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Abstract: In modelling evapotranspiration, the need for land surface variables including ground 7 

heat fluxes (G), surface temperature (Ts), surface relative humidity (RHs) and surface resistance 8 

often present a challenge due to land heterogeneity and limited measurements. This study 9 

introduces a simple formulation rooted in the shared physical basis of the maximum entropy 10 

model (MaxEnt), the Relative Humidity at Equilibrium (ETRHEQ) method, and the Surface Flux 11 

Equilibrium (SFE) method, and it estimates sensible (H) and latent fluxes (LE) in wetlands 12 

without requiring land surface variables or site-specific calibration, except for an assumed 13 

vegetation height. Further, it effectively estimates LE from half-hourly to monthly scales in 14 

FLUXNET and AmeriFlux wetland sites. While its performance in estimating H is less 15 

satisfactory due to loosely constrained boundary conditions, it shows promising potential for 16 

simultaneously and precisely estimating LE, H, G, Ts, and RHs from weather data in various 17 

ecosystems. 18 

Key points:  19 

1. The formulation is based on the principle of maximum Shannon information entropy 20 

production for turbulence fluxes. 21 



2. The formulation does not require land surface variables or site-specific calibration; only an 22 

assumed vegetation height is needed. 23 

3. The formulation effectively estimates LE from half-hourly to monthly scales. 24 

Plain language summary: This study introduces a new method to predict how much water and 25 

heat wetlands transport to the atmosphere, a process that is usually complicated because it 26 

involves a lot of detailed information about land properties that are hard to measure. This new 27 

method does not need all those details, and instead just needs an estimate of how tall the plant 28 

canopy is. This method works extremely well for predicting water release into the air over 29 

periods ranging from half-hourly to monthly in FLUXNET and AmeriFlux wetland sites. 30 

Although this method is not perfect at predicting heat release due to some assumptions that have 31 

to be made about ground heat and surface temperature, it shows a lot of promise. With a bit of 32 

fine-tuning, it could be used to accurately measure both water and heat exchanges in various 33 

types of ecosystems, not just wetlands. 34 

 35 

 36 

1. Introduction 37 

The partitioning of energy on the land surface of terrestrial ecosystems into ground heat (G), 38 

sensible heat (H) and latent heat (LE) has long been recognized as a result of complex 39 

interactions between atmospheric and land surface properties (Duveiller et al., 2018; Forzieri et 40 

al., 2020; Williams and Torn, 2015; Wilson et al., 2002). At short temporal scales, it is impacted 41 

by plant physiological activities and boundary layer properties, and over the long term, the 42 

biogeochemical cycling, disturbance, and climate all have significant roles to play (Arneth et al., 43 

2012; Green et al., 2017; Wilson et al., 2002). While the importance of land surface properties 44 



cannot be overlooked, land surface variables are a challenge to parameterize due to land 45 

heterogeneity and varied physiological responses of vegetation to changing environmental 46 

conditions (Dickinson et al., 1991; Mueller and Seneviratne, 2014; Wang and Dickinson, 2012).  47 

Recent studies proposed two methodologies, namely the Relative Humidity at Equilibrium 48 

(ETRHEQ) method and the Surface Flux Equilibrium (SFE) method, to estimate surface energy 49 

fluxes from near-surface atmospheric conditions (McColl et al., 2019; Salvucci and Gentine, 50 

2013). ETRHEQ determines the optimal daily surface conductance that yields the most accurate 51 

ET predictions based on minimum vertical variance of relative humidity (RH) (Salvucci and 52 

Gentine, 2013), and SFE provides the solution of ETRHEQ at the steady state (McColl et al., 53 

2019). The two methods are justified by strong land-atmospheric coupling wherein land surface 54 

properties are embedded in the near-surface atmospheric conditions (McColl and Rigden, 2020; 55 

McColl et al., 2019). Conversely, the conditions of the near-surface atmosphere are also reflected 56 

in land surface variables, which partly justifies another methodology called the maximum 57 

entropy model (MaxEnt) that estimates surface energy fluxes using only the surface temperature 58 

and surface relative humidity in addition to net radiation (Wang and Bras, 2011; Wang and Bras, 59 

2009). Although the three models have shown success over a variety of ecosystems worldwide 60 

(Chen et al., 2021; McColl and Rigden, 2020; Rigden and Salvucci, 2015; Yang et al., 2022), 61 

each have their own limitations. ETRHEQ requires vegetation height and ground heat fluxes in 62 

addition to 24-hour subdaily weather measurements, to estimate latent and sensible fluxes at the 63 

daily scale (Rigden and Salvucci, 2015; Salvucci and Gentine, 2013). SFE, though it requires 64 

less parameters (i.e., only net radiation, ground heat flux, air temperature and air specific 65 

humidity), works for sites near or at the steady state and estimates energy fluxes at the daily or 66 

larger temporal scales (Chen et al., 2021; Kim et al., 2023; McColl and Rigden, 2020). The 67 



