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ABSTRACT: A parameterization for barotropic eddy potential vorticity fluxes is introduced which

applies both an energetic and an enstrophetic constraint to down-gradient PV mixing. An eddy

kinetic energy budget and an eddy potential enstrophy budget are employed to constrain the

parameterized eddy PV fluxes. The parameterization is tested for freely-decaying turbulence over

variable bottom topography. Results of the simulations show that the parameterization can convert

energy from the parameterized eddies to the mean flow. Furthermore, the kinetic energy and

potential enstrophy budgets employed are sufficient to constrain the large-scale flow such that no

spurious source of energy is introduced. As a result, the parameterization is able to produce a

topography-following flow of the correct order of magnitude when compared with a high-resolution

simulation.
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SIGNIFICANCE STATEMENT: Small-scale eddies in the ocean, the analogue of atmospheric20

weather systems, are an important factor in determining the large-scale flow. In particular, in21

regions where the height of the ocean floor varies, eddies drive the flow towards a structure which22

resembles that of the ocean floor. Current methods of representing eddies in climate models are23

unable to capture the latter process because they fail to represent accurately the underlying physical24

processes that constrain the eddies. Here we present a new method for representing ocean eddies25

in climate models which uses conservation of energy, and of a similar quantity that measures the26

amount of turbulent stirring, to constrain the feedback of the eddies on the large-scale flow. We27

test the new method experimentally in a simple computational ocean model, analysing both the28

parameters that are important in the underlying physics and the large-scale flows produced by the29

eddies.30

1. Introduction31

Topography-following flows dominate the flow structure in the Arctic Ocean (Nand Isachsen40

2003), a region which plays a crucial role in the global ocean circulation (Wang et al. 2018) and,41

as such, is influential in both global and localized climates. Bretherton and Haidvogel (1976)42

first outlined a mechanism through which turbulence drives the flow to a topography-following43

state. It is well known that the ocean interior is dominated by geostrophic turbulence, in which44

kinetic energy is cascaded to large scales while potential enstrophy is cascaded to small scales45

where it is dissipated. Bretherton and Haidvogel (1976) argued that eddies dissipate potential46

enstrophy while conserving total energy. Consequently, freely-decaying turbulence tends towards47

a minimum potential enstrophy state for a given initial energy, in which streamlines follow48

the topography contours. Crucially, these flows arise as a result of the turbulent cascades and49

hence they are eddy-driven. Since eddies are parameterized in the majority of CMIP6 models50

with an ocean component (Eyring et al. 2016; Gregory et al. 2016; Griffies et al. 2009, 2016;51

Jones et al. 2016), the ability of climate models to simulate eddy-driven topography-following52

flows is reliant on that of the eddy parameterization employed. Since the theoretical argument53

for the development of topography-following flows begins with the fact that eddies dissipate54

potential enstrophy while conserving total energy, it is sensible to suggest that an eddy param-55

eterization which can produce realistic topography-following flows must also have these properties.56
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57

One method of parameterizing eddy-driven topography-following flows is the Neptune pa-58

rameterization (Holloway 1992). Based on the idea of maximum entropy production, Holloway59

(1992) used the cascades of energy and enstrophy inherent to the flow to derive a solution for60

the flow field with maximised entropy. The Neptune parameterization relaxes the resolved flow61

towards a simplified estimate of this maximum entropy flow field, which follows topographic62

contours. Neptune has been implemented and tested in both a global (Eby and Holloway 1994)63

and Arctic regional (Nazarenko et al. 1998) model. In both studies, it was found that inclusion64

of Neptune led to flow fields which are more in agreement with observations than simulations65

without Neptune. For example, the inclusion of the parameterization results in the production of66

poleward eastern boundary undercurrents and equatorward western boundary undercurrents (Eby67

and Holloway 1994), as well as a more complicated surface and sub-surface flow field including a68

cyclonic flow in the Makarov Basin, anticyclonic flow around the Chuchki Plateau, and a returning69

flow along the Lomonosov Ridge (Nazarenko et al. 1998). However, Eby and Holloway (1994)70

noted that there were instances where the abyssal flow produced by Neptune may have been too71

strong, resulting in, for example, a reversed depth-integrated total transport of the California72

Current system. These studies highlight how the inclusion of eddy-driven topography-following73

flows can lead to a more accurate representation of the large-scale circulation. However,74

implementation Neptune in climate models is rare.75

76

The prevailing eddy parameterization in CMIP6 models is Gent and McWilliams (1990)77

(hereafter referred to as GM90). GM90 parameterizes the eddy-induced transport arising from78

the eddy buoyancy fluxes as a prescribed advection of tracers, resulting in an adiabatic flattening79

of isopycnals. Through this process, energy is converted from potential energy in the large-scale180

flow to eddy energy, thus mimicking the effects of baroclinic instability. Physically, this results81

in a flattening of isopycnals. Whilst the implementation of GM90 into climate models has led to82

many improvements (Danabasoglu et al. 1994), there are some limitations. GM90 assumes flat83

topography, resulting in flattened isopycnals regardless of the topographic structure, and hence84

leads to an unrealistic state of rest over variable bottom topography (Adcock and Marshall 2000).85

Additionally, the eddy energy converted from potential energy by GM90 is lost and no longer86

1In the context of eddy parameterizations, the terms large-scale and eddy are used to signify the resolved and unresolved dynamics respectively.
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accounted for in the system. In reality, quasi-geostrophic theory predicts that part of this eddy87

energy should cascade to larger scales (Rhines 1975) and can therefore have a direct impact on the88

large scale flow. GM90 provides no such mechanism for this to occur and therefore introduces a89

spurious sink of energy into the system. Hence, GM90 does not conserve energy.90

91

An alternative method for parameterizing mesoscale ocean eddies is that of potential vor-92

ticity (PV) mixing, in which the eddy PV fluxes are parameterized as fluxing PV down the93

mean PV gradient (Green 1970; Marshall 1981). High-resolution numerical experiments have94

demonstrated that the eddy-induced transport correlates with isopycnic gradients of PV (Marshall95

et al. 1999), providing an argument for PV mixing over GM90. One advantage of PV mixing as a96

method of eddy parameterization is that, over variable bottom topography under freely-decaying97

turbulence, the large scale flow will tend to a topography-following state. To demonstrate why this98

is true, consider the thought experiment in Figure 1 in which a barotropic fluid layer on an 𝑓 -plane99

in the northern hemisphere with a rigid lid lies over a topographic formation. We assume there is100

no forcing or damping in the domain, i.e. conditions of freely-decaying turbulence. If we assume101

the initial flow field has no systematic structure in mean relative vorticity, i.e. 𝜉 = 0 everywhere,102

then the structure of the mean PV is entirely determined by the spatial structure of depth, H. Thus103

we have large mean PV over the mount (where H is small), and low mean PV around the mount104

