mixed layer is stably stratified. The presence of such stable stratifica-100

tion in the convective layer has been attributed to downward propagating plumes which101

remain coherent during their descent and deposit their negative buoyancy anomaly at102

their neutral level, thus creating a stable stratification (see Arakawa and Schubert (1974)103

or Emanuel (1991) for the atmospheric scenario).104

Several options have emerged in the literature to reproduce this vertical temper-105

ature profile with a stable stratification. The atmospheric community has favored the106

–4–
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a) b)

Figure 1. Normalized profile from LES data of Mironov et al. (2000) of a) the temperature

and b) the vertical turbulent temperature flux. The depth is normalized by the mixed layer

depth hm, defined here as the minimum of the temperature flux. The temperature flux is normal-

ized by its surface value w′θ′|0. The temperature is normalized in (Θ−Θmax) /Θ
∗ with Θmax the

maximum of the temperature over the vertical and Θ∗ = w′θ′|0/w∗ a scaling of the temperature,

with w∗ = (w′θ′|0 hm)1/3 a scaling of the velocity of the convective thermals (Willis & Deardorff,

1974; Marshall & Schott, 1999). Red dashed lines highlight the location ht of the zero of the

gradient ∂zΘ and the location hf of the zero of the temperature flux.
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use of a mass flux parameterization which simulates the vertical movement of air parcels107

within convective clouds. It represents the ascent and descent of parcels, which trans-108

port heat, moisture, and other properties. These mass flux parameterizations have re-109

cently been introduced in ocean models (Giordani et al., 2020; Garanaik et al., 2024).110

Another, perhaps more ancient, approach taken by Large et al. (1994) was to add a pos-111

itive non-gradient term Γ in the parameterization of the flux in Equation (1): (see also112

Troen and Mahrt (1986); or Burchard and Petersen (1999) where the problem of miss-113

ing non-gradient fluxes in downgradient parameterization is stated),114

w′θ′ = −Kt∂zΘ + Γ. (2)

Γ being positive, it represents a positive turbulent temperature flux, i.e. a flux that fol-115

lows the buoyancy effect (cold going down and hot going up). Γ can thus be viewed as116

representing coherent structures (”non-local eddies”, ”coherent thermals”) that are sub-117

jected to the buoyancy force. Particularly, we see in equation 2 that Γ allows to keep a118

positive turbulent temperature flux in situations of neutral (∂zΘ = 0) or slightly sta-119

ble (∂zΘ > 0) temperature profiles. In other words, this means that, in stably-stratified120

conditions, coherent structures can be strong enough to counter the downgradient flux121

that acts in a counter-buoyancy direction. Note that this term was often written w′θ′ =122

−Kt(∂zΘ − γ) with γ = Γ/Kt (e.g. Deardorff, 1972; Large et al., 1994). In this for-123

mulation, γ corresponds to the maximal stable stratification where a positive turbulent124

temperature flux can be maintained even if the downgradient flux generates a counter-125

buoyancy effect. In Large et al. (1994), Γ was defined with some constraints: to be zero126

at the surface and at the base of the mixed layer such that it is merely a redistribution127

of heat. The magnitude and the exact shape of this term were however chosen in a rel-128

atively ad hoc way to respect some empirical rules of convection.129

The term Γ was often referred in the literature as a ”non-local” term (Large et al.,130

1994; Ghannam et al., 2017) or a countergradient term (Deardorff, 1972; Troen & Mahrt,131

1986; Gibbs et al., 2011). As we mentioned before, denomination ”non-local” refers to132

the fact that it is supposed to represent non-local eddies (coherent thermals). However133

Zhou et al. (2018) argued that this often-implied association of the non-gradient term134

to the non-local eddies is partially wrong. ”Non-local” can also indicate that the value135

of this term at a specific depth does not depend exclusively on properties evaluated at136

–6–
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this depth. For example, in KPP, this term depends on the surface heat flux and on the137

total mixed layer thickness. The other used denomination, ”countergradient”, refers to138

the fact that, in the lower part of the mixed layer which is stable, this term acts with139

an opposite sign compared to the mean gradient. However, in the upper part of the mixed140

layer which is unstable, the denomination ”countergradient” is very unsettling since this141

term acts as if it were a downgradient term. For these reasons, we will call this term ”non-142

gradient”, a more neutral denomination.143

A key aspect of the addition of the non-gradient term is to relax the downgradi-144

ent dependence and particularly the constraint that the depth at which w′θ′ vanishes145

is equal to the depth at which the gradient of the temperature profile vanishes (see Eq. 1).146

To better understand why this matters, we plot in Figure 1.b the vertical turbulent heat147

flux w′θ′ obtained in the same numerical model as presented before (Mironov et al., 2000).148

In this figure, we recover the traditional form of a linear decrease from the surface value149

(which corresponds to the magnitude of the surface flux) to a cancellation near the bot-150

tom of the mixed layer, which has been observed and described in several places (e.g.151

Large et al., 1994; Burchard & Bolding, 2001; Van Roekel et al., 2018). The exact depth152

at which the heat flux vanishes depends on the surface boundary conditions (wind and153

heat fluxes) but it has been documented to be close to hf = −0.8hm at least in the free154

convection scenario (Garcia & Mellado, 2014). There is thus an obvious discrepancy be-155

tween ht = −0.4hm and hf = −0.8hm such that Equation (1) cannot hold in most of156

the mixed layer and the addition of an extra term in the definition of the flux is phys-157

ically relevant. Even if there is a consensus on the need to add a non-gradient compo-158

nent in the definition of the flux, the exact formulation of this flux remains a matter of159

debate. To develop a framework that is accurate, robust, and consistent with existing160

parameterizations, we have opted to focus on extending the k − ε parameterization.161

We first perform an analytical derivation of the non-gradient term. Since Deardorff162

(1972) and Cheng et al. (2020), we know that the non-gradient term is somehow related163

to the small-scale temperature variance θ′2. We will therefore derive a second-moment164

closure that uses a full transport equation for the temperature variance θ′2, in addition165

to the second-moment transport equations for k and ε, thus extending the k−ε model166

to a k − ε − θ′2 model (henceforth called the ”kεt” model). In this model, we get an167

analytical expression of a non-gradient term that shares several properties with the KPP168

non-local term: it is positive, and vanishes at the surface and at the bottom of the mixed169

–7–
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layer. Last, we test the numerical implementation of kεt against Large Eddy Simulations170

(LES) and further compare its results to the predictions of a standard k−ε model and171

KPP simulations.172

2 Derivation and Implementation of the kεt Parameterization173

This section introduces the second-order moments equations. We recall the hypothe-174

ses made in the GLS model to solve this system of equations. Then, we explain how we175

derive the kεt parameterization in the same formalism.176

2.1 Formalism and Second-Order Moments Equations177

The Reynolds Averaged Navier Stokes (RANS) equations used in ocean models are178

written for the mean velocities U = (U, V,W ) and the mean temperature Θ. As in the179

original derivation of the k−ε model, we consider here only one active tracer (temper-180

ature) that enters the equation of state. The RANS equations include the effect of tur-181

bulent fluctuations through the second-order moments u′
iu

′
j and u′

iθ
′. To close the sys-182

tem, we need to provide equations for these moments. We focus here on the procedure183

derived in Burchard and Bolding (2001). After adopting their closure assumptions for184

non-closed terms, and neglecting the rotational and viscous effects, the equations of second-185

order moments are186

∂tu′
iu

′
j + ∂l(Ulu′

iu
′
j + u′

iu
′
ju

′
l) =− c1

ε

k
(u′

iu
′
j −

2

3
δijk)

+ Pij − c2(Pij −
2

3
δijP )

+Bij − c3(Bij −
2

3
δijB)

− c4kSij

− c5Zij

− 2

3
δijε,

(3)

∂tu′
iθ

′ + ∂j(Uju′
iθ

′ + u′
iu

′
jθ

′) =− c1T
ε

k
u′
iθ

′

− (1− c2T )u′
jθ

′ ∂jUi − u′
iu

′
j ∂jΘ

+ (1− c3T )βi θ′2

+ c4T u′
jθ

′ Vij ,

(4)
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∂tθ′2 + ∂j(Ujθ′2 + u′
jθ

′2) = −2u′
jθ

′ ∂jΘ− 2
1

cT

ε

k
θ′2, (5)

with187

• Pij = −∂lUi u′
lu

′
j − ∂lUj u′

lu
′
i: Production/destruction of u′

iu
′
j by the shear188

• Bij = βi u′
jθ

′ + βj u′
iθ

′: Production of u′
iu

′
j by the buoyancy189

• Sij =
1
2 (∂iUj + ∂jUi): Shear tensor190

• Vij =
1
2 (∂iUj − ∂jUi): Vorticity tensor191

• Zij = Vil(u′
lu

′
j − 2

3δljk) + Vjl(u′
lu

′
i − 2

3δlik): Symmetric tensor associated to the192

vorticity193

• k = 1
2 (u

′2 + v′2 + w′2) : Turbulent Kinetic Energy (TKE)194

• P = 1
2Pii: Production of TKE by the shear195

• B = 1
2Bii: Production/destruction of TKE by the buoyancy196

• ε: Dissipation of TKE197

Further definitions are δij the Kronecker delta, β = (0, 0, αg), α the thermal ex-198

pansion coefficient and g the gravitational acceleration. In the equations, the Einstein199

summation convention is adopted.200

Coefficients c1, c2, c3, c4, c5 are empirical coefficients for the parameterization of the201

pressure-velocity correlation tensor Πij = u′
i∂jp+ u′

j∂ip, coefficients c1T , c2T , c3T , c4T202

are for the parameterization of the pressure-temperature correlations Πθ
i = θ′∂ip, and203

cT for the parameterization of the temperature variance dissipation. Further details about204

these parameterizations can be found in Canuto et al. (2001). We report the values of205

these coefficients in Table 1. These values are the ones of Canuto et al. (2001) model A,206

converted into the notations used here (it is the same as the values reported in Table 1207

of Burchard and Bolding (2001) except for minor typos on c3 and c4 that have been iden-208

tified. Exact formulations of these coefficients are given in Appendix B).209

We are now going to explain the classic procedure used in the GLS models for solv-210

ing the system, where the new model differs and what are the consequences.211

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Table 1. Values of the coefficients appearing in the second-order moment equations

c1 c2 c3 c4 c5 c1T c2T c3T c4T cT

2.5 0.984 0.5 0.512 0.416 5.95 0.6 0.33 0.4 1.44

2.2 GLS Procedure212

The GLS procedure is as follows. Firstly, we consider the boundary layer approx-213

imation where the vertical scale is much less than the horizontal scale. Horizontal gra-214

dients are then neglected in comparison to the vertical gradients. A direct consequence215

is the simplification of the continuity equation in ∂zW = 0. The resulting expressions216

of the tensors Pij , Bij , Sij , Vij and Zij are given in Appendix C.217

Secondly, we consider that the moments u′
iθ

′ and θ′2 are in local equilibrium, mean-218

ing that the sum of the time variations, the advective transports and the turbulent trans-219

ports of these moments is zero (i.e. the left-hand sides of equations (4) and (5) are zero).220

Concerning the moments u′
iu

′
j , the trick is to not make this assumption directly for u′

iu
′
j221

but rather to the anisotropic part of these moments u′
iu

′
j−2/3 δijk to keep the time vari-222

ation and the transports of the TKE to be non-zero. These assumptions correspond to223

the level 2 1
2 in the hierarchy of models proposed by Mellor and Yamada (1982). This hi-224

erarchy has been derived with scaling arguments based on the level of anisotropy of ev-225

ery term. The scaling at level 3 results naturally in neglecting transports and time vari-226

ations for u′
iu

′
j − 2/3 δijk and u′

iθ
′. However, neglecting these terms for the θ′2 equa-227

tion is not justified by the scaling process and is much more an ad hoc practical hypoth-228

esis that results in obtaining this so-called level 2 1
2 in which the system of equations is229

now algebraic. Indeed, we obtain the following set of equations230

0 = −c1
ε

k
(u′

iu
′
j−

2

3
δijk)+(1−c2)(Pij−

2

3
δijP )+(1−c3)(Bij−

2

3
δijB)−c4kSij−c5Zij , (6)

0 = −c1T
ε

k
u′
iθ

′ − (1− c2T )u′
jθ

′ ∂jUi − u′
iu

′
j ∂jΘ+ (1− c3T )βi θ′2 + c4T u′

jθ
′ Vij , (7)

0 = −2u′
jθ

′ ∂jΘ− 2

cT

ε

k
θ′2, (8)

–10–
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and, if we assume that k and ε are known, we have a linear system of 10 equations with231

10 unknowns : (u′2, v′2, w′2, u′v′, u′w′, v′w′, u′θ′, v′θ′, w′θ′, θ′2). For clarity, these 10232

equations are written explicitly in Appendix D. We solved this system thanks to the sym-233

bolic calculus software Mathematica and we confirmed the expressions obtained by Burchard234

and Bolding (2001):235

u′w′ = −cµ
k2

ε
∂zU, (9)

v′w′ = −cµ
k2

ε
∂zV, (10)

w′θ′ = −c′µ
k2

ε
∂zΘ, (11)

which reflect downgradient fluxes with an eddy viscosity Km = cµ
k2

ε and an eddy dif-236

fusivity Kt = c′µ
k2

ε . The dimensionless functions cµ and c′µ are the so-called ”stabil-237

ity functions” and can be expressed in the following forms238

cµ =
n0 + n1αN + n2αM

d0 + d1αN + d2αM + d3αNαM + d4α2
N + d5α2

M

, (12)

c′µ =
n0T + n1TαN + n2TαM

d0 + d1αN + d2αM + d3αNαM + d4α2
N + d5α2

M

, (13)

with αN = k2

ε2 N
2, αM = k2

ε2 M
2, N2 = −g/ρ0 ∂zρ the (squared) buoyancy frequency,239

and M2 = (∂zU)2+(∂zV )2 the (squared) shear frequency. Coefficients ni, niT and di240

depend on the coefficients ci and ciT . Their full expressions are given in Appendix E.241

Taking the values of the ci and ciT given in Table 1, the stability functions are approx-242

imately as follows243

cµ =
0.1067 + 0.01732αN − 0.0001205αM

1 + 0.2398αN + 0.02872αM + 0.005154αNαM + 0.006930α2
N − 0.00003372α2

M

, (14)

c′µ =
0.1120 + 0.003766αN + 0.0008871αM

1 + 0.2398αN + 0.02872αM + 0.005154αNαM + 0.006930α2
N − 0.00003372α2

M

. (15)

–11–
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To compute the fluxes in Eqs. (9) - (11), we still need to know k and ε. In a GLS244

model, we solve two prognostic equations, one for k and one for another variable that245

can be linked to ε. The choice of this second equation is the main difference between the246

different GLS models (k−ε : Hanjalić and Launder (1972); Rodi (1987), k−kl : Mellor247

and Yamada (1982), k − ω: Wilcox (1988), k − τ : Zeierman and Wolfshtein (1986);248

Thangam et al. (1992)). In this paper, we focus on the k−ε model which solves directly249

the equation for ε. The TKE equation and the ε equation are as follows250

Dtk = P +G− ε+ Dk, (16)

