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ABSTRACT: Oceanic mesoscale eddy mixing plays a crucial role in the Earth’s climate system

by redistributing heat, salt and carbon. For many ocean and climate models, mesoscale eddies

still need to be parameterized. This is often done via an eddy diffusivity, K, which sets the

strength of turbulent downgradient tracer fluxes. A well known effect is the modulation of K in

the presence of background potential vorticity (PV) gradients, which suppresses cross-PV gradient

mixing. Topographic slopes can induce such suppression through topographic PV gradients.

However, this effect has received little attention, and topographic effects are often not included

in parameterizations for K. In this study, we show that it is possible to describe the effect of

topography on K analytically in a barotropic framework, using a simple stochastic representation

of eddy-eddy interactions. We obtain an analytical expression for the depth-averaged K as a

function of the bottom slope, which we validate against diagnosed eddy diffusivities from a

numerical model. The obtained analytical expression can be generalized to any constant barotropic

PV gradient. Moreover, the expression is consistent with empirical parameterizations for eddy

diffusivity over topography from previous studies and provides a physical rationalization for these

parameterizations. The new expression helps to understand how eddy diffusivities vary across the

ocean, and thus how mesoscale eddies impact ocean mixing processes.
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SIGNIFICANCE STATEMENT: Large oceanic ‘whirls’, called eddies, can mix and transport27

ocean properties such as heat, salt, carbon and nutrients. Mixing plays an important role for28

oceanic ecosystems and the climate system. In numerical simulations of the Earth’s climate, eddy29

mixing is typically represented using a simplified expression. However, an effect that is often not30

included is that eddy mixing is weaker over a sloping seafloor. In most areas of the ocean the31

bottom slope is steep enough for this effect to be significant. In this study we derive an expression32

for eddy mixing that accounts for oceanic bottom slopes. The present effort provides a physical33

basis for eddy mixing over oceanic bottom slopes, justifying their use in climate models.34

1. Introduction35

Oceanic mesoscale eddies play a key role in the global ocean circulation, oceanic ecosystems and36

the climate system as a whole. Eddies mix, transport, and store tracers such as heat, salt, carbon,37

oxygen, and nutrients (Lee et al. 2007; Gruber et al. 2011; Gnanadesikan et al. 2013, 2015, 2017;38

Stewart et al. 2018; Busecke and Abernathey 2019; Jones and Abernathey 2019; Groeskamp et al.39

2019). However, mesoscale eddies occur on spatial scales of 10–100 km, which is in the same40

order or smaller than the horizontal grid resolution of most global climate models (Eden 2007;41

Chelton et al. 2011; Hallberg 2013; LaCasce and Groeskamp 2020; Martı́nez-Moreno et al. 2022).42

Therefore, mesoscale mixing processes are often not explicitly resolved in climate simulations,43

and instead need to be parameterized (Eden and Greatbatch 2008; Hallberg 2013; Jansen et al.44

2015; Zanna et al. 2017; Fox-Kemper et al. 2019; Wang and Stewart 2020). Parameterization of45

eddy mixing is typically done via an eddy diffusivity, K, which relates the turbulent downgradient46

flux of a tracer F𝐶 to the mean lateral tracer gradient ∇𝐶 as F𝐶 = −K∇𝐶. A distinction can be47

made between buoyancy diffusivity, which describes an eddy induced advection that resembles a48

diffusion of buoyancy (Gent and McWilliams 1990; Gent et al. 1995; McDougall and McIntosh49

2001), and isopycnal diffusivity representing eddy diffusive fluxes that mix tracers along isopycnals50

(Redi 1982; Griffies 1998).51

Significantly, climate models are very sensitive to the choice of the diffusivity value (e.g. Ferreira52

et al. 2005; Pradal and Gnanadesikan 2014; Gnanadesikan et al. 2015; Kjellsson and Zanna 2017;53

Jones and Abernathey 2019; Holmes et al. 2022; Mak et al. 2022b). In simulations of the Earth’s54

climate, an approximately five-fold increase in the value of K can result in differences of 1◦C in55
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the global-mean surface air and sea surface temperatures (Pradal and Gnanadesikan 2014), 20%56

variation in anthropogenic carbon uptake (Gnanadesikan et al. 2015), and a decrease in the residual57

meridional overturning circulation in the North Atlantic and the Antarctic Circumpolar Current58

volume transport in the Southern Ocean by around 30% (Chouksey et al. 2022). It is thus of great59

importance to know how to accurately parameterize K in global climate models.60

Many paramaterizations of K are based on mixing length theory (Prandtl 1925), which suggests61

a scaling of the form 𝐾 ∼VL, where V is the root mean squared eddy velocity and L is a mixing62

length. The mixing length can be thought of as a length scale over which the eddy field can63

effectively mix tracers. Mixing length theory was applied to create the first global estimates of64

eddy diffusivity at the sea surface (Holloway 1986; Keffer and Holloway 1988; Stammer 1998).65

Holloway and Kristmannsson (1984) and Holloway (1986) suggested that if eddies have Rossby66

wave characteristics, the eddy diffusivity is suppressed. This suppression effect was later shown67

analytically by e.g. Ferrari and Nikurashin (2010) (using a passive tracer approach), Klocker et al.68

(2012) (using a Lagrangian approach), and Griesel et al. (2015) (using linear stability analysis). In69

all of these studies, eddy fields are represented as statistically forced and linearly damped Rossby70

waves, and it is shown that the cross-stream mixing length is effectively reduced in the presence of71

a background mean flow if the eddies are propagating relative to the mean flow.72

A kinematic interpretation of the suppression mechanism is that the mean flow will advect73

tracers through the eddy field before the eddy field has had time to mix the tracers in the cross-74

stream direction. If the eddies did not have an intrinsic phase speed, they would move with the75

mean flow and thus be able to effectively mix the tracers. The parameterization of Ferrari and76

Nikurashin (2010) has been widely used in idealized models (Nakamura and Zhu 2010b; Eden77

2011; Srinivasan and Young 2014; Kong and Jansen 2017; Wolfram and Ringler 2017; Seland78

et al. 2020) and validated and applied to the Antarctic Circumpolar Current (Naveira Garabato79

et al. 2011; Sallée et al. 2011; Meredith et al. 2012; Pennel and Kamenkovich 2014; Chen et al.80

2015; Roach et al. 2016; Chapman and Sallée 2017), the Kuroshio Extension (Chen et al. 2014),81

the Gulf Stream (Bolton et al. 2019), the Nordic Seas (Isachsen and Nøst 2012), eastern boundary82

currents (Bire and Wolfe 2018), and the global ocean (Bates et al. 2014; Klocker and Abernathey83

2014; Roach et al. 2018; Busecke and Abernathey 2019; Canuto et al. 2019; Groeskamp et al.84

2020).85
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A different interpretation from the kinematic explanation described above is that the suppression86

is a dynamical effect caused by gradients in potential vorticity (PV). Marshall et al. (2006) estimated87

surface eddy diffusivities in the Southern Ocean from satellite altimetry, and found that regions of88

high and low diffusivity coincide with regions of weak and strong PV gradients, respectively. They89

suggested that strong PV gradients impose a barrier on lateral transport, inhibiting cross-stream90

diffusivity. This effect is also observed in the atmosphere (e.g. Dritschel and McIntyre 2008).91

