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Abstract

Groundwater overdraft in western U.S. states has prompted water managers to start the development of groundwater man-

agement plans that include mandatory reporting of groundwater pumping (GP) to track water use. Most irrigation systems

in the western U.S. are not equipped with irrigation water flow meters to record GP. Of those that do, performing quality

assurance and quality control (QAQC) of the metered GP data is difficult due to the lack of reliable secondary GP estimates.

We hypothesize that satellite (Landsat)-based actual evapotranspiration (ET) estimates from OpenET can be used to predict

GP and aid in QAQC of the metered GP data. For this purpose, the objectives of this study are: 1) to pair OpenET estimates of

consumptive use (Net ET, i.e., actual ET less effective precipitation) and metered annual GP data from Diamond Valley (DV),

Nevada, and Harney Basin (HB), Oregon; 2) to evaluate linear regression and ensemble machine learning (ML) models (e.g.,

Random Forests) to establish the GP vs Net ET relationship; and 3) to compare GP estimates at the field- and basin-scales.

Results from using a bootstrapping technique showed that the mean absolute errors (MAEs) for field-scale GP depth are 12%

and 11% for DV and HB, respectively, and the corresponding root mean square errors (RMSEs) are 15% and 14%. Moreover,

the regression models explained 50%-60% variance in GP depth and ˜90% variance in GP volumes. The estimated average

irrigation efficiency of 88% (92% and 83% for DV and HB, respectively) aligns with known center pivot system efficiencies.

Additionally, OpenET proves to be useful for identifying discrepancies in the metered GP data, which are subsequently removed

prior to model fitting. Results from this study illustrate the usefulness of satellite-based ET estimates for estimating GP, QAQC

metered GP data and have the potential to help estimate historical GP.

Submitted to Agricultural Water Management.
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mean absolute errors (MAEs) for field-scale GP depth are 12% and 11% for DV and HB, 23 

respectively, and the corresponding root mean square errors (RMSEs) are 15% and 14%. 24 

Moreover, the regression models explained 50%-60% variance in GP depth and ~90% 25 

variance in GP volumes. The estimated average irrigation efficiency of 88% (92% and 83% 26 

for DV and HB, respectively) aligns with known center pivot system efficiencies. 27 

Additionally, OpenET proves to be useful for identifying discrepancies in the metered GP 28 

data, which are subsequently removed prior to model fitting. Results from this study illustrate 29 

the usefulness of satellite-based ET estimates for estimating GP, QAQC metered GP data and 30 

have the potential to help estimate historical GP. 31 

Keywords: groundwater pumping; remote sensing; evapotranspiration; irrigation; machine 32 

learning; consumptive use 33 

1. INTRODUCTION 34 

1.1 Background 35 

In the western United States (U.S.), the combination of the already occurring and projected 36 

droughts (Meza et al., 2020), rising irrigation water demands, and population growth is 37 

expected to intensify groundwater consumption (Huntington et al., 2015; Ketchum et al., 38 

2024). This intensified groundwater consumption has led to aquifer depletion (ADWR, 2018; 39 

Scanlon et al., 2012; Smith et al., 2017, 2023), land subsidence (Hasan et al., 2023; Herrera-40 

García et al., 2021; Smith & Li, 2021; Smith & Majumdar, 2020), water contamination (Levy 41 

et al., 2021; Smith et al., 2018), and streamflow depletion (Ketchum et al., 2023; Zipper et 42 

al., 2022). Despite these pressing challenges, many groundwater basins in this region lack 43 

comprehensive monitoring of groundwater pumping (GP). Accurately assessing GP is 44 

imperative for implementing sustainable strategies to confront water security challenges. 45 
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Consequently, the development of reliable and efficient solutions for GP monitoring holds 46 

paramount importance in effectively addressing water management issues in this region. 47 

New water management policies across the western U.S. states have begun to include 48 

mandatory reporting of GP. These new policies are being sparked by groundwater overdrafts 49 

in regions heavily dependent on groundwater. Understanding how much water is being 50 

withdrawn from aquifers allows water managers to manage groundwater resources more 51 

effectively. Most GP in U.S. western states is used for irrigated agriculture, e.g., in Nevada, 52 

California, and Oregon, about 70% to 90% of groundwater is used for irrigation (Dieter et al., 53 

2018). Of the 256 designated hydrologic basins in Nevada, 96 are considered over-54 

appropriated, and in some cases, by more than 300% (NDWR, 2021). Many of these over-55 

appropriated basins are also pumping groundwater at rates above their perennial yield, 56 

causing groundwater levels to decline. Other western U.S. states are also experiencing over-57 

appropriation and over-drafting in many of their hydrologic basins (Reilly et al., 2008; 58 

Zektser et al., 2005). In response, these regions are actively creating new groundwater 59 

management policies and laws to monitor GP further (Megdal et al., 2015). Examples of 60 

these new policies include the Sustainable Groundwater Management Act in California 61 

(SGMA), which seeks to balance basin water budgets (Owen et al., 2019), the Local 62 

Enhanced Management Areas (LEMA), which aims to develop enforceable and monitored 63 

water use reduction in Kansas (Butler et al., 2018), Active Management Areas (AMAs) and 64 

Irrigation Non-Expansion Areas (INAs) in Arizona (ADWR, 2023), and Critical Management 65 

Area (CMA) orders and other designations which strive to meter and report all non-domestic 66 

GP in dozens of groundwater basins in Nevada 67 

(http://water.nv.gov/StateEnginersOrdersList.aspx). As the business saying goes, “You can’t 68 

manage what you don’t measure.” This axiom is equally true for water resources. 69 

Recognizing this fact, developing programs for monitoring and reporting water use to state 70 
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and local agencies is becoming a common trend with respect to water policy and regulation in 71 

the western U.S. (Deines et al., 2019; Megdal et al., 2015). 72 

While metering all GP sounds like a simple solution for monitoring and reporting 73 

groundwater use, installing meters at all well heads or diversions is a costly process. 74 

Additionally, meter readings do not equate to the consumptive use of groundwater, which is 75 

the quantity ultimately needed for groundwater management. Perhaps more importantly, GP 76 

meter data have high uncertainty and are often erroneous (Fanning et al., 2001). Primary 77 

sources of uncertainty and error are due to the following variables: a large variation in the 78 

quality of meter type, poor meter installation, lack of meter calibration, unnoticed meter drift, 79 

meter failure or partial failure, erroneous recording of meter data, meter data input errors such 80 

as those commonly associated with self-reporting (Carroll et al., 2010; Little et al., 2016; 81 

Sheppard & Terveen, 2011), and lack of quality assurance and quality control (QAQC) 82 

procedures and guidelines. In addition, regarding the self-reporting aspect, the validity of the 83 

data could be compromised due to the potential of water users acting in bad faith. With large 84 

amounts of data being collected and reported either through online self-reporting systems or 85 

by state and local agency field surveys, coupled with high uncertainty and potential for errors, 86 

questions and concerns around the quality and validity of meter data will likely be a source of 87 

conflict for groundwater management in the future. Given these factors, it is important to 88 

have complementary, independent, and cost-effective approaches to data collection, which 89 

allow for direct GP estimates to be obtained, as well as the ability to assess GP when no 90 

records exist. 91 

1.2 Previous Work 92 

Numerous approaches have been developed for estimating GP and consumptive use. Here, 93 

we provide a brief overview of some of the more common as well as recently developed 94 

approaches. 95 
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In the past, electrical power records were one of the most common approaches for estimating 96 

GP and have been used by many studies (Burt et al., 1997; Frenzel, 1985; Said et al., 2005). 97 

This method requires information on pump efficiency, water lift height, and operating 98 

pressures (Frenzel, 1985). Error in these factors and their change through time leads to errors 99 

in GP estimates (Hurr & Litke, 1989). Obtaining power records for well pumps is difficult, 100 

especially for rural communities. The use of power records for assessing and estimating GP 101 

for the purpose of groundwater management is not feasible at large scales. 102 

Current methods for estimating groundwater withdrawals commonly include surveying and 103 

organizing county-scale annual water use (Dieter et al., 2018; Martin et al., 2023), process-104 

based models (ADWR, 2018; Ahamed et al., 2022; Brookfield et al., 2023; Dogrul et al., 105 

2016; Faunt, 2009; Ruess et al., 2023) and the recent integrated remote sensing and machine 106 

learning-driven approaches (Majumdar et al., 2020, 2021, 2022, 2024). County-level 107 

estimates offer a comprehensive overview of water usage on a nationwide scale within the 108 

conterminous U.S. (CONUS), yet finer spatial or temporal details are lacking (Dieter et al., 109 

2018; Martin et al., 2023).  110 

Process-based models have shown success in specific regions; however, they often cannot 111 

effectively utilize the numerous remote sensing datasets accessible, such as field-scale 112 

evapotranspiration data— an obvious indicator of GP in areas with little to no surface water 113 

for irrigation (Bos et al., 2009; Melton et al., 2021). Also, process-based models are 114 

computationally intensive and require strict model calibration procedures. The Central Valley 115 

