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Abstract 8 

This technical note presents a significant advancement in geostatistical approaches for subsurface 9 

characterization by extending the manifold embedding method from two-dimensional to three-10 

dimensional space. This development enables the capturing of complex, non-stationary spatial 11 

correlations within a higher-dimensional framework. Integrating a fourth dimension, representing 12 

varying spatial properties, the method transcends the limitations of conventional two-point 13 

geostatistics, particularly in modeling the intricate heterogeneity of subsurface media. Despite its 14 

computational intensity and the need for comprehensive secondary data, the manifold embedding 15 

approach is invaluable in high-stakes scenarios like geological repository design and contaminant 16 

remediation. It stands out as a pivotal tool in hydrogeology and related fields, offering 17 

unprecedented precision and detail in subsurface characterizations and modeling. 18 

  19 
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1. Introduction 20 

Accurate spatial estimation is recognized as a foundational element for sustainable management 21 

of subsurface resources in hydrogeology. Within the confines of three-dimensional (3D) spaces, 22 

the complexity escalates due to the inherent heterogeneity and the non-stationary nature of 23 

geological media. It has been observed that traditional geostatistical methods often fail to 24 

adequately capture these complex characteristics, which can result in models that do not represent 25 

subsurface variability with the required accuracy, thus compromising the prediction of essential 26 

properties. In previous studies (Piao and Park, 2023; Park et al., 2024), challenges were addressed 27 

from a geological perspective by introducing manifold embedding within a two-dimensional (2D) 28 

framework. However, it has been identified that there is a critical need for accurately modeling 29 

spatial relationships in higher dimensions. Consequently, a novel geostatistical approach has been 30 

developed that surpasses the limitations of existing methodologies. This approach, grounded in the 31 

principles of manifold embedding within a four-dimensional (4D) space, has been shown to 32 

enhance the precision of spatial estimations and to offer a new perspective in the understanding 33 

and management of complex subsurface environments. 34 

The progression to a 3D framework in the current study marks a substantial evolution from prior 35 

methodologies. It is widely accepted that traditional geostatistical methods, which are typically 36 

not process-based (Koltermann & Gorelick, 1996), strive to effectively represent subsurface 37 

property distributions. The adoption of any method that can enrich this representation is deemed 38 

beneficial (e.g., Matheron, 1963; Carle & Fogg, 1996; Strebelle, 2002; Park, 2010; Laloy et al., 39 

2018). The extension of manifold embedding to 3D, as presented herein, facilitates a more 40 

comprehensive depiction of the subsurface, addressing the limitations observed with 2D 41 

constraints. This advancement is pivotal for the accurate modeling of hydrogeological phenomena 42 
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and enhances the existing geostatistical framework by accommodating the realistic complexities 43 

of subsurface environments (Høyer et al., 2017; Zhao & Illman, 2017). 44 

Despite the advancements in geostatistical methods, traditional Euclidean-based approaches still 45 

often struggle to accurately capture the complex spatial behavior of geological properties, 46 

especially in extensive spatial domains characterized by pronounced directional changes and 47 

heterogeneities (Curriero, 2007; Piao & Park, 2023). While anisotropy has been recognized for its 48 

critical role in representing geological processes, such as flow direction in sedimentary 49 

environments, existing techniques have typically been constrained to stationary cases (Park et al., 50 

2024). In these scenarios, the variations of anisotropy—pertaining to correlation lengths and 51 

orientations—are presupposed to be uniform throughout the domain, neglecting the dynamic and 52 

variable nature of geological formations (Cressie, 1993; Chilès, J.P., and Delfiner, 2012). 53 

Nonetheless, it has been posited in a few seminal works that the assumption of stationarity need 54 

not be a fundamental limitation of two-point statistics. The concept of manifold embedding, 55 

derived from differential geometry, emerges as a robust alternative, envisioning spatial properties 56 

as functions on a manifold, which inherently accounts for their non-stationarity and anisotropy. 57 

This conceptual shift enables a more sophisticated and authentic portrayal of geological 58 

phenomena, which is of paramount importance in extensive, 3D geological assessments. 59 

