Development of a Deep Learning-based Error-Updating Model for Improved Streamflow Forecasting Accuracy of a Hydrological Model

Amina Khatun¹, Bhabagrahi Sahoo², and Chandranath Chatterjee¹

 $^1\mathrm{Agricultural}$ and Food Engineering Department, School of Water Resources, Indian Institute of Technology Kharagpur $^2\mathrm{Affiliation}$ not available

February 15, 2024

Development of a Deep Learning-based Error-Updating Model for Improved Streamflow Forecasting Accuracy of a Hydrological Model

Amina Khatun (1), Bhabagrahi Sahoo (2), Chandranath Chatterjee (1)

(1) Agricultural and Food Engineering Department, (2) School of Water Resources, Indian Institute of Technology Kharagpur

PRESENTED AT:

INTRODUCTION

- Reliable forecasting of river-flows with sufficient lead-time aids for developing early warning systems against flood havoc and in regulating reservoir releases for proper water resources management.
- Generally, the meteorological forecasts from Numerical Weather Prediction (NWP) models are widely used as forcings in the rainfall runoff models for operational flood forecasting.
- However, with the inherent discrepancies in the hydrometeorological forecasts, the NWP models cannot accurately represent the physical atmospheric processes at a finer scale.
- Thus, bias-correction of these ensemble rainfall forecasts can help to improve the quality of hydrological model-simulated streamflow forecasts by reducing the biases in the mean rainfall and its variance.
- To date, a plethora of methods dealing with the data-driven, conceptual and physically-based approaches have been developed to model the complex, nonlinear rainfall-runoff process.
- Among the conceptual models, the MIKE11-NAM (Nedbør Afstrømnings Model) is found to be popular to simulate the runoff generation dynamics from small to large catchments with a varied climate as it could be easily integrated with the MIKE11-HD (Hydrodynamic) module to simulate the channel routing process.
- However, despite using improved input forcings and advanced calibration techniques, the outputs of hydrological models still suffer from poor prediction accuracy.
- This may be due to the uncertainties associated with the model structure, its inputs and the parameters.
- This problem is taken care of by adopting a suitable error-updating approach which involves correction of the errors in the hydrological model prediction.
- Among the available deep learning techniques, the Long Short-Term Memory (LSTM), a special type of Recurrent Neural Network (RNN), is the state-of-the-art network structure that can learn or preserve the long term dependencies among the input–output variables.
- Although the application of the LSTMs is rapidly developing in the field of hydrology, being a deep-learning model variant, this has never been tested as an error-updating model till date.

HYDROLOGICAL MODEL

- In large river basins, the channel flows are dominant over the overland flows.
- Therefore, the MIKE11-NAM conceptual model is used herein to simulate the pluvial surface runoff at the sub-catchment scale, which is then routed by using the physically-based MIKE11-HD model with the full Saint Venant equations of continuity and momentum conservation. This integration is termed as MIKE11-NAM-HD.

Calibration and validation

- The MIKE11-NAM-HD is calibrated and validated using the hydrometeorological, viz. mean areal rainfall, mean areal potential evapotranspiration, and streamflow datasets of the monsoon season (June–September) of the years 2000–2007 and 2008–2014, respectively.
- •

ERROR-UPDATING MODEL

- This study proposes a nested approach characterized with a cascade of six LSTM models in the first phase of LSTM modelling setup and one LSTM model in the second phase of setup (Fig. 3).
- As a pre-processing of input datasets in the LSTM network, the variance in the error time-series is smoothed using 'hanning', 'hamming, 'bartlett' and 'blackman' smoothing windows, out of which the 'blackman' window is found to be the best.
- The predicted errors generated by each of the sLSTM model are back-transformed to the original domain using the same scaler.
- Each sLSTM model used herein follows a sequence-to-singleoutput procedure in the form of sliding windows considering a total of past five (time-lagged) inputs (errors) to forecast the single δ-day ahead output.

Fig. 3. sLSTM error-updating model.

RESULTS

- During calibration, the MIKE11-NAM-HD model showed satisfactory performance with NSE = 0.83, r = 0.91, MAE =
 - 608.65 m3/s, RSR = 0.42, and |Evol| = 2.84% (Fig. 2).
- Similarly, during validation, this model performed with NSE = 0.91, r = 0.95, MAE = 500.66 m3/s, RSR = 0.30 and |Evol| = 1.55%.
- Overall, the MIKE11-NAM-HD model performed very well during both the calibration and validation phases.