Nakamura and Zhu (2010b), Klocker et al. (2012), Srinivasan and Young (2014) and Balwada92

et al. (2016) explicitly linked the mixing barriers caused by PV gradients to the parameterization93

of Ferrari and Nikurashin (2010) by noting that the PV gradient determines the Rossby wave phase94

speed; hence, it is the PV gradient that enables the eddies to move relative to the mean flow, which95

leads to the suppression of the cross-stream eddy diffusivity.96

Previous studies have mainly focused on PV gradients caused by the planetary 𝛽-effect (latitudinal97

variations of the Coriolis parameter). However, an important factor that should also be considered98

is the effect of topography. If it is indeed the PV gradient that causes the suppression effect, then we99

must consider the role of topography as well, because topographic slopes contribute significantly100

to (barotropic) PV gradients (LaCasce and Speer 1999; LaCasce 2000) and permit topographic101

Rossby waves (Rhines 1970; Csanady 1976; Hogg 2000). Hence, topographic slopes can also102

be expected to modulate eddy diffusivity (Jansen et al. 2015). Isachsen (2011) diagnosed eddy103

diffusivities for different bottom slopes from numerical simulations, and found that the diffusivities104

were highest for flat bottoms, suggesting a suppression effect of topographic slopes. A relevant105

question then is how exactly does topography modulate eddy diffusivities, and how to parameterize106

topographic effects related to eddy mixing. Since topography steers currents, its effects might107

already be included in the mean flow term from Ferrari and Nikurashin (2010), but only implicitly.108

Some recent studies have aimed to express the eddy diffusivity explicitly in terms of topographic109

slopes using numerical model data. Diagnostic expressions were derived from high-resolution110

simulations by Brink (2012), Brink and Cherian (2013) and Brink (2016), by Wang and Stewart111

(2020) and Wei et al. (2022) for buoyancy diffusivity specifically, and by Wei and Wang (2021)112

for isopycnal diffusivity specifically. Moreover, Nummelin and Isachsen (2024) and Wei et al.113

(2024) derived parameterizations for the buoyancy diffusivity over topographic slopes and tested114

them in prognostic coarse-resolution simulations. All of these studies derived parameterizations115
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for the eddy diffusivities using various scaling estimates for the mixing length combined with116

empirical ‘suppression’ functions. Although the suppression functions from the aforementioned117

studies perform well in representing suppression of eddy diffusivity by topographic slopes, they118

are essentially empirical fits to functions that have little dynamical justification. Therefore, the119

aim of this study is to derive an analytical expression for the suppression of K that is dynamically120

linked to the topographic PV gradient. Such an expression can provide insight into the physical121

mechanisms through which topography suppresses eddy diffusivities. On a practical level, it can122

also help in making more accurate estimates of eddy diffusivities across the world’s oceans. The123

focus of this work is on the suppression effect of topography, without particularly focusing on124

buoyancy or isopycnal diffusivity. Diagnosing diffusivity will be done with downgradient fluxes125

of both buoyancy and PV.126

The rest of this article is organized as follows. In section 2, we derive the analytical model.127

In section 3, we compare the analytical expression for K with diagnosed diffusivities from a128

numerical model. Section 4 discusses the theoretical and numerical results. Finally, a summary129

and conclusion are given in section 5.130

2. Theory131

The starting point is the Quasi-Geostrophic Potential Vorticity (QGPV) equation. As we are132

interested in the effects of topographic PV, we work with the barotropic QGPV equation, which133

explicitly includes a topographic PV term. The barotropic and rigid lid QGPV equation on a134

𝛽-plane, in the absence of forcing and dissipation, says that the QGPV, 𝑞 [s−1], is materially135

conserved (e.g. Dijkstra 2008):136

𝑑g

𝑑𝑡
𝑞 = 0, 𝑞 = ∇2𝜓︸︷︷︸

relative vorticity

+ 𝛽0𝑦︸︷︷︸
planetary PV

+ 𝑓0
𝐻
ℎ𝑏︸︷︷︸

topographic PV

. (1)

Here 𝑑g
𝑑𝑡
= 𝜕𝑡 +𝑢g𝜕𝑥 +𝑣g𝜕𝑦, where 𝑢𝑔 and 𝑣𝑔 [m s−1] are the zonal and meridional geostrophic veloci-137

ties, which are related to the geostrophic streamfunction𝜓 [m2 s−1] as
(
𝑢𝑔, 𝑣𝑔

)
= (−𝜕𝜓/𝜕𝑦, 𝜕𝜓/𝜕𝑥).138

Furthermore, 𝑓0 [s−1] is the Coriolis parameter at some fixed latitude 𝜑0 and 𝛽0 [m−1 s−1] is the139

meridional gradient of the Coriolis parameter at 𝜑0; both 𝑓0 and 𝛽0 are assumed constant here140
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(𝛽-plane approximation). The meridional coordinate relative to 𝜑0 is denoted by 𝑦 [m]. Finally,141

𝐻 [m] is the mean water depth, while ℎ𝑏 = ℎ𝑏 (𝑥, 𝑦) [m] is the topographic variation superimposed142

on 𝐻, with |ℎ𝑏 | ≪ 𝐻.143

We decompose 𝜓, 𝑞 and ug into time-mean components (denoted by Ψ,𝑄,U) and eddy com-144

ponents (denoted by 𝜓′, 𝑞′,u′). The velocities and streamfunctions are related to each other as145

U = (−𝜕Ψ/𝜕𝑦, 𝜕Ψ/𝜕𝑥) and u′ = (−𝜕𝜓′/𝜕𝑦, 𝜕𝜓′/𝜕𝑥). We assume that the mean flow varies on146

spatial scales much larger than the eddy field; hence, it is approximately constant in both space and147

time. Then the mean relative vorticity ∇2Ψ = 0, so that the mean PV is determined by the planetary148

PV and topographic PV. Additionally, we assume that the mean flow U is parallel to mean PV con-149

tours (Pedlosky 1987; Vallis and Maltrud 1993), so that U · ∇𝑄 = 0. We then rotate the coordinate150

system such that the 𝑥-direction is aligned with the direction of the mean PV contours. Hence, the151

mean flow can be expressed as U = (𝑈,0); furthermore, the mean PV gradient is ∇𝑄 = (0, 𝜕𝑄/𝜕𝑦),152

which we assume to be constant. With these assumptions the QGPV equation can be rewritten as153

𝜕𝑞′

𝜕𝑡
+U · ∇𝑞′+u′ · ∇𝑄 =N , (2)

where N denotes the nonlinear terms u′ · ∇𝑞′, interpreted as eddy-eddy interactions. Note that154

equation (2) is Galilean invariant.155

From here, the derivation is analogous to that of Klocker et al. (2012), and we only discuss156

the key steps below; details of the derivation can be found in Appendix A. We express the eddy157

streamfunction 𝜓′ as a monochromatic Rossby wave, given by158

𝜓′(𝑥, 𝑦, 𝑡) = Re
(
𝑎(𝑡)𝑒𝑖𝑘𝑥+𝑖𝑙𝑦

)
, (3)

where 𝑘 and 𝑙 are the zonal and meridional wavenumbers, respectively. Substituting (3) into (2)159

and using (1) to relate 𝑞′ to 𝜓′, we obtain an ordinary differential equation for the wave amplitude160

𝑎(𝑡), given by:161

𝑑𝑎

𝑑𝑡
+ 𝑖𝑘𝑐𝑤𝑎 =N . (4)
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Here 𝑐𝑤 is the total eddy phase speed relative to the ground (or eddy drift speed), which can be162

written as:163

𝑐𝑤 =𝑈 + 𝑐, 𝑐 = −𝜕𝑄/𝜕𝑦
𝜅2 , (5)

where 𝜅 ≡
√
𝑘2 + 𝑙2 is the wavenumber magnitude and 𝑐 is the intrinsic Rossby wave phase speed164

relative to the mean flow, given by the dispersion relation for Rossby waves (e.g. Dijkstra 2008). To165

obtain analytical solutions to (4), we assume the nonlinear eddy-eddy interactions have a fluctuation-166

dissipation stochastic representation (DelSole 2004; Ferrari and Nikurashin 2010; Klocker et al.167