Dtε =
ε

k
(cε1P + cε3G− cε2ε) + Dε, (17)

with251

• Dt(·) = [∂t + U∂x + V ∂y](·): Total derivative252

• Dk = ∂z(
Km

σk
∂zk) and Dε = ∂z(

Km

σε
∂zε): Diffusion terms253

• σk and σε: Schmidt numbers for TKE and dissipation254

• P ≡ (−u′w′ ∂zU − v′w′ ∂zV ) = cµαMε: Production of TKE by the shear255

• G ≡ β3 w′θ′ = −c′µαNε+ c′∗µ αT ε: Production/destruction of TKE by the buoy-256

ancy257

• cε1, cε2 and cε3: Empirical coefficients258

The TKE equation (16) was obtained by taking the trace of the Reynolds stress259

equations (3). With the boundary layer approximation which neglects the horizontal gra-260

dient in comparison to the vertical ones, taking this trace gives Dtk + 1
2 (∂zw

′u′
iu

′
i) =261

P +G− ε. We then consider downgradient formulations for the third-order moments262

w′u′
iu

′
i and finally results in Equation (16). We want to highlight that the diffusion term263

thus comes from the divergence of the third-order moments.264

An exact equation for ε can be derived but, in practice, this equation needs dras-265

tic assumptions to be closed. We used in Equation (17) the classic assumptions of scal-266

ing the sources and sinks of ε with the ones of the TKE through empirical coefficients267

cε1, cε2 and cε3 (see Burchard & Bolding, 2001).268
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Values σk = 1, cε1 = 1.44 and cε2 = 1.92 are frequently used in the literature269

(Rodi, 1987). Value σε = 1.20 is found according to (14) of Umlauf and Burchard (2003).270

Finally, for cε3, it is often considered two different values in order to keep cε3G always271

as a source term of ε (Rodi, 1987; Burchard & Bolding, 2001; Umlauf & Burchard, 2003;272

Warner et al., 2005; Reffray et al., 2015). A positive value c+ε3 is used when G is posi-273

tive (stable stratification) and a negative value c−ε3 is used when G is negative (unsta-274

ble stratification). However, Umlauf and Burchard (2005) argued that this is not nec-275

essary and that better results (particularly for the heat flux profile) are obtained with276

considering always a negative value. We do this choice and the value cε3 = −0.65 is ob-277

tained according to (26) of Umlauf et al. (2003) (by considering a steady state Richard-278

son number equal to 0.25).279

2.3 Procedure for the kεt Parameterization280

The new procedure differs from the GLS one by considering that the temperature281

variance θ′2 is not at equilibrium anymore. Relaxing this assumption takes us from the282

level 2 1
2 to the level 3 in the hierarchy of Mellor and Yamada (1982). Beyond this math-283

ematical justification, the idea of keeping the non-equilibrium θ′2 equation originated from284

the fact that the θ′2 dependence appears only in the w′θ′ equation (see Eqs. (3) and (4)).285

Thus, a physical change in the shape of the θ′2 profile will directly impact w′θ′. Because286

we now have an equation for the temperature variance, we are left with (6) and (7) that287

form a system of 9 equations with 9 unknowns: (u′2, v′2, w′2, u′v′, u′w′, v′w′, u′θ′, v′θ′,288

w′θ′). For clarity, these 9 equations are written explicitly in Appendix F. We solve this289

system thanks to Mathematica and we obtain the following expressions:290

u′w′ = −cµ
k2

ε
∂zU, (18)

v′w′ = −cµ
k2

ε
∂zV, (19)

w′θ′ = −c′µ
k2

ε
∂zΘ+ c′∗µ

k

ε
β3 θ′2. (20)

The momentum fluxes are still downgradient with an eddy viscosity Km = cµ
k2

ε291

whereas the temperature flux now has a ”non-gradient” contribution Γkεt = c′∗µ
k
εβ3 θ′2292
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related to the temperature variance in addition to the downgradient part with eddy dif-293

fusivity Kt = c′µ
k2

ε . The stability functions cµ, c
′
µ and c′∗µ can be expressed in the fol-294

lowing forms295

cµ =
n0 + n1αN + n2αM + n3αT

d0 + d1αN + d2αM + d3αNαM + d4α2
N + d5α2

M

, (21)

c′µ =
n0T + n1TαN + n2TαM

d0 + d1αN + d2αM + d3αNαM + d4α2
N + d5α2

M

, (22)

c′∗µ =
n∗
0T + n∗

1TαN + n∗
2TαM

d0 + d1αN + d2αM + d3αNαM + d4α2
N + d5α2

M

, (23)

with αN = k2

ε2 N
2, αM = k2

ε2 M
2, and αT = k

ε2 β
2
3 θ

′2. Coefficients ni, niT and di de-296

pends on the coefficients ci and ciT . Their full expressions are given in Appendix G. Tak-297

ing the values of the ci and ciT given in Table 1, the stability functions are approximately298

as follows299

cµ =
0.1067 + 0.0001072αN − 0.0001205αM + 0.004673αT

1 + 0.07843αN + 0.02872αM + 0.0003389αNαM + 0.001506α2
N − 0.00003372α2

M

,

(24)

c′µ =
0.1120 + 0.003766αN + 0.0008871αM

1 + 0.07843αN + 0.02872αM + 0.0003389αNαM + 0.001506α2
N − 0.00003372α2

M

,

(25)

c′∗µ =
0.1120 + 0.003766αN + 0.003344αM

1 + 0.07843αN + 0.02872αM + 0.0003389αNαM + 0.001506α2
N − 0.00003372α2

M

.

(26)

As in the GLS procedure, the TKE and ε equations (equations (16) and (17)) are300

solved prognostically. The only difference in these equations is about the cε3 coefficient301

which is now calculated to be cε3 = −1.83 according to (26) of Umlauf et al. (2003) (by302

considering a steady state Richardson number equal to 0.25).303

Beyond this minor change, one key difference is that the temperature variance is304

now also solved prognostically through:305
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Dtθ′2 = −2w′θ′ ∂zΘ− 2

cT

ε

k
θ′2 + Dθ′2 , (27)

with Dθ′2 = ∂z(
Km

σ
θ′2

∂zθ′2) the diffusion and σθ′2 the Schmidt number for the temper-306

ature variance. As for the TKE equation, the diffusion term Dθ′2 results from the clo-307

sure of the third-order moment w′θ′θ′ by a downgradient formulation. We did not find308

any estimations of the Schmidt number σθ′2 in the literature and, as a first guess, we took309

σθ′2 = σk = 1, meaning that the temperature variance is diffused with the same in-310

tensity as TKE.311

We add several comments about the non-gradient term Γkεt = c′∗µ
k
εβ3 θ′2 we ob-312

tained for the temperature flux. Firstly, we recall that, by writing w′θ′ = −Km(∂zΘ−313

γkεt), we highlight that γkεt =
c′∗µ
c′µ

1
kβ3θ′2 gives the stable stratification towards which314

∂zΘ tends to relax. Secondly, the form of Γkεt can be compared to the one found by Deardorff315

(1972). By reasoning with the w′θ′ equation, Deardorff (1972) found a non-gradient term316

ΓDeardoff ∝ l/k1/2 θ′2 with l a mixing length introduced for the parameterization of the317

pressure-temperature correlation. If we consider the classic scaling l ∝ k3/2/ε (see for318

example Rodi, 1987; Umlauf & Burchard, 2003, 2005), we obtain ΓDeardoff ∝ k/ε θ′2.319

The non-gradient expressions of Γkεt and ΓDeardoff thus both exhibit the same depen-320

dence on the turbulence time scale k/ε and on the temperature variance θ′2. This is fun-321

damentally different from ΓKPP ∝ Gw′θ′|z=0 which is written explicitly as a redistri-322

bution of the surface temperature flux w′θ′|z=0 according to an empirical shape func-323

tion G that is a third-order polynomial of the dimensionless vertical coordinate z/h with324

h the mixed layer depth.325

Finally, we point out that, just as we retained the non-equilibrium equation of θ′2326

to obtain a non-gradient term for w′θ′, it would be tempting to retain the non-equilibrium327

equation of w′2 to obtain non-gradient terms for the velocity fluxes u′w′ and v′w′. We328

solved this problem and, astonishingly, the velocity fluxes u′w′ and v′w′ in this context329

are still downgradient. Results of this k−ε−θ′2−w′2 model are detailed in Appendix330

H.331

2.4 1D Models Simulations332

We implemented the kεt parameterization, with the formalism described in section333

2.3, in the 1D code presented in Fearon et al. (2020). This code is a standalone 1D ver-334
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tical version of the Coastal and Regional Ocean COmmunity model (CROCO, https://335

www.croco-ocean.org/) and allows to run simulations with KPP, TKE, and several GLS336

schemes (note that we also re-implemented the k−ε model with the formalism presented337

in section 2.2, that is equivalent to using the Canuto et al. (2001) stability functions).338

The temperature variance equation (27) is discretized using a backward Euler scheme339

in time. To preserve the positivity of θ′2, the Patankar trick is used (Patankar, 1980; Bur-340

chard, 2002; Lemarié et al., 2021). Boundary conditions for the temperature variance341

are zero at the bottom of the domain (Dirichlet condition), while at the surface a ho-342

mogeneous Neumann condition is used (no flux of temperature variance).343

For every test case, we performed the simulations using the k−ε model, the kεt344

model, and the KPP model. The changes induced by the kεt model, particularly the in-345

fluence of the non-gradient term, will be analyzed by comparing with the k−ε model.346

Concerning the KPP scheme, the simulations were done with and without its non-gradient347

term. The goal is to compare this term and its effect to the non-gradient term obtained348

in the kεt parameterization. The version of KPP used here is the original one described349

in Large et al. (1994).350

2.5 LES Simulation351

In order to validate the kεt model, we performed some LES simulations. Practi-352

cally, we use the Basilisk code (http://basilisk.fr, Popinet, 2020) to solve the three-353

dimensional Boussinesq equations in a small oceanic patch near the air-sea interface. We354

intend to explicitly compute the turbulent fluxes and the mean vertical profiles of tem-355

perature for buoyancy-driven convection and wind-driven convection. We can then com-356

pare these fluxes with the parameterization. The size of the domain is Lx = Ly = 1200 m357

(periodic in the horizontal direction), and Lz = 600 m. The grid resolution is isotropic358

(2.3 m) with 512× 512× 256 cells. All variables are discretized at the cell center and359

are advected using the Bell-Collela-Glaz method. There is no explicit viscosity and no360

explicit diffusivity: both these terms are handled implicitly by the advection scheme. The361

surface forcing (wind and heat flux) is applied at the upper grid cell with a relaxation362

term. The bottom boundary condition is free slip for the velocity and inhomogeneous363

Neumann for the temperature (set to the initial stratification). The model is initialized364

with zero velocity and prescribed stratification for temperature (see next paragraph) to365
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which we add a small random perturbation of magnitude 10−3 °C. We use an adaptive366

time step adjusted with a CFL condition of 0.6. Averages are computed in a post-processing367

step: the overbar is interpreted here as a horizontal average and primes are deviations368

from this horizontal average.369

2.6 The Two Test Cases: Cooling-Dominant and Wind-Dominant370

Two simulation setups were defined in order to capture the different convective regimes371

highlighted in Legay et al. (2024). The first configuration is a cooling-dominant simu-372

lation forced by a surface net heat flux of Q0 = −320Wm−2 and a wind stress of τx =373

0.64Nm−2; it is initialized with a surface temperature of 293K and a constant strati-374

fication of 3.9K/1000m. The second one is a wind-dominant simulation forced by a sur-375

face net heat flux of Q0 = −8Wm−2 and a wind stress of τx = 0.41Nm−2; it is ini-376

tialized with a surface temperature of 293K and a constant stratification of 1.2K/1000m.377

Rotation is included with a Coriolis frequency of f = 10−4 s−1, this corresponds to a378

latitude of 44 °N. The two cases are simulated with 10 days of constant forcing condi-379

tions. For the 1D simulations, the domain is discretized on the same vertical grid as the380

3D model (uniformly spaced vertical grid of 256 points), and the time step is 360 s.381

2.7 Nondimensionalization382

In order to compare the shape of the different profiles, variables are made dimen-383

sionless. For the depth, we found that using the depth of the maximum temperature vari-384

ance z[max(θ′2)] as a proxy of the mixed layer depth hm is the best choice for two main385

reasons. Firstly, the temperature variance is well converged with a maximum that is promi-386

nent, easy to identify, and located at the same depth as the classic definition of the min-387

imum of w′θ′ (see Figure 2). Second, this definition holds for wind-dominant simulations388

whereas in this case, the temperature flux profile can be far from the idealized version389

presented in Figure 1. We mention that while this method works in most cases, there390

are some conditions where θ′2 is maximum at the surface. In this case, we simply con-391

sidered the second maximum strictly below the surface. We tested other definitions of392

hm such as the minimum of the temperature flux w′θ′ or other definitions of the mixed393

layer depth hm, but they appeared to be less robust definitions (subject to noisy vari-394

ations).395
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Figure 2. Temperature variance profile of the LES simulation at the end of the simulation for

the cooling-dominant case. Dashed lines indicate two different proxies of the mixed layer depth:

the maximum of the temperature variance and the minimum of the temperature flux. In this

case, these two proxies are localized at the same depth.
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The other nondimensionalizations consist in normalizing the temperature flux by396

its surface value w′θ′|0 = Q0/(ρ0cp), with ρ0 = 1027 kgm−3 the reference density and397

cp = 4000 J kg−1 K−1 the specific heat capacity; and normalizing the temperature in398

(Θ−Θmax) /Θ
∗ with Θmax the maximum of the temperature over the vertical and Θ∗ =399

w′θ′|0/w∗ a scaling of the temperature, with w∗ = (−B0hm)1/3 a scaling of the veloc-400

ity of the convective thermals (Willis & Deardorff, 1974; Marshall & Schott, 1999), B0 =401

gαQ0/(ρ0cp) the surface buoyancy flux, g the gravitational acceleration and α the ther-402

mal expansion coefficient taken equal to 2.6 × 10−4 K−1.403

3 Results and Discussion404

3.1 Cooling-Dominant Case405

Figure 3 presents the dimensionless temperature flux profile of the k−ε and the406

kεt simulations at the end of the 10 days of simulations for the cooling-dominant case.407

The kεt flux is further decomposed into its downgradient (−Kt∂zΘ) and its non-gradient408

(Γkεt) components (see Eq. 20). It is remarkable that even if the expression of the to-409

tal flux changed drastically between the two parameterizations, the kεt profile is very410

similar to the k−ε one that exhibits the classic pattern expected for a cooling-dominant411

simulation: a linear decrease from the surface to the bottom of the mixed layer where412

it reaches a minimum which is approximately -0.2 times the surface flux. The non-gradient413

flux is positive (by definition), and it is zero at the surface and at the bottom of the mixed414

layer; hence, it does not add or remove any heat but rather redistributes heat among the415

mixed layer. This term is responsible for warming the upper part of the mixed layer and416

cooling the lower part of the mixed layer (the temperature equation is of the form DtΘ =417

...−∂zw′θ′ and it is then the sign of −∂zΓkεt that is important to distinguish between418

cooling and warming). This is qualitatively the effect we expect from a coherent ther-419

mal: thermals grow by entraining cold water near the surface, resulting in a warming of420

the upper part of the mixed layer, and then detrain in the environment which results in421

a cooling of the bottom part of the mixed layer.422

Figure 4 presents the dimensionless temperature profile of the k−ε, the kεt, the423

KPP, and the LES simulations at the end of the 10 days of simulations. Dashed lines424

highlight the location ht, the depth at which ∂zΘ = 0 for each case. The overall com-425

parison with the LES is better with kεt scheme than with k−ε: while the k−ε model426
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Figure 3. Dimensionless temperature flux profiles of the k − ε and the kεt simulations at the

end of the 10 days of simulations for the cooling-dominant case. The kεt flux is further decom-

posed into its downgradient (−Kt∂zΘ) and its non-gradient (Γkεt) components (see Eq. 20).

predicts ht = hf = −0.8hm (by definition of a pure downgradient flux, see Fig. 3),427

this co-location constraint is relaxed in the kεt simulation, for which ht = −0.44hm,428

which is closer to the LES (ht = −0.41hm). The KPP scheme predicts ht = −0.2hm,429

whereas the KPP simulation without the non-local term ΓKPP gives ht = −0.93hm. There-430

fore, ΓKPP has the same expected effect to raise ht up as the non-gradient term of kεt431

but, none of the two KPP simulations (with or without ΓKPP) give a satisfactory ht in432

comparison to the LES.433

Figure 5 shows the temporal evolution of ht/hm for the 10 days of the simulation.434