MaxEnt model is formulated based on minimizing the dissipation function of turbulent fluxes 68 

(which is equivalent to maximizing Shannon information entropy production of the turbulent 69 

fluxes (Dewar, 2005)) and the Monin-Obukhov similarity theory (MOST)'s extremum solution 70 

(Wang and Bras, 2009), but the justification of extremum solution still requires further 71 

examination (Wang and Bras, 2010; Wang et al., 2023).  72 

Wang et al. (2023) investigated the linkage of the three models and found that minimizing the 73 

dissipation function of energy fluxes in MaxEnt is equivalent to minimizing the vertical variance 74 

of RH in ETRHEQ. The empirical success of the three models is explained by the fact that far-75 

from-equilibrium ecosystems progress toward a steady state (i.e., the SFE state) by minimizing 76 

dissipation, and this tendency is manifested through the vertical variance of RH (Wang et al., 77 

2023). In addition, Wang et al. (2023) demonstrated that the connection among the three models 78 

is independent of Monin-Obukhov similarity theory (MOST)'s extremum solution (Wang et al., 79 

2023), and proposed a more general formulation describing the dissipation function (D) of 80 

energy fluxes for both non-steady and steady states, as: 81 

D =
2G2

Is
+

2H2

Ia
+

LE2

Ie
                                                (1) 82 

with  Is = √Id
2 + θ Iw

2 , Ia = ρcp√ga, and Ie =
δ

γ
RHsIa. 83 

where Is, Ia and Ie are the thermal inertia parameters for G, H and LE, respectively; The 84 

parameterization of Is is provided in Huang et al. (2017) and Yang et al. (2022) in which Id is the 85 

thermal inertia of dry soil; θ is the volumetric soil moisture; Iw is the thermal inertia of still 86 

liquid water; ρ is the density of air; cp is the specific heat capacity of air; ga is the aerodynamic 87 

conductance; δ is the slope of the relation between saturated specific humidity and temperature, 88 



γ =
cp

λ
 with λ being the latent heat of vaporization of water; and RHs is the surface relative 89 

humidity. The detailed formulation will be introduced in the next section.  90 

The new formulation is denoted as MaxEnt-ETRHEQ, indicating the shared physical basis 91 

underlying MaxEnt and ETRHEQ. It appears to require both atmospheric and land surface 92 

variables at first glance. However, closer scrutiny revealed that land surface variables such as 93 

surface temperature, surface relative humidity and soil moisture are interlinked in the calculation 94 

of G, H and LE under energy closure. This interconnection renders the formulation self-95 

constrained. Consequently, the energy fluxes and the land surface variables can be analytically 96 

determined by identifying the minimum value of D given suitable ranges of surface temperature 97 

and relative humidity. Therefore, MaxEnt-ETRHEQ has potential to estimate surface energy 98 

fluxes for various ecosystems, with minimal or no land surface information. But its effectiveness 99 

is yet to be examined. Leveraging our proficiency and background in wetland ecosystems, we 100 

demonstrate in this paper that MaxEnt-ETRHEQ is an effective formulation for estimating 101 

energy fluxes for wetland ecosystems, especially for estimating LE from subdaily to monthly 102 

scales, and it does not necessities any land surface parameters; only an assumption regarding 103 

vegetation height is required.  104 

 105 

2. Methods 106 

2.1 The formulation of MaxEnt-ETRHEQ 107 

The main formula of MaxEnt-ETRHEQ is given as Eq. 1. The required input parameters are 108 

atmospheric pressure (p), air temperature (Ta), wind speed (u), friction velocity (u*), air relative 109 

humidity (RH), net radiation (Rn), the height of the measurements of weather data (z) and 110 



vegetation height (zveg). Meanwhile, MaxEnt-ETRHEQ will automatically create two variables, 111 

surface temperature (Ts) and surface relative humidity (RHs) within a pre-defined range for 112 

studied ecosystems (will be explained later). 113 

The surface pressure (ps) is calculated from the atmospheric pressure by rearranging the formulas 114 

used in ETRHEQ, as (Salvucci and Gentine, 2013): 115 

ps =
p

exp (
−gz

RdTa
)
                                                                  (2) 116 

where ps is the surface pressure (Pa), p is the atmospheric pressure (Pa), g is the gravitational 117 

constant (9.8 m·s
-2

), z is the height of the measurements of weather data (m), Rd is the gas 118 

constant for dry air (287 J·kg
−1

·K
−1

), and Ta is the air temperature (K). 119 

Saturation vapor pressure (e*) is calculated from integrated Clausius–Clapeyron relation, as 120 