Hydrologic Model (CVHM) is one such example of a well-established hydrologic model 116 

developed by Faunt (2009), which adopts the MODFLOW FMP package (Schmid, 2004) for 117 

simulating water requirements. CVHM integrates land use, surface water supply, and water 118 

demand information using an ET model that factors in temperature, crop type, precipitation, 119 

and root depth. Following this, CVHM allocates the remaining water demand to GP. 120 
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Another method involves building lookup tables based on land use derived from remote 121 

sensing, modeled precipitation, and in-situ pumping data (Wilson, 2021). However, this 122 

approach overlooks the intricate interplays between climate, evaporative demand, land use, 123 

and soil composition. Machine learning-based solutions have the capacity to integrate a 124 

diverse range of datasets, including remote sensing data and model-generated datasets. 125 

Furthermore, these solutions can handle complex relationships among input datasets and have 126 

been proven to provide reliable estimates (Filippelli et al., 2022; Lamb et al., 2021; 127 

Majumdar et al., 2020, 2021, 2022, 2024; Wei et al., 2022).  128 

For data-driven or machine learning-based methodologies, large amounts of quality data are 129 

required (Majumdar et al., 2022). Employing machine learning to estimate GP requires in-130 

situ pumping measurements on expansive spatial and temporal scales (2002-2020), 131 

facilitating the validation of withdrawal quantities across extensive regions. As a result, 132 

generating and validating gridded annual GP estimates in Kansas (Majumdar et al., 2020) and 133 

Arizona (Majumdar et al., 2022) were feasible at 5 km and 2 km spatial resolutions, 134 

respectively. 135 

However, GP from most aquifers is not measured; instead, only a small proportion of wells 136 

are metered (Foster et al., 2020). Additionally, in these areas, groundwater use is monitored 137 

to such a limited extent that validation of previously reported water use is often absent. In 138 

cases where validation is undertaken, skill metrics are comparatively lower than those of 139 

regional groundwater models (Wilson, 2021). Consequently, generating and validating 140 

gridded prediction rasters in regions with sparse in-situ GP measurements poses a challenge, 141 

underscoring the need for a thorough evaluation of model efficacy using cross-validation 142 

techniques (Hastie et al., 2001). Furthermore, in regions characterized by sparse datasets—a 143 

common scenario in the groundwater domain—cross-validating the total GP for each 144 

individual pixel, as carried out in data-rich regions like Kansas and Arizona, is not practical. 145 
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Instead, the cross-validation process must be conducted at the scale of individual fields with 146 

existing field boundaries, predictor attributes, and meter data (Majumdar et al., 2024). 147 

In addition to these process-based and data-driven methods, there are deterministic 148 

approaches to estimating GP, which incorporate consumptive use (water transpired by the 149 

crop plus water evaporated from the soil surface) and net irrigation water requirement 150 

(NIWR) (water delivered to a system to meet irrigation requirement) (Allen & Robison, 151 

2007; Bos et al., 2009; Huntington & Allen, 2009). These methods are based on reference ET 152 

and the single or dual crop coefficient approach (Allen et al., 1998). 153 

Huntington and Allen (2009) used the dual crop coefficient method to estimate consumptive 154 

use and NIWR across basins in Nevada. The Nevada Department of Water Resources 155 

(NDWR) uses these numbers to estimate GP where meter data is absent (NDWR, 2022). The 156 

GP estimates are calculated by dividing NIWR by the irrigation efficiency factor (0.85 for 157 

pivot, 0.75 for wheel lines, and 0.60 for flood irrigation, Howell (2002)) and multiplying by 158 

the crop acreage. This approach has been used in many groundwater modeling and water 159 

budget studies throughout the western U.S. (Carroll et al., 2010; Huntington et al., 2022; 160 

Mefford & Prairie, 2022; NDWR, 1985; OWRD, 2015), and assumes the crop is well-161 

watered, stress-free, and uniformly irrigated, which rarely occurs in all irrigated fields across 162 

a basin. Crop conditions and water use are highly variable in time and space due to the 163 

following factors: water availability, fallowing, partial irrigation, variation in soil type, crop 164 

stress, disease, and diverse farming practices. Using NIWR or similar potential ET-based 165 

approaches does not account for spatial variability in crop conditions but serves as an upper 166 

bound for estimating water use. Remote sensing of actual ET addresses many of these 167 

shortcomings through field-scale observations of actual field conditions. 168 

 169 
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1.3 Research Goals and Objectives 170 

While the studies above are the first for estimating gridded (regional- or basin-scale) GP 171 

using remote sensing and data-driven or process-based approaches, they are not suitable for 172 

field-scale applications over large areas and periods. Moreover, field-scale GP volumes 173 

reported by Filippelli et al. (2022) in the Republican River Basin, Colorado aquifer impose 174 

artificial correlations between irrigated fields and GP volumes (i.e., a larger field will have 175 

higher GP than a smaller one). Filippelli et al. (2022) integrated remote sensing and machine 176 

learning techniques to estimate field-scale GP and was conducted in a data-rich setting (e.g., 177 

western Kansas has more than 90% metering, Foster et al. (2020)) like Majumdar et al. 178 

(2020, 2021, 2022). Hence, cross-validating the results and testing the spatial and temporal 179 

model generalizability with leave-one-area-out and leave-one-year-out strategies (these are 180 

based on leave-one-out cross-validation, Hastie et al. (2001); Pedregosa et al. (2011)) are not 181 

practical for data-scarce regions in the western U.S, where GP metering has recently begun 182 

(e.g., 2018 in Nevada and 2016 in Oregon).   183 

At the time of this manuscript preparation, no study has been conducted comparing field-184 

scale satellite-based ET estimates to GP depths over many fields and for multiple years and 185 

concurrently providing insights into irrigation efficiencies (Howell, 2002). The goal of this 186 

study was to conduct such a comparison by developing a regression model between the 187 

consumptive use or Net ET (actual ET less effective precipitation) and GP depth, which can 188 

be used to support QAQC of GP records and provide a means to estimate GP where meter 189 

data is unavailable. This regression will be derived using GP data from Diamond Valley 190 

(DV), Nevada, and Harney Basin (HB), Oregon, locations where good-quality GP data is 191 

available. Furthermore, we assess whether machine learning can improve the estimates 192 

obtained using linear regression and discuss the importance of developing carefully attributed 193 

irrigation data (digitized field boundaries and irrigation water source). 194 
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We hypothesize that 1) field-scale satellite-based ET estimates will be well-correlated with 195 

field-scale metered 𝐺𝑃 data, and 2) statistical relationships between field-scale satellite-based 196 

ET and GP data will be useful for QAQC of GP records and assessment of prior estimates, 197 

and 3) ET-based predictions of GP will compare reasonably well to metered GP at the field 198 

and basin scales. To test these hypotheses, this study: 1) employs the OpenET ensemble 199 

product to obtain field-scale actual ET, 2) links GP and ET values by delineating water rights 200 

place of use (POU) field boundaries, pairing GP with the POU and irrigated field boundaries, 201 

and pairing modeled ET with field boundaries 3) compares Net ET estimates with metered 202 

GP to identify potential outliers, 4) develops a regression model (GP as a function of Net ET) 203 

that assesses uncertainty using bootstrapping, and calculates the confidence and prediction 204 

intervals for the model, 5) compares predicted GP from the regression model with basin totals 205 

reported by NDWR and OWRD, 6) evaluates multiple machine learning model performance, 206 

and 7) compares the satellite-based OpenET ensemble mean with the individual ensemble 207 

members. 208 

2. STUDY AREAS AND DATASETS 209 

2.1 Study Areas 210 

In this research, we focus on two study 211 

areas: Diamond Valley, Nevada, and 212 

Harney Basin, Oregon. DV is located in 213 

Central Nevada and is one of the only 214 

fully metered groundwater-dependent 215 

basins in Nevada and possibly the 216 

western U.S. In 2015, the Nevada State 217 

Engineer’s Office designated the basin 218 

as a Critical Management Area, which 219 
Figure 1. Satellite image of Diamond Valley 

(DV), Nevada showing the irrigated fields. 
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initiated the formation of a groundwater management plan (GMP). The plan involved all 220 

participating growers installing flow meters selected from the “Idaho Department of Water 221 

Resources List of Approved Closed Conduit Flow Meters” and reporting GP to the State of 222 

Nevada (Bugenig, 2017). The goal of the plan was to reduce GP by 55% within the next 35 223 

years. The GMP was implemented in 2018 and continued into 2020 when the GMP was 224 

challenged and stuck down by Nevada District Courts. Despite the litigation, groundwater 225 

pumping was still reported by growers for 2020-2022. In mid 2022, the Nevada Supreme 226 

court upheld the GMP (Long, 2022). DV contains 10,500 hectares (26,000 acres) of irrigated 227 

agricultural land, and the estimated GP is 94 Mm3/year (76,000 acre-ft/year) (Bugenig, 2017). 228 