The evolution of this quantity in the LES, although a bit noisy, shows ht/hm between435

−0.4 and −0.6 at the end of the simulation. The k − ε values decrease then stabilize436

around −0.8. The KPP simulation quickly stabilizes near −0.2 whereas KPP without437

the non-local term gives a continuous decrease of ht/hm with values reaching −0.93 at438

the end of the 10 days. The kεt curve, among all schemes, exhibits the closest values to439

those of the LES. However, it results in a continuous increase during 10 days. This be-440

havior can be modified by considering a different value of σθ′2 . Thus, another simula-441

tion of the kεt model with σθ′2 = 10 (a temperature variance that diffuses 10 times less442
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Figure 4. Dimensionless temperature profiles of the k − ε, the kεt, the KPP, and the LES

simulations at the end of the 10 days of simulations for the cooling-dominant case. The KPP

model was run with and without its non-gradient term ΓKPP. Dashed lines highlight the location

ht of the zero of the gradient ∂zΘ.
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Figure 5. Temporal evolution of ht/hm in the cooling-dominant case for the k − ε, the kεt,

the KPP and the LES simulations. The kεt simulation was run with two different values of the

Schmidt number for the temperature variance: σ
θ′2 = 1 and σ

θ′2 = 10. The KPP model was run

with and without its non-gradient term ΓKPP.

than the velocities) gives ht/hm that stabilizes around −0.7. This preliminary test high-443

lights the need to adjust all parameters of this closure with advanced Bayesian meth-444

ods such as the ones used in Souza et al. (2020) and Wagner et al. (2023). This calibra-445

tion procedure would require an ensemble of LES simulations in order to not overfit the446

parameters to the two LES used here and this task is beyond the scope of this study.447

Figure 6 shows a comparison between the non-gradient term of kεt (run with two448

different values σθ′2 = 1 and σθ′2 = 10) and the non-local term of KPP at the end of449

the 10 days of simulation. These profiles share the property of vanishing at the surface450

and at the bottom of the mixed layer, they therefore both act as a redistribution of heat451

in the mixed layer. The KPP term appears to have a single-mode shape. In fact, ΓKPP452

can be written as ΓKPP(z) = CsG(z)w′θ′|0 with Cs a constant (see for example Equa-453

tion (20) of Van Roekel et al., 2018). The vertical dependence is entirely contained in454

G which is a third-order polynomial. Hence, ΓKPP can only have a single positive mode.455

Instead, Γkεt presents a bi-modal shape for both σθ′2 = 1 and σθ′2 = 10. For σθ′2 =456

1, the two modes are close one to the other but, for σθ′2 = 10, the non-gradient term457

presents two clear distinct modes. In the latter case, the simple qualitative way of see-458
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Figure 6. Dimensionless profiles of the non-gradient term of kεt (run with two different values

σ
θ′2 = 1 and σ

θ′2 = 10) and KPP at the end of the 10 days of simulation for the cooling-

dominant case.

ing the non-gradient term as the effect of a thermal is no longer relevant. This point is459

supported by Zhou et al. (2018) who proved that the often-implied association of the gra-460

dient and non-gradient term terms to the local and non-local eddies is partially wrong.461

Analyses of the contribution of the different factors of Γkεt = c′∗µ
k
εβ3 θ′2 (not shown)462

indicated that the mode close to the mixed layer bottom is mainly due to a maximum463

of θ′2 whereas the mode closest to the surface is a result of a complex interaction of all464

the terms in the expression of the non-gradient term. Knowing that Γkεt presents a bi-465

modal shape could be of interest for adapting the KPP non-gradient term. For exam-466

ple, it would be possible to consider ΓKPP as a sum of two polynomials rather than one467

for trying to catch this bi-modal feature.468

3.2 Wind-Dominant Case469

Figure 7 presents the dimensionless temperature flux profile of the k−ε and the470

kεt simulations at the end of the 10 days of simulations for the wind-dominant case. For471

the shape of the flux, we get similar conclusions as in the cooling-dominant case: we ob-472
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Figure 7. Dimensionless temperature flux profiles of the k − ε and the kεt simulations at the

end of the 10 days of simulations for the wind-dominant case. The kεt flux is further decomposed

into its downgradient and its non-gradient components.

tain a remarkable agreement between the kεt total profile and the k−ε profile even if473

the expression of the total flux changed between the two parameterizations.474

Figure 8 presents the dimensionless temperature profile of the k−ε, the kεt, the475

KPP, and the LES simulations at the end of the 10 days of simulations. Here again, dashed476

lines highlight the location of ht in all cases. The effect of the non-gradient term of kεt477

of raising ht is negligible here, and this is fine since k−ε correctly predicts the LES pro-478

file. Instead, the difference between KPP and KPP without ΓKPP is substantial. KPP479

without ΓKPP gives a good profile while the full KPP results in a profile that presents480

a high value of ht. The fact that k−ε and KPP without ΓKPP are already satisfactory481

suggests that non-gradient effects are less important in this wind-dominant case than482

in the cooling-dominant case. If we adopt the disputed view of associating non-gradient483

effects to non-local eddies, this suggests that the deepening is here dominated by local484

eddies driven by shear while the deepening in the cooling-dominant case is driven by non-485

local thermals.486

Figure 9 shows the temporal evolution of ht/hm for all models. The LES evolution487

consists of a continuous decrease until near −0.45 at the end of the simulation (with no488
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Figure 8. Dimensionless temperature profiles of the k − ε, the kεt, the KPP, and the LES

simulations at the end of the 10 days of simulations for the wind-dominant case. The KPP model

was run with and without its non-gradient term ΓKPP. Dashed lines highlight the location ht of

the zero of the gradient ∂zΘ.
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Figure 9. Temporal evolution of ht/hm in the wind-dominant case for the k − ε, the kεt,

the KPP and the LES simulations. The kεt simulation was run with two different values of the

Schmidt number for the temperature variance: σ
θ′2 = 1 and σ

θ′2 = 10. The KPP model was run

with and without its non-gradient term ΓKPP.

clear convergence). This evolution is reproduced by k−ε, kεt and KPP without ΓKPP.489

Instead, the comparison of the full KPP with the LES is not in favor of KPP, since ht/hm490

stabilizes around −0.15 in this case. The LES evolution presents inertial oscillations of491

ht/hm at the inertial period Tf = 2π/f = 17 h 30 min. This is captured by kεt and492

KPP without ΓKPP but not by the full KPP and k−ε. Changing the value of σθ′2 gives493

here almost no effect, contrary to what was highlighted in the cooling-dominant case.494

This supports the fact that non-gradient effects are probably negligible in wind-dominant495

regimes.496

Figure 10 shows a comparison between the non-gradient term of kεt (run with two497

different values σθ′2 = 1 and σθ′2 = 10) and KPP at the end of the 10 days of simu-498

lation. The KPP shape is very similar to the one of the cooling-dominant case (Figure499

6). On the opposite, the kεt profiles changed drastically in comparison to the cooling-500

dominant case. Indeed, these profiles present now a single-mode shape. The mode clos-501

est to the surface disappeared because θ′2 is here equal to zero at the surface. This be-502

havior can again inspire the construction of the KPP non-gradient term. If, as suggested,503

it is constructed by the sum of two polynomials, the polynomial with its maximum close504
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Figure 10. Dimensionless profiles of the non-gradient term of kεt (run with two different

values σ
θ′2 = 1 and σ

θ′2 = 10) and KPP at the end of the 10 days of simulation for the wind-

dominant case.

to the surface must vanish in the wind-dominant case whereas the second polynomial505

with its maximum near the mixed layer bottom must be present both in the cooling-dominant506

and wind-dominant conditions.507

4 Conclusion508

The primary motivation behind this research was the need to improve the repre-509

sentation of oceanic convection processes in ocean models. Indeed, most parameteriza-510

tions adopt a downgradient approach for which the mixing of tracers and momentum511

primarily occurs in the direction of their gradients, such as from regions of high temper-512

ature to low temperature. However, in convective situations, this simplistic assumption513

falls short, and turbulent fluxes cannot be solely explained or formulated as a downgra-514

dient process (Zhou et al., 2018). While this property was originally recognized for at-515

mospheric convection (Hourdin et al., 2002), oceanographers were also aware of this as-516

pect of convection when they introduced a non-local term in KPP (Large et al., 1994).517

In this context, the non-local term represented the influence and transport of tracers across518

different spatial locations within a convective system, even when these locations are not519

immediately adjacent. In simpler terms, the non-local term accounted for the long-range520
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mixing of properties that occur in convective events. While there is an ongoing effort to521

capture this property with a mass flux parameterization (Giordani et al., 2020), our ap-522

proach has been to seek an analytical formulation of this non-local (or non-gradient) term523

within the GLS (Generic Length Scale) models and we can retrospectively comment on524

that choice based on the results obtained in this article. One key argument for this ap-525

proach is the desire for consistency and integration within the modeling framework. By526

deriving the non-gradient term analytically within the GLS framework, we aim to en-527

sure that all components of the parameterization align seamlessly. This approach avoids528

potential mismatches or inconsistencies that may arise when adding external components529

to existing parameterizations. Another crucial argument is the need to deepen our phys-530

ical understanding of oceanic convection processes. By analytically deriving the non-gradient531

term within the GLS framework, we gain insights into the underlying physics and dy-532

namics governing this term. This understanding can lead to more robust and physically533

grounded parameterization, improving our ability to capture convective processes accu-534

rately. Last, our approach offers flexibility for optimization and adaptation. As the GLS535

framework provides a versatile platform for parameterization, we can adapt and refine536

the derived non-gradient term to suit specific oceanic conditions or scenarios. This adapt-537

ability is valuable for tailoring the parameterization to different modeling and research538

needs.539

In order to assess the validity of our approach we have compared our scheme with540

Large eddy simulations (LES). The main metric that we analyzed was the depth of the541

thermal layer ht which corresponds to the depth at which ∂zΘ = 0. We have verified542

that the effect of the non-gradient term is to raise ht such that a significant part of the543

mixed layer is stably stratified (at least in the thermally driven convection), an aspect544

that was not well reproduced by the k − ε model. We also noted that since the main545

effect of this term is to redistribute heat, the addition of the non-gradient term does not546

have a profound impact on the evolution of the depth of the mixed layer. We have also547

conducted extensive comparisons with KPP. With these comparisons, we have unveiled548

common aspects between our newly derived non-gradient term and certain aspects of the549

KPP non-local term. This comparison suggests that our work has the potential to serve550

as a source of inspiration for enhancing and fine-tuning the KPP parameterization. Par-551

ticularly, it could be used to modify the definition of the ad hoc polynomial that shape552

the diffusivity and the non-local term in KPP.553
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Extending the derivation to include salinity will allow us to more comprehensively554

capture the behavior of oceanic convection. We are currently working on this approach:555

the main challenge is that the non-gradient term for salinity involves coupled equations556

with temperature, making the analytical derivation significantly more complex. Solv-557

ing these coupled equations analytically is mathematically challenging and may require558

additional hypotheses. Another issue is also that the computational demands of imple-559

menting a coupled temperature-salinity non-gradient term within ocean models may in-560

crease. This can affect model efficiency and require adjustments in computational resources.561

Despite these difficulties, the extension of the non-gradient term derivation to salinity562

promises a more comprehensive and accurate representation of oceanic convection. In563

the near future, our research plans also entail a systematic re-evaluation of all GLS pa-564

rameters and kεt parameters. To achieve this, we will employ an ensemble of LES sim-565

ulations, with a resolution high enough to capture the energetic eddies in entrainment566

layers, in conjunction with Bayesian methods (Wagner et al., 2023). Bayesian methods567

offer a data-driven approach to parameter estimation, allowing us to incorporate real-568

world observations and LES data into the parameterization process.569

Appendix A Open Research570

All the codes and the data used for the study are available through the GitHub repos-571

itory https://github.com/legaya/James2024-ket/ or the following DOI: https://572

doi.org/10.5281/zenodo.10562734. These archives contain the two Jupyter Notebooks573

used for performing the 1D simulations and all the analyses, the 1D model described in574

section 2.4 as Fortran Modules, the Fortran codes needed for generating these modules,575

the files needed to perform the LES simulations, and the LES results as netCDF files.576

Appendix B Coefficients in the Second-Order Moment Equations577

Coefficients c1, c2, c3, c4, c5, c1T , c2T , c3T , c4T , cT used in Eqs (3) - (5) are linked to578

the coefficients introduced by Canuto et al. (2001) through the following formulas:579

c1 = 1/λ, c2 = α1, c3 = 1− β5, c4 = 4/3α1 − 4/5, c5 = α1 − α2,

c1T = λ5/2, c2T = 3/4α3, c3T = γ1, c4T = α3/2, cT = 2λ8/(1− γ1).

(B1)
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Appendix C Expressions of the Main Tensors under the Boundary Layer580

Approximation581

After applying the boundary layer approximation, the tensors Pij , Bij , Sij , Vij , Zij582

used in Eqs (3) - (5) simplify to583

Pij =


−2 ∂zU u′w′ −∂zU v′w′ − ∂zV u′w′ −∂zU w′2

−∂zU v′w′ − ∂zV u′w′ −2 ∂zV v′w′ −∂zV w′2

−∂zU w′2 −∂zV w′2 0

 (C1)

Bij =


0 0 β3 u′θ′

0 0 β3 v′θ′

β3 u′θ′ β3 v′θ′ 2β3 w′θ′

 (C2)

Sij =
1

2


0 0 ∂zU

0 0 ∂zV

∂zU ∂zV 0

 (C3)

Vij =
1

2


0 0 ∂zU

0 0 ∂zV

−∂zU −∂zV 0

 (C4)

Zij =


u′w′ ∂zU

1
2 v

′w′ ∂zU + 1
2 u

′w′ ∂zV
1
2 ∂zU (w′2 − u′2)− 1

2 ∂zV u′v′

1
2 v

′w′ ∂zU + 1
2 u

′w′ ∂zV v′w′ ∂zV
1
2 ∂zV (w′2 − v′2)− 1

2 ∂zU u′v′

1
2 ∂zU (w′2 − u′2)− 1

2 ∂zV u′v′ 1
2 ∂zV (w′2 − v′2)− 1

2 ∂zU u′v′ −u′w′ ∂zU − v′w′ ∂zV


(C5)

Appendix D The Algebraic System of 10 Equations of the GLS Formal-584

ism585

For clarity, we give here the explicit writing of the 10 equations presented in Eqs (6) -586

(8) and that are the basis of the GLS formalism:587
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0 = −c1
ε

k
(u′2 − 2

3
k) + (1− c2)(−

4

3
u′w′ ∂zU +

2

3
v′w′ ∂zV )− 2

3
(1− c3)β3 w′θ′ − c5u′w′ ∂zU

0 = −c1
ε

k
(v′2 − 2

3
k) + (1− c2)(−

4

3
v′w′ ∂zV +

2

3
u′w′ ∂zU)− 2

3
(1− c3)β3 w′θ′ − c5v′w′ ∂zV

0 = −c1
ε

k
(w′2 − 2

3
k) + (

2

3
− 2

3
c2 + c5)(u′w′ ∂zU + v′w′ ∂zV ) +

4

3
(1− c3)β3 w′θ′

0 = −c1
ε

k
u′v′ − (1− c2)(v′w′ ∂zU + u′w′ ∂zV )− 1

2
c5(v′w′ ∂zU + u′w′ ∂zV )

0 = −c1
ε

k
u′w′ − (1− c2)w′2 ∂zU + (1− c3)β3 u′θ′ − 1

2
c4k ∂zU − 1

2
c5(w′2 ∂zU − u′2 ∂zU − u′v′ ∂zV )