(Salvucci and Gentine, 2013): 121 

e∗(Ta) = 611.2 × exp (
17.67×(Ta−273.15)

Ta−29.65
)                                           (3) 122 

e∗(Ts) = 611.2 × exp (
17.67×(Ts−273.15)

Ts−29.65
)                                            (4) 123 

where e*(Ta) and e*(Ts) are saturation vapor pressure (Pa) at air temperature (Ta, K) and surface 124 

temperature (Ts, K), respectively. 125 

Saturated specific humidity (q*) is related to the saturation vapor pressure (e*) through the 126 

following equations (Salvucci and Gentine, 2013): 127 

q∗(Ta) =
∈e∗(Ta)

p−(1−∈)e∗(Ta)
                                                            (5) 128 

q∗(Ts) =
∈e∗(Ts)

𝑝𝑠−(1−∈)e∗(Ts)
                                                            (6) 129 

where ϵ is the dimensionless ratio of the gas constant for dry air to water vapor (0.622). 130 



Using Eq. 5 and 6, the slope of the relation between saturated specific humidity (q*) and 131 

temperature (T) can be linearly extrapolated following (Kim et al., 2021; McColl et al., 2019): 132 

δ =
q∗(Ts)−q∗(Ta)

Ts−Ta
                                                                  (7) 133 

where q*(Ts) and q*(Ta) are the surface and atmospheric saturated specific humidity (kg·kg
-1

), 134 

respectively, and Ts and Ta are the surface and air temperature (K), respectively.  135 

The sensible and latent heat fluxes are calculated using the flux gradient equations, as (Kim et 136 

al., 2021): 137 

 H = ρcpga(Ts − Ta)                                                            (8) 138 

LE = λρga(qs − qa)                                                            (9) 139 

where H and LE are the sensible and latent heats (W·m-2
), ρ is the density of air (ρ =

p

RdTa
, 140 

kg·m
3
), cp is the specific heat of air at constant pressure (1004.7 J·kg

-1
·°C-1

), ga is the 141 

aerodynamic conductance accounting for atmospheric stability (m·s
-1

), λ is the latent heat of 142 

vaporization (2.502 × 10
6
 J·kg

-1
), qs is the surface specific humidity (qs = RHs · q∗(Ts), kg·kg

-
143 

1
), and qa is the air specific humidity (qa = RH · q∗(Ta), kg·kg

-1
). 144 

The aerodynamic conductance under the neutral atmospheric condition (ga_n) is given by Allen et 145 

al. (1998), as: 146 

ga_n =
κ2u

ln (
z−d

zom
) ln(

z−d

zoh
)
                                                            (10) 147 

with κ being the von Karman constant (0.41), u being the wind speed (m·s
-2

), z being the height 148 

of height of the measurements of wind speed (m), d being the zero-plane displacement height 149 



(m), zom is the roughness length governing momentum transfer (m), and zoh is the roughness 150 

length governing transfer of heat and vapour (m) 151 

When no vegetation is present in the study sites (zveg =0 m), d is set as 0 m, with both zom and zoh 152 

being set as 0.001 m; whereas in the presence of vegetation, d is set as 0.7 of zveg, with zom being 153 

0.1 of zveg, and zoh being estimated using kB
-1

 approach, following Salvucci and Gentine (2013):  154 

κB−1 = ln (
zom

zoh
) ≅ κ(6Re

1

4 − 5)                                              (11) 155 

where Re is the roughness Reynolds number (Re =
u∗zom

ν
, with u* is the friction velocity (m·s

-2
) 156 

and ν being the kinematic viscosity, as 1.45× 10
-5

 m
2
·s

-1
). 157 

To account for atmospheric stability, the actual aerodynamic conductance (ga, m·s
-1

) is calculated 158 

following Merlin et al. (2016), as: 159 

ga = (1 + Ri)
ⴄ ∙ ga_n                                                       (12) 160 

Ri =
βthermal×gz(Ts−Ta)

Tau2                                                       (13) 161 

where βthermal is the thermal expansion coefficient, and βthermal =5 was used following Choudhury 162 

et al. (1986) and Merlin et al. (2011); g is the gravitational constant (9.8 m·s
-2

), Ts is the surface 163 

soil temperature (K), Ta is the air temperature (K). In Eq. (11), the coefficient η is set to 0.75 in 164 

unstable conditions (Ts >Ta) and to 2 in stable conditions (Ts <Ta); u is the wind speed (m·s
-1