The estimated basin perennial yield is 37 Mm3/year (30,000 acre-ft/year) (Harrill 1968), 229 

causing groundwater levels to decline, with some areas experiencing nearly 25 m (80 ft) of 230 

decline over the last fifty years (Berger et al., 2016). Though Berger et al. (2016) estimated 231 

perennial yield to be 43 Mm3/year 232 

(35,000 acre-ft/year) the Diamond 233 

Valley GMP used the perennial yield 234 

established by Harrill (1968) (Bugenig, 235 

2017). The 30-year average 236 

precipitation in the valley is 230 237 

mm/year, with approximately 60% 238 

occurring in the winter months. 239 

Warmest temperatures occur in July 240 

with an average high of 31◦C and 241 

lowest temperatures in December with 242 

an average low of -12◦C. The main 243 

agricultural crop is alfalfa or other grass hays primarily irrigated with center pivot systems. 244 

Figure 2. Satellite image of Harney Basin (HB), 

Oregon showing the irrigated fields. 
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Harney Basin is located in south-eastern Oregon, where irrigation is the primary user of 245 

groundwater, accounting for 95% of all groundwater use (Beamer & Hoskinson, 2021; 246 

Gingerich, Garcia, et al., 2022; Gingerich, Johnson, et al., 2022). The basin is semiarid in 247 

climate and receives an average of 230 mm to 300 mm of precipitation per year, with most 248 

occurring (80%) in the winter months (Beamer & Hoskinson, 2021). 249 

Declining groundwater levels in recent years, likely caused by over-appropriation, have 250 

sparked concerns over the sustainability of the resource in HB. Currently, 38,777 hectares 251 

(95,821 acres) of permitted primary or supplementary groundwater rights exist in the Greater 252 

Harney Valley Area (GHVA) (Beamer & Hoskinson, 2021). The water rights for these 253 

permits exceed the estimated recharge for the basin, which is poorly defined. In 2016, the 254 

Oregon Water Resources Department (OWRD) co-developed a groundwater study plan with 255 

the U.S. Geological Survey (USGS) to facilitate an improved understanding of the 256 

groundwater resources and flow systems in HB (Garcia et al., 2021; Gingerich, Johnson, et 257 

al., 2022).  258 

The primary crops irrigated in the HB region are alfalfa and grass hay, with May to 259 

September being the typical growing season. Additionally, limited quantities of spring and 260 

winter grains and mint are also produced in HB (Beamer & Hoskinson, 2021). The irrigation 261 

𝐺𝑃 has nearly tripled during 1991–2018, increasing from about 62 Mm3/year to 185 262 

Mm3/year, i.e., 51,000 acre-ft/year to 150,000 acre-ft/year (Gingerich, Garcia, et al., 2022). 263 

Therefore, it is essential to develop efficient and reliable field-scale GP estimation methods to 264 

support the GMPs in both DV, Nevada, and HB, Oregon. 265 

2.2 Datasets  266 

The key datasets in our study include Landsat actual evapotranspiration (ET) from OpenET 267 

(Melton et al., 2021; Volk et al., 2024), precipitation, and reference ET (ETo) from gridMET 268 
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(Abatzoglou, 2013) and the irrigation data comprised of digitized field boundaries and 269 

irrigation water source (Huntington et al., 2018; Beamer & Hoskinson, 2021). 270 

2.2.1 OpenET 271 

OpenET provides actual ET measurements using data derived from various satellite-driven 272 

ET models while also computing a unified "ensemble value" derived from these models. The 273 

OpenET ensemble incorporates models that have been utilized by governmental bodies 274 

responsible for water use monitoring and management across the Western U.S. Some of these 275 

models are also widely adopted on an international scale. These models uniformly utilize 276 

Landsat satellite data to generate ET information at a spatial resolution of 30 m. Additional 277 

input factors include gridded meteorological variables such as solar radiation, air 278 

temperature, humidity, wind speed, and, in certain instances, precipitation data (Melton et al., 279 

2021). Table 1 shows the current ET models used for generating the OpenET ensemble. With 280 

the exception of the vegetation index-based SIMS model, OpenET models are developed 281 

using either complete or simplified adaptations of the surface energy balance (SEB) 282 

methodology. 283 

The SEB approach effectively factors in the energy required to convert liquid water within 284 

plants and soil into vapor, which is subsequently released into the atmosphere (Laipelt et al., 285 

2021). For the monthly OpenET ensemble product, Volk et al. (2024) observed a strong 286 

correlation (𝑅2=0.9) with the flux tower ET (152 sites across the CONUS), low mean bias 287 

error (5.3 mm/month or 5.8%), and combined metrics, i.e., root mean square error (RMSE) 288 

and mean absolute error (MAE) of 20.4 mm/month (20.4%) and 15.9 mm/month (17.3%), 289 

respectively. With actual ET measurements at the field scale, the OpenET ensemble of ET 290 

data are the most important input datasets in our study. 291 

 292 
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Table 1. Existing ET models in the OpenET ensemble [reproduced from OpenET (2023)]. 293 

Model Acronym Model Name References 

ALEXI/DisALEXI  

v 0.0.32 

Atmosphere-Land Exchange Inverse 

/ Disaggregation of the Atmosphere-

Land Exchange Inverse 

Anderson et al. (2007, 2018) 

eeMETRIC  

v 0.20.26 

Google Earth Engine 

implementation of 

the Mapping Evapotranspiration at 

high Resolution 

with Internalized Calibration model  

Allen et al. (2005, 2007, 2011) 

geeSEBAL v 0.2.2 Google Earth Engine 

implementation of 

the SEB Algorithm for Land 

Bastiaanssen et al. (1998); 

Laipelt et al. (2021) 

PT-JPL v 0.2.1 Priestley-

Taylor Jet Propulsion Laboratory 

Fisher et al. (2008) 

SIMS v 0.1.0 Satellite Irrigation Management  

Support 

Melton et al. (2012); Pereira et 

al. (2020) 

SSEBop v 0.2.6 Operational Simplified SEB Senay (2018); Senay et al. 

(2013, 2022) 

2.2.2 gridMET 294 

The gridMET dataset (Abatzoglou, 2013) offers a comprehensive collection of daily surface 295 

measurements, including temperature, precipitation, winds, humidity, and radiation across the 296 

CONUS from 1979 at ~4 km spatial resolution. This dataset integrates the openly available 297 

~4 km spatial data from the Parameter-elevation Relationships on Independent Slopes Model 298 

(PRISM) (Daly et al., 2008) with the high temporal-resolution data from the National Land 299 
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Data Assimilation System (NLDAS) (Xia et al., 2012). The validation metrics over the 300 

western U.S. indicate favorable results, with ±5% precipitation bias (Abatzoglou, 2013). 301 

Gridded daily grass reference ET (ETo) also displayed a strong correlation to daily ETo 302 

measurements (median Pearson’s correlation coefficient of 0.9), although it displayed a 303 

positive bias across most sites (median bias +0.5 mm).  304 

gridMET ETo was bias corrected within OpenET based on agricultural weather station 305 

network datasets to account for mostly positive bias in gridMET ETo as a result of 306 

evaporative cooling and boundary layer conditioning effects that occur within agricultural 307 

areas and not accounted for in gridMET and most other gridded meteorological datasets 308 

(Melton et al., 2021; Blankenau et al., 2020; Hobbins & Huntington, 2017; Volk et al., 2024). 309 

Since the gridMET product is operationally used in OpenET (Melton et al., 2021; Volk et al., 310 

2024), we rely on the precipitation and bias-corrected gridMET ETo data to calculate the 311 

effective precipitation and consumptive use, i.e., Net ET. 312 

2.2.3 Irrigation Data 313 

Irrigation data comprising carefully attributed irrigated field boundaries and water source 314 

type are critical for field-scale GP estimation. Here, we describe these datasets and their 315 

importance in performing field-scale assessments of GP and ET. 316 

2.2.3.1 Digitized irrigation field boundaries 317 

The field boundaries for each study year were derived from the U.S. Department of 318 

Agriculture (USDA) Common Land Unit (CLU) data representing the acreage in 2008 319 

(USDA Farm Service Agency, 2017). These boundaries were manually adjusted using 320 

visualizations of high-resolution National Agricultural Imagery Program (NAIP) data 321 

(USDA, 2023) and mapped water rights POU boundaries obtained from state water agencies. 322 

In years without NAIP data, Landsat false color composites for the specific year were 323 
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employed, along with NAIP and National Land Cover Database (NLCD) data 324 