(where H is large). A down-gradient PV mixing parameterization will flux PV from areas of large105

mean PV to areas of low mean PV. In this scenario, the only way that mean PV can be conserved106

following the flow is if 𝜉 decreases over the mount and increases around the mount, resulting in the107

development of a mean circulation along lines of constant depth of topography. However, when108

𝜅PV is constant, i.e. an unconstrained PV mixing parameterization, the mean flow will increase in109

strength until PV is uniform throughout the domain, requiring an increase in energy from that of110

the initial state. Hence, an unconstrained down-gradient PV mixing parameterization introduces111

a spurious source of energy into the system and does not conserve energy (Adcock and Marshall112

2000).113

114

More recent developments in the design of eddy parameterizations have focused on developing115

energetically consistent parameterizations via the incorporation of an eddy energy budget.116
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Fig. 1. A thought experiment to demonstrate how down-gradient PV mixing leads to a topography-following

flow. Left panel shows the PV flux as a result of a barotropic fluid on an 𝑓 -plane in the northern hemisphere

with a rigid lid lying over a topographic formation and in which there is no systematic structure in the mean

relative vorticity, i.e. 𝜉 = 0 everywhere. In such a case, the PV gradient is determined by the spatial structure

of H and a down-gradient PV mixing scheme will act to flux PV from the region over the mount (where PV is

large) to the region around the mount (where PV is small). Panel on the right shows the flow as a result of the

PV flux indicated in the left panel. Relative vorticity increases in the region around the mount and decreases in

the region over the mount, resulting in a circulation along lines of constant topographic depth.
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The budget calculates the eddy energy in the system which is then used to inform the eddy117

parameterization and hence the mean flow. For example, Cessi (2008) and Eden and Greatbatch118

(2008) incorporated an eddy kinetic energy (EKE) budget into GM90 by combining it with119

mixing length arguments to determine the eddy diffusivity parameter. Whilst this makes the120

mean flow energetically consistent with the eddy flow, there is still no mechanism through which121

EKE can cascade to resolved scales and hence the system is not energy conserving. Bachman122

(2019) proposed a framework for such a mechanism which re-injects the EKE converted from123

potential energy by GM90 back into the larger scale barotropic flow via negative diffusion. This124

results in an improved kinetic energy spectrum at large scales. However, all of these approaches125

fundamentally rely on using GM90; as a result, they lead to flat isopycnals when implemented126

over varying topography thus failing to produce a topography-following flow.127

128

Marshall and Adcroft (2010) developed an energetically constrained PV mixing parameter-129
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ization by applying the methods of Eden and Greatbatch (2008) to the PV mixing parameterization130

framework. By incorporating an energy budget, this approach was able to constrain the131

effect of the parameterized eddies on the large-scale flow such that it no longer generated a132

spurious source of energy. Furthermore, they demonstrated that when the eddy PV fluxes133

are represented as down-gradient PV mixing the growth or decay of the instabilities of the134

flow was described by a parameterized analogue of Arnold’s first stability theorem (Arnold135

1965). However, this parameterization was tested in a domain with flat topography and it re-136

mains to be determined if such a parameterization conserves energy when topography is introduced.137

138

Another issue related to energy conservation in coarse resolution models is that part of the139

inverse kinetic energy cascade remains unresolved. This means that kinetic energy at unresolved140

scales cannot cascade to the larger resolved scales as is typical of geostrophic turbulence. Attempts141

have been made to parameterize this transfer of energy from unresolved to resolved scales. For142

example, Jansen and Held (2014) developed such a parameterization which returned the energy143

dampened at the grid-scale by explicit viscosity back to the resolved flow via a forcing term in the144

governing equations. The forcing was applied both randomly (using Gaussian noise) and through145

the use of a negative Laplacian. Mana and Zanna (2014) developed a stochastic parameterization146

for eddies which represents the effect of the eddies via the divergence of a non-Newtonian stress147

which was shown to backscatter energy in a wind-driven gyre setup (Zanna et al. 2017). Both148

studies found that their respective parameterizations led to an improved kinetic energy spectra at149

all scales (Jansen and Held 2014; Zanna et al. 2017).150

151

The GEOMETRIC framework (Marshall et al. 2012) is an alternative energetically-constrained152

parameterization that is based on the decomposition of eddy momentum fluxes into components153

based on eddy geometry and eddy energy. In the implementation of the GEOMETRIC framework154

as a parameterization, the eddy energy is solved for prognostically via an energy budget. The155

geometric parameters, which must be specified, are non-dimensional and strongly bounded in156

magnitude, making them easier to specify. These parameters also have strong connections with157

classical stability theory (Marshall et al. 2012; Tamarin et al. 2016). We adopt a similar approach158

in this study.159
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160

In this paper, we present a new formulation of a barotropic PV mixing parameterization161

which incorporates an eddy potential enstrophy budget in addition to an EKE budget. The162

resulting parameterization is therefore both energetically and enstrophetically consistent and the163

parameterized eddy PV fluxes are constrained by both the eddy potential enstrophy and the EKE.164

Since the kinetic energy and potential enstrophy cascades are both important factors in the theory165

underpinning eddy-driven topography-following flows, we hypothesize that incorporating budgets166

for both will suffice to constrain the down-gradient PV mixing parameterization such that it no167

longer violates the law of energy conservation when implemented over topography. We test and168

demonstrate the functionality of the parameterization through a set of highly idealised experiments.169