2012), given by168

N = 𝐴𝑟 (𝑡) −𝛾𝑎(𝑡). (6)

Here, 𝑟 (𝑡) is a white noise random process with 𝐴 setting its amplitude. Energy dissipates169

through linear damping, and 𝛾 is the damping rate or inverse eddy decorrelation timescale. It is170

called a ‘decorrelation’ timescale because the cross-stream eddy velocity autocovariance decays171

exponentially in time with 𝛾−1 the 𝑒-folding timescale (equation A14 in Appendix A). Combining172

(4) and (6) and expressing the eddy kinetic energy (EKE), U2/2, in terms of the eddy velocities as173

U2 = ⟨𝑢′2⟩ + ⟨𝑣′2⟩, (7)

it is possible to find an analytical solution for 𝑎(𝑡) (see equations A1–A7 in Appendix A). Given174

𝑎(𝑡), we can get an expression for the eddy streamfunction 𝜓′(𝑥, 𝑦, 𝑡) (equation A8), which then175

gives us expressions for the eddy flow velocities. From knowledge of the eddy flow velocities, we176

can then compute eddy diffusivities. We will focus on the diffusivity in the cross-stream direction177

(here: 𝑦) because in the along-stream direction advection by the mean flow is dominant over eddy178

diffusion (LaCasce et al. 2014). We compute the eddy diffusivity as the Taylor diffusivity (Taylor179

1921), which applies to passive tracer particles and is defined as the derivative of the mean squared180

separation of particles from their starting position. The Taylor diffusivity can also be written as181

the autocorrelation of the Lagrangian cross-stream eddy velocity (Taylor 1921; Davis 1987, 1991;182
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LaCasce 2008; LaCasce et al. 2014):183

K = lim
𝑡→∞

1
2
𝑑

𝑑𝑡
𝜂2 = lim

𝑡→∞
Re

(∫ 𝑡

0

〈
𝑣𝐿 (𝑡)𝑣∗𝐿 (𝑡′)

〉
d𝑡′

)
, (8)

where 𝜂 is the particle displacement and 𝑣𝐿 = 𝑣𝐿 (𝑡;𝑥, 𝑦,0) is the Lagrangian velocity of a particle184

at time 𝑡 that was at (𝑥, 𝑦) at 𝑡 = 0. We approximate 𝑣𝐿 (𝑡;𝑥, 𝑦,0) with the Eulerian velocity for a185

particle advected by the mean flow, 𝑣′(𝑥 +𝑈𝑡, 𝑦, 𝑡), for which we can get an analytical expression186

via the streamfunction relation 𝑣′ = −𝜕𝜓′/𝜕𝑥. This finally gives us the following expression for the187

cross-stream eddy diffusivity (see equations A9–A17 in Appendix A):188

K =
K0

1+ 𝑘2

𝛾2 (𝑐𝑤 −𝑈)2
≡ SK0, (9)

with189

K0 ≡
AU2

𝛾
. (10)

Here, A = 𝑘2/𝜅2 is the eddy anisotropy factor (Wei and Wang 2021), representing the magnitude190

of the along-stream wavenumber relative to the total wavenumber magnitude. The factor S is191

the ‘suppression factor’, and K0 is the unsuppressed diffusivity. Note that K0 follows a mixing192

length scaling (Prandtl 1925) where the mixing length is set by L =U/𝛾, i.e. the mixing length193

depends on the EKE. As noted by Ferrari and Nikurashin (2010), from (9) it can be seen that the194

eddy diffusivity is suppressed if 𝑐𝑤 −𝑈 ≠ 0, i.e. if the eddies have an intrinsic phase speed and195

are moving relative to the mean flow. Suppression is strong when 𝑘 (𝑐𝑤 −𝑈) ≫ 𝛾, i.e. when the196

advection timescale is shorter than the eddy decorrelation timescale. On the other hand, if the197

eddy field decorrelates faster than the advective timescale, i.e. 𝑘 (𝑐𝑤 −𝑈) ≪ 𝛾, the suppression198

effect is negligible. Equation (9) is equivalent to equation (14) of Ferrari and Nikurashin (2010)199

and equation (20) of Klocker et al. (2012), and has been applied in many studies. Note that (9)200

is a general expression that applies to any form of the barotropic QGPV equation (1) assuming a201

constant PV gradient.202

One can also expressK in terms of the PV gradient by using equation (5) to replace the mean flow203

term 𝑐𝑤 −𝑈 in (9) by 𝑐, the intrinsic eddy phase speed. The intrinsic phase speed is determined by204

9



the PV gradient via the dispersion relation for Rossby waves:205

|𝑐 | = |∇𝑄 |
𝜅2 . (11)

Substituting (11) and the expression for the anisotropy factor, A = 𝑘2/𝜅2, into (9) gives the206

following:207

K =
K0

1+ A
𝛾2𝜅2 |∇𝑄 |2

. (12)

Equation (12) demonstrates that the eddy diffusivity is suppressed not by the mean flow per se208

but by the presence of background PV gradients. The diffusivity is inversely proportional to the209

squared PV gradient (see also Nakamura and Zhu 2010b); the stronger the PV gradient, the stronger210

the suppression.211

Equations (9) and (12) both describe suppression of eddy mixing, but offering different interpre-212

tations. Equation (9) expresses suppression in terms of the mean flow and the eddy phase speed,213

while (12) expresses the suppression in terms of the PV gradient directly. The ‘velocity formula-214

tion’ (9) has been used frequently before (Ferrari and Nikurashin 2010; Klocker et al. 2012), while215

the ‘PV formulation’ (12) was noted by Nakamura and Zhu (2010a) and Klocker et al. (2012). We216

use the PV form, recognizing that the mean velocity should drop out of the problem, due to the217

Galilean invariance noted earlier.218

For simplicity, we focus on the 𝑓 -plane case with a linear topographic PV gradient. Including219

the 𝛽-effect does not change the results qualitatively but merely requires rotating the coordinate220

system. The PV contours are thus parallel to the isobaths and |∇𝑄 | = 𝑓0
𝐻
|∇ℎ𝑏 | ≡ 𝑓0

𝐻
𝛼. This yields221

an expression of the cross-slope diffusivity in terms of the topographic slope, 𝛼:222

K =
K0

1+ 𝑓 2
0 A

𝛾2𝜅2𝐻2𝛼
2
. (13)

Note K is independent of the slope direction.223

To evaluate the expression for K, we require the wavenumber 𝜅. We assume 𝜅 is given by 1/𝐿,224

where 𝐿 is the dominant length scale of the eddies. We consider two options: the internal or first225

baroclinic Rossby radius, 𝐿Rossby, and the topographic Rhines scale, 𝐿Rhines. The first baroclinic226
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Rossby radius is given by:227

𝐿Rossby ∝
𝑁𝐻

| 𝑓0 |
, (14)

where 𝑁 is the depth-averaged buoyancy frequency (e.g. Chelton et al. 1998). This is the ap-228

proximate scale of the fastest growing mode in the Eady model for baroclinic instability (Eady229