(https://www.mrlc.gov/) from nearby years, to create a comprehensive annual irrigated field 325 

boundary dataset (Beamer & Hoskinson, 2021; Huntington et al., 2018). 326 

 

(a) (b) 

Figure 3. Digitized irrigated field boundaries in the GHVA portion of HB, Oregon 327 

(reproduced from Beamer and Hoskinson (2021)). The massive increase in irrigation and 328 

changes from square fields to circles between (a) August 1991 and (b) August 2016 329 

showcases the need for maintaining and updating our irrigation field boundary dataset. The 330 

field boundary shape changes are due to switching irrigation systems, i.e., from flood or 331 

sprinkler-line systems to center pivots. 332 

Changes in field boundaries were primarily observed when fields traditionally irrigated with 333 

flood or sprinkler-line systems were transformed into center-pivot irrigation or when new 334 

fields were brought into production. Figure 3 illustrates examples of mapped field boundaries 335 

in the central GHVA portion of the HB for 1991 and 2016. Each year, the individual 336 

polygons representing field boundaries were assigned a unique ID along with the start year of 337 

active irrigation, signifying the year when the field was initially identified in the imagery as 338 
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actively irrigated (Beamer & Hoskinson, 2021). These carefully attributed and digitized 339 

irrigation field boundaries are used in OpenET platform as well as the ensemble product to 340 

generate field-scale actual ET estimates throughout the western U.S. (Melton et al., 2021). 341 

2.2.3.2 Water source type 342 

Irrigation is entirely groundwater dependent within the DV, Nevada study area (NDWR, 343 

2020), while in the HB, Oregon irrigation is sourced from groundwater, surface water, or a 344 

combination of these two for irrigation (Beamer & Hoskinson, 2021; Garcia et al., 2021). 345 

Since the focus of our study is to estimate field-scale irrigation GP, having a water source 346 

type attribute to the digitized fields is essential to remove fields that are irrigated with surface 347 

water and/or a combination of surface water and groundwater. 348 

 349 

Figure 4. Mapped irrigated field boundaries in the GHVA, HB, Oregon for 2016 with the 350 

associated water source type (reproduced from Beamer and Hoskinson (2021)). GW right, 351 

SW right, and GW right on SW represent groundwater, surface water, and combination 352 

source types, respectively.  353 
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The annual field boundaries were associated with specific irrigation source types: 354 

groundwater irrigated (GW), surface water irrigated (SW), or a combination of groundwater 355 

and surface water (GW&SW). The initial stage in determining the irrigation source type 356 

involved overlaying the annual field boundaries with the OWRD-mapped dataset of water 357 

rights POU. The irrigated POU dataset for the Harney Basin was categorized into areas with 358 

exclusively groundwater rights, exclusively surface water rights, and areas with both surface 359 

water and groundwater rights where they intersected. For each year, only the POU polygons 360 

with priority dates for that year and all preceding years were incorporated into the analysis to 361 

depict irrigation development accurately. The chosen POU polygons were then transformed 362 

into a 30 m raster using the USGS 3D Elevation Program (3DEP) 30 m Digital Elevation 363 

Models (DEMs) (USGS, 2023). Cells within this raster were categorized into irrigation 364 

source types using integer values (1 = GW irrigated, 2 = SW irrigated, 3 = Combination). The 365 

resultant POU irrigation raster for the year 2016 is illustrated in Figure 4. Beamer and 366 

Hoskinson (2021) provide more details on this approach. 367 

2.2.4 Additional Datasets 368 

In addition to the datasets discussed, we rely on several other remote sensing and climate data 369 

that serve as predictors for the machine learning models (Section 4.3). These datasets are 370 

intricately related to the hydrologic and hydroclimatic processes driving GP. These include 371 

the gridMET (Abatzoglou, 2013) minimum and maximum air temperature, minimum and 372 

maximum relative humidity, vapor pressure deficit, grass reference ET, alfalfa reference ET, 373 

and wind velocity. Moreover, we use the Daymet v4 precipitation data (~1 km spatial 374 

resolution, Thornton et al., 2021), Landsat-8 32-day normalized difference vegetation index 375 

(NDVI) composite (30 m, courtesy of the USGS), NASA digital elevation model 376 

(NASADEM, 30 m, NASA JPL, 2020), conterminous U.S. (CONUS) 800-m soil properties 377 

that include the hydrologic soil group (HSG), soil depth, and the saturated hydraulic 378 
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conductivity (Walkinshaw et al., 2022), and the OpenET ensemble mean actual ET as well as 379 

the individual model actual ET (Melton et al., 2021, Table 1). 380 

3. METHODS 381 

3.1 Matching Point of Diversions, Meter Readings, and Places of Use 382 

One of the major challenges in this project is matching the metered GP data with the field-383 

scale ET data. Groundwater applications in the State of Nevada are required to include a 384 

Point of Diversion (POD) (often a well) and POU, i.e., the maximum area over which water 385 

from the POD can be applied (https://www.leg.state.nv.us/nrs/nrs-533.html). Multiple 386 

applications can be filed for a single well, allowing multiple PODs and POUs for the same 387 

area (i.e., stacked water rights).  388 

Reported GP values for each 389 

well (can be several) are totaled 390 

and assigned to the senior most 391 

water right by the Nevada State 392 

Engineers Office (NSEO). 393 

These groups of POUs were 394 

joined into a single polygon 395 

representing the total area of 396 

application. However, since a 397 

POU typically extends beyond 398 

actual irrigated areas (e.g., quarter section POU with center pivot irrigated area within, see 399 

Figure 5), we cannot directly use the POU to estimate satellite-based ET. To better define 400 

irrigated areas, we relied on Geographic Information System (GIS) and Python software (Van 401 

Rossum & Drake, 2009) to spatially join the POU polygons with the irrigated area database 402 

Figure 5. POUs X, Y, and Z paired with the OpenET fields 

1, 2, and 3 using spatial intersection in Diamond Valley, 

Nevada. This is an illustration of a one-to-one mapping 

with one total pumping value being paired with one 

OpenET ensemble actual ET estimate. This process is 

replicated for the Harney Basin, Oregon. 
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(Section 2.2.3) developed by the Desert Research Institute as part of the OpenET project 403 

(Huntington et al., 2018; Melton et al., 2021). More specifically, we use Geopandas (Jordahl 404 

et al., 2020) to spatially join the grouped POU data from the NSEO and the irrigated area 405 

polygons from OpenET. Figure 5 illustrates this process where POUs X, Y, and Z are 406 

grouped with fields 1, 2, and 3. This grouping is one-to-one where one total GP value is 407 

paired with one area of intersection (AoI) ID and, ultimately, one satellite-based ET estimate 408 

for the irrigated area. This one-to-one pairing process was replicated for the HB, wherein the 409 

OWRD-provided POU groupings were matched to irrigated area polygons from OpenET, like 410 

Beamer and Hoskinson (2021). 411 

3.2 Effective Precipitation and Consumptive Use 412 

Effective precipitation is the amount of total precipitation on the cropped area that is 413 

available to meet the potential ET requirements in that area (Bos et al., 2009). Typically, it is 414 

computed by subtracting losses due to runoff and deep percolation beyond the rootzone of the 415 

crops from the total precipitation (Allen et al., 1998). Numerous methods exist for estimating 416 

effective precipitation, ranging from simple approaches (e.g., a ratio of reference ET and 417 

precipitation) to more intricate methods (e.g., involving detailed soil water balance and crop 418 

modeling) (Dastane, 1974; Kumar et al., 2017). Many empirical techniques are tailored to 419 

specific conditions, and their accuracy and applicability beyond those specific conditions are 420 

often limited unless they account for the factors influencing infiltration, runoff, and deep 421 

percolation (Feddes et al., 1988; Huntington et al., 2015, 2022; Stamm, 1967; USDA SCS, 422 

1993). 423 

Patwardhan et al. (1990) demonstrated the superior accuracy of the daily soil water balance 424 

method in estimating effective precipitation. This method considers soil moisture and plant 425 

available water, considering the water-holding capacity and root depths specific to crop areas 426 
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within each model cell. The runoff from precipitation is computed using the USDA Natural 427 

Resources Conservation Service (NRCS) curve number (CN) method (USDA NRCS, 2004). 428 

CN values are scaled between dry and wet conditions based on antecedent soil water content, 429 

employing Hawkins et al. (1985) expressions. 430 

In this study, we compute the basin-scale effective precipitation fraction (𝑃𝑒𝑓𝑟
) using the ET-431 

Demands model (Allen & Robison, 2007; Huntington et al., 2015, 2022; USBR, 2019). This 432 

model incorporates various factors, including daily gridMET precipitation data (Abatzoglou, 433 