170

The rest of this article is structured as follows. In section 2, we outline the formulation of171

the new energetically- and enstrophetically-constrained down-gradient PV mixing parameteriza-172

tion. In section 3, we describe our methods related to testing this parameterization in an idealised173

model, including the experimental design and details about the numerical model set-up. In section174

4, we compare the results of a barotropic spin-down experiment with random topography at175

eddy-resolving resolution with that of a coarse resolution simulation in which no parameterization176

is employed in order to highlight what is required of the parameterization for this problem. In177

section 5, we present the results of experiments designed to demonstrate the functionality of the178

parameterization. Finally, in section 6, we summarise and discuss the work presented here as well179

as avenues for future work.180

2. A new parameterization for eddy potential vorticity fluxes181

This section outlines a new formulation of a down-gradient PV mixing parameterization as182

a method for parameterizing the eddy PV fluxes that is both energetically and enstrophetically183

constrained.184
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a. Down-gradient potential vorticity mixing parameterizations185

Down-gradient PV mixing parameterizations parameterize the eddy PV fluxes as mixing PV186

down the mean PV gradient at a specified rate controlled by an eddy diffusivity. This takes the187

form188

𝑞′u′ = −𝜅PV∇𝑞, (1)

where u is the horizontal velocity with components 𝑢 and 𝑣 in the zonal (𝑥) and meridional (𝑦)189

directions respectively, 𝜅PV is the eddy PV diffusivity, and 𝑞 is the PV, defined for a barotropic190

fluid as191

𝑞 =
𝑓 + 𝜉
H

(2)

where 𝑓 is planetary vorticity, 𝜉 is relative vorticity, defined as 𝜉 = 𝜕𝑣/𝜕𝑥− 𝜕𝑢/𝜕𝑦, and H is layer192

depth2. In Equation (1), and throughout the rest of this paper, overbars denote a time-mean, used193

to represent the large-scale, slowly evolving component of the flow, and primes denote a deviation194

from the time-mean, used to define the eddy component of the flow.195

b. Constraining the eddy potential vorticity fluxes196

To constrain the eddy PV fluxes, 𝑞′u′, we exploit the following bound:197

|𝑞′u′|2 ≤ 4Λ𝐾, (3)

where Λ is the eddy potential enstrophy and 𝐾 is the eddy kinetic energy, defined as198

Λ =
𝑞′2

2
, (4)

and199

𝐾 =
𝑢′2 + 𝑣′2

2
, (5)

2Note that H must be invariant with time in order for Equation (1) to be true. In the experiments discussed and analysed in this paper we assume
one vertical layer with a rigid lid and a bottom topography that is invariant with time. Hence, this requirement is satisfied.
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respectively. The bound in Equation 3 holds, for example, for eddy-mean decomposition via time-200

averaging as used in this paper. We now employ a similar approach to Marshall et al. (2012) to201

construct a down-gradient PV mixing parameterization from Equation (3). An efficiency parameter,202

𝛾𝑞, can be defined from the bound in Equation (3):203

|𝑞′u′| = 2𝛾𝑞
√
Λ𝐾, (6)

where 0 ≤ 𝛾𝑞 ≤ 1. Here, 𝛾𝑞 describes how efficient the eddies are at fluxing PV and hence we204

refer to it as the PV flux efficiency parameter. When 𝛾𝑞 = 0, the eddy PV flux is zero on average.205

In this case, the eddies do not act to move the system towards a more ordered state. When 𝛾𝑞 = 1,206

the eddy PV flux magnitude is at its maximum value.207

208

From the bound in Equation (3), we construct an energetically and enstrophetically con-209

strained down-gradient PV mixing parameterization by letting210

𝑞′𝑢′ = −2𝛾𝑞
√
Λ𝐾 cos𝜙𝑞, (7)

𝑞′𝑣′ = −2𝛾𝑞
√
Λ𝐾 sin𝜙𝑞, (8)

where 𝜙𝑞 is the angle of the vector ∇𝑞 to the 𝑥-axis. This choice for 𝑞′𝑢′ and 𝑞′𝑣′ satisfies the211

bound in Equation (3). Since ∇𝑞 = |∇𝑞 |
(
cos𝜙𝑞, sin𝜙𝑞

)
, we find that for ∇𝑞 ≠ 0:212

𝑞′u′ = −
2𝛾𝑞

√
Λ𝐾

|∇𝑞 | ∇𝑞. (9)

Equation (9) describes a down-gradient PV mixing parameterization in which the eddy PV diffu-213

sivity is given by214

𝜅PV =
2𝛾𝑞

√
Λ𝐾

|∇𝑞 | . (10)

A key feature of the parameterization is that the magnitude of the eddy PV fluxes are determined215

by both the EKE and eddy potential enstrophy in the system. Since 𝜅PV is non-negative, the choice216

to include a factor of -1 in Equations (7) and (8) imposes down-gradient PV mixing by design.217
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One caveat to this approach is that, whilst it is true that the eddies flux PV down the mean PV218

gradient on average (Marshall and Adcroft 2010), this is not necessarily the case locally (e.g.219

Waterman and Lilly, 2015). However, imposing down-gradient PV mixing is a common tactic in220

eddy parameterization design so we deem it a sufficient assumption for this first demonstration-of-221

concept exercise.222

c. Specifying 𝐾 and Λ223

It remains to determine Λ and 𝐾 , the eddy potential enstrophy and eddy kinetic energy224

respectively, for use in informing the parameterization. One strategy for determining these225

parameters is to specify their initial distribution and employ prognostic equations (i.e. an eddy226

potential enstrophy and EKE budget) to step forward Λ and 𝐾 at each time step, then using the227

time-evolving values to inform the parameterization. This strategy ensures that the parameteri-228

zation is flow-aware. The intention of this formulation is that the parameterization’s dependence229

on time-evolving budgets ofΛ and𝐾 will act to realistically constrain the energy of the resolved flow.230