0 = −c1
ε

k
v′w′ − (1− c2)w′2 ∂zV + (1− c3)β3 v′θ′ −

1

2
c4k ∂zV − 1

2
c5(w′2 ∂zV − v′2 ∂zV − u′v′ ∂zU)

0 = −c1T
ε

k
u′θ′ − (1− c2T − 1

2
c4T )w′θ′ ∂zU − u′w′ ∂zΘ

0 = −c1T
ε

k
v′θ′ − (1− c2T − 1

2
c4T )w′θ′ ∂zV − v′w′ ∂zΘ

0 = −c1T
ε

k
w′θ′ − w′2 ∂zΘ+ (1− c3T )β3 θ′2 −

1

2
c4T (u′θ′ ∂zU + v′θ′ ∂zV )

0 = −2w′θ′ ∂zΘ− 2

cT

ε

k
θ′2

(D1)

Appendix E Coefficients of the Stability Functions for the GLS Formal-588

ism589

Coefficients n0, n1, n2, n0T , n1T , n2T , d0, d1, d2, d3, d4, d5 of the GLS stability func-590

tions (Eqs. (12) and (13)) have the following definitions:591

n0 =
4− 4c2 + 3c4

6c1
,

n1 =
c1c1T cT (1− c3T )(4− 4c2 + 3c4)− 2c1(1− c3)(2− 2c2T − c4T ) + 4c1T (1− c3)(c4 − c5)

6c21c
2
1T

,

n2 =
−c4T (4− 4c2 + 3c4)(2− 2c2T − c4T )

24c1c21T
,

n0T =
2

3c1T
, n1T =

2(1− c3)

3c1c21T
,

n2T =
c1c4T (4− 4c2 + 3c4) + 8c5c1T (1− c2 + c5)− 2c4c1T (2− 2c2 + 3c5)

12c21c
2
1T

,
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d0 = 1, d1 =
7− 7c3 + 3c1cT (1− c3T )

3c1c1T
,

d2 =
3c25 + 6c5(1− c2) + 2(1− c2)

2

3c21
− c4T (2− 2c2T − c4T )

4c21T
,

d3 =
c5c1T (1− c3)(2− 2c2 + c5)

3c31c
2
1T

+
c1c1T cT (1− c3T )

(
3c25 + 6c5(1− c2) + 2(1− c2)

2
)

3c31c
2
1T

+
c1(1− c3)

(
3c4T (1− c2 + c5)− (1− c2T )(2− 2c2 + 3c5)

)
3c31c

2
1T

,

d4 =
(1− c3)(4− 4c3 + 3c1cT (1− c3T ))

3c21c
2
1T

,

d5 =
−c4T (2− 2c2T − c4T )

(
3c25 + 6c5(1− c2) + 2(1− c2)

2
)

12c21c
2
1T

, (E1)

Appendix F The Algebraic System of 9 Equations of the kεt Parameter-592

ization593

For clarity, we give here the explicit writing of the 9 equations presented in Eqs (6) -594

(7) and that are the basis of the kεt parameterization:595
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0 = −c1
ε

k
(u′2 − 2

3
k) + (1− c2)(−

4

3
u′w′ ∂zU +

2

3
v′w′ ∂zV )− 2

3
(1− c3)β3 w′θ′ − c5u′w′ ∂zU

0 = −c1
ε

k
(v′2 − 2

3
k) + (1− c2)(−

4

3
v′w′ ∂zV +

2

3
u′w′ ∂zU)− 2

3
(1− c3)β3 w′θ′ − c5v′w′ ∂zV

0 = −c1
ε

k
(w′2 − 2

3
k) + (

2

3
− 2

3
c2 + c5)(u′w′ ∂zU + v′w′ ∂zV ) +

4

3
(1− c3)β3 w′θ′

0 = −c1
ε

k
u′v′ − (1− c2)(v′w′ ∂zU + u′w′ ∂zV )− 1

2
c5(v′w′ ∂zU + u′w′ ∂zV )

0 = −c1
ε

k
u′w′ − (1− c2)w′2 ∂zU + (1− c3)β3 u′θ′ − 1

2
c4k ∂zU − 1

2
c5(w′2 ∂zU − u′2 ∂zU − u′v′ ∂zV )

0 = −c1
ε

k
v′w′ − (1− c2)w′2 ∂zV + (1− c3)β3 v′θ′ −

1

2
c4k ∂zV − 1

2
c5(w′2 ∂zV − v′2 ∂zV − u′v′ ∂zU)

0 = −c1T
ε

k
u′θ′ − (1− c2T − 1

2
c4T )w′θ′ ∂zU − u′w′ ∂zΘ

0 = −c1T
ε

k
v′θ′ − (1− c2T − 1

2
c4T )w′θ′ ∂zV − v′w′ ∂zΘ

0 = −c1T
ε

k
w′θ′ − w′2 ∂zΘ+ (1− c3T )β3 θ′2 −

1

2
c4T (u′θ′ ∂zU + v′θ′ ∂zV )

(F1)

Appendix G Coefficients of the Stability Functions of the kεt Parameter-596

ization597

We give hereafter the expressions of the coefficients n0, n1, n2, n0T , n1T , n2T , n
∗
0T , n

∗
1T , n

∗
2T , d0, d1, d2, d3, d4, d5598

of the kεt stability functions (Eqs. (21) - (23)). We point out that the expressions of the599

coefficient n1T and all the coefficients not multiplying αn (i.e. n0, n2, n0T , n2T , d0, d1600

and d5) stay unchanged compared to the GLS ones (given in Appendix E).601

n0 =
4− 4c2 + 3c4

6c1
, n1 =

(1− c3)
(
2c1T (c4 − c5)− c1(2− 2c2T − c4T )

)
3c21c

2
1T

,

n2 =
−c4T (4− 4c2 + 3c4)(2− 2c2T − c4T )

24c1c21T
,

n3 =
(1− c3)(1− c3T )

(
2c1T (4− 4c2 + 3c5) + 3c1(2− 2c2T − c4T )

)
6c21c

2
1T

,

n0T =
2

3c1T
, n1T =

2(1− c3)

3c1c21T
,
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n2T =
c1c4T (4− 4c2 + 3c4) + 8c5c1T (1− c2 + c5)− 2c4c1T (2− 2c2 + 3c5)

12c21c
2
1T

,

n∗
0T =

1− c3T
c1T

, n∗
1T =

(1− c3)(1− c3T )

c1c21T
,

n∗
2T =

(1− c3T )
(
3c25 + 6c5(1− c2) + 2(1− c2)

2
)

3c21c1T
,

d0 = 1, d1 =
7(1− c3)

3c1c1T
, d2 =

3c25 + 6c5(1− c2) + 2(1− c2)
2

3c21
− c4T (2− 2c2T − c4T )

4c21T

d3 =
(1− c3)

(
3c1c4T (1− c2 + c5) + c5c1T (2− 2c2 + c5)− c1(1− c2T )(2− 2c2 + 3c5)

)
3c31c

2
1T

d4 =
4(1− c3)

2

3c21c
2
1T

, d5 =
−c4T (2− 2c2T − c4T )

(
3c25 + 6c5(1− c2) + 2(1− c2)

2
)

12c21c
2
1T

. (G1)

Appendix H Results of the k − ε − θ′2 − w′2 model602

We detail here the results of the k−ε−θ′2−w′2 model which is a possible exten-603

sion of the kεt model where the non-equilibrium is also considered for the w′2 equation.604

By doing that, equations (6) and (7) now form a system of 8 equations with 8 unknowns:605

(u′2, v′2, u′v′, u′w′, v′w′, u′θ′, v′θ′, w′θ′). We solved this system with Mathematica and606

we obtained the following expressions:607

u′w′ = −cµ
k2

ε
∂zU, (H1)

v′w′ = −cµ
k2

ε
∂zV, (H2)

w′θ′ = −c′µ
k2

ε
∂zΘ+ c′∗µ

k

ε
β3 θ′2, (H3)
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which have the same shape as the ones found for the kεt model. Particularly, even if w′2
608

is not in equilibrium anymore, the velocity fluxes u′w′ and v′w′ are still fully downgra-609

dient. The expressions of the stability functions cµ, c
′
µ and c′∗µ are:610

cµ =
n0 + n2αM + n3αT + n4αW + n5αWαN + n6αWαM

d0 + d1αN + d2αM + d3αNαM + d5α2
M

, (H4)

c′µ =
n2TαM + n4TαW + n5TαWαN + n6TαWαM

d0 + d1αN + d2αM + d3αNαM + d5α2
M

, (H5)

c′∗µ =
n∗
0T + n∗

1TαN + n∗
2TαM

d0 + d1αN + d2αM + d3αNαM + d5α2
M

, (H6)

with αN = k2

ε2 N
2, αM = k2

ε2 M
2, αT = k

ε2 β
2
3 θ

′2, and αW = 1
k w′2. Coefficients ni, niT611

and di depends on the coefficients ci and ciT ; the expressions are given hereafter. Tak-612

ing the values of the ci and ciT given in Table 1, the stability functions are approximately613

as follows614

cµ =
0.04693− 0.00005303αM + 0.001996αT + 0.0896αW − 0.002994αWαN − 0.0001012αWαM

1 + 0.03361αN + 0.01342αM + 0.00006267αNαM − 0.00001644α2
M

,

(H7)

c′µ =
0.0002651αM + 0.1681αW + 0.005649αWαN + 0.002952αWαM

1 + 0.03361αN + 0.01342αM + 0.00006267αNαM − 0.00001644α2
M

, (H8)

c′∗µ =
0.1120 + 0.003766αN + 0.001631αM

1 + 0.03361αN + 0.01342αM + 0.00006267αNαM − 0.00001644α2
M

. (H9)

Here are the expressions of the coefficients ni, niT , and di:615

n0 =
3c4 − 2c5

6c1
, n2 =

−c4T (3c4 − 2c5)(2− 2c2T − c4T )

24c1c21T
,

n3 =
(1− c3)(1− c3T )

(
2c1T c5 + 3c1(2− 2c2T − c4T )

)
6c21c

2
1T

, n4 =
2− 2c2 + c5

2c1
,

n5 =
−(1− c3)

(
2c1T c5 + 3c1(2− 2c2T − c4T )

)
6c21c

2
1T

, n6 =
−c4T (2− 2c2 + c5)(2− 2c2T − c4T )

8c1c21T
,
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n2T =
c4T (3c4 − 2c5)

12c1c21T
, n4T =

1

c1T
, n5T =

1− c3
c1c21T

,

n6T =
3c1c4T (2− 2c2 + c5) + 2c5c1T (4− 4c2 + 3c5)

12c21c
2
1T

,

n∗
0T =

1− c3T
c1T

, n∗
1T =

(1− c3)(1− c3T )

c1c21T
, n∗

2T =
c5(1− c3T )(4− 4c2 + 3c5)

6c21c1T
,

d0 = 1, d1 =
1− c3
c1c1T

, d2 =
c5(4− 4c2 + 3c5)

6c21
− c4T (2− 2c2T − c4T )

4c21T

d3 =
c5c4T (1− c3)

6c21c
2
1T

, d5 =
−c5c4T (4− 4c2 + 3c5)(2− 2c2T − c4T )

24c21c
2
1T

. (H10)
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We thank Florian Lemarié for providing the 1D code. All the computations presented617

in this paper were performed using the GRICAD infrastructure (https://gricad.univ-grenoble-618

alpes.fr), which is supported by Grenoble research communities.619

References620

Arakawa, A., & Schubert, W. H. (1974). Interaction of a cumulus cloud ensemble621

with the large-scale environment, part I. J. Atmos. Sci., 31 (3), 674–701. doi:622

10.1175/1520-0469(1974)031⟨0674:IOACCE⟩2.0.CO;2623

Burchard, H. (2002). Applied Turbulence Modelling in Marine Waters (Vol. 100;624

S. Bhattacharji, G. M. Friedman, H. J. Neugebauer, & A. Seilacher, Eds.).625

Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/3-540-45419-5626

Burchard, H., & Baumert, H. (1995). On the performance of a mixed-layer model627

based on the κ − ϵ turbulence closure. J. Geophys. Res., 100 (C5), 8523–8540.628

doi: 10.1029/94JC03229629

–36–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Burchard, H., & Bolding, K. (2001). Comparative Analysis of Four Second-Moment630

Turbulence Closure Models for the Oceanic Mixed Layer. Journal of Physi-631

cal Oceanography , 31 (8), 1943–1968. doi: 10.1175/1520-0485(2001)031⟨1943:632

CAOFSM⟩2.0.CO;2633

Burchard, H., & Petersen, O. (1999). Models of turbulence in the marine envi-634

ronment —a comparative study of two-equation turbulence models. Journal of635

Marine Systems, 21 (1-4), 29–53. doi: 10.1016/S0924-7963(99)00004-4636

Canuto, V. M., Howard, A., Cheng, Y., & Dubovikov, M. S. (2001). Ocean Tur-637

bulence. Part I: One-Point Closure Model—Momentum and Heat Vertical638

Diffusivities. Journal of Physical Oceanography , 31 (6), 1413–1426. doi:639

10.1175/1520-0485(2001)031⟨1413:OTPIOP⟩2.0.CO;2640

Cheng, Y., Canuto, V. M., Howard, A. M., Ackerman, A. S., Kelley, M., Fridlind,641

A. M., . . . Elsaesser, G. S. (2020). A Second-Order Closure Turbulence Model:642

New Heat Flux Equations and No Critical Richardson Number. Journal of the643

Atmospheric Sciences, 77 (8), 2743–2759. doi: 10.1175/JAS-D-19-0240.1644

Deardorff, J. W. (1972). Theoretical expression for the countergradient vertical heat645

flux. J. Geophys. Res., 77 (30), 5900–5904. doi: 10.1029/JC077i030p05900646

Emanuel, K. A. (1991). A scheme for representing cumulus convection in large-647

scale models. J. Atmos. Sci., 48 (21), 2313–2329. doi: 10.1175/1520-0469(1991)648

048⟨2313:ASFRCC⟩2.0.CO;2649

Fearon, G., Herbette, S., Veitch, J., Cambon, G., Lucas, A. J., Lemarié, F., & Vichi,650
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Abstract14

The representation of turbulent fluxes during oceanic convective events is impor-15

tant to capture the evolution of the oceanic mixed layer. To improve the accuracy of tur-16

bulent fluxes, we examine the possibility of adding a non-gradient component in their17

expression in addition to the usual downgradient part. To do so, we extend the k − ε18

algebraic second-moment closure by relaxing the assumption on the equilibrium of the19

temperature variance θ′2. With this additional transport equation for the temperature20

variance, we obtain a k−ε−θ′2 model (the ”kεt” model) which includes a non-gradient21

term for the temperature flux. We validate this new model against Large Eddy Simu-22

lations (LES) in both wind-forced and buoyancy-driven regimes. In both cases, we find23

that the vertical profile of temperature is well captured by the kεt model. Particularly,24

for the buoyancy-driven regime, the non-gradient term increases the portion of the mixed25

layer which is stably stratified. This is an improvement since this portion is too small26

with the k−ε parameterization. Finally, comparison of the non-gradient term with the27

KPP non-local term gives insights for refining the KPP’s ad hoc shape polynomial.28

Plain Language Summary29

In the ocean, vertical mixing of water occurs when cold air temperatures create dense30

cold water at the surface that tends to sink in the ocean or when a strong wind induces31

turbulence at the ocean surface. In numerical models, the classic approach to represent32

this vertical mixing is to consider that it is done entirely by diffusion. This means that33

the heat always goes from the warm water to the cold water, i.e. in the opposite direc-34

tion of the gradient of the temperature. However, during intense events called ”convec-35

tion”, some cold water parcels created at the top of the ocean can have enough thermal36

inertia and velocity to flow against the direction of the mean temperature gradient. This37

kind of phenomenon is often referred to coherent eddies or non-local turbulence. In this38

article, we perform an analytical derivation to give a mathematical expression of the im-39

pact of non-local mixing. We then compare our new model with more realistic three-dimensional40

models of convection and conclude that the new term derived here is important to re-41

produce the vertical profile of temperature in the ocean.42
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1 Introduction43