Incorporating non-stationary estimation and simulation within this manifold embedding 60 

framework enriches our subsequent analyses, offering a diversity of interpretation previously 61 

unattainable with traditional methods. This advancement not only aids in capturing the dynamic 62 

and heterogeneous nature of geological processes but also enhances the geostatistical toolkit with 63 

a more adaptable and nuanced approach to subsurface modeling. 64 
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In this study, the theoretical extension of manifold embedding to 3D spaces is explored, illustrating 65 

its capability to more effectively model the intricate spatial variability characteristic of geological 66 

media. The limitations inherent in conventional geostatistical models—particularly their 67 

inadequacy in capturing directional variability and complex spatial patterns prevalent in geological 68 

structures—are addressed through this advancement. The progression of the manifold embedding 69 

framework from 2D to 3D equips practitioners with a more robust analytical tool, significantly 70 

enhancing the interpretation of the complex interplay between geological features and spatial 71 

attributes. Such an approach provides a pragmatic pathway for conducting sophisticated, 3D 72 

subsurface analyses. Representing a pioneering development in the field, this extension to 3D 73 

effectively bridges a vital gap in spatial estimation methodologies and is posited to yield more 74 

accurate, comprehensive, and nuanced geological models, thus contributing substantially to the 75 

advancement of hydrogeology. 76 

2. Importance of manifold embedding in geostatistical approaches: a 2D review 77 

Spatial estimation within hydrogeology frequently encounters the challenge of capturing the 78 

intricacies of the subsurface environment, a task that becomes exponentially more complex when 79 

advancing from 2D to 3D representations. The manifold corresponding to a 3D space extends into 80 

4D, at which point, creating a visual representation that offers intuitive understanding to the 81 

observer becomes less feasible. This increase in complexity warrants a foundational review in a 82 

more conceptually accessible 2D space. Engaging with 2D concepts provides essential clarity and 83 

builds the intuition needed to grasp more abstract higher-dimensional spaces. Therefore, this 84 

section revisits the principles of manifold embedding within the well-understood confines of 2D, 85 

thereby laying the groundwork for the subsequent exploration into the complexities of 3D 86 

geostatistical modeling. 87 
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a. b. c. 

 

Figure 1. Evolution of manifold embedding from (a) isotropic and stationary 2D spatial 88 
correlations, through (b) introduction of static anisotropy, to (c) complex, non-stationary manifold 89 
with variable spatial correlations. 90 

In Fig. 1, the stepwise increase in manifold complexity is illustrated, marking the transition from 91 

the simplicity of Euclidean space to the complexity of a non-Euclidean manifold. The ‘𝑢𝑣-plane’ 92 

is identified as the actual 2D spatial domain under consideration, while the ‘𝑋𝑌𝑍-plane’ embodies 93 

the embedded 3D manifold, defined by the coordinates 𝑋 = 𝑢, 𝑌 = 𝑣, and 𝑍 as a function of 𝑢 94 

and 𝑣, denoted by 𝑍 = 𝑓(𝑢, 𝑣). In Fig. 1a, the 𝑍 component is constant, reflecting the assumption 95 

of isotropic and stationary spatial correlations prevalent in conventional geostatistical models. 96 

Visually, this is represented by a green circle on the 𝑢𝑣-plane, symbolizing the spatial correlation 97 

ellipse. It retains its shape and size when projected onto the embedded 𝑋𝑌𝑍  manifold. This 98 

represents a scenario of uniform spatial correlations throughout the domain, aligning with the 99 

traditional Euclidean geostatistical framework that assumes static spatial relationships. 100 

Moving to Fig. 1b, the function 𝑍 = 𝑓(𝑢, 𝑣) now represents a linear relationship with 𝑢 and 𝑣, 101 

signaling the emergence of static anisotropy. At this juncture, linear functions are employed to 102 

define 𝑍 = 𝑓(𝑢, 𝑣), transitioning the model towards an anisotropic paradigm. Spatial correlations 103 
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are now depicted as elliptical shapes, exhibiting both elongation and consistent directionality, 104 

which are indicative of the directional dependencies that are characteristic of geological processes. 105 

Despite the introduction of anisotropy, these spatial behaviors remain within the modeling 106 

capabilities of traditional geostatistical methods. Established variogram models can adequately 107 

capture such static anisotropic conditions, thus manifold embedding is not yet a necessity at this 108 

stage. 109 

In Fig. 1c, the function 𝑍 = 𝑓(𝑢, 𝑣)  represents a departure from simple analytical forms, 110 

signifying the presence of spatial non-stationarity. This is visually represented by notable 111 

distortions upon projection onto the 𝑢𝑣-plane, an echo of the complex heterogeneity typical in 112 

geological media. Traditional geostatistical models, which rely heavily on affine transformations 113 

for rotation and scaling, fall short in capturing this level of complexity. Manifold embedding, on 114 

the other hand, provides a sophisticated framework that is adept at characterizing the nuanced 115 

spatial variability of subsurface properties. It adeptly models the dynamic nature of spatial 116 

correlations, which vary across different locations, thus capturing the true essence of the variable 117 

characteristics of geological processes and their spatial impact. 118 

The progression depicted from Figs. 1a to 1c illuminates the limitations of conventional 119 

geostatistics when confronted with increasing spatial non-stationarity and manifold complexity. 120 