) 165 

and z is the height (m) at which wind speed was measured. 166 

The ground heat flux (G, W·m
-2

) is calculated using energy balance equation as: 167 

G = Rn − H − LE                                                        (14) 168 



where Rn is the net radiation (W·m
-2

), and H and LE are calculated based on Eq. 8 and 9.  169 

The parameterization of thermal inertias (Is, Ia and Ie) is provided in Eq. 1. To minimize the land 170 

surface parameters needed in the MaxEnt-ETRHEQ formulation, Is is set as a constant (1300 171 

J·m
-2

·K
-1

·s
-1/2

, i.e., tiu) following Rigden and Salvucci (2017). It is postulated that such a 172 

constant is acceptable, because: (1) Rigden and Salvucci (2015) stated that the optimal range of 173 

Is was between 300 and 1000 tiu for AmeriFlux sites, and as Is increases with wetter soils, it 174 

should be slightly higher than the optimal range; (2) Rigden and Salvucci (2017) used the 175 

calibrated Is of 1300 tiu for their study sites across united states; (3) the modelling results agree 176 

well with the eddy covariance measurements (presented in the results section); and (4) using 177 

measured soil moisture did not significantly improve the modelling performance (presented in 178 

Table S4). 179 

The last step is to specify appropriate ranges of G, Ts and RHs. Without this specification, G 180 

could become unrealistically large, which does not occur in the real world. After specifying the 181 

ranges, the dissipation function D is computed for every set of input weather data and every 182 

possible paring of G, Ts and RHs. The selection of the optimal set of G, Ts and RHs will be done 183 

through finding the minimum D. Once these optimal values are found, H and LE are 184 

concurrently determined through the calculations from Eq.1 to 14.  185 

2.2 The boundary conditions for wetland ecosystems 186 

The upper limit of G for wetland ecosystems is set as 0.20 of Rn based on the empirical 187 

relationship between G and Rn used in GLEAM model: G/Rn = 0.20 for short vegetation (0.05 188 

m < zveg <1 m) and G/Rn = 0.15 for tall vegetation (Zveg >1 m) (Miralles et al., 2011). Ts and Ta 189 

at the 2 m height above land surface may differ by several °C, but the difference between 190 

maximum Ta and maximum Ts may vary up to 30 °C  (Good et al., 2017; Mildrexler et al., 2011), 191 



so Ts is set to Ta ± 30 °C. Typically, RHs must be higher than RH for evapotranspiration to occur. 192 

As evapotranspiration progresses, RH tends to increase while RHs decreases until the ecosystem 193 

reaches the surface flux equilibrium state (RHeq=RH=RHs). This suggests that there exists a 194 

boundary for RHs, which falls within the range of RH and RHeq. To estimate RHeq, the Priestley-195 

Taylor equation for water body (i.e., the left of the equals sign of Eq. 15) (Priestley and Taylor, 196 

1972) is combined with the PMRH equation under RH=RHs (the right of the equals sign of Eq. 197 

15) (Kim et al., 2021) to determine the maximum RHeq, as: 198 

1.26λ(Rn − G)
∆

∆+γ′
=

RHeq∆

RHeq∆+γ′
(Rn − G)                                        (15) 199 

where 1.26 is the Priestley-Taylor coefficient for open water; λ is the latent heat of vaporization 200 

(2.502 × 10
6
 J·kg

-1
); Rn is the net radiation (W·m

-2
); G is the ground heat flux (W·m

-2
); ∆ is the 201 

slope of the relation between saturation vapor pressure and temperature (Pa·°C
-1

); γ’ is the 202 

psychrometric constant (γ′ =
pcp

∈λ
, with being is the air pressure (Pa), cp being the specific heat of 203 

air at constant pressure (1004.7 J·kg
-1

·°C-1
), ϵ being the dimensionless ratio of the gas constant 204 

for dry air to water vapor (0.622), and ); and λ being the latent heat of vaporization (2.502 × 10
6
 205 

J·kg
-1

)); and RHeq is the equilibrium RH of a saturated wetland ecosystem. Rearranging Eq. 15 206 

leads to the expression of RHeq, as: 207 

RHeq =
1.26λγ′

∆(1−1.26λ)+γ′
                                                         (16) 208 

There are multiple ways to estimate ∆. In this study, the method provided in the FAO Penmen-209 

Monteith equation is chosen to estimate ∆ from Ta, as (Allen et al., 1998): 210 



∆=
1000×4098[0.6108exp (

17.27(Ta−273.15)

(Ta−273.15)+237.3
]