In the realm of climate modeling, the oceanic mixed layer plays a critical role be-44

cause it is responsible for regulating the oceanic heat uptake and carbon storage. Through-45

out much of the year, the mixed layer operates as a dynamic buffer, intimately interact-46

ing with the atmosphere. However, it is in late winter that the true importance of this47

layer becomes evident. In late winter, the mixed layer is deepest and direct contact is48

established with the deep ocean: it is during this period that the ocean effectively stores49

heat and CO2 (a mechanism sometimes pictured as Stommel’s demon, see Luyten et al.,50

1983; Williams et al., 1995). Accurately representing the mixed layer is thus crucial be-51

cause it directly affects our ability to make accurate predictions about future climate pat-52

terns (Treguier et al., 2023).53

The depth of the mixed layer changes in response to various factors: it deepens when54

turbulent mixing is triggered by the mechanical effect of the wind and/or waves; or trig-55

gered by buoyancy effects: heat flux (cooling) and freshwater flux (evaporation, sea-ice56

formation). Conversely, the mixed layer becomes shallower typically during calm weather57

where there is less turbulence and restratifying mixed layer instabilities can develop, or58

when there is a stabilizing buoyancy flux due to warming (e.g. sunny condition) and/or59

freshwater input (e.g. precipitation, sea-ice melt, or river discharge). This restratifica-60

tion allows the surface layer to separate from the denser, deeper water (Stull, 1988). The61

explicit representation of the small-scale turbulence causing the mixing occurring in the62

mixed layer is of course impossible in climate models where the horizontal grid is often63

on the order of tens of kilometers. Instead, the ocean modeling community has devel-64

oped parameterizations whose goal is to represent the mean effect of the turbulent fluc-65

tuations (Gaspar et al., 1990; Large et al., 1994; Burchard & Bolding, 2001; Umlauf &66

Burchard, 2003; Fox-Kemper et al., 2008; Reichl & Hallberg, 2018). The main purpose67

of a mixed layer parameterization is to propose a closure for the turbulent vertical fluxes68

w′x′, where w′ is the turbulent vertical velocity, x′ the turbulent fluctuation of a prop-69

erty x (momentum, temperature, salinity, phytoplankton, etc...) and the overline denotes70

the ensemble averaging over small-scale fluctuations (see Stull, 1988). These turbulent71

fluxes, and all the other covariances x′y′, are called the second-order moments. The tra-72

ditional approach to close this problem consists of expressing these turbulent fluxes as73

a function of the vertical gradient of the mean property X = x (i.e. a downgradient74

parameterization), as shown here for the temperature75
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w′θ′ = −Kt∂zΘ , (1)

with Kt being an eddy diffusivity coefficient. Among all the possibilities to compute Kt76

we would like to emphasize the Generic Length Scale (GLS) approach (Umlauf & Bur-77

chard, 2003) and more precisely the k−ε closure (Burchard & Bolding, 2001). This clo-78

sure consists in deriving two equations: one for the evolution of turbulent kinetic energy79

k, and one for dissipation ε. The downgradient formulation (1) also results from more80

complex algebraic second-moment closures even if it is not assumed a priori (Burchard81

& Baumert, 1995). The eddy diffusivity is obtained analytically and is a function of tur-82

bulent kinetic energy, dissipation, buoyancy frequency, and shear frequency. While this83

eddy diffusivity approach has been successfully applied in the oceanic and atmospheric84

modeling communities, it has also been quickly recognized that the shape of the tem-85

perature profile during a convective event is not well captured by this closure. In fact,86

Deardorff (1972) was among the first to realize that after a convective event, the strat-87

ification profile in the mixed layer is not neutral as one would expect for a perfectly well-88

mixed layer but is instead slightly stable. To illustrate this observation, we plot in Fig-89

ure 1.a the typical shape of a normalized temperature profile in the mixed layer from a90

numerical model that explicitly resolves convection (see Mironov et al. (2000); details91

about the normalization are provided henceforth; we only wish to focus here on the shape92

of the temperature profile). This profile can be decomposed into two well-defined zones.93

Just below the air-sea interface, there is an unstable zone with cold water above warmer94

water (∂zΘ < 0). Such layer is sometimes called the thermal layer (Lazier, 2001) and95

we define it here as the layer between the surface and the depth ht at which ∂zΘ = 0.96

Below that depth ht, we find the convective layer ; a slightly stable layer that extends97

until the base of the mixed layer hm. Both layers form the mixed layer. The position of98

ht has been documented to be near z = −0.4hm (see Zhou et al., 2018) such that more99

than half of the mixed layer is stably stratified. The presence of such stable stratifica-100

tion in the convective layer has been attributed to downward propagating plumes which101

remain coherent during their descent and deposit their negative buoyancy anomaly at102

their neutral level, thus creating a stable stratification (see Arakawa and Schubert (1974)103

or Emanuel (1991) for the atmospheric scenario).104

Several options have emerged in the literature to reproduce this vertical temper-105

ature profile with a stable stratification. The atmospheric community has favored the106
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a) b)

Figure 1. Normalized profile from LES data of Mironov et al. (2000) of a) the temperature

and b) the vertical turbulent temperature flux. The depth is normalized by the mixed layer

depth hm, defined here as the minimum of the temperature flux. The temperature flux is normal-

ized by its surface value w′θ′|0. The temperature is normalized in (Θ−Θmax) /Θ
∗ with Θmax the

maximum of the temperature over the vertical and Θ∗ = w′θ′|0/w∗ a scaling of the temperature,

with w∗ = (w′θ′|0 hm)1/3 a scaling of the velocity of the convective thermals (Willis & Deardorff,

1974; Marshall & Schott, 1999). Red dashed lines highlight the location ht of the zero of the

gradient ∂zΘ and the location hf of the zero of the temperature flux.
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use of a mass flux parameterization which simulates the vertical movement of air parcels107

within convective clouds. It represents the ascent and descent of parcels, which trans-108

port heat, moisture, and other properties. These mass flux parameterizations have re-109

cently been introduced in ocean models (Giordani et al., 2020; Garanaik et al., 2024).110

Another, perhaps more ancient, approach taken by Large et al. (1994) was to add a pos-111

itive non-gradient term Γ in the parameterization of the flux in Equation (1): (see also112

Troen and Mahrt (1986); or Burchard and Petersen (1999) where the problem of miss-113

ing non-gradient fluxes in downgradient parameterization is stated),114

w′θ′ = −Kt∂zΘ + Γ. (2)

Γ being positive, it represents a positive turbulent temperature flux, i.e. a flux that fol-115

lows the buoyancy effect (cold going down and hot going up). Γ can thus be viewed as116

representing coherent structures (”non-local eddies”, ”coherent thermals”) that are sub-117

jected to the buoyancy force. Particularly, we see in equation 2 that Γ allows to keep a118

positive turbulent temperature flux in situations of neutral (∂zΘ = 0) or slightly sta-119

ble (∂zΘ > 0) temperature profiles. In other words, this means that, in stably-stratified120

conditions, coherent structures can be strong enough to counter the downgradient flux121

that acts in a counter-buoyancy direction. Note that this term was often written w′θ′ =122

−Kt(∂zΘ − γ) with γ = Γ/Kt (e.g. Deardorff, 1972; Large et al., 1994). In this for-123

mulation, γ corresponds to the maximal stable stratification where a positive turbulent124

temperature flux can be maintained even if the downgradient flux generates a counter-125

buoyancy effect. In Large et al. (1994), Γ was defined with some constraints: to be zero126

at the surface and at the base of the mixed layer such that it is merely a redistribution127

of heat. The magnitude and the exact shape of this term were however chosen in a rel-128

atively ad hoc way to respect some empirical rules of convection.129

The term Γ was often referred in the literature as a ”non-local” term (Large et al.,130

1994; Ghannam et al., 2017) or a countergradient term (Deardorff, 1972; Troen & Mahrt,131

1986; Gibbs et al., 2011). As we mentioned before, denomination ”non-local” refers to132

the fact that it is supposed to represent non-local eddies (coherent thermals). However133

Zhou et al. (2018) argued that this often-implied association of the non-gradient term134

to the non-local eddies is partially wrong. ”Non-local” can also indicate that the value135

of this term at a specific depth does not depend exclusively on properties evaluated at136
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this depth. For example, in KPP, this term depends on the surface heat flux and on the137

total mixed layer thickness. The other used denomination, ”countergradient”, refers to138

the fact that, in the lower part of the mixed layer which is stable, this term acts with139

an opposite sign compared to the mean gradient. However, in the upper part of the mixed140

layer which is unstable, the denomination ”countergradient” is very unsettling since this141

term acts as if it were a downgradient term. For these reasons, we will call this term ”non-142

gradient”, a more neutral denomination.143

A key aspect of the addition of the non-gradient term is to relax the downgradi-144

ent dependence and particularly the constraint that the depth at which w′θ′ vanishes145

is equal to the depth at which the gradient of the temperature profile vanishes (see Eq. 1).146

To better understand why this matters, we plot in Figure 1.b the vertical turbulent heat147

flux w′θ′ obtained in the same numerical model as presented before (Mironov et al., 2000).148

In this figure, we recover the traditional form of a linear decrease from the surface value149

(which corresponds to the magnitude of the surface flux) to a cancellation near the bot-150

tom of the mixed layer, which has been observed and described in several places (e.g.151

Large et al., 1994; Burchard & Bolding, 2001; Van Roekel et al., 2018). The exact depth152

at which the heat flux vanishes depends on the surface boundary conditions (wind and153

heat fluxes) but it has been documented to be close to hf = −0.8hm at least in the free154

convection scenario (Garcia & Mellado, 2014). There is thus an obvious discrepancy be-155

tween ht = −0.4hm and hf = −0.8hm such that Equation (1) cannot hold in most of156

the mixed layer and the addition of an extra term in the definition of the flux is phys-157

ically relevant. Even if there is a consensus on the need to add a non-gradient compo-158

nent in the definition of the flux, the exact formulation of this flux remains a matter of159

debate. To develop a framework that is accurate, robust, and consistent with existing160

parameterizations, we have opted to focus on extending the k − ε parameterization.161

We first perform an analytical derivation of the non-gradient term. Since Deardorff162

(1972) and Cheng et al. (2020), we know that the non-gradient term is somehow related163

to the small-scale temperature variance θ′2. We will therefore derive a second-moment164

closure that uses a full transport equation for the temperature variance θ′2, in addition165

to the second-moment transport equations for k and ε, thus extending the k−ε model166

to a k − ε − θ′2 model (henceforth called the ”kεt” model). In this model, we get an167

analytical expression of a non-gradient term that shares several properties with the KPP168

non-local term: it is positive, and vanishes at the surface and at the bottom of the mixed169
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layer. Last, we test the numerical implementation of kεt against Large Eddy Simulations170

(LES) and further compare its results to the predictions of a standard k−ε model and171

KPP simulations.172

2 Derivation and Implementation of the kεt Parameterization173

This section introduces the second-order moments equations. We recall the hypothe-174

ses made in the GLS model to solve this system of equations. Then, we explain how we175

derive the kεt parameterization in the same formalism.176

2.1 Formalism and Second-Order Moments Equations177

The Reynolds Averaged Navier Stokes (RANS) equations used in ocean models are178

written for the mean velocities U = (U, V,W ) and the mean temperature Θ. As in the179

original derivation of the k−ε model, we consider here only one active tracer (temper-180

ature) that enters the equation of state. The RANS equations include the effect of tur-181

bulent fluctuations through the second-order moments u′
iu

′
j and u′

iθ
′. To close the sys-182

tem, we need to provide equations for these moments. We focus here on the procedure183

derived in Burchard and Bolding (2001). After adopting their closure assumptions for184

non-closed terms, and neglecting the rotational and viscous effects, the equations of second-185

order moments are186

∂tu′
iu

′
j + ∂l(Ulu′

iu
′
j + u′

iu
′
ju

′
l) =− c1

ε

k
(u′

iu
′
j −

2

3
δijk)

+ Pij − c2(Pij −
2

3
δijP )

+Bij − c3(Bij −
2

3
δijB)

− c4kSij

− c5Zij

− 2

3
δijε,

(3)

∂tu′
iθ

′ + ∂j(Uju′
iθ

′ + u′
iu

′
jθ

′) =− c1T
ε

k
u′
iθ

′

− (1− c2T )u′
jθ

′ ∂jUi − u′
iu

′
j ∂jΘ

+ (1− c3T )βi θ′2

+ c4T u′
jθ

′ Vij ,

(4)
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∂tθ′2 + ∂j(Ujθ′2 + u′
jθ

′2) = −2u′
jθ

′ ∂jΘ− 2
1

cT

ε

k
θ′2, (5)

with187

• Pij = −∂lUi u′
lu

′
j − ∂lUj u′

lu
′
i: Production/destruction of u′

iu
′
j by the shear188

• Bij = βi u′
jθ

′ + βj u′
iθ

′: Production of u′
iu

′
j by the buoyancy189

• Sij =
1
2 (∂iUj + ∂jUi): Shear tensor190

• Vij =
1
2 (∂iUj − ∂jUi): Vorticity tensor191

• Zij = Vil(u′
lu

′
j − 2

3δljk) + Vjl(u′
lu

′
i − 2

3δlik): Symmetric tensor associated to the192

vorticity193

• k = 1
2 (u

′2 + v′2 + w′2) : Turbulent Kinetic Energy (TKE)194

• P = 1
2Pii: Production of TKE by the shear195

• B = 1
2Bii: Production/destruction of TKE by the buoyancy196

• ε: Dissipation of TKE197

Further definitions are δij the Kronecker delta, β = (0, 0, αg), α the thermal ex-198

pansion coefficient and g the gravitational acceleration. In the equations, the Einstein199

summation convention is adopted.200

Coefficients c1, c2, c3, c4, c5 are empirical coefficients for the parameterization of the201

pressure-velocity correlation tensor Πij = u′
i∂jp+ u′

j∂ip, coefficients c1T , c2T , c3T , c4T202

are for the parameterization of the pressure-temperature correlations Πθ
i = θ′∂ip, and203

cT for the parameterization of the temperature variance dissipation. Further details about204

these parameterizations can be found in Canuto et al. (2001). We report the values of205

these coefficients in Table 1. These values are the ones of Canuto et al. (2001) model A,206

converted into the notations used here (it is the same as the values reported in Table 1207

of Burchard and Bolding (2001) except for minor typos on c3 and c4 that have been iden-208

tified. Exact formulations of these coefficients are given in Appendix B).209

We are now going to explain the classic procedure used in the GLS models for solv-210

ing the system, where the new model differs and what are the consequences.211
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Table 1. Values of the coefficients appearing in the second-order moment equations

c1 c2 c3 c4 c5 c1T c2T c3T c4T cT

2.5 0.984 0.5 0.512 0.416 5.95 0.6 0.33 0.4 1.44

2.2 GLS Procedure212

The GLS procedure is as follows. Firstly, we consider the boundary layer approx-213

imation where the vertical scale is much less than the horizontal scale. Horizontal gra-214

dients are then neglected in comparison to the vertical gradients. A direct consequence215

is the simplification of the continuity equation in ∂zW = 0. The resulting expressions216

of the tensors Pij , Bij , Sij , Vij and Zij are given in Appendix C.217

Secondly, we consider that the moments u′
iθ

′ and θ′2 are in local equilibrium, mean-218

ing that the sum of the time variations, the advective transports and the turbulent trans-219

ports of these moments is zero (i.e. the left-hand sides of equations (4) and (5) are zero).220