231

Following Cessi (2008), Eden and Greatbatch (2008) and Marshall and Adcroft (2010), we232

employ an EKE budget for a barotropic fluid. The relevant EKE equation is233

𝜕𝐾

𝜕𝑡
= 𝑞′u′ · ∇𝜓− 1

H
∇ ·Hu′𝐵′+F𝐾 , (11)

where 𝐾 is the parameterized EKE, 𝜓 is the transport stream function, 𝐵 is the Bernoulli potential234

defined as 𝐵 = u ·u/2+ 𝑝/𝜌0 where 𝑝 is the pressure and 𝜌0 a reference density, and F𝐾 represents235

sources and sinks of eddy kinetic energy.236

237

The first term on the right hand side of Equation (12) represents kinetic energy conversion238

between the large-scale and eddy components of the flow (Marshall and Adcroft 2010) with a239

positive value signifying conversion from the mean flow to the eddies. The second term on the240

right hand side integrates to zero over the domain and therefore acts only to redistribute the241

energy. Following Eden and Greatbatch (2008) and Marshall and Adcroft (2010), we represent242

this redistribution of 𝐾 as advection by the depth-integrated large-scale flow and Laplacian243
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diffusion with coefficient 𝜇. We include only a sink of 𝐾 through bottom friction in F𝐾 which we244

parameterize as linear drag with coefficient 𝑟𝐾 . Thus our EKE budget is245

𝜕𝐾

𝜕𝑡
= 𝑞′u′ · ∇𝜓− 1

H
∇ · (𝐾Hu) − 𝑟𝐾𝐾 + 𝜇∇2𝐾. (12)

We also employ an eddy potential enstrophy budget. The relevant eddy potential enstrophy equation246

is247

𝜕Λ

𝜕𝑡
= −𝑞′u′ · ∇𝑞− 1

H
∇ · (ΛHu) − 1

H
∇ ·

(
H
𝑞′2

2
u′

)
+FΛ, (13)

where Λ is the parameterized eddy potential enstrophy and FΛ represents sources and sinks of Λ.248

249

The first term on the right hand side of Equation (14) represents eddy potential enstrophy250

generation. When −𝑞′u′ · ∇𝑞 is positive, the eddy PV flux is, on average, down the mean251

PV-gradient, that is, the eddies act to mix PV. This mixing of PV by the eddies results in a252

generation of eddy potential enstrophy. When −𝑞′u′ · ∇𝑞 is negative, the eddy PV flux is, on253

average, up the mean PV gradient, i.e. the eddies are acting to unmix the PV, resulting in a decrease254

in the eddy potential enstrophy. Due to the formulation of the parameterization, this term will255

always be negative in the parameterized simulations and thus acts only to mix PV. The second term256

on the right hand side represents the advection of eddy potential enstrophy by the depth-integrated257

large-scale flow. We neglect the third term on the right hand side since it is a product of three eddy258

terms and is thus assumed to be small. We include both damping of enstrophy at small scales and259

viscous diffusion in FΛ which we represent as linear and Laplacian damping with coefficients 𝑟Λ260

and 𝜇 respectively. Thus our eddy potential enstrophy budget is261

𝜕Λ

𝜕𝑡
= −𝑞′u′ · ∇𝑞− 1

H
∇ · (ΛHu) − 𝑟ΛΛ+ 𝜇∇2Λ. (14)

The energetically and enstrophetically informed down-gradient PV mixing formula, the eddy262

kinetic energy budget and the eddy potential enstrophy budget (Equations (9), (12) and (14) respec-263

tively) describe the parameterization fully. There are four input parameters to the parameterization:264

the PV flux efficiency parameter, 𝛾𝑞; the eddy diffusivity, 𝜇; the EKE dissipation coefficient, 𝑟𝐾 ;265

12



and the eddy potential enstrophy dissipation coefficient, 𝑟Λ. The initial distributions of EKE (𝐾0)266

and eddy potential enstrophy (Λ0) must also be specified. 𝐾 and Λ evolve with time through267

their respective budgets and the time-evolving values are then used to determine the magnitude268

of the down-gradient PV fluxes at each time-step. Employing energy and enstrophy budgets269

with spatial dependence ensures the parameterization is flow-aware. Through these budgets, the270

parameterization accounts for the conversion of energy from large-scale to eddy and vice versa,271

the dissipation of EKE by bottom friction, the generation of enstrophy through PV mixing and272

enstrophy dissipation at small scales.273

274

It should be noted that Equation (9) does not satisfy the integral constraint necessary for275

angular momentum in a zonal channel (Marshall 1981; Marshall et al. 2012). We plan to initially276

test the parameterization in the case of a simply connected basin in which this integral constraint277

is less of a concern. Further work to satisfy this constraint is left for future work.278

3. Methods279

a. Experimental design280

To analyse the performance of the parameterization, we implement it in an idealised experimental281

set-up, with which we aim to answer the following key questions:282

1. Can the parameterization convert kinetic energy from the eddy field to the large-scale flow,283

thus producing an eddy-driven topography-following flow?284

2. Do the energetics and enstrophetics exhibit similar behaviour to their explicit counterparts in285

an eddy-resolving simulation?286

3. How do the input parameters affect the energetics and enstrophetics of the dynamics?287

To answer these questions, we run a set of numerical simulations in which we simulate barotropic288

freely-decaying turbulence over random topography on an 𝑓 -plane. We choose to simulate freely-289

decaying turbulence over bottom topography since theory predicts that this will lead to an eddy-290

driven topography-following flow (Bretherton and Haidvogel 1976). We use the following four291

configurations:292
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Code Resolution Eddies 𝜇𝜉 (m−4s−1) 𝛾𝑞 𝑟Λ (s−1) 𝑟𝐾 (s−1) 𝜇 (m−2s−1) 𝜅PV

5kmEXP 5km Explicit 108 - - - - -

50kmEXP 50km Explicit 1011 - - - - -

50kmEECON 50km Parameterized 1011 0.1 4.5× 10−8 0 500 -

50kmUNCON 50km Parameterized 1011 - - - - 50

Table 1. Parameters used in the simulations analysed in Sections 4 and 5.