(Ta−273.15+237.3)2                                          (17) 211 

where 1000 is a unit conversion coefficient, Ta is the air temperature (K). 212 

It is important to recognize that the range for G, Ts and RHs can be refined in various ways. The 213 

ranges defined above are just simple examples to determine the plausible ranges of these 214 

parameters in wetland ecosystems, achieving more realistic results while reducing computation 215 

time. The true ranges for G, Ts, and RHs might be more constrained than these estimated values. 216 

And many models, especially the models of G (e.g., the models listed in Purdy et al. (2016), can 217 

be coupled with MaxEnt-ETRHEQ formulation. Exploring the potential enhancement of 218 

MaxEnt-ETRHEQ's performance by integrating these models presents an intriguing subject for 219 

future research. 220 

 221 

3. Data and model evaluation 222 

3.1 Data 223 

All wetland sites classified as WET under the Vegetation IGBP category from the FLUXNET 224 

2015 (Pastorello et al., 2020) and AmeriFlux (ameriflux.lbl.gov) FULLSET data products, shared 225 

under the CC-BY-4.0 license, were chosen for this study. The characteristics of the sites include 226 

latitude, longitude, elevation, mean measurement height, mean vegetation height, mean annual 227 

temperature, mean annual precipitation, and the distance to the coast (Table S1 and Table S2). 228 

Sites within 25 miles (~40 km) of the coast were removed, as ETRHEQ does not perform well in 229 

coastal regions (Rigden and Salvucci, 2015). In addition, the sites without the measurements of 230 

Rn and G were removed. The filter process results in 11 sites, including CZ-wet (Dušek et al., 231 

2016), DE-SfN (Klatt et al., 2016), DE-Zrk (Sachs et al., 2016), FI-Lom (Aurela et al., 2016), 232 



US-Atq (Zona and Oechel, 2016a), US-BZB (Euskirchen, 2021a), US-BZF (Euskirchen, 2021b), 233 

US-BZo (Euskirchen, 2022), US-ICs (Euskirchen et al., 2016), US-Ivo (Zona and Oechel, 234 

2016b), and US-Los (Desai, 2016). 235 

For every site, its fullset product encompasses five separate datasheets, containing measurements 236 

of atmospheric variables and energy fluxes at half-hourly, daily, weekly, monthly, and annual 237 

scales. At each temporal scale, u*(“USTAR”), RH (“RH”), and Rn (“NETRAD”) as well as gap-238 

filled atmospheric measurements (denoted with the “_F” qualifier), including p (‘PA_F”), Ta 239 

(“TA_F”), u (“WS_F”), and VPD (“VPD_F”), and the energy fluxes with marginal distribution 240 

sampling gap-filling method, which are G (“G_F_MDS”), H (“H_F”MDS”), and LE 241 

(“LE_F_MDS”) were obtained. The names enclosed in double quotes within brackets in the 242 

above sentence represent the variable names in the data products. RH at daily or larger scales 243 

was not directly available, so it was estimated from VPD and Ta using the Clausius–Clapeyron 244 

relation. Besides z and zveg were provided in Table S1 and S2. For sites where zveg is not 245 

available, a value of 0.5 to zveg was assigned. 246 

The focus here was limited to temporal scales between half-hourly and monthly, due to a lack of 247 

adequate sites and measurements for conducting a robust analysis at the yearly level. At the half-248 

hourly scale, data with poor quality (i.e., the quality flag (QC) >1) were removed. At coarser 249 

temporal resolutions, i.e., from daily to monthly, only the measured data (QC=0) or the gap-filled 250 

data where over 80% measured or good quality gap-filled (QC=1) records aggregated from finer 251 

temporal resolutions were included, consistent with Kim et al. (2023). As a result, FI-Lom were 252 

removed from daily to monthly scales due to the lack of the quality flag for G. At the monthly 253 

scale, DE-sfN was also removed because only one measurement was available. In addition, 254 

measurements were also removed if the surface energy imbalance was greater than 50 W·m
-2

 255 



(McColl and Rigden, 2020; Rigden and Salvucci, 2015) or Rn -  G was negative (Kim et al., 256 

2023). The amount of data after all filters from half-hourly to monthly scales are presented in 257 

Table S3. The model was also run for sites where soil moisture measurements were available 258 

(i.e., US-BZB, US-BZF, US-BZo and US-ICs), to assess whether incorporating soil moisture 259 

would enhance the model's performance, and the error statistics are provided in Table S4. 260 

3.2 Model evaluation 261 

The root-mean-square error (RMSE), slope and intercept (i.e., bias) of the fitted linear 262 

relationship between modelled and measured energy fluxes, and the coefficient of determination 263 

(R²) were used as metrics to evaluate model performance. The evaluation was made of the 264 

measurements without energy closure correction (specifically, “H_F_MDS” and “LE_F_MDS” 265 

in the data product) and with correction using the energy balance closure correction factor on the 266 

assumption that the Bowen ratio is correct (Pastorello et al., 2020) (the corrected energy fluxes 267 

are “H_CORR” and “LE_CORR” in the data product), respectively. In addition, H_F_MDS and 268 