Concerning the moments u′
iu

′
j , the trick is to not make this assumption directly for u′

iu
′
j221

but rather to the anisotropic part of these moments u′
iu

′
j−2/3 δijk to keep the time vari-222

ation and the transports of the TKE to be non-zero. These assumptions correspond to223

the level 2 1
2 in the hierarchy of models proposed by Mellor and Yamada (1982). This hi-224

erarchy has been derived with scaling arguments based on the level of anisotropy of ev-225

ery term. The scaling at level 3 results naturally in neglecting transports and time vari-226

ations for u′
iu

′
j − 2/3 δijk and u′

iθ
′. However, neglecting these terms for the θ′2 equa-227

tion is not justified by the scaling process and is much more an ad hoc practical hypoth-228

esis that results in obtaining this so-called level 2 1
2 in which the system of equations is229

now algebraic. Indeed, we obtain the following set of equations230

0 = −c1
ε

k
(u′

iu
′
j−

2

3
δijk)+(1−c2)(Pij−

2

3
δijP )+(1−c3)(Bij−

2

3
δijB)−c4kSij−c5Zij , (6)

0 = −c1T
ε

k
u′
iθ

′ − (1− c2T )u′
jθ

′ ∂jUi − u′
iu

′
j ∂jΘ+ (1− c3T )βi θ′2 + c4T u′

jθ
′ Vij , (7)

0 = −2u′
jθ

′ ∂jΘ− 2

cT

ε

k
θ′2, (8)

–10–
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and, if we assume that k and ε are known, we have a linear system of 10 equations with231

10 unknowns : (u′2, v′2, w′2, u′v′, u′w′, v′w′, u′θ′, v′θ′, w′θ′, θ′2). For clarity, these 10232

equations are written explicitly in Appendix D. We solved this system thanks to the sym-233

bolic calculus software Mathematica and we confirmed the expressions obtained by Burchard234

and Bolding (2001):235

u′w′ = −cµ
k2

ε
∂zU, (9)

v′w′ = −cµ
k2

ε
∂zV, (10)

w′θ′ = −c′µ
k2

ε
∂zΘ, (11)

which reflect downgradient fluxes with an eddy viscosity Km = cµ
k2

ε and an eddy dif-236

fusivity Kt = c′µ
k2

ε . The dimensionless functions cµ and c′µ are the so-called ”stabil-237

ity functions” and can be expressed in the following forms238

cµ =
n0 + n1αN + n2αM

d0 + d1αN + d2αM + d3αNαM + d4α2
N + d5α2

M

, (12)

c′µ =
n0T + n1TαN + n2TαM

d0 + d1αN + d2αM + d3αNαM + d4α2
N + d5α2

M

, (13)

with αN = k2

ε2 N
2, αM = k2

ε2 M
2, N2 = −g/ρ0 ∂zρ the (squared) buoyancy frequency,239

and M2 = (∂zU)2+(∂zV )2 the (squared) shear frequency. Coefficients ni, niT and di240

depend on the coefficients ci and ciT . Their full expressions are given in Appendix E.241

Taking the values of the ci and ciT given in Table 1, the stability functions are approx-242

imately as follows243

cµ =
0.1067 + 0.01732αN − 0.0001205αM

1 + 0.2398αN + 0.02872αM + 0.005154αNαM + 0.006930α2
N − 0.00003372α2

M

, (14)

c′µ =
0.1120 + 0.003766αN + 0.0008871αM

1 + 0.2398αN + 0.02872αM + 0.005154αNαM + 0.006930α2
N − 0.00003372α2

M

. (15)
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To compute the fluxes in Eqs. (9) - (11), we still need to know k and ε. In a GLS244

model, we solve two prognostic equations, one for k and one for another variable that245

can be linked to ε. The choice of this second equation is the main difference between the246

different GLS models (k−ε : Hanjalić and Launder (1972); Rodi (1987), k−kl : Mellor247

and Yamada (1982), k − ω: Wilcox (1988), k − τ : Zeierman and Wolfshtein (1986);248

Thangam et al. (1992)). In this paper, we focus on the k−ε model which solves directly249

the equation for ε. The TKE equation and the ε equation are as follows250

Dtk = P +G− ε+ Dk, (16)

Dtε =
ε

k
(cε1P + cε3G− cε2ε) + Dε, (17)

with251

• Dt(·) = [∂t + U∂x + V ∂y](·): Total derivative252

• Dk = ∂z(
Km

σk
∂zk) and Dε = ∂z(

Km

σε
∂zε): Diffusion terms253

• σk and σε: Schmidt numbers for TKE and dissipation254

• P ≡ (−u′w′ ∂zU − v′w′ ∂zV ) = cµαMε: Production of TKE by the shear255

• G ≡ β3 w′θ′ = −c′µαNε+ c′∗µ αT ε: Production/destruction of TKE by the buoy-256

ancy257

• cε1, cε2 and cε3: Empirical coefficients258

The TKE equation (16) was obtained by taking the trace of the Reynolds stress259

equations (3). With the boundary layer approximation which neglects the horizontal gra-260

dient in comparison to the vertical ones, taking this trace gives Dtk + 1
2 (∂zw

′u′
iu

′
i) =261

P +G− ε. We then consider downgradient formulations for the third-order moments262

w′u′
iu

′
i and finally results in Equation (16). We want to highlight that the diffusion term263

thus comes from the divergence of the third-order moments.264

An exact equation for ε can be derived but, in practice, this equation needs dras-265

tic assumptions to be closed. We used in Equation (17) the classic assumptions of scal-266

ing the sources and sinks of ε with the ones of the TKE through empirical coefficients267

cε1, cε2 and cε3 (see Burchard & Bolding, 2001).268

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Values σk = 1, cε1 = 1.44 and cε2 = 1.92 are frequently used in the literature269

(Rodi, 1987). Value σε = 1.20 is found according to (14) of Umlauf and Burchard (2003).270

Finally, for cε3, it is often considered two different values in order to keep cε3G always271

as a source term of ε (Rodi, 1987; Burchard & Bolding, 2001; Umlauf & Burchard, 2003;272

Warner et al., 2005; Reffray et al., 2015). A positive value c+ε3 is used when G is posi-273

tive (stable stratification) and a negative value c−ε3 is used when G is negative (unsta-274

ble stratification). However, Umlauf and Burchard (2005) argued that this is not nec-275

essary and that better results (particularly for the heat flux profile) are obtained with276

considering always a negative value. We do this choice and the value cε3 = −0.65 is ob-277

tained according to (26) of Umlauf et al. (2003) (by considering a steady state Richard-278

son number equal to 0.25).279

2.3 Procedure for the kεt Parameterization280

The new procedure differs from the GLS one by considering that the temperature281

variance θ′2 is not at equilibrium anymore. Relaxing this assumption takes us from the282

level 2 1
2 to the level 3 in the hierarchy of Mellor and Yamada (1982). Beyond this math-283

ematical justification, the idea of keeping the non-equilibrium θ′2 equation originated from284

the fact that the θ′2 dependence appears only in the w′θ′ equation (see Eqs. (3) and (4)).285

Thus, a physical change in the shape of the θ′2 profile will directly impact w′θ′. Because286

we now have an equation for the temperature variance, we are left with (6) and (7) that287

form a system of 9 equations with 9 unknowns: (u′2, v′2, w′2, u′v′, u′w′, v′w′, u′θ′, v′θ′,288

w′θ′). For clarity, these 9 equations are written explicitly in Appendix F. We solve this289

system thanks to Mathematica and we obtain the following expressions:290

u′w′ = −cµ
k2

ε
∂zU, (18)

v′w′ = −cµ
k2

ε
∂zV, (19)

w′θ′ = −c′µ
k2

ε
∂zΘ+ c′∗µ

k

ε
β3 θ′2. (20)

The momentum fluxes are still downgradient with an eddy viscosity Km = cµ
k2

ε291

whereas the temperature flux now has a ”non-gradient” contribution Γkεt = c′∗µ
k
εβ3 θ′2292
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related to the temperature variance in addition to the downgradient part with eddy dif-293

fusivity Kt = c′µ
k2

ε . The stability functions cµ, c
′
µ and c′∗µ can be expressed in the fol-294

lowing forms295

cµ =
n0 + n1αN + n2αM + n3αT

d0 + d1αN + d2αM + d3αNαM + d4α2
N + d5α2

M

, (21)

c′µ =
n0T + n1TαN + n2TαM

d0 + d1αN + d2αM + d3αNαM + d4α2
N + d5α2

M

, (22)

c′∗µ =
n∗
0T + n∗

1TαN + n∗
2TαM

d0 + d1αN + d2αM + d3αNαM + d4α2
N + d5α2

M

, (23)

with αN = k2

ε2 N
2, αM = k2

ε2 M
2, and αT = k

ε2 β
2
3 θ

′2. Coefficients ni, niT and di de-296

pends on the coefficients ci and ciT . Their full expressions are given in Appendix G. Tak-297

ing the values of the ci and ciT given in Table 1, the stability functions are approximately298

as follows299

cµ =
0.1067 + 0.0001072αN − 0.0001205αM + 0.004673αT

1 + 0.07843αN + 0.02872αM + 0.0003389αNαM + 0.001506α2
N − 0.00003372α2

M

,

(24)

c′µ =
0.1120 + 0.003766αN + 0.0008871αM

1 + 0.07843αN + 0.02872αM + 0.0003389αNαM + 0.001506α2
N − 0.00003372α2

M

,

(25)

c′∗µ =
0.1120 + 0.003766αN + 0.003344αM

1 + 0.07843αN + 0.02872αM + 0.0003389αNαM + 0.001506α2
N − 0.00003372α2

M

.

(26)

As in the GLS procedure, the TKE and ε equations (equations (16) and (17)) are300

solved prognostically. The only difference in these equations is about the cε3 coefficient301

which is now calculated to be cε3 = −1.83 according to (26) of Umlauf et al. (2003) (by302

considering a steady state Richardson number equal to 0.25).303

Beyond this minor change, one key difference is that the temperature variance is304

now also solved prognostically through:305
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Dtθ′2 = −2w′θ′ ∂zΘ− 2

cT

ε

k
θ′2 + Dθ′2 , (27)

with Dθ′2 = ∂z(
Km

σ
θ′2

∂zθ′2) the diffusion and σθ′2 the Schmidt number for the temper-306

ature variance. As for the TKE equation, the diffusion term Dθ′2 results from the clo-307

sure of the third-order moment w′θ′θ′ by a downgradient formulation. We did not find308

any estimations of the Schmidt number σθ′2 in the literature and, as a first guess, we took309

σθ′2 = σk = 1, meaning that the temperature variance is diffused with the same in-310

tensity as TKE.311

We add several comments about the non-gradient term Γkεt = c′∗µ
k
εβ3 θ′2 we ob-312

tained for the temperature flux. Firstly, we recall that, by writing w′θ′ = −Km(∂zΘ−313

γkεt), we highlight that γkεt =
c′∗µ
c′µ

1
kβ3θ′2 gives the stable stratification towards which314

∂zΘ tends to relax. Secondly, the form of Γkεt can be compared to the one found by Deardorff315

(1972). By reasoning with the w′θ′ equation, Deardorff (1972) found a non-gradient term316

ΓDeardoff ∝ l/k1/2 θ′2 with l a mixing length introduced for the parameterization of the317

pressure-temperature correlation. If we consider the classic scaling l ∝ k3/2/ε (see for318

example Rodi, 1987; Umlauf & Burchard, 2003, 2005), we obtain ΓDeardoff ∝ k/ε θ′2.319

The non-gradient expressions of Γkεt and ΓDeardoff thus both exhibit the same depen-320

dence on the turbulence time scale k/ε and on the temperature variance θ′2. This is fun-321

damentally different from ΓKPP ∝ Gw′θ′|z=0 which is written explicitly as a redistri-322

bution of the surface temperature flux w′θ′|z=0 according to an empirical shape func-323

tion G that is a third-order polynomial of the dimensionless vertical coordinate z/h with324

h the mixed layer depth.325

Finally, we point out that, just as we retained the non-equilibrium equation of θ′2326

to obtain a non-gradient term for w′θ′, it would be tempting to retain the non-equilibrium327

equation of w′2 to obtain non-gradient terms for the velocity fluxes u′w′ and v′w′. We328

solved this problem and, astonishingly, the velocity fluxes u′w′ and v′w′ in this context329

are still downgradient. Results of this k−ε−θ′2−w′2 model are detailed in Appendix330

H.331

2.4 1D Models Simulations332

We implemented the kεt parameterization, with the formalism described in section333

2.3, in the 1D code presented in Fearon et al. (2020). This code is a standalone 1D ver-334
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tical version of the Coastal and Regional Ocean COmmunity model (CROCO, https://335

www.croco-ocean.org/) and allows to run simulations with KPP, TKE, and several GLS336

schemes (note that we also re-implemented the k−ε model with the formalism presented337

in section 2.2, that is equivalent to using the Canuto et al. (2001) stability functions).338

The temperature variance equation (27) is discretized using a backward Euler scheme339

in time. To preserve the positivity of θ′2, the Patankar trick is used (Patankar, 1980; Bur-340

chard, 2002; Lemarié et al., 2021). Boundary conditions for the temperature variance341

are zero at the bottom of the domain (Dirichlet condition), while at the surface a ho-342

mogeneous Neumann condition is used (no flux of temperature variance).343

For every test case, we performed the simulations using the k−ε model, the kεt344

model, and the KPP model. The changes induced by the kεt model, particularly the in-345

fluence of the non-gradient term, will be analyzed by comparing with the k−ε model.346

Concerning the KPP scheme, the simulations were done with and without its non-gradient347

term. The goal is to compare this term and its effect to the non-gradient term obtained348

in the kεt parameterization. The version of KPP used here is the original one described349

in Large et al. (1994).350

2.5 LES Simulation351

In order to validate the kεt model, we performed some LES simulations. Practi-352

cally, we use the Basilisk code (http://basilisk.fr, Popinet, 2020) to solve the three-353

dimensional Boussinesq equations in a small oceanic patch near the air-sea interface. We354

intend to explicitly compute the turbulent fluxes and the mean vertical profiles of tem-355

perature for buoyancy-driven convection and wind-driven convection. We can then com-356

pare these fluxes with the parameterization. The size of the domain is Lx = Ly = 1200 m357

(periodic in the horizontal direction), and Lz = 600 m. The grid resolution is isotropic358

(2.3 m) with 512× 512× 256 cells. All variables are discretized at the cell center and359

are advected using the Bell-Collela-Glaz method. There is no explicit viscosity and no360

explicit diffusivity: both these terms are handled implicitly by the advection scheme. The361

surface forcing (wind and heat flux) is applied at the upper grid cell with a relaxation362

term. The bottom boundary condition is free slip for the velocity and inhomogeneous363

Neumann for the temperature (set to the initial stratification). The model is initialized364

with zero velocity and prescribed stratification for temperature (see next paragraph) to365
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which we add a small random perturbation of magnitude 10−3 °C. We use an adaptive366

time step adjusted with a CFL condition of 0.6. Averages are computed in a post-processing367

step: the overbar is interpreted here as a horizontal average and primes are deviations368

from this horizontal average.369

2.6 The Two Test Cases: Cooling-Dominant and Wind-Dominant370

Two simulation setups were defined in order to capture the different convective regimes371

highlighted in Legay et al. (2024). The first configuration is a cooling-dominant simu-372

lation forced by a surface net heat flux of Q0 = −320Wm−2 and a wind stress of τx =373

0.64Nm−2; it is initialized with a surface temperature of 293K and a constant strati-374

fication of 3.9K/1000m. The second one is a wind-dominant simulation forced by a sur-375

face net heat flux of Q0 = −8Wm−2 and a wind stress of τx = 0.41Nm−2; it is ini-376

tialized with a surface temperature of 293K and a constant stratification of 1.2K/1000m.377