1949). Even though internal PV gradients (planetary 𝛽 or layer thickness gradients) can introduce230

other scales (Charney 1947; Green 1960), 𝐿Rossby remains a much used estimate of the eddy length231

scale (e.g. Hallberg 2013; LaCasce and Groeskamp 2020; Groeskamp et al. 2020). Of course the232

Rossby radius is relevant for a stratified flow whereas our derivation is based on the barotropic233

QGPV equation. The rationale is that the process setting the dominant wavelength is conversion of234

energy from the baroclinic to the barotropic mode, with the active dynamics then being barotropic235

(Larichev and Held 1995; Yankovsky et al. 2022).236

Second, the topographic Rhines scale is given by:237

𝐿Rhines ∝

√︄
U
|∇𝑄 | =

√︄
U

𝑓0 |𝛼 |/𝐻
. (15)

The topographic Rhines scale represents the maximum length scale in an inverse cascade and the238

transition between turbulence and topographic waves (e.g. Brink 2017). The ‘standard’ Rhines239

scale, which considers planetary Rossby waves instead of topographic waves and is equal to240 √︁
U/𝛽 (Vallis and Maltrud 1993), is found to be a good estimate of the eddy mixing length scale241

(Thompson 2010; Stewart and Thompson 2016; Jansen et al. 2015, 2019; Kong and Jansen 2017).242

In studies focusing on continental shelves, Pringle (2001) and Brink (2017) used the topographic243

Rhines scale to represent the eddy wavelength. Jansen et al. (2015) and Grooms et al. (2015)244

suggested using the ‘effective’ Rhines scale, taking both planetary and topographic PV gradients245

into account by setting |∇𝑄 | =
��� 𝑓0𝐻∇ℎ𝑏 + 𝛽0 𝑦̂

��� in equation (15).246
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Taking 𝜅 = 1/𝐿Rossby or 𝜅 = 1/𝐿Rhines as estimates for the eddy wavenumber, (13) yields the247

following expressions for the eddy diffusivity:248

KRossby =
K0

1+ 1
𝛾2
𝑁2𝐻2

𝑓 2
0

A|∇𝑄 |2
=

K0

1+ 1
𝛾2A𝑁2𝛼2

, (16)

KRhines =
K0

1+ 1
𝛾2AU|∇𝑄 |

=
K0

1+ 1
𝛾2AU | 𝑓0 |

𝐻
|𝛼 |
. (17)

With (16) and (17), we have two different analytical expressions for the cross-stream eddy diffusivity249

over a topographic slope, both of which indicate that topographic slopes suppress cross-isobath250

mixing. We proceed to test both expressions in a numerical model.251

3. Validating theory in an idealized channel model252

a. Numerical model description253

We use the Bergen Layered Ocean Model (BLOM), the ocean component of the Norwegian254

Earth System Model (NorESM; Seland et al. 2020), in an idealized channel configuration. The255

simulations are described in Nummelin and Isachsen (2024) and we only give a brief summary256

here.257

The model uses 51 isopycnal levels (potential density referenced to 2000 dbar) with a 2-level258

bulk mixed layer at the surface. The channel configuration is 416 km long in the zonal (𝑥) direction259

and 1024 km wide in the meridional (𝑦) direction with a 2 km resolution, and is re-entrant in the260

zonal direction. There are continental slopes of 2000 m extension from the shelf break at 250m261

to the bottom of the domain at 2250 m depth on both sides of the channel, centered at 150 km262

from the domain edge. To trigger instabilities we add white noise to the bottom topography with263

a standard deviation of 10 m. The channel is set up on the Northern Hemisphere 𝑓 -plane. The264

model is initialized from rest with constant salinity and a horizontally homogeneous temperature265

profile. The density is determined by temperature alone, which has a maximum at the surface and266

decays exponentially towards the bottom. There is no buoyancy forcing (nor restoring) and we267

only force the flow with a constant westward wind stress. The surface mixed layer is kept shallow268

by parameterization of submesoscale mixed layer eddies (Fox-Kemper et al. 2008) that counter the269

vertical mixing induced by the constant wind forcing.270
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Fig. 1. Illustration of the channel model configuration. The surface elevations represent an exaggerated

snapshot of daily SSH anomalies, with the colors showing a snapshot of daily SST anomalies. The purple hues

show the zonal mean velocity.

271

272

273

The wind forcing drives a northward surface Ekman transport. Ekman divergence in the south274

and convergence in the north drive a westward mean flow, 𝑈 (𝑦). The mean flow is retrograde275

with respect to topographic waves in the south whereas it is prograde in the north. Upwelling in276

the south establishes isopycnals that are sloping with the topography whereas downwelling in the277

north sets up isopycnals that slope against the topography. The tilted isopycnals in both regions are278

baroclinically unstable, creating an eddy field. Figure 1 shows a snapshot of the fields from one of279

the simulations.280

We run 9 experiments, varying the initial stratification and the width of the continental slope,281

i.e the slope angle. The slope aspect ratio 𝛼 = (slope height)/(slope width) varies between 0.016282
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and 0.027. These values are fairly representative for continental slopes (LaCasce 2017). All283

simulations are spun up for 10 years, to a semi-equilibrium where the kinetic energy has stabilized284

but still has some variability. The model fields are then diagnosed over an additional 5-year period285

(between years 11–15). The parameter settings and experiments are laid out in Tables 1 and 2,286

respectively.287

Table 1. BLOM model constants for the channel simulations.
Name Symbol Value

Wind stress 𝜏𝑥 0.05 N m−2

Horiz. grid size Δ𝑥, Δ𝑦 2 km

Baroclinic timestep Δ𝑡 120 s

Domain 𝑥-size 𝐿𝑥 416 km

Domain 𝑦-size 𝐿𝑦 1024 km

Gravitational acceleration g 9.806 m s−2

Coriolis parameter 𝑓0 1× 10−4 s−1

Slope mid-point distance from domain edge 𝑌𝑆 150 km

Shelf depth 𝐻Shelf 250 m

Slope height 𝐻Slope 2000 m

Table 2. Channel model experiments. 𝐿Rossby is the mean deformation radius (equation 14) averaged over the

last 5 years of the 15-year long experiments in the central basin (where the bottom depth is larger than 2250 m).

288

289

Name 𝐿Rossby Slope Width Slope Magnitude

Exp 1 34.1 ±1.3 km 75 km 0.027

Exp 2 34.1 ±1.1 km 100 km 0.020

Exp 3 34.4 ±1.0 km 125 km 0.016

Exp 4 30.6 ±1.3 km 75 km 0.027

Exp 5 30.6 ±1.2 km 100 km 0.020

Exp 6 30.4 ±1.0 km 125 km 0.016

Exp 7 24.9 ±1.2 km 75 km 0.027

Exp 8 25.9 ±1.0 km 100 km 0.020

Exp 9 24.9 ±1.0 km 125 km 0.016

b. Computing diffusivities from the model data290

The goal is to compare cross-slope eddy diffusivities diagnosed from the model with the parame-291

terizations from equations (16) and (17). We diagnose diffusivities using the flux-gradient relation292

F𝐶 = −K∇𝐶. As (16) and (17) were derived for a barotropic model, we first average the model293
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variables over depth. Then, we make a Reynolds decomposition of the tracer and velocity fields294

in the zonal (re-entrant) direction. We denote zonal mean fields with angle brackets (e.g. ⟨𝑣⟩) and295

the eddy field (deviations from the zonal mean) with stars (e.g. 𝑣★). Diagnosing eddy diffusivities296

over bottom topography is typically done using spatial filtering because standing waves due to297

topography don’t get detected when using Reynolds averaging (e.g. Khani et al. 2019; Buzzicotti298

et al. 2023; Xie et al. 2023). However, in our simulations we only have smooth topographic slopes299

without corrugations, and hence no standing waves. Therefore we assume that using Reynolds300

averaging in the zonal direction is justified here.301

The cross-stream (𝑦-direction) diffusivity of a tracer 𝐶 is diagnosed from the depth-averaged302

tracer and cross-stream velocity fields using the flux-gradient relation:303

K𝐶
diag = − ⟨𝑣★𝐶★⟩

𝜕⟨𝐶⟩/𝜕𝑦 . (18)