LE_F_MDS were compared with H and LE calculated as the residual of the energy balance (i.e., 269 

H_re = Rn - G_F_MDS - LE_F_MDS, and  LE_re = Rn - G_F_MDS - H_F_MDS) to assess the 270 

how energy imbalance and the inherent uncertainty in the eddy covariance measurements affect 271 

the evaluation of the performance of the model. If there is no energy closure problems in the 272 

eddy covariance measurements, there would be a perfect fit between the measurements and the 273 

residuals of the energy balance for each energy flux. This represents the highest level of 274 

performance that can be expected from any model in comparison to eddy covariance 275 

measurements, as explained in McColl and Rigden (2020). However, comparisons with other 276 

models such as Penman-Monteith, Priestley-Taylor, MaxEnt, ETRHEQ, SFE, or MEP-SFE were 277 

not conducted because MaxEnt-ETRHEQ is still in its early stage, and this paper is intended to 278 



provide a possible way to utilize it for wetland ecosystems. Further, MaxEnt-ETRHEQ is unique 279 

as it does not require G or Ts as inputs, unlike other models. However, inter-model comparisons 280 

will be considered in future research.  281 

All the analysis was conducted on R 4.3.0 (R Core Team 2023). The R scripts, which contain the 282 

codes for calculating the distance from study sites to the coast, modelling the energy fluxes using 283 

MaxEnt-ETRHEQ for each site, and creating the figures presented in this paper, are all available 284 

at Wang (2024). 285 

 286 

4. Results 287 

MaxEnt-ETREHQ provides highly accurate predictions for LE from half-hourly to monthly 288 

scales (Figure 1), with slopes ranging from 0.86 to 1.08 and biases ranging from 4.00 to 6.34 289 

W·m-2
. When the energy balance residuals (e.g., H_re and LE_re) were used to compare with the 290 

measurements (H_F_MDS and LE_F_MDS), their values of R
2
 and the proximity of the slopes 291 

to 1 show similar levels with MaxEnt-ETRHEQ, but their bias, which is around 14 to16 W·m-2
 292 

and RMSE, which around 23 to 28 W·m-2
 (Table 1), were slightly larger than those of MaxEnt-293 

ETRHEQ (bias: 4 to 7 W·m-2
 and RMSE:11 to 27 W·m-2

). In this sense, the error statics of 294 

MaxEnt-ETRHEQ for estimating LE are slightly better than the errors statistics from the eddy 295 

covariance measurements (Table 1).  296 



 297 

Figure 1. Modelled H and LE versus measurements (Hobs and LEobs) without energy 298 

balance closure correction from half-hourly to monthly scales. The blue lines represent the 299 

fitted linear regressions. The black lines are 1:1 lines. The color of the points represents the 300 

density of the data ranging from low (purple) to medium (red) to high (yellow). 301 

 302 

On the other hand, the model does not predict H with the same performance as it predicts LE, 303 

especially at the half-hourly scale (Figure 1). But when the time scale becomes larger, the 304 



performance on estimating H is improved (Figure 1 and Table 1). Overall, MaxEnt-ETRHEQ 305 

tends to overestimate H when H is low and underestimate H when it is high (Figure 1). Given the 306 

estimation of LE was quite accurate, the less satisfactory performance of MaxEnt-ETRHEQ for 307 

H can be attributed to less accurately defined boundary conditions for G and Ts. In the current 308 

model setting, G was limited to up to 20% percent of Rn based on the GLEAM model that was 309 

designed for daily applications (Purdy et al., 2016). This explains why MaxEnt-ETRHEQ 310 

performs better in estimating H at daily and larger time scales. But at most study sites, G often 311 

exceeds 20% of Rn when Rn is exceptionally low (e.g., less than 50 W·m
-2

), and frequently falls 312 

below 10% of Rn when Rn is high (greater than 400 W·m
-2

). Therefore, when Rn is low, G is 313 

underestimated, leading to an overestimation of H, and vice versa.  314 

At the half-hourly scale, there is a spike of estimated H when measured H is near zero (Figure 1). 315 

The spike is only from the US-BZo site (Figure S1) that happened during the night when Rn, 316 

G_F_MDS, H_F_MDS and LE_F_MDS were all negative, and the absolute value of G was at 317 

least 10 times larger than that of Rn. These energy fluxes suggest that US-BZo likely 318 

encountered intense convective weather at these periods, characterized by air that was warmer 319 

and more humid than the surface, accompanied by significant condensation. Under these weather 320 

circumstances, the current MaxEnt-ETRHEQ formulations were unsuitable for H, LE, and ga. 321 