(a) an eddy-resolving (5km horizontal resolution) simulation with explicit eddies only (5kmEXP);293

(b) a coarse-resolution (50km horizontal resolution) simulation with explicit eddies only294

(50kmEXP);295

(c) a coarse-resolution simulation with parameterized eddies where we employ an unconstrained296

down-gradient PV mixing parameterization, i.e. with constant 𝜅PV (50kmUNCON);297

(d) a coarse-resolution simulation with parameterized eddies as described in Section 2, i.e. with298

an energetically and enstrophetically constrained down-gradient PV mixing parameterization299

(50kmEECON).300

We compare 50kmEECON with 50kmUNCON to assess if the energetic and enstrophetic constraints301

imposed are successful in constraining the kinetic energy of the resolved flow. We use 5kmEXP302

as a reference to inform on a realistic kinetic energy for the resolved flow, thus allowing us to303

determine if the resolved flow is well-constrained by the parameterization. We run many variations304

of 50kmEECON varying the input parameters to the parameterization for each simulation. The305

details of the simulations are outlined in Table 1.306

b. Model equations307

In these experiments, we simulate freely-decaying turbulence in a barotropic fluid (i.e. one308

vertical layer) with a rigid lid. The equations of motion are the mean depth-integrated potential309

vorticity equation, which, for explicit eddy simulations is310

𝜕𝜉

𝜕𝑡
= −∇ · 𝜁 u− 𝜇𝜉∇4𝜉, (15)

and for parameterized eddy simulations is311
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𝜕𝜉

𝜕𝑡
= −∇ · 𝜁 u−∇ · 𝜁 ′u′− 𝜇𝜉∇4𝜉, (16)

where the eddy PV flux term is replaced with the appropriate parameterization, and the continuity312

equation,313

∇ ·Hu = 0, (17)

where 𝜁 = 𝑓 + 𝜉 and 𝜇𝜉 is the biharmonic diffusion coefficient. We employ biharmonic diffusion314

in Equations (15) and (16) for stability.315

c. Numerical Implementation316

The numerical implementation of time-stepping of Equations 15 and 16 are as follows. The317

variables are arranged with vorticity, stream function and layer depth defined at the cell vertices.318

The zonal and meridional components of the velocity are calculated using a centred second-order319

differencing scheme. We use free-slip lateral boundary conditions, i.e. 𝜉 = 0 on lateral boundaries,320

and no flow normal to the boundary, i.e. constant 𝜓 on lateral boundaries. For simplicity, we321

choose 𝜓 = 0. Advection is calculated using an energy- and enstrophy-conserving scheme defined322

by Arakawa (1966). Biharmonic diffusion of vorticity is calculated using a centred differencing323

scheme with ∇2𝜉 = 0 on the lateral boundaries.324

325

For parameterized simulations, 𝐾 and Λ are defined at the cell centre points. We specify326

a no flux boundary condition for 𝐾 and Λ, i.e. there is no diffusion or advection of 𝐾 or Λ through327

lateral boundaries. Time-stepping of Equations (12), (14), (15) and (16) is computed using the328

third order Adams-Bashforth method, with the first two time steps calculated using a first-order329

forward approximation.330

d. Specification of Domain Geometry331

All simulations are run in a square domain of side length 𝐿 = 2000km with non-flat topog-332

raphy. The topography is created by using a seeded pseudorandom number generator (NumPy333

random.default rng) to generate independent Fourier modes using a Gaussian distribution at 5km334
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Fig. 2. Topography used in high-resolution simulations (left) and coarse resolution simulations (right).

resolution. A peak wavenumber is specified when generating the Fourier modes to ensure the335

topography is not confined to small-scale structures. The field generated by the Fourier modes is336

then multiplied by a constant and translated in depth in order to produce a topography with average337

depth of 5km and depth variations of around 10%. The topography is regridded using spatial338

averaging to 50km resolution for the coarse-resolution simulations. The topographic structure339

used is shown in Figure 2.340

e. Specification of Model Parameters341

The Coriolis parameter is taken as a constant with value 𝑓0 = 0.7× 10−4 s−1 in all simulations.342

The biharmonic diffusion coefficient, 𝜇𝜉 , is set to 108 m4 s−1 for simulations at 5km resolution343

and 1011 m4 s−1 for simulations at 50km resolution. These values are chosen to be as small as344

possible such that grid scale noise is no longer generated. All simulations are run for a total of345

3000 days in order to reach a point at which the energy conversion from eddy to mean has plateaued.346

347

For the coarse resolution simulation with the constrained parameterization, 50kmEECON,348

there are four extra parameters for which values need to be specified: the PV flux efficiency349

parameter, 𝛾𝑞; the enstrophy damping parameter, 𝑟Λ; the energy damping parameter, 𝑟𝐾 ; and350

the eddy diffusivity, 𝜇. Analysis of 𝛾𝑞 in the high-resolution simulation gives an average351

value of 0.1 (not shown) and hence this value is used in 50kmEECON. The enstrophy damping352

parameter, 𝑟Λ, is diagnosed from 5kmEXP by taking the volume integral of Equation (14) and353
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then integrating in time. The damping parameter undergoes an initial adjustment period before354

reaching a constant value at around 500 days (not shown). Since a constant value of 𝑟Λ is input355

to the parameterization, the value is taken as that of 5kmEXP after the initial adjustment period,356

which is 5.0× 10−8 s−1. Since these experiments simulate freely-decaying turbulence and we357

do not have any damping from bottom friction in the explicit eddy simulations, we set 𝑟𝐾 = 0358

s−1. Finally, the diffusivity coefficient, representing the diffusivity of parameterized EKE and359

eddy potential enstrophy, is set to 𝜇 = 500 m2 s−1. A minimum value for |∇𝑞 | is specified at360

each time step to avoid division by zero. A maximum value for 𝜅PV is also specified at each time step.361

362

For the coarse resolution simulation with unconstrained eddy PV fluxes, 50kmUNCON, a363

constant value of 𝜅PV must be specified. We set this to the initial value of 𝜅PV in simulation364

50kmEECON which is 100 m2s−1.365

f. Specification of Initial Conditions366

Simulations with explicit eddies are initialised with a stream function which is generated at369

5km resolution using a similar method as that of the topography. The field generated by the370

Fourier modes is multiplied by a constant to produce velocities of the order of 1−10 cm s−1. This371

is regridded using volume averaging to 50km resolution for coarse-resolution simulations. The372

initial stream functions are plotted in figure 3. In configurations with explicit eddies, since there373

are no forcing terms, it is assumed that the turbulent cascades of energy, and hence the eddies, are374

driving the large scale flow. Simulations with parameterized eddies are run with no initial stream375

function and, instead, the parameterized eddies initially drive the flow.376

377

For the coarse resolution simulation with the constrained parameterization, 50kmEECON, the initial378

distributions of 𝐾 and Λ must be specified. For simplicity, we use constant values values 𝐾0 and379

Λ0 respectively. We specify 𝐾0 such that the initial parameterized EKE in 50kmEECON is the same380

as the initial kinetic energy of 5kmEXP. We therefore set 𝐾0 to the volume-averaged kinetic energy381

at time zero in 5kmEXP, which is 1.5×10−4 m2s−2. Λ0 is set to the volume-averaged value of Λ at382

500 days in 5kmEXP, i.e. after the initial enstrophy adjustment period, which is 1.0×10−20 m−2s−2.383
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Fig. 3. Initial stream function used in simulations with explicit eddies at 5km resolution (left) and 50km

resolution (right).