Rotation is included with a Coriolis frequency of f = 10−4 s−1, this corresponds to a378

latitude of 44 °N. The two cases are simulated with 10 days of constant forcing condi-379

tions. For the 1D simulations, the domain is discretized on the same vertical grid as the380

3D model (uniformly spaced vertical grid of 256 points), and the time step is 360 s.381

2.7 Nondimensionalization382

In order to compare the shape of the different profiles, variables are made dimen-383

sionless. For the depth, we found that using the depth of the maximum temperature vari-384

ance z[max(θ′2)] as a proxy of the mixed layer depth hm is the best choice for two main385

reasons. Firstly, the temperature variance is well converged with a maximum that is promi-386

nent, easy to identify, and located at the same depth as the classic definition of the min-387

imum of w′θ′ (see Figure 2). Second, this definition holds for wind-dominant simulations388

whereas in this case, the temperature flux profile can be far from the idealized version389

presented in Figure 1. We mention that while this method works in most cases, there390

are some conditions where θ′2 is maximum at the surface. In this case, we simply con-391

sidered the second maximum strictly below the surface. We tested other definitions of392

hm such as the minimum of the temperature flux w′θ′ or other definitions of the mixed393

layer depth hm, but they appeared to be less robust definitions (subject to noisy vari-394

ations).395
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Figure 2. Temperature variance profile of the LES simulation at the end of the simulation for

the cooling-dominant case. Dashed lines indicate two different proxies of the mixed layer depth:

the maximum of the temperature variance and the minimum of the temperature flux. In this

case, these two proxies are localized at the same depth.
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The other nondimensionalizations consist in normalizing the temperature flux by396

its surface value w′θ′|0 = Q0/(ρ0cp), with ρ0 = 1027 kgm−3 the reference density and397

cp = 4000 J kg−1 K−1 the specific heat capacity; and normalizing the temperature in398

(Θ−Θmax) /Θ
∗ with Θmax the maximum of the temperature over the vertical and Θ∗ =399

w′θ′|0/w∗ a scaling of the temperature, with w∗ = (−B0hm)1/3 a scaling of the veloc-400

ity of the convective thermals (Willis & Deardorff, 1974; Marshall & Schott, 1999), B0 =401

gαQ0/(ρ0cp) the surface buoyancy flux, g the gravitational acceleration and α the ther-402

mal expansion coefficient taken equal to 2.6 × 10−4 K−1.403

3 Results and Discussion404

3.1 Cooling-Dominant Case405

Figure 3 presents the dimensionless temperature flux profile of the k−ε and the406

kεt simulations at the end of the 10 days of simulations for the cooling-dominant case.407

The kεt flux is further decomposed into its downgradient (−Kt∂zΘ) and its non-gradient408

(Γkεt) components (see Eq. 20). It is remarkable that even if the expression of the to-409

tal flux changed drastically between the two parameterizations, the kεt profile is very410

similar to the k−ε one that exhibits the classic pattern expected for a cooling-dominant411

simulation: a linear decrease from the surface to the bottom of the mixed layer where412

it reaches a minimum which is approximately -0.2 times the surface flux. The non-gradient413

flux is positive (by definition), and it is zero at the surface and at the bottom of the mixed414

layer; hence, it does not add or remove any heat but rather redistributes heat among the415

mixed layer. This term is responsible for warming the upper part of the mixed layer and416

cooling the lower part of the mixed layer (the temperature equation is of the form DtΘ =417

...−∂zw′θ′ and it is then the sign of −∂zΓkεt that is important to distinguish between418

cooling and warming). This is qualitatively the effect we expect from a coherent ther-419

mal: thermals grow by entraining cold water near the surface, resulting in a warming of420

the upper part of the mixed layer, and then detrain in the environment which results in421

a cooling of the bottom part of the mixed layer.422

Figure 4 presents the dimensionless temperature profile of the k−ε, the kεt, the423

KPP, and the LES simulations at the end of the 10 days of simulations. Dashed lines424

highlight the location ht, the depth at which ∂zΘ = 0 for each case. The overall com-425

parison with the LES is better with kεt scheme than with k−ε: while the k−ε model426
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Figure 3. Dimensionless temperature flux profiles of the k − ε and the kεt simulations at the

end of the 10 days of simulations for the cooling-dominant case. The kεt flux is further decom-

posed into its downgradient (−Kt∂zΘ) and its non-gradient (Γkεt) components (see Eq. 20).

predicts ht = hf = −0.8hm (by definition of a pure downgradient flux, see Fig. 3),427

this co-location constraint is relaxed in the kεt simulation, for which ht = −0.44hm,428

which is closer to the LES (ht = −0.41hm). The KPP scheme predicts ht = −0.2hm,429

whereas the KPP simulation without the non-local term ΓKPP gives ht = −0.93hm. There-430

fore, ΓKPP has the same expected effect to raise ht up as the non-gradient term of kεt431

but, none of the two KPP simulations (with or without ΓKPP) give a satisfactory ht in432

comparison to the LES.433

Figure 5 shows the temporal evolution of ht/hm for the 10 days of the simulation.434

The evolution of this quantity in the LES, although a bit noisy, shows ht/hm between435

−0.4 and −0.6 at the end of the simulation. The k − ε values decrease then stabilize436

around −0.8. The KPP simulation quickly stabilizes near −0.2 whereas KPP without437

the non-local term gives a continuous decrease of ht/hm with values reaching −0.93 at438

the end of the 10 days. The kεt curve, among all schemes, exhibits the closest values to439

those of the LES. However, it results in a continuous increase during 10 days. This be-440

havior can be modified by considering a different value of σθ′2 . Thus, another simula-441

tion of the kεt model with σθ′2 = 10 (a temperature variance that diffuses 10 times less442
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Figure 4. Dimensionless temperature profiles of the k − ε, the kεt, the KPP, and the LES

simulations at the end of the 10 days of simulations for the cooling-dominant case. The KPP

model was run with and without its non-gradient term ΓKPP. Dashed lines highlight the location

ht of the zero of the gradient ∂zΘ.
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Figure 5. Temporal evolution of ht/hm in the cooling-dominant case for the k − ε, the kεt,

the KPP and the LES simulations. The kεt simulation was run with two different values of the

Schmidt number for the temperature variance: σ
θ′2 = 1 and σ

θ′2 = 10. The KPP model was run

with and without its non-gradient term ΓKPP.

than the velocities) gives ht/hm that stabilizes around −0.7. This preliminary test high-443

lights the need to adjust all parameters of this closure with advanced Bayesian meth-444

ods such as the ones used in Souza et al. (2020) and Wagner et al. (2023). This calibra-445

tion procedure would require an ensemble of LES simulations in order to not overfit the446

parameters to the two LES used here and this task is beyond the scope of this study.447

Figure 6 shows a comparison between the non-gradient term of kεt (run with two448

different values σθ′2 = 1 and σθ′2 = 10) and the non-local term of KPP at the end of449

the 10 days of simulation. These profiles share the property of vanishing at the surface450

and at the bottom of the mixed layer, they therefore both act as a redistribution of heat451

in the mixed layer. The KPP term appears to have a single-mode shape. In fact, ΓKPP452

can be written as ΓKPP(z) = CsG(z)w′θ′|0 with Cs a constant (see for example Equa-453

tion (20) of Van Roekel et al., 2018). The vertical dependence is entirely contained in454

G which is a third-order polynomial. Hence, ΓKPP can only have a single positive mode.455

Instead, Γkεt presents a bi-modal shape for both σθ′2 = 1 and σθ′2 = 10. For σθ′2 =456

1, the two modes are close one to the other but, for σθ′2 = 10, the non-gradient term457

presents two clear distinct modes. In the latter case, the simple qualitative way of see-458
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Figure 6. Dimensionless profiles of the non-gradient term of kεt (run with two different values

σ
θ′2 = 1 and σ

θ′2 = 10) and KPP at the end of the 10 days of simulation for the cooling-

dominant case.

ing the non-gradient term as the effect of a thermal is no longer relevant. This point is459

supported by Zhou et al. (2018) who proved that the often-implied association of the gra-460

dient and non-gradient term terms to the local and non-local eddies is partially wrong.461

Analyses of the contribution of the different factors of Γkεt = c′∗µ
k
εβ3 θ′2 (not shown)462

indicated that the mode close to the mixed layer bottom is mainly due to a maximum463

of θ′2 whereas the mode closest to the surface is a result of a complex interaction of all464

the terms in the expression of the non-gradient term. Knowing that Γkεt presents a bi-465

modal shape could be of interest for adapting the KPP non-gradient term. For exam-466

ple, it would be possible to consider ΓKPP as a sum of two polynomials rather than one467

for trying to catch this bi-modal feature.468

3.2 Wind-Dominant Case469

Figure 7 presents the dimensionless temperature flux profile of the k−ε and the470

kεt simulations at the end of the 10 days of simulations for the wind-dominant case. For471

the shape of the flux, we get similar conclusions as in the cooling-dominant case: we ob-472
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Figure 7. Dimensionless temperature flux profiles of the k − ε and the kεt simulations at the

end of the 10 days of simulations for the wind-dominant case. The kεt flux is further decomposed

into its downgradient and its non-gradient components.

tain a remarkable agreement between the kεt total profile and the k−ε profile even if473

the expression of the total flux changed between the two parameterizations.474

Figure 8 presents the dimensionless temperature profile of the k−ε, the kεt, the475

KPP, and the LES simulations at the end of the 10 days of simulations. Here again, dashed476

lines highlight the location of ht in all cases. The effect of the non-gradient term of kεt477

of raising ht is negligible here, and this is fine since k−ε correctly predicts the LES pro-478

file. Instead, the difference between KPP and KPP without ΓKPP is substantial. KPP479

without ΓKPP gives a good profile while the full KPP results in a profile that presents480

a high value of ht. The fact that k−ε and KPP without ΓKPP are already satisfactory481

suggests that non-gradient effects are less important in this wind-dominant case than482

in the cooling-dominant case. If we adopt the disputed view of associating non-gradient483

effects to non-local eddies, this suggests that the deepening is here dominated by local484

eddies driven by shear while the deepening in the cooling-dominant case is driven by non-485

local thermals.486

Figure 9 shows the temporal evolution of ht/hm for all models. The LES evolution487

consists of a continuous decrease until near −0.45 at the end of the simulation (with no488

–24–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 8. Dimensionless temperature profiles of the k − ε, the kεt, the KPP, and the LES

simulations at the end of the 10 days of simulations for the wind-dominant case. The KPP model

was run with and without its non-gradient term ΓKPP. Dashed lines highlight the location ht of

the zero of the gradient ∂zΘ.
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Figure 9. Temporal evolution of ht/hm in the wind-dominant case for the k − ε, the kεt,

the KPP and the LES simulations. The kεt simulation was run with two different values of the

Schmidt number for the temperature variance: σ
θ′2 = 1 and σ

θ′2 = 10. The KPP model was run

with and without its non-gradient term ΓKPP.

clear convergence). This evolution is reproduced by k−ε, kεt and KPP without ΓKPP.489

Instead, the comparison of the full KPP with the LES is not in favor of KPP, since ht/hm490

stabilizes around −0.15 in this case. The LES evolution presents inertial oscillations of491

ht/hm at the inertial period Tf = 2π/f = 17 h 30 min. This is captured by kεt and492

KPP without ΓKPP but not by the full KPP and k−ε. Changing the value of σθ′2 gives493

here almost no effect, contrary to what was highlighted in the cooling-dominant case.494

This supports the fact that non-gradient effects are probably negligible in wind-dominant495

regimes.496

Figure 10 shows a comparison between the non-gradient term of kεt (run with two497

different values σθ′2 = 1 and σθ′2 = 10) and KPP at the end of the 10 days of simu-498

lation. The KPP shape is very similar to the one of the cooling-dominant case (Figure499

6). On the opposite, the kεt profiles changed drastically in comparison to the cooling-500

dominant case. Indeed, these profiles present now a single-mode shape. The mode clos-501

est to the surface disappeared because θ′2 is here equal to zero at the surface. This be-502

havior can again inspire the construction of the KPP non-gradient term. If, as suggested,503

it is constructed by the sum of two polynomials, the polynomial with its maximum close504
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Figure 10. Dimensionless profiles of the non-gradient term of kεt (run with two different

values σ
θ′2 = 1 and σ

θ′2 = 10) and KPP at the end of the 10 days of simulation for the wind-

dominant case.

to the surface must vanish in the wind-dominant case whereas the second polynomial505

with its maximum near the mixed layer bottom must be present both in the cooling-dominant506

and wind-dominant conditions.507

4 Conclusion508

The primary motivation behind this research was the need to improve the repre-509

sentation of oceanic convection processes in ocean models. Indeed, most parameteriza-510

tions adopt a downgradient approach for which the mixing of tracers and momentum511

primarily occurs in the direction of their gradients, such as from regions of high temper-512

ature to low temperature. However, in convective situations, this simplistic assumption513

falls short, and turbulent fluxes cannot be solely explained or formulated as a downgra-514

dient process (Zhou et al., 2018). While this property was originally recognized for at-515

mospheric convection (Hourdin et al., 2002), oceanographers were also aware of this as-516

pect of convection when they introduced a non-local term in KPP (Large et al., 1994).517

In this context, the non-local term represented the influence and transport of tracers across518

different spatial locations within a convective system, even when these locations are not519

immediately adjacent. In simpler terms, the non-local term accounted for the long-range520
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mixing of properties that occur in convective events. While there is an ongoing effort to521

capture this property with a mass flux parameterization (Giordani et al., 2020), our ap-522

proach has been to seek an analytical formulation of this non-local (or non-gradient) term523

within the GLS (Generic Length Scale) models and we can retrospectively comment on524

that choice based on the results obtained in this article. One key argument for this ap-525

proach is the desire for consistency and integration within the modeling framework. By526

deriving the non-gradient term analytically within the GLS framework, we aim to en-527

sure that all components of the parameterization align seamlessly. This approach avoids528

potential mismatches or inconsistencies that may arise when adding external components529

to existing parameterizations. Another crucial argument is the need to deepen our phys-530

ical understanding of oceanic convection processes. By analytically deriving the non-gradient531

term within the GLS framework, we gain insights into the underlying physics and dy-532

namics governing this term. This understanding can lead to more robust and physically533

grounded parameterization, improving our ability to capture convective processes accu-534

rately. Last, our approach offers flexibility for optimization and adaptation. As the GLS535

framework provides a versatile platform for parameterization, we can adapt and refine536

the derived non-gradient term to suit specific oceanic conditions or scenarios. This adapt-537

ability is valuable for tailoring the parameterization to different modeling and research538

needs.539

In order to assess the validity of our approach we have compared our scheme with540

Large eddy simulations (LES). The main metric that we analyzed was the depth of the541

thermal layer ht which corresponds to the depth at which ∂zΘ = 0. We have verified542

that the effect of the non-gradient term is to raise ht such that a significant part of the543

mixed layer is stably stratified (at least in the thermally driven convection), an aspect544

that was not well reproduced by the k − ε model. We also noted that since the main545

effect of this term is to redistribute heat, the addition of the non-gradient term does not546

have a profound impact on the evolution of the depth of the mixed layer. We have also547

conducted extensive comparisons with KPP. With these comparisons, we have unveiled548

common aspects between our newly derived non-gradient term and certain aspects of the549

KPP non-local term. This comparison suggests that our work has the potential to serve550

as a source of inspiration for enhancing and fine-tuning the KPP parameterization. Par-551

ticularly, it could be used to modify the definition of the ad hoc polynomial that shape552

the diffusivity and the non-local term in KPP.553
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Extending the derivation to include salinity will allow us to more comprehensively554

capture the behavior of oceanic convection. We are currently working on this approach:555

the main challenge is that the non-gradient term for salinity involves coupled equations556

with temperature, making the analytical derivation significantly more complex. Solv-557

ing these coupled equations analytically is mathematically challenging and may require558

additional hypotheses. Another issue is also that the computational demands of imple-559

menting a coupled temperature-salinity non-gradient term within ocean models may in-560

crease. This can affect model efficiency and require adjustments in computational resources.561

Despite these difficulties, the extension of the non-gradient term derivation to salinity562

promises a more comprehensive and accurate representation of oceanic convection. In563

the near future, our research plans also entail a systematic re-evaluation of all GLS pa-564

rameters and kεt parameters. To achieve this, we will employ an ensemble of LES sim-565

ulations, with a resolution high enough to capture the energetic eddies in entrainment566

layers, in conjunction with Bayesian methods (Wagner et al., 2023). Bayesian methods567

offer a data-driven approach to parameter estimation, allowing us to incorporate real-568

world observations and LES data into the parameterization process.569

Appendix A Open Research570

All the codes and the data used for the study are available through the GitHub repos-571

itory https://github.com/legaya/James2024-ket/ or the following DOI: https://572

doi.org/10.5281/zenodo.10562734. These archives contain the two Jupyter Notebooks573

used for performing the 1D simulations and all the analyses, the 1D model described in574

section 2.4 as Fortran Modules, the Fortran codes needed for generating these modules,575

the files needed to perform the LES simulations, and the LES results as netCDF files.576

Appendix B Coefficients in the Second-Order Moment Equations577

Coefficients c1, c2, c3, c4, c5, c1T , c2T , c3T , c4T , cT used in Eqs (3) - (5) are linked to578

the coefficients introduced by Canuto et al. (2001) through the following formulas:579

c1 = 1/λ, c2 = α1, c3 = 1− β5, c4 = 4/3α1 − 4/5, c5 = α1 − α2,

c1T = λ5/2, c2T = 3/4α3, c3T = γ1, c4T = α3/2, cT = 2λ8/(1− γ1).