In the computation of (18), we select only those data points where the absolute value of the304

gradient 𝜕⟨𝐶⟩/𝜕𝑦 is larger than a threshold value, to avoid problems with unphysical diffusivity305

values. The choice of the threshold value mainly affects the diffusivity over the flat bottom, where306

gradients can become very small, while the impact over the slopes is limited. From the diffusivity307

values computed using (18), we select only the positive values. For the final analysis, K𝐶
diag is308

averaged over time, so that it is only a function of the cross-channel coordinate 𝑦. Formally, the309

parameterizations apply only to passive tracers, deriving as they do from the Taylor diffusivity310

(equation 8). However, we lack passive tracers in the present model simulations. Therefore we311

determined Kdiag using two different tracers: temperature and (shallow water) PV, i.e. ( 𝑓 + 𝜁)/𝐻312

with 𝜁 the relative vorticity. The resulting diagnosed diffusivities are denoted as K𝑇
diag and K𝑃𝑉

diag,313

respectively. Neither temperature nor PV are necessarily passive, although they can be in certain314

situations (e.g. Larichev and Held 1995). The results turn out to be relatively insensitive to the315

chosen tracer.316

To apply equations (16) and (17) to calculate parameterized eddy diffusivities from the numerical317

model data, we need to determine the eddy kinetic energy U2, the anisotropy factor A, and the318

eddy decorrelation timescale 𝛾. Both U2 and A can be expressed in terms of the eddy velocity319

field. Firstly, U2 is given by equation (7). Secondly, following Wei and Wang (2021) and using320

the monochromatic wave expression (3) for the eddy streamfunction, we can write the anisotropy321
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factor A as322

A =
𝑘2

𝑘2 + 𝑙2
=

⟨𝜓′2
𝑥 ⟩

⟨𝜓′2
𝑥 ⟩ + ⟨𝜓′2

𝑦 ⟩
=

〈
𝑣★2〉〈

𝑢★2
〉
+
〈
𝑣★2

〉 . (19)

It should be noted that most studies of mixing suppression assume that mesoscale eddies are323

horizontally isotropic, and hence that the anisotropy factor A = 𝑘2/𝜅2 is equal to 1/2 everywhere324

(e.g. Ferrari and Nikurashin 2010; Naveira Garabato et al. 2011; Klocker et al. 2012; Chen et al.325

2014, 2015; Griesel et al. 2015; Kong and Jansen 2017; Groeskamp et al. 2020). Wei and Wang326

(2021) concluded that eddies over topographic slopes are strongly anisotropic and as such that the327

anisotropy factor is important. We retain the term in our expression for K for completeness and328

analyze its importance later.329

With equations (7) and (19), the unsuppressed diffusivity K0 can be written as K0 =AU2/𝛾 =330 〈
𝑣★2〉 /𝛾, and equations (16) and (17) become331

KRossby =

(
1+ 1

𝛾2

〈
𝑣★2〉〈

𝑢★2
〉
+
〈
𝑣★2

〉𝑁2𝛼2

)−1 〈
𝑣★2〉
𝛾

, (20)

KRhines =
©­­«1+ 1

𝛾2

〈
𝑣★2〉√︃〈

𝑢★2
〉
+
〈
𝑣★2

〉 | 𝑓0 |𝐻 |𝛼 |
ª®®¬
−1 〈

𝑣★2〉
𝛾

. (21)

Expressions (20) and (21) are computed from the depth and zonally averaged velocity fields, and332

averaged over time for the final analysis. For 𝑁 in equation (20), we use the depth-averaged333

buoyancy frequency. The last parameter remaining is 𝛾, the inverse eddy velocity decorrelation334

timescale. This represents damping due to nonlinear eddy-eddy interactions, and is usually left as335

a tunable parameter. Klocker and Abernathey (2014) found a good fit for diffusivity at the surface336

for 𝛾−1 = 4 days, and Groeskamp et al. (2020) found 𝛾−1 = 1.68 days for full-depth estimates. We337

explore the sensitivity of the parameterizations to 𝛾 subsequently.338

c. Comparing parameterized and diagnosed diffusivities339

Figure 2 shows the diagnosed and parameterized cross-slope diffusivities across the channel347

for all 9 experiments (Table 2). The diagnosed diffusivities K𝑇
diag and K𝑃𝑉

diag are shown by the348

continuous and dashed black lines, respectively. Over the topographic slopes (gray shaded areas)349
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Fig. 2. Zonal and time mean depth-averaged cross-slope diffusivities across the channel for all 9 experiments

from Table 2. Diffusivities are all plotted on a logarithmic scale. The continuous black line shows the diagnosed

temperature diffusivity; the dashed black line shows the diagnosed PV diffusivity; the purple line shows the

parameterized unsuppressed diffusivity from equation (10); the red and blue lines show the parameterized

diffusivities from equations (20) and (21), respectively. The parameterized diffusivities are all shown for 𝛾−1 = 4

days. The mid-basin part between 400 and 600 km is not shown; here the diffusivity is approximately constant.

The gray shaded areas indicate the topographic slopes.

340

341

342

343

344

345

346

they are suppressed compared to the flat mid-basin by 2–3 orders of magnitude. Over the northern350

(prograde) slope, K𝑇
diag and K𝑃𝑉

diag are very similar across all experiments; over the southern351

(retrograde) slope they exhibit differences for some experiments, with K𝑇
diag showing local maxima.352
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The reason for this is that the wind forcing induces northward Ekman transport, so that the cross-353

channel temperature gradient 𝜕𝑇/𝜕𝑦 becomes small in the south, hence K𝑇
diag becomes large354

(equation 18).355

Next, the purple, red and blue lines show the parameterized diffusivities K0, KRossby and KRhines,356

respectively. Each of these employ 𝛾−1 = 4 days; this produces good agreement between the357

parameterized and diagnosed diffusivities in the mid-basin, but we will discuss the impact of 𝛾358

below. Looking first at the parameterized unsuppressed diffusivity K0 (equation 10), we see that it359

is weaker in the south than in the mid-basin, but overestimates K𝑇
diag there. Over the northern slope,360

K0 has a maximum, and becomes even stronger than in the mid-basin. The reason is that eddy361

kinetic energy is enhanced over the northern slope (not shown). Focusing on our paremeterizations362

that account for topographic PV gradients, KRossby and KRhines, we see that both are suppressed363

over the slopes and are much better approximations of the diagnosed diffusivity. Over the southern364

(retrograde) slope, KRhines matches well with K𝑇
diag, whereas KRossby is closer to K𝑃𝑉

diag. Over the365

northern (prograde) slope, KRhines overestimates both diagnosed diffusivities, while KRossby closely366

follows the profile of K𝑇
diag. The reduction by 2–3 orders of magnitude of the diagnosed diffusivity367

over the slopes is captured by both KRossby and KRhines over the southern slope and by KRossby368

over the northern slope. So, despite the QG assumptions not being valid everywhere in the present369

model setting (e.g. |ℎ𝑏 | ≪ 𝐻), our parameterizations still produce results that are in fairly good370

agreement with the diagnosed diffusivity behavior.371

Figure 3 explores the relevance of the anisotropy factor A in the parameterized diffusivities.375