367

368

4. Explicit Eddy Simulations384

We compare properties of the mean and eddy flow fields in the eddy-resolving and coarse388

resolution simulations, 5kmEXP and 50kmEXP respectively, to identify the unresolved eddy-driven389

effects on the mean/large-scale flow in the coarse resolution simulation; these effects ideally390

would be prescribed by the eddy parameterization. Throughout the rest of this paper, the391

time-mean kinetic energy (MKE), defined as u ·u/2, is used to represent the large-scale flow for all392

simulations. The EKE is defined as u′ ·u′/2 for simulations with explicit eddies. The large-scale393

potential enstrophy is defined as 𝑞 𝑞/2 for all simulations, and the eddy potential enstrophy is394

defined as 𝑞′𝑞′/2 for simulations with explicit eddies. All time-means are taken every 50 days395

over a 500 day period.396

397

We first identify the effects of the eddies on the energetics which are unresolved in the398

coarse-resolution simulation and hence need to be parameterized. In 5kmEXP, energy is converted399

from eddy to mean as the simulation progresses, indicated by the simultaneous decrease in EKE400

and increase in MKE (Figure 4a). In contrast, for 50kmEXP, the EKE is damped throughout401

the simulation but the MKE does not increase and hence there is no conversion of energy from402

eddy to mean (Figure 4a). This is further illustrated by the eddy to mean energy conversion rate403

which is positive throughout the majority of the simulation in 5kmEXP and zero throughout the404
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majority of the simulation in 50kmEXP (Figure 4b). Hence, we aim to parameterize the effects405

of this unresolved conversion on the large-scale flow i.e. to parameterize a source of large-scale406

kinetic energy that mimics the effects of the eddy-to-mean kinetic energy conversion present in407

the eddy-resolving configuration. Note that the volume averaged kinetic energy of the initial state408

is of a similar magnitude in both 5kmEXP and 50kmEXP. However, due to the larger biharmonic409

diffusion coefficient in 50kmEXP than in 5kmEXP, the first time-mean value is much smaller in410

50kmEXP than in 5kmEXP.411

412

We now identify the effects of the eddies on the enstrophetics which are unresolved in the coarse-413

resolution simulation and hence need to be parameterized. In both 5kmEXP and 50kmEXP the eddy414

potential enstrophy decays with time and there is a large difference in magnitude between the two415

simulations (Figure 4c). The volume-averaged enstrophy generation term is positive throughout416

the simulation for 5kmEXP (Figure 4d), meaning that the eddy PV fluxes are, on average, fluxing417

PV down the mean PV gradient for the duration of the simulation. In 50kmEXP the enstrophy418

generation term is much smaller in magnitude than in 5kmEXP (Figure 4d) since the eddy field is419

not well resolved. Hence we require the parameterization to increase the enstrophy generation,420

thus increasing the magnitude of the eddy potential enstrophy. Note that here and in future sections421

we do not analyse the mean potential enstrophy since it is dominated by the effects of planetary422

vorticity and hence the effect of the parameterization on the mean potential enstrophy is negligible.423

5. Results of Parameterized Simulations424

We now analyse the results of the parameterized simulations, focusing on the four key questions425

outlined in Section 3.426

a. Energy Conversion From Eddy to Mean427

The parameterization is able to convert kinetic energy from eddy to mean, shown by the simul-428

taneous decrease in parameterized EKE and increase in MKE in 50kmEECON (Figure 5a). This is429

further confirmed by the parameterized energy conversion term of 50kmEECON which is positive430

throughout the simulation and exhibits similar behaviour in time to that of 5kmEXP (Figure 5b).431
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Fig. 4. Data for 5kmEXP (solid) and 50kmEXP (dashed) showing (a) rolling time-means of MKE (pink) and

EKE (blue); (b) the eddy to mean energy conversion term, -𝑞′u′ · ∇𝜓; (c) eddy potential enstrophy; (d) the

enstrophy generation term, −𝑞′u′ · ∇𝑞. Rolling time-means are calculated every 50 days over a 500-day period.

385

386

387

The parameterization is able to produce a large-scale topography-following flow as a result of the432

parameterized eddy-to-mean energy conversion (Figure 6).433

b. Energetics and Enstrophetics438

We now consider the effects of the parameterization on the energetics and enstrophetics. The439

peak magnitudes of MKE in 5kmEXP and 50kmEECON are 7.5×10−5 m2s−2 and 3.2×10−5 m2s−2
440
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Fig. 5. Data for 5kmEXP (solid), 50kmEECON (dashed) and 50kmUNCON (dotted) showing (a) rolling time-means

of MKE (pink) and EKE (blue); (b) the eddy to mean energy conversion term, -𝑞′u′ · ∇𝜓; (c) eddy potential

enstrophy; (d) the enstrophy generation term, −𝑞′u′ · ∇𝑞. Rolling time-means are calculated every 50 days over

a 500-day period.