(B1)

–29–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Appendix C Expressions of the Main Tensors under the Boundary Layer580

Approximation581

After applying the boundary layer approximation, the tensors Pij , Bij , Sij , Vij , Zij582

used in Eqs (3) - (5) simplify to583

Pij =


−2 ∂zU u′w′ −∂zU v′w′ − ∂zV u′w′ −∂zU w′2

−∂zU v′w′ − ∂zV u′w′ −2 ∂zV v′w′ −∂zV w′2

−∂zU w′2 −∂zV w′2 0

 (C1)

Bij =


0 0 β3 u′θ′

0 0 β3 v′θ′

β3 u′θ′ β3 v′θ′ 2β3 w′θ′

 (C2)

Sij =
1

2


0 0 ∂zU

0 0 ∂zV

∂zU ∂zV 0

 (C3)

Vij =
1

2


0 0 ∂zU

0 0 ∂zV

−∂zU −∂zV 0

 (C4)

Zij =


u′w′ ∂zU

1
2 v

′w′ ∂zU + 1
2 u

′w′ ∂zV
1
2 ∂zU (w′2 − u′2)− 1

2 ∂zV u′v′

1
2 v

′w′ ∂zU + 1
2 u

′w′ ∂zV v′w′ ∂zV
1
2 ∂zV (w′2 − v′2)− 1

2 ∂zU u′v′

1
2 ∂zU (w′2 − u′2)− 1

2 ∂zV u′v′ 1
2 ∂zV (w′2 − v′2)− 1

2 ∂zU u′v′ −u′w′ ∂zU − v′w′ ∂zV


(C5)

Appendix D The Algebraic System of 10 Equations of the GLS Formal-584

ism585

For clarity, we give here the explicit writing of the 10 equations presented in Eqs (6) -586

(8) and that are the basis of the GLS formalism:587

–30–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0 = −c1
ε

k
(u′2 − 2

3
k) + (1− c2)(−

4

3
u′w′ ∂zU +

2

3
v′w′ ∂zV )− 2

3
(1− c3)β3 w′θ′ − c5u′w′ ∂zU

0 = −c1
ε

k
(v′2 − 2

3
k) + (1− c2)(−

4

3
v′w′ ∂zV +

2

3
u′w′ ∂zU)− 2

3
(1− c3)β3 w′θ′ − c5v′w′ ∂zV

0 = −c1
ε

k
(w′2 − 2

3
k) + (

2

3
− 2

3
c2 + c5)(u′w′ ∂zU + v′w′ ∂zV ) +

4

3
(1− c3)β3 w′θ′

0 = −c1
ε

k
u′v′ − (1− c2)(v′w′ ∂zU + u′w′ ∂zV )− 1

2
c5(v′w′ ∂zU + u′w′ ∂zV )

0 = −c1
ε

k
u′w′ − (1− c2)w′2 ∂zU + (1− c3)β3 u′θ′ − 1

2
c4k ∂zU − 1

2
c5(w′2 ∂zU − u′2 ∂zU − u′v′ ∂zV )

0 = −c1
ε

k
v′w′ − (1− c2)w′2 ∂zV + (1− c3)β3 v′θ′ −

1

2
c4k ∂zV − 1

2
c5(w′2 ∂zV − v′2 ∂zV − u′v′ ∂zU)

0 = −c1T
ε

k
u′θ′ − (1− c2T − 1

2
c4T )w′θ′ ∂zU − u′w′ ∂zΘ

0 = −c1T
ε

k
v′θ′ − (1− c2T − 1

2
c4T )w′θ′ ∂zV − v′w′ ∂zΘ

0 = −c1T
ε

k
w′θ′ − w′2 ∂zΘ+ (1− c3T )β3 θ′2 −

1

2
c4T (u′θ′ ∂zU + v′θ′ ∂zV )

0 = −2w′θ′ ∂zΘ− 2

cT

ε

k
θ′2

(D1)

Appendix E Coefficients of the Stability Functions for the GLS Formal-588

ism589

Coefficients n0, n1, n2, n0T , n1T , n2T , d0, d1, d2, d3, d4, d5 of the GLS stability func-590

tions (Eqs. (12) and (13)) have the following definitions:591

n0 =
4− 4c2 + 3c4

6c1
,

n1 =
c1c1T cT (1− c3T )(4− 4c2 + 3c4)− 2c1(1− c3)(2− 2c2T − c4T ) + 4c1T (1− c3)(c4 − c5)

6c21c
2
1T

,

n2 =
−c4T (4− 4c2 + 3c4)(2− 2c2T − c4T )

24c1c21T
,

n0T =
2

3c1T
, n1T =

2(1− c3)

3c1c21T
,

n2T =
c1c4T (4− 4c2 + 3c4) + 8c5c1T (1− c2 + c5)− 2c4c1T (2− 2c2 + 3c5)

12c21c
2
1T

,
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d0 = 1, d1 =
7− 7c3 + 3c1cT (1− c3T )

3c1c1T
,

d2 =
3c25 + 6c5(1− c2) + 2(1− c2)

2

3c21
− c4T (2− 2c2T − c4T )

4c21T
,

d3 =
c5c1T (1− c3)(2− 2c2 + c5)

3c31c
2
1T

+
c1c1T cT (1− c3T )

(
3c25 + 6c5(1− c2) + 2(1− c2)

2
)

3c31c
2
1T

+
c1(1− c3)

(
3c4T (1− c2 + c5)− (1− c2T )(2− 2c2 + 3c5)

)
3c31c

2
1T

,

d4 =
(1− c3)(4− 4c3 + 3c1cT (1− c3T ))

3c21c
2
1T

,

d5 =
−c4T (2− 2c2T − c4T )

(
3c25 + 6c5(1− c2) + 2(1− c2)

2
)

12c21c
2
1T

, (E1)

Appendix F The Algebraic System of 9 Equations of the kεt Parameter-592

ization593

For clarity, we give here the explicit writing of the 9 equations presented in Eqs (6) -594

(7) and that are the basis of the kεt parameterization:595
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0 = −c1
ε

k
(u′2 − 2

3
k) + (1− c2)(−

4

3
u′w′ ∂zU +

2

3
v′w′ ∂zV )− 2

3
(1− c3)β3 w′θ′ − c5u′w′ ∂zU

0 = −c1
ε

k
(v′2 − 2

3
k) + (1− c2)(−

4

3
v′w′ ∂zV +

2

3
u′w′ ∂zU)− 2

3
(1− c3)β3 w′θ′ − c5v′w′ ∂zV

0 = −c1
ε

k
(w′2 − 2

3
k) + (

2

3
− 2

3
c2 + c5)(u′w′ ∂zU + v′w′ ∂zV ) +

4

3
(1− c3)β3 w′θ′

0 = −c1
ε

k
u′v′ − (1− c2)(v′w′ ∂zU + u′w′ ∂zV )− 1

2
c5(v′w′ ∂zU + u′w′ ∂zV )

0 = −c1
ε

k
u′w′ − (1− c2)w′2 ∂zU + (1− c3)β3 u′θ′ − 1

2
c4k ∂zU − 1

2
c5(w′2 ∂zU − u′2 ∂zU − u′v′ ∂zV )

0 = −c1
ε

k
v′w′ − (1− c2)w′2 ∂zV + (1− c3)β3 v′θ′ −

1

2
c4k ∂zV − 1

2
c5(w′2 ∂zV − v′2 ∂zV − u′v′ ∂zU)

0 = −c1T
ε

k
u′θ′ − (1− c2T − 1

2
c4T )w′θ′ ∂zU − u′w′ ∂zΘ

0 = −c1T
ε

k
v′θ′ − (1− c2T − 1

2
c4T )w′θ′ ∂zV − v′w′ ∂zΘ

0 = −c1T
ε

k
w′θ′ − w′2 ∂zΘ+ (1− c3T )β3 θ′2 −

1

2
c4T (u′θ′ ∂zU + v′θ′ ∂zV )

(F1)

Appendix G Coefficients of the Stability Functions of the kεt Parameter-596

ization597

We give hereafter the expressions of the coefficients n0, n1, n2, n0T , n1T , n2T , n
∗
0T , n

∗
1T , n

∗
2T , d0, d1, d2, d3, d4, d5598

of the kεt stability functions (Eqs. (21) - (23)). We point out that the expressions of the599

coefficient n1T and all the coefficients not multiplying αn (i.e. n0, n2, n0T , n2T , d0, d1600

and d5) stay unchanged compared to the GLS ones (given in Appendix E).601

n0 =
4− 4c2 + 3c4

6c1
, n1 =

(1− c3)
(
2c1T (c4 − c5)− c1(2− 2c2T − c4T )

)
3c21c

2
1T

,

n2 =
−c4T (4− 4c2 + 3c4)(2− 2c2T − c4T )

24c1c21T
,

n3 =
(1− c3)(1− c3T )

(
2c1T (4− 4c2 + 3c5) + 3c1(2− 2c2T − c4T )

)
6c21c

2
1T

,

n0T =
2

3c1T
, n1T =

2(1− c3)

3c1c21T
,
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n2T =
c1c4T (4− 4c2 + 3c4) + 8c5c1T (1− c2 + c5)− 2c4c1T (2− 2c2 + 3c5)

12c21c
2
1T

,

n∗
0T =

1− c3T
c1T

, n∗
1T =

(1− c3)(1− c3T )

c1c21T
,

n∗
2T =

(1− c3T )
(
3c25 + 6c5(1− c2) + 2(1− c2)

2
)

3c21c1T
,

d0 = 1, d1 =
7(1− c3)

3c1c1T
, d2 =

3c25 + 6c5(1− c2) + 2(1− c2)
2

3c21
− c4T (2− 2c2T − c4T )

4c21T

d3 =
(1− c3)

(
3c1c4T (1− c2 + c5) + c5c1T (2− 2c2 + c5)− c1(1− c2T )(2− 2c2 + 3c5)

)
3c31c

2
1T

d4 =
4(1− c3)

2

3c21c
2
1T

, d5 =
−c4T (2− 2c2T − c4T )

(
3c25 + 6c5(1− c2) + 2(1− c2)

2
)

12c21c
2
1T

. (G1)

Appendix H Results of the k − ε − θ′2 − w′2 model602

We detail here the results of the k−ε−θ′2−w′2 model which is a possible exten-603

sion of the kεt model where the non-equilibrium is also considered for the w′2 equation.604

By doing that, equations (6) and (7) now form a system of 8 equations with 8 unknowns:605

(u′2, v′2, u′v′, u′w′, v′w′, u′θ′, v′θ′, w′θ′). We solved this system with Mathematica and606

we obtained the following expressions:607

u′w′ = −cµ
k2

ε
∂zU, (H1)

v′w′ = −cµ
k2

ε
∂zV, (H2)

w′θ′ = −c′µ
k2

ε
∂zΘ+ c′∗µ

k

ε
β3 θ′2, (H3)
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which have the same shape as the ones found for the kεt model. Particularly, even if w′2
608

is not in equilibrium anymore, the velocity fluxes u′w′ and v′w′ are still fully downgra-609

dient. The expressions of the stability functions cµ, c
′
µ and c′∗µ are:610

cµ =
n0 + n2αM + n3αT + n4αW + n5αWαN + n6αWαM

d0 + d1αN + d2αM + d3αNαM + d5α2
M

, (H4)

c′µ =
n2TαM + n4TαW + n5TαWαN + n6TαWαM

d0 + d1αN + d2αM + d3αNαM + d5α2
M

, (H5)

c′∗µ =
n∗
0T + n∗

1TαN + n∗
2TαM

d0 + d1αN + d2αM + d3αNαM + d5α2
M

, (H6)

with αN = k2

ε2 N
2, αM = k2

ε2 M
2, αT = k

ε2 β
2
3 θ

′2, and αW = 1
k w′2. Coefficients ni, niT611

and di depends on the coefficients ci and ciT ; the expressions are given hereafter. Tak-612

ing the values of the ci and ciT given in Table 1, the stability functions are approximately613

as follows614

cµ =
0.04693− 0.00005303αM + 0.001996αT + 0.0896αW − 0.002994αWαN − 0.0001012αWαM

1 + 0.03361αN + 0.01342αM + 0.00006267αNαM − 0.00001644α2
M

,

(H7)

c′µ =
0.0002651αM + 0.1681αW + 0.005649αWαN + 0.002952αWαM

1 + 0.03361αN + 0.01342αM + 0.00006267αNαM − 0.00001644α2
M

, (H8)

c′∗µ =
0.1120 + 0.003766αN + 0.001631αM

1 + 0.03361αN + 0.01342αM + 0.00006267αNαM − 0.00001644α2
M

. (H9)

Here are the expressions of the coefficients ni, niT , and di:615

n0 =
3c4 − 2c5

6c1
, n2 =

−c4T (3c4 − 2c5)(2− 2c2T − c4T )

24c1c21T
,

n3 =
(1− c3)(1− c3T )

(
2c1T c5 + 3c1(2− 2c2T − c4T )

)
6c21c

2
1T

, n4 =
2− 2c2 + c5

2c1
,

n5 =
−(1− c3)

(
2c1T c5 + 3c1(2− 2c2T − c4T )

)
6c21c

2
1T

, n6 =
−c4T (2− 2c2 + c5)(2− 2c2T − c4T )

8c1c21T
,
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n2T =
c4T (3c4 − 2c5)

12c1c21T
, n4T =

1

c1T
, n5T =

1− c3
c1c21T

,

n6T =
3c1c4T (2− 2c2 + c5) + 2c5c1T (4− 4c2 + 3c5)

12c21c
2
1T

,

n∗
0T =

1− c3T
c1T

, n∗
1T =

(1− c3)(1− c3T )

c1c21T
, n∗

2T =
c5(1− c3T )(4− 4c2 + 3c5)

6c21c1T
,

d0 = 1, d1 =
1− c3
c1c1T

, d2 =
c5(4− 4c2 + 3c5)

6c21
− c4T (2− 2c2T − c4T )

4c21T

d3 =
c5c4T (1− c3)

6c21c
2
1T

, d5 =
−c5c4T (4− 4c2 + 3c5)(2− 2c2T − c4T )

24c21c
2
1T

. (H10)
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