Fig. 2. Calibration and validation of MIKE11-NAM-HD model.

- The bcMIKE-sLSTM (bc = using bias-corrected rainfall) model performs remarkably well at all the leadtimes with NSE = 0.81–0.92 and r = 0.90–0.96.
- The bcMIKE-sLSTM model shows 'very good' (RSR = 0.29–0.44) streamflow forecasting skills with an RSR < 0.5.
- Also, the bcMIKE-sLSTM is able to capture the peak flood with reasonable accuracy up to 3 and 4 days lead-times.

Fig. 4. Perforance of the bcMIKE-sLSTM model.

STUDY AREA AND DATA USED

Study area

- The Hirakud reservoir catchment of the upstream Mahanadi River basin comprises of 83,400 km² area that is located in between 19°90'N-23°35'N latitudes and 80°30'E-84°80'E longitudes in eastern India (Fig. 1).
- It is characterized by flat to moderate slopes having a minimum temperature of about 4–12°C (December–January) and a maximum temperature of about 42–45°C occurring in May.
- This tropical rainfed catchment receives an average rainfall of about 1400 mm annually, 75% of which occurs during the southwest monsoon season during June to September with long series of zero rainfall events during the non-monsoon season.
- The Hirakud dam is one of the largest earthen dams in the world, in operation since 1957, which is constructed with a live storage capacity of 5818×10⁶ m³.
- The current live storage capacity of the reservoir is about 4823×10^6 m³.
- The area downstream of the Hirakud dam is mostly flood-prone.

Fig. 1. Upper Mahanadi River basin

Data used

- Based on the period of data availability, the short-to-medium range forecasts of meteorological variables, such as rainfall and temperature from the IMD-MME forecast datasets over six years (2008–2013) is used in this study.
- The rainfall forecasts are bias-corrected using a newly developed hybrid Copula and enhanced Kohonen Self-Organizing Map based bias-correction technique.
- The temperature datasets are used to estimate the potential evapotraspiration employing the Hargreaves temperature method.

CONCLUSIONS

• The bcMIKE-LSTM framework outperforms all other model variants in forecasting the overall discharge time-series at 1–5 days lead-times (NSE = 0.81–0.92) as well as the high flood peaks.

AUTHOR INFO

Amina Khatun

Then Ph.D. Candidate in the Agricultural and Food Engineering Department, IIT Kharagpur, India.

Currecntly, Assistant Professor (Agricultural Engineering), College of Horticulture & FSR, Assam Agricultural University, Nalbari, Assam, India.

TRANSCRIPT

ABSTRACT

Recent advancements in the deep learning models, such as the Long Short-Term Memory (LSTM) networks are gaining popularity in hydrological applications. In this study, an LSTM-based error-updating model is developed to forecast the streamflow prediction errors of a hydrological model, namely, the MIKE11-NAM-HD (MIKE). The daily raw rainfall forecasts from the ensemble rainfall forecast products (IMD-MME) of the India Meteorological Department (IMD) up to a 3-days lead-time are bias-corrected using a hybrid copula-enhanced Kohonen Self-Organizing Map-based bias-correction technique. Both the raw and bias-corrected rainfall forecasts, along with the evapotranspiration forecasts are forced as the meteorological inputs to the MIKE model for the upper reaches of the Mahanadi River basin in eastern India. A smoothing-based LSTM (sLSTM) error-updating model is trained and tested using the errors in the MIKE-simulated streamflows. A nested approach is followed in developing the sLSTM model to obtain improved accuracy in the daily streamflow forecasts. The results indicate inter-comparable performance of the MIKE-LSTM model with the raw (NSE=0.92) and bias-corrected (NSE=0.92) rainfall forecasts at 1-day lead time. However, as the lead-time increases from 2-3 days, the performance of the MIKE-LSTM model with the raw rainfall forecasts deteriorates to produce a Nash-Sutcliffe Efficiency (NSE) of 0.87 (2-day) and 0.67 (3-day). The MIKE-LSTM model with the bias-corrected rainfall forecasts outperforms with an NSE of 0.90 and 0.87 at 2-day and 3-day lead-times, respectively. Along with the overall time-series, the MIKE-LSTM model forced with the bias-corrected rainfall forecasts is also able to capture the annual maximum peaks in the testing period with reasonable accuracy.