434

435

436

437

respectively. Thus the parameterization leads to a peak MKE of the correct order of magnitude441

and with a value of 43% of that of the high-resolution simulation. In contrast, the MKE in442

50kmUNCON increases throughout the simulation, reaching a magnitude almost six times greater443

than the maximum MKE of 5kmEXP by the end of the simulation. The difference in the magnitude444

of the MKE between 50kmEECON and 50kmUNCON and the similarity between 50kmEECON and445
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Fig. 6. Time-mean transport stream function for 5kmEXP (left), 50kmEECON (middle) and 50kmUNCON (right)

over the time periods 0 - 1500 days (top) and 1501 - 3000 days (bottom). 5kmEXP and 50kmEECON are plotted on

the same colour scale and 50kmUNCON is plotted using a separate colour scale for clarity. Grey lines represent

topography contours as described in Figure 2.

453

454

455

456

5kmEXP suggests that the kinetic energy of the resolved flow is well-constrained by the energetic446

and enstrophetic constraints imposed. This is further illustrated by the magnitude of the transport447

stream function (Figure 6) which peaks at a value of 16.3 Sv, 8.3 Sv and 59.5 Sv in 5kmEXP,448

50kmEECON and 50kmUNCON respectively. Thus the peak magnitude of the transport stream449

function is over 250% larger than that of 5kmEXP in 50kmUNCON, while it is 51% of that of 5kmEXP450

in 5kmEECON, further demonstrating that the energetic and enstrophetic constraints imposed in451

50kmEECON are indeed constraining the resolved flow.452

The main difference between the energetics of 5kmEXP and 50kmEECON is the earlier, smaller457

peak and subsequent decaying of MKE in 50kmEECON (Figure 5a). This happens despite the fact458

that the eddy-to-mean energy conversion in 50kmEECON is initially larger in magnitude than that459

of 5kmEXP (Figure 5b). This is due to the difference in biharmonic coefficient between the simu-460

lations, which results in a larger damping of resolved kinetic energy in 50kmEECON than in 5kmEXP.461

462

Both the parameterized eddy potential enstrophy (Figure 5c) and the parameterized enstro-463
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phy generation (Figure 5d) in 50kmEECON are of the correct order of magnitude and both decay464

with time in a similar manner to that of their counterparts in 5kmEXP. However, both are larger in465

magnitude than their counterparts in 5kmEXP throughout the simulation.466

467

It should be noted that tuning of the input parameters in 50kmEECON might result in an468

energy conversion and enstrophy generation profile more consistent with that of 5kmEXP; however,469

here we focus on the functionality of the parameterization, and do not seek to find optimally tuned470

parameters.471

c. Sensitivity of the Output to Input Parameters472

We now test the sensitivity of the parameterization to the input parameters (namely 𝑟Λ and 𝛾𝑞) and476

the initial conditions (𝐾0 and Λ0) by varying these values. We find that the total energy converted477

from eddy to mean throughout the simulation, total potential enstrophy generated throughout the478

simulation, and peak MKE value all increase with increasing 𝛾𝑞 and with decreasing 𝑟Λ (Figure479

7). An increase in 𝛾𝑞 increases the efficiency of the parameterized eddies to flux PV resulting in480

a larger eddy PV flux. Decreasing 𝑟Λ increases the parameterized potential enstrophy which also481

strengthens the eddy PV fluxes. Larger eddy PV fluxes increase PV mixing (since the eddy PV482

fluxes are down-gradient by design) and therefore increase enstrophy generation. Larger eddy PV483

fluxes also increase the magnitude of the eddy-to-mean energy conversion, resulting in a larger484

total amount of energy converted from eddy to mean.485

486

The minimum values of total energy converted and total potential enstrophy generated in this487

experiment (8.43×10−5 m2s−2 and 4.41×10−20 m−1s−1 respectively, Figure 7) are both larger than488

that of the eddy-resolving simulation (8.26× 10−5 m2s−2 and 3.23× 10−20 m−1s−1 respectively,489

not shown). Despite this the maximum peak MKE value in this experiment (4.03× 10−5 m2s−2,490

Figure 7) is smaller than the peak MKE of the eddy-resolving simulation (7.53× 10−5 m2s−2,491

Figure 5a). That is, the parameterized simulations in this experiment all have a higher total492

energy conversion and total enstrophy generation than that of 5kmEXP, but none are able to493

reach a peak MKE value as high as that of 5kmEXP. This is again due to the difference in494

biharmonic coefficient between the parameterized simulations and the eddy-resolving simu-495
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Fig. 7. Contours showing (a) total energy converted from eddy to mean; (b) total enstrophy generated; and (c)

peak MKE value for a set of simulations with the same setup as 50kmEECON where 𝑟Λ and 𝛾𝑞 are varied by 50%

of their value in 50kmEECON.

473

474

475

lation, which results in a larger damping of resolved kinetic energy in the parameterized simulations.496

497

A similar experiment is performed varying 𝐾0 and Λ0 to test the sensitivity of the param-498

eterization to the initial state. We find that the total energy converted from eddy to mean, total499

enstrophy generated and peak MKE value all increase with increasing 𝐾0 (Figure 8). Increasing500

𝐾0 increases the magnitude of the eddy PV fluxes through Equation 9. By a similar argument to501

that described above, stronger eddy PV fluxes results in an increase in the total enstrophy generated502

and an increase in the magnitude of the energy conversion. An increase in 𝐾0 also means there is503

more energy available in the parameterized eddies to be converted. These two things combined504

result in a larger total amount of energy converted from eddy to mean and hence a larger peak505

MKE value. In contrast, all three diagnostics show a much smaller sensitivity to Λ0 than to 𝐾0, 𝑟Λ506

or 𝛾𝑞. This suggests that the strength of the eddy PV fluxes is relatively insensitive to Λ0.507

6. Summary and Discussion511

Traditional methods of parameterizing mesoscale ocean eddies can create spurious sources or512

sinks of energy when implemented over variable bottom topography and can therefore fail to513

produce realistic eddy-driven topography-following flows. These flows arise due to the turbulent514

cascades of kinetic energy and potential enstrophy inherent to quasi-geostrophic flow (Bretherton515

and Haidvogel 1976). It is therefore sensible to suggest that, in attempting to develop a param-516

eterization for mesoscale eddies which can produce realistic eddy-driven topography-following517
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Fig. 8. Contours showing (a) total energy converted from eddy to mean; (b) total enstrophy generated; and (c)

peak MKE value for a set of simulations with the same setup as 50kmEECON where 𝐾0 and Λ0 are varied by 50%

of their value in 50kmEECON.