Determining the applicability of Eq. 1 in such conditions and devising revisions for the 322 

calculations of H, LE, and ga need to be addressed in future research. 323 

When H and LE observations are adjusted to force energy balance closure (i.e., H_CORR and 324 

LE_CORR), the performance of MaxEnt-ETRHEQ did not seem improve overall. For example, 325 

the bias in H or LE estimations decrease when the energy fluxes are corrected at all temporal 326 

scales, but the R
2
, RMSE and slopes deteriorate (Table 1). This is because the energy balance 327 



closure correction results in higher H and LE for most of the study sites. While this adjustment 328 

could result in more accurate energy fluxes, it also has the potential for overcorrection as 329 

diagnosed in Mauder et al. (2018). Consequently, the actual performance of MaxEnt-ETRHEQ 330 

in estimating H and LE should be in between its performance when compared to uncorrected 331 

fluxes and its performance when evaluated against corrected fluxes. 332 

Table 1. Summary of modelled fluxes against the energy balance corrected fluxes, and 333 

measured, uncorrected fluxes against the residuals of energy balance from half-hourly to 334 

monthly scales. 335 

Temporal 

scales 

Variables 
Slope 

Intercept 

(bias) 
R

2
 RMSE 

x y 

Half-hourly       

 H_CORR Modelled H 0.27 7.62 0.47 43.87 

 LE_CORR Modelled LE 0.76 4.64 0.78 33.00 

 H_F_MDS H_re 0.90 12.80 0.69 27.87 

 LE_F_MDS LE_re 0.88 14.60 0.76 27.87 

Daily       

 H_CORR Modelled H 0.56 9.50 0.58 19.27 

 LE_CORR Modelled LE 0.72 5.59 0.74 20.66 

 H_F_MDS H_re 1.11 15.60 0.74 23.65 

 LE_F_MDS LE_re 1.08 15.10 0.82 23.65 

Weekly       

 H_CORR Modelled H 0.58 11.70 0.51 17.67 

 LE_CORR Modelled LE 0.70 4.95 0.78 18.23 

 H_F_MDS H_re 1.15 16.70 0.74 24.08 

 LE_F_MDS LE_re 1.13 15.40 0.84 24.08 

Monthly       

 H_CORR Modelled H 0.62 11.70 0.51 16.20 

 LE_CORR Modelled LE 0.68 4.23 0.81 18.27 

 H_F_MDS H_re 1.23 16.60 0.75 24.70 

 LE_F_MDS LE_re 1.18 15.10 0.86 24.70 

 336 

Finally, the performance of MaxEnt-ETRHEQ in estimating LE at individual sites throughout the 337 

temporal scales are also quite accurate. Figure 2 presents the half-hourly predictions of LE at 338 

each site, and shows that despite varying accuracy across different sites, MaxEnt-ETRHEQ 339 

demonstrates high precision in predicting half-hourly LE, with R
2
 values between 0.74 to 0.89 340 

and RMSE ranging from 20.03 to 53.23 W·m-2
. However, the predictions of H at various 341 



temporal scales were not satisfactory (Figure S1, Figure S2 and Figure S3). Nevertheless, when 342 

the time scale is at the daily, weekly or monthly, both H and LE estimations are improved (Figure 343 

3, Figure S2 and Figure S3). Considering that no site-specific calibration was made, and no Ts or 344 

G were used as inputs, the performance of MaxEnt-ETRHEQ at individual sites were excellent. 345 

 346 

Figure 2. Modelled LE versus measured LE without energy balance closure correction at 347 

the half-hourly scale at the study sites. The blue lines represent the fitted linear regressions. 348 

Black lines represent 1:1 lines. 349 



 350 

Figure 3. Modelled H and LE versus measured H and LE without energy balance closure 351 

correction at the daily scale at the study sites. The blue lines represent the fitted linear 352 

regressions, and black lines d1:1 lines. 353 

 354 

5. Model advantages and limitations 355 

The main advantage of MaxEnt-ETRHEQ is that it does not require land surface measurements 356 

like G and Ts, which outcompetes most evapotranspiration (ET) models. While it could be 357 

argued that ET from wetland ecosystems closely approximates potential ET, which can be easily 358 

calculated using the Priestley-Taylor or Penman-Monteith equations for saturated water surfaces, 359 

the computation of potential ET (PET) still necessitates at least G as input. Additionally, 360 



wetlands may not consistently be in a state of saturation (Streich, 2019), and using these 361 

equations could lead to substantial bias. 362 

Moreover, MaxEnt-ETRHEQ is capable of providing estimates of LE at half-hourly intervals, 363 

distinguishing it from most equilibrium-based models that require equilibration times that 364 

typically extend beyond a daily timeframe, including the SFE model (McColl and Rigden, 2020) 365 

and the SFE-MEP model (Kim et al., 2023). The highly accurate half-hourly LE estimates 366 

provided by MaxEnt-ETRHEQ mean that the model is capable of precisely capturing the sub-367 

daily fluctuations of ET. Many land surface models have shown considerable inaccuracies in 368 

sub-daily LE estimates, typically underestimating LE in the morning and overestimating it in the 369 

afternoon, owing to insufficient parameterizations of stomatal conductance and plant hydraulics 370 