2013), antecedent soil moisture before a precipitation event, and deep percolation and surface 434 

runoff from precipitation. The ET-Demands model utilizes daily weather information, 435 

including reference evapotranspiration (ETo), in conjunction with crop-specific growth 436 

curves. Widely applied, it has been used to assess historical and future irrigation water 437 

demands for specific USBR irrigation projects (USBR, 2016) and to estimate historical and 438 

future irrigation water requirements for the USBR's WaterSMART Basin Studies Program 439 

(USBR, 2023). We used ET-Demands to generate the basin-scale irrigated lands 𝑃𝑒𝑓𝑟
and then 440 

computed the field-scale effective precipitation, 𝑃𝑒𝑓𝑖𝑒𝑙𝑑
 (more details in Equation 1). 441 

The Net ET or consumptive use is defined in Equation 1 as the actual ET (𝐸𝑇𝑎) minus 442 

effective precipitation (𝑃𝑒𝑓𝑖𝑒𝑙𝑑
). Here, we must subtract the portion of precipitation that is 443 

considered 'effective' or contributes to ET, i.e., 𝑃𝑒𝑓𝑖𝑒𝑙𝑑
, from the total 𝐸𝑇𝑎 because it includes 444 

ET derived from precipitation (𝑃𝑓𝑖𝑒𝑙𝑑). These Net ET estimates are foundational not only for 445 

estimating GP but also for assessing irrigation application rates and irrigation water 446 

requirements (Huntington et al., 2022). 447 

𝑁𝑒𝑡 𝐸𝑇 = 𝐸𝑇𝑎 − 𝑃𝑒𝑓𝑖𝑒𝑙𝑑
  

where,  

(1) 
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𝑁𝑒𝑡 𝐸𝑇: Field-scale consumptive use. 

𝐸𝑇𝑎: Total annual (January 1 to December 31) field-scale actual ET from the 

OpenET ensemble product (Melton et al., 2021; Volk et al., 2024). 

𝑃𝑒𝑓𝑖𝑒𝑙𝑑
= 𝑃𝑒𝑓𝑟

∗  𝑃𝑓𝑖𝑒𝑙𝑑 , the field-scale effective precipitation. 

𝑃𝑒𝑓𝑟
: Basin-scale effective precipitation fraction for irrigated fields from ET-

Demands (USBR, 2019). 

𝑃𝑓𝑖𝑒𝑙𝑑: Total annual gridMET precipitation (originally at ~4 km spatial resolution, 

Abatzoglou (2013)) aggregated at the field scale using spatial reductions available 

through the Google Earth Engine Python API (Gorelick et al., 2017). 

3.3 Estimating Field-Scale Groundwater Pumping 448 

We use the least-squares linear regression (Equation 2) to develop individual DV and HB-449 

specific regression models between GP depth and Net ET. To make the model independent of 450 

area, we consider GP depths rather than GP volumes, i.e., dividing the reported pumping 451 

volumes from NDWR and OWRD by the respective irrigated field areas in the associated AoI 452 

(Figure 5). 453 

𝑮𝑷 =  �̂�𝟎 + �̂�𝟏 ∗  𝑵𝒆𝒕 𝑬𝑻 + 𝝐 

where, 

𝑮𝑷: Metered annual groundwater pumping depth. 

𝑵𝒆𝒕 𝑬𝑻: Field-scale consumptive use (Equation 1). 

�̂�𝟎, �̂�𝟏: Regression coefficients. 

𝝐: Random error associated with estimating 𝑮𝑷. 

(2) 

Prior to fitting the regression model, we remove fields with GP / Net ET ratios lying outside 454 

the (0.5, 1.5) interval.  We obtain this interval based on histogram analysis (Figure 6 (a)) and 455 

boxplot-derived lower and upper limits (based on the interquartile range, Figure 6 (b), Hastie 456 
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et al. (2001)) of the GP / Net ET ratios for DV, Nevada. Essentially, we remove fields where 457 

the reported metered GP data are below 50% or above 150% of the consumptive use.  458 

  

(a) (b) 

Figure 6. The (a) histogram and (b) boxplot distributions of the GP and Net ET ratios over 459 

DV, Nevada. The red line in (a) denotes the kernel density estimate (Hastie et al., 2001) of 460 

GP / Net ET, and the x-axis is cutoff at GP / Net ET = 2.5. 461 

These discrepancies are typically caused due to flowmeter issues and changes in the 462 

flowmeters. In addition to applying the same (0.5, 1.5) interval, we remove ten fields in HB, 463 

Oregon, with purely surface water rights and combined groundwater and surface water rights 464 

based on the water source type data (Figure 4). Furthermore, for both DV and HB, we only 465 

consider fields where GP > 0. Overall, we discard 19% and 67% of the original DV and HB 466 

metered GP data, respectively, which essentially showcases the necessity for relying on field-467 

scale ET to directly estimate GP as developing robust metering infrastructure is not trivial. 468 

As for model evaluation, we employ bootstrapping (Hastie et al., 2001) to estimate the 469 

confidence intervals of the regression model. The nonparametric approach of bootstrapping 470 

provides a means of estimating confidence intervals and standard errors for the regression 471 

coefficients when relatively little data is available. The least-squares regression provides an 472 
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estimate of the model parameters, these are not the true values of model parameters since the 473 

entire population is unknown and thus would be different if other data were used. 474 

Here, we take a random sample with replacement using all data points, perform the least-475 

squares regression (Equation 2) without fitting the intercept (i.e., �̂�0 = 0), and estimate the 476 

regression coefficient �̂�1. This process is repeated 1000 times after which we report the 477 

coefficient of determination (𝑅2), RMSE, MAE, and the coefficient of variation (CV, i.e., 478 

standard deviation of the predictions divided by the mean of the predictions). Note that we 479 

deliberately set �̂�0 = 0 because, theoretically, GP is the ratio of the Net ET and irrigation 480 

efficiency (Section 3.1.4) (Howell, 2002). 481 

We then compute the confidence interval (CI) and prediction interval (PI) using the bootstrap 482 

percentile interval method, which assigns the lower and upper 95% CI and PI values to the 483 

2.5th and 97.5th percentile of the resulting bootstrap distributions. Moreover, we compare the 484 

predicted GP to the actual GP (both depth and volumes) at the field scale, perform basin-scale 485 

GP assessments, and analyze the observed GP residuals to test for normality (Sections 4.1 486 

and 4.2). Additionally, we evaluate the performance of the linear regression model against 487 

ensemble machine learning algorithms, such as Random Forests (RF) (Breiman, 2001), 488 

Gradient Boosting Trees (GBT) (Friedman, 2001), and Extremely Randomized Trees (ERT) 489 

(Geurts et al., 2006) available through the scikit-learn (Pedregosa et al., 2011) and LightGBM 490 

(Ke et al., 2017) Python APIs (Section 4.3). 491 

3.4 Calculating Irrigation Efficiency 492 

The irrigation efficiency (IE ∈ [0, 1]), as defined in Equation 3, is the ratio of the Net ET and 493 

GP (Howell, 2002). Conversely, GP can be obtained by dividing the Net ET by the IE. 494 

Therefore, the inverse of the slope of the fitted regression in Equation 2, i.e., �̂�1
−1, gives us 495 
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the IE (since �̂�0 = 0).  Here, we use the terms ‘irrigation efficiency’ and ‘application 496 

efficiency’ interchangeably (Howell, 2002).  497 

𝑰𝑬 =
𝑵𝒆𝒕 𝑬𝑻

𝑮𝑷
 

(3) 

4. RESULTS AND DISCUSSION 498 

4.1 Field-scale GP estimates in DV, Nevada 499 

We observe a good agreement (𝑅2 = 0.6, RMSE = 15.33%, MAE = 12.11%, CV=20.44%) 500 

between the metered GP depths and the predicted GP depths at the field scale using linear 501 

regression (Equation 2) over DV (Figure 7 (a)).  502 

  

(a) (b) 

Figure 7. Scatter plots of the fitted (a) GP depth and (b) GP volume over DV, with the Net 503 

ET depth and Net ET volume as the corresponding predictors. There are a total of 533 504 

samples after the outlier removal process (Section 3.3). The 95% CI and PI are obtained 505 

using bootstrapping. Here, y and x denote the response (GP) and the predictor (Net ET) 506 

variables, respectively. The RMSE and MAE percentages are obtained by dividing the RMSE 507 

and MAE by the mean of the actual metered GP depth/volume. 508 

Additionally, we achieve 𝑅2 = 0.87, RMSE = 18.19%, MAE = 12.57%, and CV = 51.2% 509 

when the predicted and metered depths are converted to the volume space by multiplying the 510 

irrigated field boundary areas (Figure 7 (b)).  This substantial increase in the 𝑅2 can be 511 
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attributed to the artificial correlations imposed by multiplying the field areas, i.e., a larger 512 

field will have higher GP volume than a smaller one, which is also evident from the ~31% 513 

increase in the CV (the predicted volumes have a higher variability than the depths because 514 

of the varying field areas). Nevertheless, we report the error metrics in both the depth and 515 

volume space to demonstrate the effectiveness of our approach. 516 

The slopes of 1.1 and 1.08 in Figures 7 (a)-(b) indicate that the average IE for DV is about 517 