The value of A changes from 0.6 (close to isotropic) over the flat mid-basin to 0.1 (0.2) over376

the northern (southern) slopes. Although this is a notable change, it is still small compared to377

the observed 2–3 orders of magnitude change in diffusivities over the slopes. In other words, it378

is the presence of 𝛼 rather than A in the suppression factor that is responsible for most of the379

suppression over the slopes. Figure 3 shows that using constant or non-constant A yields very380

similar diffusivity profiles for experiment 8 from Table 2; this result holds across all experiments.381

Figure 4 shows the profiles of the parameterized diffusivities KRossby and KRhines for a wide range385

of values of the eddy decorrelation timescale 𝛾−1. The dependence on 𝛾 is strongest for small 𝛾−1,386

whereas it becomes weak for large 𝛾−1. We see that the value of 𝛾−1 that gives the best agreement387

differs between the two parameterizations and also between the northern slope, southern slope388
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Fig. 3. Diagnosed and parameterized diffusivities (as in Figure 2) for experiment 5 from Table 2. Diffusivities

are all plotted on a logarithmic scale. The dashed lines show the parameterized diffusivities with a constant

anisotropy factor A, taken to be the mean cross-basin value.

372

373

374

and flat-bottomed mid-basin. For small values of 𝛾−1, the parameterizations underestimate the389

diagnosed diffusivities in the mid-basin but overestimate diffusivities over the northern slope, with390

KRhines showing local maxima over the northern slope, approachingK0 (Figure 2). For larger values391

of 𝛾−1, the parameterized diffusivity profiles converge, but overestimate the diagnosed diffusivities392

in the mid-basin. KRossby matches best with the diagnosed diffusivities for values of 𝛾−1 around393

2–4 days. On the other hand, KRhines is relatively insensitive to the value of 𝛾−1 over the southern394

slope, but performs best for high values of 𝛾−1 over the northern slope. Note the exact value of 𝛾−1
395

will vary depending on approximations, e.g. neglecting factors of 𝜋 in the various expressions for396

length and time scales.397

4. Discussion398

a. Relevance of eddy length and time scales399

In the derivation of (12), it is assumed that mesoscale eddies can be described as monochromatic400

waves with all energy at a single wavenumber. In reality, the oceanic eddy field contains motions401
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Fig. 4. Parameterized diffusivities KRossby (equation 20) and KRhines (equation 21) for different values of 𝛾 and

diagnosed diffusivities K𝑇
diag and K𝑃𝑉

diag, shown for experiment 5 from Table 2. The values of 𝛾−1 are indicated in

days. Diffusivities are all plotted on a logarithmic scale.

382

383
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over a broad range of wavenumbers (Wunsch 2010; Wortham and Wunsch 2014). A number of stud-402

ies have derived eddy diffusivity parameterizations for multichromatic waves. Chen et al. (2015)403
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developed a multi-wavenumber theory for eddy diffusivities, but only considered wavenumbers404

in the along-stream direction. Kong and Jansen (2017) considered the full two-dimensional EKE405

spectrum to compute eddy diffusivities, but assumed isotropy. Instead, like most other studies, we406

retained the assumption of monochromatic waves. We considered two different length scales to set407

the dominant wavelength: the Rossby radius and the topographic Rhines scale. As seen in Figure408

2, we find good agreement between theory and model results in both cases. This suggests that the409

assumption of monochromatic waves works well with a realistic value for the most energetic eddy410

length scale for this model.411

Other studies have not yet provided a clear conclusion on which length scale best represents eddy412

mixing length over topographic slopes. Wang and Stewart (2020) and Wei et al. (2022) found that413

the topographic Rhines scale works well to parameterize eddy diffusivity over retrograde slopes,414

but that it is not suitable for prograde slopes in a stratified ocean. On the other hand, Wei and415

Wang (2021) parameterized diffusivities over retrograde slopes using the Rossby radius, and found416

that the topographic Rhines scale led to an overestimation of the diagnosed diffusivity. These417

findings suggest differences in eddy length scales between prograde and retrograde slopes. In our418

simulations, a relevant difference between the two slopes is that EKE is enhanced over the northern419

(prograde) slope due to Ekman downwelling, but weakened in the south due to Ekman upwelling.420

Over the southern (retrograde) slope, the suppression of the eddy diffusivity is already captured421

quite well by K0, which takes into account EKE but not topographic PV gradients. Hence, in422

this upwelling region, the weakened EKE already contains a large part of the suppression. On the423

other hand, over the northern (prograde) slope the topographic PV gradient is needed to represent424

the suppression effect. Here, an important difference between the two length scales is that KRhines425

is inversely proportional to the PV gradient, whereas KRossby is inversely proportional to the PV426

gradient squared. The importance of the squared PV gradient (the bottom slope) was noted in427

Nummelin and Isachsen (2024) and previous studies, suggesting that the Rossby radius might be428

the more appropriate length scale to use. This will be further discussed in Section 4b. Finally, in the429

simulations used in this study, the eddies have a size in the order of the Rossby radius (not shown),430

whereas the topographic Rhines scale is an order of magnitude too small. This further supports the431

conclusion that the Rossby radius is the appropriate eddy length scale for the simulations presented432

here.433
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Regarding the eddy velocity decorrelation timescale, there are, to the best of our knowledge, no434

observational studies on the values of 𝛾 in the ocean. As noted, 𝛾 is typically left as an adjustable435

parameter when computing eddy diffusivities (e.g. Klocker and Abernathey 2014; Groeskamp et al.436

2020). The value of 𝛾 could possibly be inferred from an inverse method, like that employed in437

Mak et al. (2022a) for the mesoscale eddy energy dissipation timescale. Another option could be438

to determine 𝛾 from the autocorrelation of observational velocity timeseries. Our results suggest439

𝛾 varies depending on the relevant dynamics in a region, and this should be examined further.440

b. Relation with empirical expressions for eddy diffusivity441

Among others, Brink (2012), Brink and Cherian (2013), Brink (2016) and Wei et al. (2022)442

have constructed an empirical scaling for eddy diffusivity in terms of the slope Burger number,443

S = 𝛼𝑁/ 𝑓0. They all give parameterizations for K of the form444

K =
𝜇

1+𝜂𝑆𝜀 , 𝑆 =
𝛼𝑁

𝑓0
. (22)

The values of the parameters 𝜇 and 𝜂 and the exponent 𝜀 vary between these studies. The general445

form of (22) is the same as our expression for KRossby, equation (16), if the factor 𝑓0 in 𝑆 is replaced446

by the eddy decorrelation timescale 𝛾. The exponent 𝜀 in our case is equal to 2, which is the same447

as in Brink and Cherian (2013) and Brink (2016) (by contrast, Brink (2012) found 𝜀 = 1, whereas448

Wei et al. (2022) reported 𝜀 = 1.4). This means that our parameterization using the Rossby radius,449

which is dynamically based, is consistent with the previously found empirically based expressions450

for eddy diffusivities over topographic slopes.451

c. Challenges for implementation in coarse-resolution climate models452

One of the main reasons to study eddy diffusivities over topographic slopes is to create better453

parameterizations for coarse-resolution climate models. Using (13) with the appropriate length454

scale to compute eddy diffusivities requires knowledge on the eddy kinetic energy U2, the eddy455

anisotropy factor A, and the eddy velocity decorrelation timescale 𝛾. Here we expressedU2 and A456

in terms of the eddy velocity field and used the resulting expressions (20) and (21) to compute eddy457

diffusivities from the numerical model’s depth-averaged flow field data, leaving 𝛾 as an adjustable458

parameter (Section 3b). However, expressions (20) and (21) are not suitable for implementation459
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in climate models. The reason is the lack of closures for the eddy-related parameters U2, A and460