508

509

510

flows, there should be some consideration of both the kinetic energy and the potential enstrophy.518

Previous work has seen a number of studies incorporating an energy budget into a mesoscale eddy519

parameterization (e.g. Cessi (2008); Eden and Greatbatch (2008); Marshall and Adcroft (2010);520

Marshall et al. (2012)) but, to our knowledge, the same focus has not been applied to the potential521

enstrophy.522

523

We have presented a new parameterization for barotropic eddies which incorporates an524

eddy potential enstrophy budget in addition to an eddy kinetic energy budget. The parameteriza-525

tion imposes down-gradient PV mixing in which the strength of the eddy PV fluxes is determined526

by both the parameterized EKE and eddy potential enstrophy.527

528

The EKE budget employed here includes the following terms: the energy conversion term529

which accounts for conversion from eddy to mean and vice versa; a dissipation term which530

represents bottom friction via linear damping; and a redistribution of EKE which we represent531

as advection by the depth-integrate large-scale flow and Laplacian diffusion. In reality, the532

redistribution of EKE involves a myriad of processes and our choice of representation may be533

considered a crude approximation. Nonetheless, we believe this choice to be sufficient as a simple534

approximation. The eddy potential enstrophy budget includes the following terms: the potential535

enstrophy generation term which accounts for enstrophy generated through mixing of PV by the536

parameterized eddies; a dissipation term which represents the viscous dissipation of potential537
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enstrophy at small scales via linear damping; advection by the depth-integrated large-scale flow;538

and a Laplacian diffusion term. The diffusion terms in both budgets represent the diffusion of each539

by the eddies and hence they use the same diffusion coefficient. The strength of the parameterized540

eddy PV fluxes therefore depends on all of these factors. These budgets lead to the following541

parameters which must be specified: the EKE dissipation parameter, 𝑟𝐾 ; the potential enstrophy542

dissipation parameter, 𝑟Λ; and the eddy diffusion coefficient, 𝜇. Additionally, the eddy PV flux543

efficiency parameter, 𝛾𝑞, must be specified. For simplicity we have chosen to specify a con-544

stant value for 𝛾𝑞, despite the fact that in reality 𝛾𝑞 will likely have spatial and temporal dependence.545

546

The parameterization has been tested in an idealised ocean basin with variable bottom547

topography, simulating freely-decaying turbulence on an 𝑓 -plane. Our key findings are:548

1. The parameterization is able to convert kinetic energy from eddy to mean, resulting in a549

large-scale topography-following flow.550

2. The energetics and enstrophetics exhibit similar behaviour to that of an eddy-resolving sim-551

ulation, with the main difference being an earlier, smaller peak in MKE. This is due to the552

difference in biharmonic diffusion coefficients in each simulation, which results in a larger553

damping of resolved kinetic energy in the parameterized simulation. The results suggest the554

inclusion of the EKE and eddy potential enstrophy budget are sufficient to produce a resolved555

flow with kinetic energy which is well-constrained, i.e. comparable in magnitude to that of556

an eddy-resolving simulation.557

3. The input parameters 𝛾𝑞 and 𝑟Λ work as expected with an increase in 𝛾𝑞 and a decrease in 𝑟Λ558

resulting in a larger eddy-to-mean energy conversion. The resolved flow depends on 𝐾0, the559

EKE of the initial state, with a larger 𝐾0 resulting in a larger eddy-to-mean energy conversion.560

The resolved flow is relatively insensitive to Λ0, the eddy potential enstrophy of the initial561

state.562

The parameterization provides a mechanism through which energy can be transferred from563

unresolved to resolved scales and hence can backscatter energy. Currently, the source of the564

unresolved kinetic energy is the EKE of the initial state, whilst in other energy backscatter565

parameterizations it is the kinetic energy dampened at the grid scale via explicit viscosity (e.g.566
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Jansen and Held (2014); Mana and Zanna (2014)). The use of an EKE budget in the framework567

outlined here opens up the possibility of introducing other sources of EKE, which could be568

explored in future work.569

570

There are some significant limitations to the parameterization as it is in its current form.571

Firstly, it is a known problem that, in a multiply-connected domain, integral constraints on the eddy572

PV fluxes must be satisfied in order for angular momentum conservation to hold (Marshall 1981).573

The current form of the parameterization does not satisfy this constraint and hence further work is574

required to employ the parameterization in multiply-connected domains, e.g. with a circumpolar575

Southern Ocean. Additionally, we have specified that the eddy PV fluxes are directed down the576

mean PV gradient, which is true on average but may not hold locally. For example, up-gradient577

eddy PV fluxes are important in driving time-mean recirculation gyres in a wind-driven setup578

(Waterman and Hoskins 2013). Hence, there are important instances where the parameterization579

in its current form is not able to capture the full effect of the eddies on the mean flow.580

581

There are further questions which remain to be addressed. We have shown that the pa-582

rameterization can convert energy from eddy to mean, but it remains to be determined if it can583

also convert energy from mean to eddy in a sensible manner. Future work could determine this584

by testing the parameterization in a wind-driven gyre, in which the mean-to-eddy conversion585

is crucial in modulating the strength of the wind-driven jet (Waterman and Hoskins 2013). As586

mentioned previously, it is highly likely that the results of the parameterization depend on the587

representation of the terms in the energy and enstrophy budgets which we have not investigated588

here. Testing the parameterization with different iterations of energy and enstrophy budget may be589

useful in determining the effect of each on the resolved flow. Additionally, for simplicity, we have590

chosen to specify constant values for the parameters associated with the parameterization, but they591

will likely be variable in both space and time. We have not attempted to define the optimal choice592

of input parameters, nor have we specified what to optimize towards, since we have tested the593

parameterization in a highly idealised setup. Understanding of the key controls on the space-time594

variability of these parameters will be crucial in determining the optimal parameter set-up for a595

more realistic configuration.596
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597

Finally, we have so far implemented and tested the parameterization in a barotropic setup.598

How the parameterization should be implemented in a baroclinic setup remains to be determined.599

Future work could explore the extent to which the new parameterization can be included, alongside600

GM90, to represent the rectified forcing of the large-scale flow along topography contours by601

barotropic eddies.602
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