(Matheny et al., 2014). MaxEnt-ETRHEQ and its underlying mechanism (i.e., the maximum 371 

entropy production) may provide new perspectives to enhance the performance of these models. 372 

However, MaxEnt-ETRHEQ is still in its early stages, as further efforts are required to 373 

accurately refine the ranges of G, Ts and RHs. However, that does not mean that these land 374 

surface variables ought to be inputs for MaxEnt-ETRHEQ. Rather, identifying appropriate 375 

boundary conditions for these variables should suffice. With growing evidence showing the 376 

interactions between land surface variables like G, Ts, soil moisture, soil thermal inertia and 377 

vegetation properties and near-surface atmospheric conditions (Bennett et al., 2008; Chu et al., 378 

2018; Purdy et al., 2016; Wang and Bras, 1999; Wang and Bou-Zeid, 2012), developing physical 379 

models to describe these linkages and determining the limiting cases for G, Ts and RHs are not 380 

far off. Once these boundary conditions are defined properly, MaxEnt-ETRHEQ will be capable 381 

of simultaneously estimating not only H, LE, and G, but also Ts and RHs. Thus, it opens up a 382 

promising avenue for future research. 383 



In addition, it may be argued that MaxEnt-ETRHEQ relies on empirical parameters like the 384 

parameterization of Is and ga. Indeed, most models for estimating surface energy fluxes are 385 

largely based on empirical approaches, particularly in calculating parameters such as 386 

displacement height, roughness length for momentum and heat transfer, and aerodynamic 387 

conductance. Furthermore, when these models are scaled up for application over extensive areas, 388 

the reliance on parameters that have been either assumed or previously calibrated becomes 389 

inevitable. Therefore, the use of empirical parameterizations in MaxEnt-ETRHEQ should not be 390 

viewed as shortcomings. Instead, it underscores the critical need for further research aimed at 391 

refining these parameters to enhance the model's accuracy. 392 

 393 

6. Conclusion 394 

The goal of this paper is to demonstrate the effectiveness of a newly developed formulation 395 

grounded in the principle of maximum Shannon information entropy production theory for 396 

estimating surface energy fluxes in wetland ecosystems. The formulation requires neither land 397 

surface variables nor site-specific calibration, except for a presumed vegetation height, and it 398 

effectively estimates LE from half-hourly to monthly scales in the FLUXNET and AmeriFlux 399 

wetland sites. While its estimation on H is less satisfactory due to roughly constrained boundary 400 

conditions for G and Ts, the formulation holds promise for concurrently and accurately 401 

estimating LE, H, G, Ts and RHs for various ecosystems if limiting cases of G, Ts and RHs are 402 

properly established. Overall, the formulation contributes new insights into developing earth 403 

systems models. 404 

 405 



Open research 406 

All datasets in this study, as well as the R scripts used for modeling and data visualization, are 407 

publicly available. For access to the specific datasets used in this study, please refer to the 408 

FLUXNET database (http://www.fluxnet.org) and the AmeriFlux network 409 

(http://ameriflux.lbl.gov). For the data analysis, the R programming language version 4.3.0 (R 410 

Core Team 2023) was employed. The codes can be accessed on Wang, Y. (2024). R scripts for 411 

the submission by Wang and Petrone, "An effective formulation for estimating wetland surface 412 

energy fluxes from weather data". Zenodo. https://doi.org/10.5281/zenodo.10602494.  413 
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Figure S1. Half-hourly estimates of H versus measured H. without energy balance closure correction at the half-hourly scale at 

the study sites. Blue lines represent the fitted linear regressions. Black lines represent 1:1 lines. 



 

Figure S2. Modelled H and LE and measured H and LE without energy balance closure correction at the weekly scale. Blue 

lines represent the fitted linear regressions. Black lines represent 1:1 lines. 



 

Figure S3. Modelled H and LE versus measured H and LE without energy balance closure correction at the monthly scale.  

Blue lines represent the fitted linear regressions. Black lines represent 1:1 lines. 

 

 