𝛾, which depend on properties below the typical grid scale of coarse-resolution climate models.461

Closures and parameterizations of eddy kinetic energy are an active research topic (e.g. Eden and462

Greatbatch 2008; Jansen et al. 2015, 2019; Mak et al. 2017, 2018; Juricke et al. 2020a,b). Wei463

and Wang (2021) present a parameterization for the anisotropy factor, though the derivation is464

empirical. Note, though, that in our simulations, it is the topographic PV gradient rather than465

the anisotropy factor that causes most of the suppression of the depth-averaged diffusivity (see466

also Nummelin and Isachsen 2024). It is therefore a reasonable approximation to simplify the467

expressions by assuming a constant anisotropy factor. Regarding the eddy decorrelation timescale,468

more research is needed for determining prognostic equations for 𝛾, as discussed in Section 4a.469

Furthermore, a shortcoming of the parameterizations presented here is that they do not take into470

account baroclinic effects and hence cannot be used to get vertical profiles of the eddy diffusivity.471

Adding stratification greatly increases the complexity of the problem, which can already be seen472

in a two-layer model (e.g. Straub 1994; Boland et al. 2012). Moreover, a varying anisotropy factor473

might be important for the vertical structure of eddy diffusivities (Stewart et al. 2015; Wei and Wang474

2021), so assuming constant anisotropy is then no longer a good approximation. Nevertheless,475

with appropriate estimates for U2, A, and 𝛾, we still consider expression (13) of value for testing476

in climate models to represent depth-averaged eddy diffusivities.477

d. Applicability of results for observations478

The skill of parameterizations (20) and (21) in reproducing eddy diffusivities in a numerical479

model also motivates application to observational data. Direct observations of mesoscale eddy480

mixing can be made in tracer release experiments (Ledwell et al. 1993, 1998; Tulloch et al. 2014;481

Zika et al. 2020; Bisits et al. 2023), but these experiments are expensive and labor intensive, and482

only provide information about a specific region. By contrast, our parameterizations could be483

used to infer eddy diffusivity values from more easily attainable observations. Groeskamp et al.484

(2020) applied the velocity formulation from Ferrari and Nikurashin (2010) to an observation-based485

gridded ocean climatology to create full-depth global estimates of eddy diffusivities. However, the486

expression of Ferrari and Nikurashin (2010) does not include effects of topographic PV gradients.487

Moreover, it requires fitting of the eddy decorrelation timescale 𝛾, and approximating the total488
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eddy phase speed 𝑐𝑤. Table 4 of Wei and Wang (2021) summarizes the methods that different489

studies used to determine 𝑐𝑤, which include empirical fits to numerical model results (e.g. Klocker490

et al. 2012; Pennel and Kamenkovich 2014), linear stability analysis (e.g. Eden 2011; Griesel et al.491

2015), the use of SSH measurements (e.g. Ferrari and Nikurashin 2010; Naveira Garabato et al.492

2011; Sallée et al. 2011; Abernathey and Marshall 2013; Bates et al. 2014; Klocker and Abernathey493

2014; Balwada et al. 2016; Roach et al. 2016, 2018; Bolton et al. 2019; Busecke and Abernathey494

2019; Groeskamp et al. 2020), or simply assuming 𝑐𝑤 ≈ 0 (e.g. Meredith et al. 2012; Bire and495

Wolfe 2018). By contrast, in the PV formulation the term 𝑐𝑤−𝑈 is replaced by 𝑐, the intrinsic eddy496

phase speed, for which we have an analytical expression in terms of the background (planetary497

and topographic) PV gradient. Thus, in the barotropic case we can calculate 𝑐 in a straightforward498

way from 𝛽 and the topographic slope, and circumvent the problem of having to determine 𝑐𝑤.499

In the end, the only observational measurements that our equations (20) and (21) require are500

information on stratification, topographic slopes, and flow velocity timeseries (for A, U2 and 𝛾);501

one could obtain these from mooring data. Within the assumptions made here, this provides a502

new and improved method to estimate depth-averaged eddy diffusivities based on oceanographic503

measurements, and thus to study variability in eddy diffusivity across the ocean.504

5. Summary and Conclusion505

We derived an analytical expression, equation (13), to describe depth-averaged eddy diffusivities506

over topographic slopes (Figure 2). This expression is a specific case of the general equation (12)507

for the cross-stream eddy diffusivity in the presence of a background PV gradient. Equation (12)508

explicitly links eddy diffusivity to the PV gradient (Nakamura and Zhu 2010b), thus providing a509

PV formulation of mixing suppression, as opposed to the velocity formulation (9) presented in510

previous studies (e.g. Ferrari and Nikurashin 2010; Klocker et al. 2012). An advantage of the PV511

formulation is that it does not require information on 𝑐𝑤, the Doppler-shifted or apparent phase512

speed of the eddies, and 𝑈, the background mean flow. We circumvent the problem of having to513

determine 𝑐𝑤 and 𝑈 and instead keep an analytical expression for the intrinsic eddy phase speed,514

which is linked to the PV gradient. Furthermore, keeping the PV gradient ∇𝑄 in the expression515

for K, we can substitute exact expressions for ∇𝑄 to see which physical mechanisms determine516

K. Many studies on mixing suppression in the ACC assume the PV gradient is set by planetary517
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𝛽 (e.g. Ferrari and Nikurashin 2010; Naveira Garabato et al. 2011; Klocker et al. 2012; Griesel518

et al. 2015). Instead, the main focus of this study was the influence of bottom topography on519

eddy mixing. Across the world’s oceans the topographic PV gradient is typically larger than the520

planetary PV gradient (with the exception of low latitudes). Equation (13) directly relates the521

eddy diffusivity to the topographic slope 𝛼. This equation is not based on empirical fits to model522

results, but on physically consistent derivations that include topography from the start. Finally,523

our parameterization can be calculated from velocity timeseries, presenting a new opportunity for524

computing eddy diffusivities from observational data.525

A number of issues still remain to be addressed. Closures for the eddy anisotropy, EKE, and526

decorrelation timescale are missing; the physical mechanisms setting the eddy length scale in527

different dynamical regimes require further study; and the parameterizations for K presented in528

this study do not take into account baroclinic effects. Nevertheless, the parameterizations help in529

understanding the physical mechanism of mixing suppression by topography, and can accurately530

represent depth-averaged eddy diffusivities in an idealized simulation. This motivates future531

studies to extend the parameterizations to a baroclinic (depth-varying) framework, and to explore532

the applicability of the parameterizations for computing eddy diffusivities from observations and533

models.534
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APPENDIX A556

Derivation of expression for cross-stream eddy diffusivity557

To compute the cross-stream eddy diffusivity, we need an analytical expression for the eddy558

streamfunction 𝜓′. We express 𝜓′ as a Rossby wave (equation 3). Combining equations (4) and559

(6), we get a differential equation for the wave amplitude 𝑎(𝑡):560

𝑑𝑎

𝑑𝑡
+ (𝛾 + 𝑖𝑘𝑐𝑤)𝑎 ≡

𝑑𝑎

𝑑𝑡
+𝜆𝑎 = 𝐴𝑟 (𝑡). (A1)