92%, which aligns with typical center pivot system efficiencies (Howell, 2002). Accordingly, 518 

the standardized GP depth residuals, calculated as observed GP depth minus predicted GP 519 

depth, approximately follow a normal distribution (skewness = -0.59, kurtosis = 1.15) and 520 

mostly lie in the [-2, 2] interval (Figure 8 (a)). There are also no observable systematic 521 

patterns in the standardized GP depth residual vs. the Net ET depth scatter plot (Figure 8 (b)). 522 

Moreover, the basin-scale comparison (Figure 9) of the metered and predicted annual total 523 

GP volumes further showcases the reliability of our approach. 524 

  

(a) (b) 

Figure 8. Residual analysis for the fitted linear regression using the DV meter data showing 525 

the (a) standardized residual histogram and (b) scatter plot of the standardized residuals vs. 526 

Net ET depth. The residuals are calculated as observed GP depth minus the predicted GP 527 

depth. The red line in (a) denotes the kernel density estimate like before in Figure 6 (a). 528 
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 529 

Figure 9. Comparison of the basin-scale total annual GP volumes in DV, Nevada. Note that 530 

the actual GP volumes are computed using the field data which are kept after the outlier 531 

removal process (Section 3.3). 532 

4.2 Field-scale GP estimates in HB, Oregon 533 

For HB, Oregon, we observe a satisfactory agreement (𝑅2 = 0.46, RMSE = 13.56%, MAE = 534 

11.09%, and CV = 13.41%) between the metered GP depths and the predicted GP depths at 535 

the field scale using linear regression (Figure 10 (a)). Additionally, we obtain 𝑅2 = 0.88, 536 

RMSE = 13.87%, MAE = 10.8%, and CV = 34.97% considering the GP volumes (Figure 10 537 

(b)).  These substantial increases in the 𝑅2 and CV are due to the artificial correlations 538 

imposed by the field areas, and the variability of the field areas, respectively. 539 

The slopes of 1.2 and 1.22 in Figures 10 (a)-(b) imply an average IE of 83%, which aligns 540 

with typical center pivot system efficiencies (Howell, 2002). However, the HB IE is about 541 

9% less than that of DV. The standardized GP depth residuals approximately follow a normal 542 

distribution (skewness = -0.56, kurtosis = -0.39) and mostly lie in the [-2, 1] interval (Figure 543 

11 (a)). Like DV, there are no observable systematic patterns in the standardized GP depth 544 
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residual vs. the Net ET depth scatter plot (Figure 11 (b)). Additionally, the basin-scale 545 

comparison (Figure 12) of the metered and predicted annual total GP volumes shows good 546 

agreement and again demonstrates the reliability of our approach. 547 

  

(a) (b) 

Figure 10. Scatter plots of the fitted (a) GP depth and (b) GP volumes over HB, with the Net 548 

ET depth and Net ET volume as the corresponding predictors. There are a total of 62 samples 549 

after the outlier removal process (Section 3.3). 550 

  

(a) (b) 

Figure 11. Residual analysis for the fitted linear regression using the HB meter data showing 551 

the (a) standardized residual histogram and (b) scatter plot of the standardized residuals vs. 552 

Net ET depth. The residuals are calculated as observed GP depth minus the predicted GP 553 

depth. The red line in (a) denotes the kernel density estimate like before in Figure 6 (a). 554 
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 555 

Figure 12. Comparison of the basin-scale total annual GP volumes in HB, Oregon. Note that 556 

the actual GP volumes are computed using the field data which are kept after the outlier 557 

removal process (Section 3.3). 558 

4.3 Comparison with Ensemble Machine Learning 559 

Here, we only compare the linear regression and ensemble ML model performances for 560 

predicting GP depth over DV, Nevada, consisting of 533 valid samples (2018-2022). Since 561 

there are only 62 valid samples in HB, Oregon (2016-2022), developing ML models is 562 

unreasonable.  563 

We perform a random 70%-30% training and test data split to assess the model performances 564 

through five-fold cross-validation (Hastie et al., 2001). The training, validation, and test 565 

metrics are shown in Table 2, where the validation data are automatically generated using the 566 

five-fold cross-validation technique, i.e., 20% of the training data are used to tune the 567 

hyperparameters of each ML model (Supplementary Table 1). We use the OpenET ensemble 568 

product to calculate Net ET like the linear regression model and include all other actual ET 569 
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models (Table 1) as input predictors along with additional predictors described in Section 570 

2.2.4. Overall, there are 28 predictors in our ML models listed in Supplementary Table 2. 571 

Table 2. The training, validation, and test error metrics (rounded to two decimal places) for 572 

the ensemble ML models. The ERT model shows the best performance across all metrics for 573 

the test data and has the least overfitting, i.e., training, validation, and test error metrics are 574 

closer to each other compared to the other models (GBT has the highest overfitting). 575 

Data Metrics 

Ensemble ML models 

ERT GBT RF 

Training 

𝑅2 0.73 0.95 0.82 

RMSE (%) 12.21 3.39 10.07 

MAE (%) 9.51 2.54 7.89 

CV (%) 16.61 22.75 19.0 

Validation 

𝑅2 0.56 0.53 0.58 

RMSE (%) 15.84 16.42 15.5 

MAE (%) 12.29 12.75 12.12 

CV (%) 15.42 20.29 17.63 

Test 

𝑅2 0.63 0.62 0.63 

RMSE (%) 14.82 14.94 14.91 

MAE (%) 11.46 11.68 11.59 

CV (%) 17.43 18.21 17.78 

We find that the ERT model gives the best prediction performance with test 𝑅2 = 0.63, 576 

RMSE = 14.82%, MAE = 11.46%, and CV = 17.43%, which is marginally better than the 577 

DV, Nevada linear regression model (𝑅2 = 0.6, RMSE = 15.33%, MAE = 12.11%, and CV = 578 

20.44%, Section 4.1). The corresponding permutation importance (Breiman, 2001) plots of 579 

the top five features or predictors for the training and test data are shown in Supplementary 580 

Figures 1 and 2, respectively. These show that the Net ET, field-scale actual ET, air 581 
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temperature, relative humidity, soil depth, effective precipitation, and NDVI constitute the 582 

key predictors across the three ML models, with Net ET, being the most important one as 583 

removing it from the predictor set substantially decreases the model performance, with an 584 

average 12%-15% increase in training (including validation) RMSE, and 9%-11% increase in 585 

test RMSE.  586 

Thus, the linear regression and ensemble ML model results strongly support the three 587 

hypotheses of our study (Section 1.3), 1) field-scale satellite-based ET estimates are well-588 

correlated with field-scale metered GP data, 2) statistical relationships between field-scale 589 

satellite-based ET and GP data are useful for QAQC of GP records and assessment of prior 590 

estimates, and 3) ET-based predictions of GP compare reasonably well to metered GP at the 591 

field and basin scales. 592 

4.4 OpenET Ensemble vs. Individual ET Models 593 

Here, we compare the performance of the individual OpenET models (Table 1) with that of 594 

the OpenET ensemble in predicting GP depths using both linear regression (DV and HB) and 595 

ML (only DV) methods. 596 

4.4.1 ET comparison through Linear Regression 597 

In DV, Nevada, the OpenET ensemble produces the best error metrics in estimating the GP 598 

depths (Table 3, Figure 7 (a)). For each model (Supplementary Figures 3 (a)-(f)), we use the 599 

same (0.5, 1.5) interval for removing the outliers based on the GP / Net ET ratios, where the 600 
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Net ET is calculated using the OpenET ensemble and the ET-Demands-derived effective 601 

precipitation (Section 3.2).  602 

Table 3. Comparison of the linear regression model metrics (GP depths, DV, Nevada) and 603 

slopes for different field-scale ET models used to calculate the Net ET. The metrics and 604 

slopes are rounded to two decimal places. 605 

ET Model 

GP depth metrics 

Slope 

𝑅2 RMSE (%) MAE (%) CV (%) 

OpenET ensemble 0.6 15.33 12.11 20.44 1.1 

ALEXI/DisALEXI  0.44 18.15 14.8 24.29 1.11 

eeMETRIC  0.55 16.3 12.78 22.58 0.99 

geeSEBAL 0.49 17.27 13.62 22.21 1.19 

PT-JPL 0.51 16.99 13.16 17.47 1.25 

SIMS 0.36 19.34 13.61 21.15 0.95 

SSEBop 0.4 18.76 14.78 27.61 1.18 

The performance of individual ET models was assessed over the same 533 samples as in 606 

Section 4.1. Although selecting the outliers based on the individual ET model-specific GP / 607 