Affine transformations—characterized by rotation and elongation—are inadequate for capturing 121 

the intricate variations in the directionality of elongation, which become more pronounced at larger 122 

spatial scales as a result of complex geological processes influencing spatial correlations. Manifold 123 

embedding stands out as it adeptly models these spatial variabilities and associated geological 124 

complexities, which surpass the capabilities of elementary geometric transformations. This 125 

advanced method offers a robust framework designed to capture the dynamic behavior inherent in 126 
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geological non-stationarity, thereby significantly refining geostatistical analysis in non-stationary 127 

environments. 128 

The progression illustrated from Figs. 1a to 1c encapsulates the essential paradigm shift required 129 

for advanced hydrogeological studies and geostatistical applications. Within these domains, the 130 

intricate phenomena of flow, transport, and migration are governed by the complex and 131 

heterogeneous nature of subsurface characteristics. This paradigm shift underscores the critical 132 

need for precise delineation and representation of these complex subsurface features. As 133 

methodologies evolve to encompass higher-dimensional spaces, such as 3D, the straightforward 134 

visual interpretation of embedded manifolds may no longer be practical. Nevertheless, the 135 

principle of manifold embedding remains an essential analytical tool. It adeptly captures the full 136 

spectrum of spatial correlations, which is crucial for delivering accurate characterizations and 137 

predictions within subsurface modeling. 138 

3. Theoretical development 139 

3.1 Intrinsic geometry and metric tensor formulation 140 

While a manifold is an abstract mathematical construct without physical existence, its conceptual 141 

framework is particularly suited for geostatistical estimation. This section builds upon the insights 142 

from our exploration of 2D manifold embedding, extending the concept to address the 143 

complexities inherent in 3D Euclidean spaces. Conventional 3D Euclidean spaces, though useful, 144 

often fall short in capturing the non-stationary spatial behavior characteristic of geological 145 

properties. To bridge this gap, manifold embedding introduces a novel approach by constructing a 146 

4D space (𝑋, 𝑌, 𝑍, Ω) , enhancing the traditional 3D (𝑢, 𝑣, 𝑤) Euclidean space with an additional 147 
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dimension that encapsulates critical spatial variation information, thereby enabling more accurate 148 

modeling of subsurface complexities. 149 

For readers primarily interested in the practical applications of these theoretical developments, it 150 

may be sufficient to understand the conceptual significance of adding the Ω dimension to better 151 

represent spatial variability. Those wishing to delve into the mathematical underpinnings are 152 

encouraged to engage with the detailed exposition in this section. However, for those focused on 153 

the practical aspects of the developed methodology, it is advisable to proceed to Section 4, which 154 

discusses the application of these principles in real-world geostatistical analysis. 155 

In this refined theoretical construct, the coordinates (𝑢, 𝑣, 𝑤) re preserved to denote conventional 156 

3D spatial locations. Through the incorporation of the Ω dimension, represented by the scalar field 157 

𝑓(𝑢, 𝑣, 𝑤) , the capacity of the model to encapsulate spatial property variations within the 158 

geological system is enhanced. This enhancement is not explicitly represented in the standard 159 

coordinate system. By introducing a fourth dimension, the embedding technique allows for more 160 

precise and intricate modeling of subsurface environments, accommodating the complexities and 161 

variations characteristic of geological media. 162 

Additionally, in traditional 3D modeling, the natural coordinates (𝑢, 𝑣, 𝑤) lack inherent directional 163 

information about spatial correlation. This limitation is surmounted by the inclusion of 𝑓(𝑢, 𝑣, 𝑤), 164 

which integrates essential directional aspects necessary for modeling non-stationary processes. 165 

The function 𝑓  is rendered versatile, representing any spatially variable attribute, whether 166 

geological or hydrogeological, and enabling the depiction of non-stationary properties that evolve 167 

with location. 168 
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In geostatistical applications, manifold embedding has been found to be of particular value where 169 

a comprehensive understanding of variables such as hydraulic properties or lithology is critical for 170 

subsurface characterization. With the adoption of the 4D framework, it has been observed that 171 

spatial models exhibit a marked improvement in predictive capabilities. Such models are now 172 

equipped to accommodate directional dependencies and non-stationary behaviors, which are 173 

beyond the reach of conventional 3D frameworks. 174 

The principal innovation of this methodology lies in the integration of a fourth dimension, Ω. It is 175 

this dimension that is instrumental in encapsulating the intricate spatial variation of properties. 176 