To solve (A1), we use an integrating factor 𝑒𝜆𝑡 :561 (
d𝑎
d𝑡

+𝜆𝑎
)
𝑒𝜆𝑡 =

d
d𝑡

(
𝑎(𝑡)𝑒𝜆𝑡

)
= 𝐴𝑟 (𝑡)𝑒𝜆𝑡 . (A2)

For a full solution, we need an initial condition. For this, we assume that we started out in a state562

of rest, i.e. lim𝑡→−∞ 𝑎(𝑡) = 0. This gives us the solution563

𝑎(𝑡) = 𝐴
∫ 𝑡

−∞
𝑟 (𝜏)𝑒𝜆(𝜏−𝑡)d𝜏. (A3)

Now we need to determine the forcing amplitude 𝐴. We do this using the eddy kinetic energy564

(EKE), given by565

EKE =
1
2
〈
𝑢′2 + 𝑣′2

〉
=

1
2

〈��𝜓′
𝑥

��2 + ��𝜓′
𝑦

��2〉 = 1
2
〈
𝜅2 |𝜓′|2

〉
=

1
2
〈
𝜅2 |𝑎 |2

〉
≡ 1

2
U2, (A4)

where ⟨·⟩ denotes a time average. Using expression (A3) for 𝑎(𝑡), we find566

|𝑎 |2 = 𝑎𝑎∗ = 𝐴2
∫ 𝑡

−∞

∫ 𝑡

−∞
𝑟 (𝜏)𝑟∗(𝜏)𝑒𝜆(𝜏−𝑡)+𝜆∗ (𝜏′−𝑡)d𝜏′d𝜏, (A5)

where ∗ denotes complex conjugate. Since 𝑟 (𝑡) is a white noise random process, ⟨𝑟 (𝜏)𝑟∗(𝜏′)⟩ =567

𝛿(𝜏− 𝜏′). Furthermore, 𝜆 ≡ 𝛾 + 𝑖𝑘𝑐𝑤, so 𝜆+𝜆∗ = 2𝛾. This yields568

〈
|𝑎 |2

〉
= 𝐴2

∫ 𝑡

−∞
𝑒2𝛾(𝜏−𝑡)d𝜏 =

𝐴2

2𝛾
. (A6)
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Combining this with the expression for the EKE, (A4), gives an expression for the stochastic forcing569

amplitude 𝐴:570

𝐴 =

√︁
2𝛾U
𝜅

. (A7)

Combining equations (3), (A3) and (A7) gives us the following expression for the eddy stream-571

function:572

𝜓′(𝑥, 𝑦, 𝑡) = Re

(√︁
2𝛾
𝜅

U𝑒𝑖𝑘𝑥+𝑖𝑙𝑦
∫ 𝑡

−∞
𝑟 (𝜏)𝑒𝜆(𝜏−𝑡)d𝜏

)
. (A8)

We can use (A8) to get an expression for 𝑣′, which is needed to compute the Taylor diffusivity,573

given by equation (8). We approximate the Lagrangian velocity 𝑣𝐿 with the Eulerian velocity of a574

particle advected by the mean flow (leaving out Re for simplicity in the notation):575

𝑣𝐿 (𝑡;𝑥, 𝑦,0) = 𝑣′(𝑥 +𝑈𝑡, 𝑦, 𝑡) =
𝜕𝜓′

𝜕𝑥

����
(𝑥+𝑈𝑡,𝑦,𝑡)

= 𝑎(𝑡)𝑖𝑘𝑒𝑖𝑘 (𝑥+𝑈𝑡)+𝑖𝑙𝑦 . (A9)

The autocorrelation of the cross-stream Lagrangian velocity 𝑅𝑣𝑣 is now given by576

𝑅𝑣𝑣 =
2𝛾U2𝑘2

𝜅2 𝑒𝑖𝑘𝑈 (𝑡−𝑡′)−𝜆𝑡−𝜆∗𝑡′
∫ 𝑡

−∞

∫ 𝑡′

−∞
𝑟 (𝜏)𝑟∗(𝜏′)𝑒𝜆𝜏+𝜆∗𝜏′d𝜏′d𝜏. (A10)

When taking the average ⟨𝑅𝑣𝑣⟩, as is needed for (8), we can again use that ⟨𝑟 (𝜏)𝑟∗(𝜏′)⟩ = 𝛿(𝜏−𝜏′).577

This gives us578

⟨𝑅𝑣𝑣⟩ =
2𝛾U2𝑘2

𝜅2 𝑒𝑖𝑘𝑈 (𝑡−𝑡′)−𝜆𝑡−𝜆∗𝑡′
∫ 𝑡

−∞

∫ 𝑡′

−∞
𝛿(𝜏− 𝜏′)𝑒𝜆𝜏+𝜆∗𝜏′d𝜏′d𝜏. (A11)

The solution to the integral is (using that 𝜆+𝜆∗ = 2𝛾):579 ∫ 𝑡

−∞

∫ 𝑡′

−∞
𝛿(𝜏− 𝜏′)𝑒𝜆𝜏+𝜆∗𝜏′d𝜏′d𝜏 = 1

2𝛾

[
𝜃 (𝑡′− 𝑡)

(
𝑒2𝛾𝑡 − 𝑒2𝛾𝑡′

)
+ 𝑒2𝛾𝑡′

]
, (A12)

where 𝜃 is the Heaviside step function (equal to zero for negative arguments and to one for positive580

arguments). In (8) we integrate over 𝑡′ from 0 to 𝑡, meaning that 𝑡′ must be smaller than 𝑡. So581
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𝜃 (𝑡′− 𝑡) = 0, and (A12) reduces to582 ∫ 𝑡

−∞

∫ 𝑡′

−∞
𝛿(𝜏− 𝜏′)𝑒𝜆𝜏+𝜆∗𝜏′d𝜏′d𝜏 = 1

2𝛾
𝑒2𝛾𝑡′ . (A13)

So (A11) becomes583

⟨𝑅𝑣𝑣⟩ =
U2𝑘2

𝜅2 𝑒𝑖𝑘 (𝑐𝑤−𝑈) (𝑡
′−𝑡)𝑒𝛾(𝑡

′−𝑡) , (A14)

where we used 𝜆 = 𝛾+ 𝑖𝑘𝑐𝑤 and 𝑐𝑤 =𝑈+𝑐. Now we integrate over the real part of ⟨𝑅𝑣𝑣⟩ to compute584

the diffusivity as in (8):585

K = lim
𝑡→∞

U2𝑘2

𝜅2

∫ 𝑡

0
𝑒𝛾(𝑡

′−𝑡) cos [𝑘 (𝑐𝑤 −𝑈) (𝑡′− 𝑡)] d𝑡′. (A15)

We can solve this integral using the substitution 𝜎 = 𝑡′− 𝑡 (and 𝑐𝑤 −𝑈 = 𝑐):586

K = lim
𝑡→∞

U2𝑘2

𝜅2 (
𝛾2 + 𝑐2𝑘2) [

𝛾− 𝑒−𝛾𝑡 (𝛾 cos(𝑐𝑘𝑡) − 𝑐𝑘 sin(𝑐𝑘𝑡))
]
. (A16)

Finally we take the limit of 𝑡→∞ to find the diffusivity in an equilibrium situation:587

K =
𝑘2

𝜅2
𝛾U2

𝛾2 + 𝑐2𝑘2 =
𝑘2

𝜅2
𝛾U2

𝛾2 + (𝑐𝑤 −𝑈)2𝑘2 =
AU2/𝛾

1+ 𝑘2

𝛾2 (𝑐𝑤 −𝑈)2
. (A17)
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