Net ET ratios and adjusting the intervals from histogram and boxplot analyses would have 608 

improved the corresponding metrics, using the same OpenET ensemble-derived GP / Net ET 609 

ratios make the comparison more consistent. Table 3 shows that eeMETRIC and PT-JPL are 610 

the most skillful models after the ensemble mean, with SIMS having the least skill. However, 611 

the slopes for eeMETRIC and SIMS are close to 1, implying that the consumptive use equals 612 

pumping, i.e., Net ET = GP, which is not practical and could be due to both these ET models 613 

being biased high.  614 

 615 
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(a) 

 

(b) 

Figure 13. Comparisons of the area-weighted mean annual (a) ET depths and (b) Net ET and 616 

metered GP depths for each ET model in DV, Nevada. Note that the area-weighted means in 617 

(a) and (b) are computed after the outlier removal process described in Section 3.3 (Figure 6). 618 

To investigate this issue, we compare the area-weighted mean annual actual ET depths 619 

(Figure 13 (a)) and the area-weighted mean annual Net ET depths with the metered GP 620 

depths for each ET model (Figure 13 (b)). We observe that eeMETRIC is biased high 621 

between 2020 and 2022, whereas SIMS is biased high across all years. The consistent high 622 

bias in SIMS is expected because it assumes well-irrigated crop conditions, and therefore, 623 

exhibits a positive bias particularly for deficit irrigated crops and croplands with short-term 624 

or intermittent crop water stress (OpenET, 2023; Volk et al., 2024). Both SSEBop and PT-625 
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JPL vary substantially, but Net ET predictions from these two models are consistently lower 626 

than the GP, which is similar to ALEXI/DisALEXI, geeSEBAL. However, it is expected that 627 

most of these models are biased low due to model limitations associated with advection, 628 

aridity, and sharp contrasts between irrigated and non-irrigated arid landscapes (OpenET, 629 

2023; Volk et al., 2024). The OpenET ensemble value is the average across all models after 630 

up to two outliers are identified and removed following the median absolute deviation 631 

(MAD) from the median approach (Hampel, 1974; Leys et al., 2013). The calculation of an 632 

ensemble mean is a useful and common technique for combining model predictions that each 633 

have positive or negative biases and random errors and is especially useful for water 634 

management where single values are commonly required (Thompson et al., 1977; Kirtman et 635 

al., 2014; Bai et al., 2021). Notably the OpenET ensemble mean had the highest skill, with a 636 

slope value that follows our conceptual model and aligns with published irrigation 637 

efficiencies associated with high efficiency center pivot irrigation systems (Howell, 2002). 638 

Moreover, from Table 4, and Supplementary Figures 4 and 5, we observe that the OpenET 639 

ensemble is also consistent in HB, Oregon, with similar GP depth 𝑅2, RMSE, and MAE 640 

metrics like the ones based on the SSEBop Net ET (which performs slightly better), and leads 641 

to the best GP depth precision in terms of CV. Thus, relying on the OpenET ensemble leads 642 

to a more consistent approach because of these high and low bias issues with the individual 643 

models (Volk et al., 2024). 644 

Table 4. Comparison of the linear regression model metrics (GP depths, HB, Oregon) and 645 

slopes for different field-scale ET models used to calculate the Net ET. The metrics and 646 

slopes are rounded to two decimal places. 647 

ET Model 

GP depth metrics 

Slope 

𝑅2 RMSE (%) MAE (%) CV (%) 

OpenET ensemble 0.46 13.56 11.09 13.41 1.2 



34 

 

ALEXI/DisALEXI  0.11 17.3 14.38 15.08 1.3 

eeMETRIC  0.33 15.06 12.14 15.16 1.19 

geeSEBAL 0.17 16.78 13.83 16.68 1.11 

PT-JPL 0.3 15.38 12.46 14.19 1.32 

SIMS -1.6 29.64 16.37 30.78 1.07 

SSEBop 0.48 13.31 10.56 17.92 1.23 

 648 

4.4.2 ET comparison through Machine Learning 649 

To compare the ML model performances corresponding to each ET model in DV, we did not 650 

use the full 28 predictors as we did in Section 4.3. Instead, we used the ET model-specific 651 

Net ET and the actual ET and removed other ET predictors in each case. Therefore, the ML 652 

models in Table 5 rely on 22 predictors (see Supplementary Table 2 for more details). The 653 

training, validation, and test data are generated in the same way as in Section 4.3., i.e., 70%-654 

30% training and test data split, followed by the automatic validation data generation (20% 655 

from the training data) using the five-fold cross-validation technique.  656 

Table 5. Comparison of the ML model metrics (GP depths, DV, Nevada) for different field-657 

scale ET models used to calculate the Net ET. For each of the ET models, the metrics 658 

(rounded to two decimal places) are only reported for the test data obtained using the best ML 659 

model in terms of the RMSE and overfitting. 660 

ET Model Best ML model 

GP depth metrics 

𝑅2 RMSE (%) MAE (%) CV (%) 

OpenET ensemble ERT 0.62 14.96 11.47 17.06 

ALEXI/DisALEXI  RF 0.59 15.62 12.23 15.93 

eeMETRIC  RF 0.62 15.06 11.6 17.96 

geeSEBAL GBT 0.61 15.16 11.92 17.92 
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PT-JPL GBT 0.61 15.25 11.65 18.53 

SIMS GBT 0.6 15.39 11.82 18.61 

SSEBop ERT 0.59 15.52 12.13 16.43 

From Table 5, we find that the OpenET ensemble leads to the best performance metrics in 661 

terms of 𝑅2, RMSE, and MAE. Although the ML models appear to be more robust to 662 

changes in the ET models compared to the linear regression, these results are only for a single 663 

test data. Ideally, these comparisons should be repeated over thousands of model iterations 664 

and train-test partitions for more reliable reporting of these metrics.  Nevertheless, the 665 

OpenET ensemble product demonstrates consistent results across different statistical and ML 666 

modeling paradigms and the two study areas (DV, Nevada and HB, Oregon). 667 

5. CONCLUSIONS 668 

This is the first study to predict field-scale groundwater pumping and concurrently provide 669 

estimates of irrigation efficiencies using integrated remote sensing, irrigation, and climate 670 

data in a statistical learning framework. We used statistical (linear regression and 671 

bootstrapping) and ensemble machine learning (Random Forests, Gradient Boosting Trees, 672 

and Extremely Randomized Trees) approaches to predict field-scale groundwater pumping in 673 

Diamond Valley, Nevada, and Harney Basin, Oregon. We relied on several remote sensing, 674 

irrigation, and climate datasets for modeling. The primary datasets include OpenET (Melton 675 

et al., 2021; Volk et al., 2024) ensemble-derived field-scale actual evapotranspiration, ET-676 

Demands (USBR, 2023) and gridMET (Abatzoglou, 2013)-derived effective precipitation, 677 

and carefully attributed field boundaries and water source type data (Huntington et al., 2018; 678 

Beamer & Hoskinson, 2021). Moreover, we ingested multiple temporally static (elevation, 679 

soil depth, saturated hydraulic conductivity, hydrologic soil group) and dynamic geospatial 680 
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datasets (reference evapotranspiration, relative humidity, air temperature, NDVI, and others) 681 

as additional predictors to the machine learning models.  682 

The linear regression and machine learning model results demonstrate that the OpenET 683 

ensemble product leads to more consistent results compared to the individual ET models 684 

across the two study areas and simultaneously aids in quality assurance and quality control of 685 

the reported pumping data. More specifically, the mean absolute errors for field-scale 686 

groundwater pumping depth are 12% and 11% for Diamond Valley and Harney Basin, 687 

respectively, and the corresponding root mean square errors are 15% and 14%. The 688 

regression models can explain 50%-60% variance in the pumping depths and ~90% variance 689 

in the pumping volumes. Furthermore, the estimated average irrigation efficiency of 88% 690 

(92% and 83% for Diamond Valley and Harney Basin, respectively) aligns with known 691 

center pivot system efficiencies (Howell, 2002).  692 

Regarding the limitations of our approach, the primary bottleneck is the amount of pre-693 

processing time involved in linking the points of diversions (wells) to the places of use 694 

(fields). Matching the wells to the fields is an extremely tedious yet critical task as it directly 695 

influences the model performance. Other limitations include data scarcity in both the study 696 

areas, particularly the Harney Basin, where there is mixed water use, i.e., fields with both 697 

groundwater and surface water rights, and hence, a few fields had to be discarded completely 698 

because of this issue. 699 

Still, our data-driven approach provides a more systematic way of estimating groundwater 700 

pumping than conventional methods based on water right duties, potential crop ET, low-701 

quality meter readings, or assumed values. As part of future work, we aim to incorporate 702 

climate model projection data to generate hindcasts and future projections of groundwater 703 

pumping at regional or basin scales. The broader goal of our study is to present water 704 
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resource and user communities with valuable insights into water use and budgets, supporting 705 

the implementation of field-scale management strategies across both metered and unmetered 706 

groundwater basins in Nevada, Oregon, and other states in the western U.S. Essentially, this 707 

work is an advancement toward improved field-scale evaluations of groundwater pumping, 708 

consumptive use, and irrigation efficiencies, thereby contributing to more efficient and 709 

sustainable water management solutions. 710 
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This supplementary information file has five figures and two tables referenced in the main manuscript. 

 

Supplementary Table 1. Ensemble machine learning (ML) models and the hyperparameters tuned in a 

randomized grid search with five-fold cross-validation. The random seed value is set to 1234 throughout, and 

the root mean square error (RMSE) is used as the objective function across these models. ERT and RF are 

available from scikit-learn, and GBT is available from LightGBM. 

Model Hyperparameter values Tuned hyperparameters 

Extremely 

Randomized 

Trees (ERT) 

'n_estimators': [300, 400, 500, 800] 

'max_features': [5, 6, 7, 10, 12, 20, 30, None] 

'max_depth': [8, 15, 20, 6, 10, None] 

'min_samples_leaf': [1, 2] 

'max_samples': [None, 0.9] 

'max_leaf_nodes': [16, 20, 31, 32, 63, 127, 15, 255, 7, 

None] 

'min_samples_split': [2, 3, 4, 0.01] 

Fixed parameters: bootstrap=True 

'n_estimators': 800 

'max_features': None 

'max_depth': 10 

'min_samples_leaf': 2 

'max_samples': None 

'max_leaf_nodes': 127 

'min_samples_split': 2 

Gradient 

Boosting 

Machine (GBT) 

'n_estimators': [300, 400, 500, 800] 

'max_depth': [8, 15, 20, 6, 10, -1] 

'learning_rate': [0.01, 0.005, 0.05, 0.1] 

'subsample': [1, 0.9, 0.8] 

'colsample_bytree': [1, 0.9] 

'colsample_bynode': [1, 0.9] 

'path_smooth': [0, 0.1, 0.2] 

'num_leaves': [16, 20, 31, 32, 63, 127, 15, 255, 7] 

'min_child_samples': [30, 40, 10, 20] 

Fixed parameters: tree_learner='feature', 

deterministic=True, force_row_wise=True 

'n_estimators': 800 

'max_depth': 8 

'learning_rate': 0.01 

'subsample': 0.8 

'colsample_bytree': 0.9 

'colsample_bynode': 1 

'path_smooth': 0.2 

'num_leaves': 7 

'min_child_samples': 20 

Random Forests 

(RF) 

Same as ERT 

 

'n_estimators': 500 

'max_features': 20 

'max_depth': 6 

'min_samples_leaf': 2 

'max_samples': None 

'max_leaf_nodes': 16 

'min_samples_split': 4 
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Supplementary Table 2. Description of the 28 predictors used in the full machine learning models to estimate 

groundwater pumping depths in Diamond Valley, Nevada‡. The data references are in the main manuscript. 

Predictor name Description Operations 

annual_net_et_ensemble_mm§ OpenET ensemble-based 𝑁𝑒𝑡 𝐸𝑇in mm annual_et_ensemble_mm - 

annual_gridmet_precip_eff_mm 

annual_et_eemetric_mm eeMETRIC actual ET in mm Temporal sum (calendar year) 

and zonal mean 

annual_et_ssebop_mm SSEBop actual ET in mm Temporal sum (calendar year) 

and zonal mean 

annual_et_geesebal_mm geeSEBAL actual ET in mm Temporal sum (calendar year) 

and zonal mean 

annual_et_ensemble_mm OpenET ensemble actual ET in mm Temporal sum (calendar year) 

and zonal mean 

annual_daymet_precip_eff_mm Daymet v4 effective precipitation in mm annual_daymet_precip_mm * 

eff_factor 

annual_daymet_precip_mm Daymet v4 precipitation in mm Temporal sum (calendar year) 

and zonal mean 

annual_et_disalexi_mm ALEXI/DisALEXI actual ET in mm Temporal sum (calendar year) 

and zonal mean 

annual_gridmet_precip_mm gridMET precipitation in mm Temporal sum (calendar year) 

and zonal mean 

annual_gridmet_precip_eff_mm gridMET effective precipitation in mm annual_gridmet_precip_mm * 

eff_factor 

annual_et_pt_jpl_mm PT-JPL actual ET in mm Temporal sum (calendar year) 

and zonal mean 

annual_et_sims_mm SIMS actual ET in mm Temporal sum (calendar year) 

and zonal mean 

annual_ndvi Landsat-8 32-day composite NDVI Temporal max (calendar year) 

and zonal mean 

annual_rmin gridMET minimum relative humidity % Temporal median (calendar 

year) and zonal mean 

 
‡ Here, the temporal operations are performed for each year between 2018 and 2022, and the zonal operations 

are performed for each field. If a well waters multiple fields, then we sum up the corresponding actual ET, 

reference ET, Net ET, precipitation, effective precipitation, effective precipitation factor, and vapor pressure 

deficit for those fields, average the NDVI, minimum relative humidity, maximum relative humidity, minimum air 

temperature, maximum air temperature, soil depth, saturated hydraulic conductivity, and wind velocity, and 

take the mode of the hydrologic soil groups for those fields. 

 
§ For the ML models used to compare the ET model performances (Table 5, main manuscript), we replace the 

annual_net_et_ensemble_mm with the corresponding Net ET (e.g., annual_net_et_eemetric_mm) and only keep 

the corresponding actual ET predictor, e.g,  annual_et_eemetric_mm. Other ET predictors are removed to 

negate the correlation effects. All the remaining predictors are kept as in the full ML model. Therefore, we end 

up with 22 predictors for each of the models in Table 5 of the main manuscript. 
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Supplementary Table 2 (Contd.). Description of the 28 predictors used in the full machine learning models to 

estimate groundwater pumping depths in Diamond Valley, Nevada. Here, the temporal operations are 

performed for each year between 2018 and 2022, and the zonal operations are performed for each field. 

Predictor name Description Operations 

annual_rmax gridMET maximum relative humidity 

% 

Temporal median (calendar year) and zonal 

mean 

ksat_mean_micromps Saturated hydraulic conductivity in 

𝜇m/s 

Zonal mean 

soil_depth_mm Soil depth in mm Zonal mean 

annual_vpd_kPa gridMET vapor pressure deficit in kPa Temporal sum (calendar year) and zonal 

mean 

annual_tmmn_K gridMET minimum air temperature 

(K) 

Temporal median (calendar year) and zonal 

mean 

annual_tmmx_K gridMET maximum air temperature 

(K) 

Temporal median (calendar year) and zonal 

mean 

eff_factor ET-Demands-derived basin-scale 

effective precipitation factor 

 

elevation_m NASADEM elevation in m Zonal mean 

annual_vs_mps gridMET wind velocity in m/s Temporal mean (calendar year) and zonal 

mean 

annual_etr_mm gridMET alfalfa reference ET in mm Temporal sum (calendar year) and zonal 

mean 

annual_eto_mm gridMET grass reference ET in mm Temporal sum (calendar year) and zonal 

mean 

HSG_1 Hydrologic soil group 1 (A) Zonal mode 

HSG_3 Hydrologic soil group 3 (B) Zonal mode 

HSG_5 Hydrologic soil group 5 (C) Zonal mode 
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(a) (b) 

 
(c) 

Supplementary Figure 1. Permutation importance plots showing the top five features for the training data 

(including validation) for (a) ERT, (b) GBM, and (c) RF. 
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(a) (b) 

 
(c) 

Supplementary Figure 2. Permutation importance plots showing the top five features for the test data for (a) 

ERT, (b) GBM, and (c) RF. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Supplementary Figure 3. Scatter plots of the linear regression models for (a) ALEXI/DisALEXI, (b) 

eeMETRIC, (c) geeSEBAL, (d) PT-JPL, (e) SIMS, and (f) SSEBop in DV, Nevada. The symbols and labels are 

defined in the main manuscript. The scatter plot of the OpenET ensemble is shown in Figure 7 (a) of the main 

manuscript. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Supplementary Figure 4. Scatter plots of the linear regression models for (a) ALEXI/DisALEXI, (b) 

eeMETRIC, (c) geeSEBAL, (d) PT-JPL, (e) SIMS, and (f) SSEBop in HB, Oregon. The symbols and labels are 

defined in the main manuscript. The scatter plot of the OpenET ensemble is shown in Figure 10 (a) of the main 

manuscript. 
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(a) 

 

(b) 

Supplementary Figure 5. Comparisons of the area-weighted mean annual (a) ET depths and (b) Net ET and 

metered GP depths for each ET model in HB, Oregon. Note that these area-weighted means in (a) and (b) are 

calculated after the outlier removal process described in Section 3.3 (Figure 6) of the main manuscript.  
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