Such an advancement facilitates more refined interpretations and accurate modeling, which are 177 

indispensable in fields like hydrogeology, where a detailed understanding of the spatial variability 178 

of subsurface properties is paramount. 179 

In the development of our 4D manifold embedding approach, we interpret the 𝑋𝑌𝑍Ω space as a 180 

Riemannian manifold (Borovitskiy et al., 2020; Pereira et al., 2022), which is formalized as an 181 

inner product space denoted by 𝒱 . Through a specific mapping function, 𝜓  , we relate our 182 

manifold ℳ to 𝒱, enabling the computation of geodesic distances essential for modeling non-183 

stationary spatial correlations. The mapping 𝜓(𝑢, 𝑣, 𝑤) is defined as follows: 184 

𝜓(𝑢, 𝑣, 𝑤) = 0𝑋(𝑢, 𝑣, 𝑤), 𝑌(𝑢, 𝑣, 𝑤), 𝑍(𝑢, 𝑣, 𝑤), Ω(𝑢, 𝑣, 𝑤)1	, (1) 185 

where 186 

𝑋(𝑢, 𝑣, 𝑤) = 𝑢
𝑌(𝑢, 𝑣, 𝑤) = 𝑣
𝑍(𝑢, 𝑣, 𝑤) = 𝑤

Ω(𝑢, 𝑣, 𝑤) = 𝑓(𝑢, 𝑣, 𝑤)

	, (2) 187 
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and the function 𝑓, mapping from the product space ℳ×ℳ to the real numbers ℝ, is a manifold 188 

that encapsulates the spatial correlation for a specific location in the space (𝑢, 𝑣, 𝑤) . Here, 189 

𝑓(𝑢, 𝑣, 𝑤) is not merely a coordinate; it is a critical mathematical construct within our Riemannian 190 

framework that captures the essence of spatial variability and correlation at each point in our 191 

geological model. 192 

Upon establishing the intrinsic geometry of the manifold through the mapping function 𝜓  as 193 

defined by Eqs. (1-2), we proceed to construct the metric tensor for space ℳ. This tensor, denoted 194 

as 𝑔 , is a fundamental entity that characterizes the geometric structure of the manifold by 195 

quantifying the infinitesimal distances between points within the space. It is formally expressed as 196 

follows: 197 

𝑔 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝐫
𝑑𝑢 ⋅

𝑑𝐫
𝑑𝑢

𝑑𝐫
𝑑𝑢 ⋅

𝑑𝐫
𝑑𝑣

𝑑𝐫
𝑑𝑢 ⋅

𝑑𝐫
𝑑𝑤

𝑑𝐫
𝑑𝑣

⋅
𝑑𝐫
𝑑𝑢

𝑑𝐫
𝑑𝑣

⋅
𝑑𝐫
𝑑𝑣

𝑑𝐫
𝑑𝑣

⋅
𝑑𝐫
𝑑𝑤

𝑑𝐫
𝑑𝑤 ⋅

𝑑𝐫
𝑑𝑢

𝑑𝐫
𝑑𝑤 ⋅

𝑑𝐫
𝑑𝑣

𝑑𝐫
𝑑𝑤 ⋅

𝑑𝐫
𝑑𝑤⎦

⎥
⎥
⎥
⎥
⎤

(3) 198 

Eq. (3) encapsulates the inner products of differential position vectors, providing the necessary 199 

components to compute distances and angles in manifold ℳ. The metric tensor 𝑔 is pivotal in 200 

capturing the nuances of spatial relationships and is an indispensable tool in the quantification of 201 

non-Euclidean distances, thereby playing a critical role in the following geostatistical analyses. 202 

Equation (3) introduces the metric tensor for manifold ℳ, which can be parametrically represented 203 

by the vector-valued function 𝐫, as shown in Eq. (4): 204 

𝐫(𝑢, 𝑣, 𝑤) = 0𝑋(𝑢, 𝑣, 𝑤), 𝑌(𝑢, 𝑣, 𝑤), 𝑍(𝑢, 𝑣, 𝑤), Ω(𝑢, 𝑣, 𝑤)1. (4) 205 
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Extending from the manifold representation in Eq. (4), the differentials 𝑑𝐫/𝑑𝑢 , 𝑑𝐫/𝑑𝑣 , and 206 

𝑑𝐫/𝑑𝑤 can be articulated as follows, in accordance with Eq. (3): 207 

𝑑𝐫
𝑑𝑢

=
𝑑𝑋
𝑑𝑢

𝐞! +
𝑑𝑌
𝑑𝑢

𝐞" +
𝑑𝑍
𝑑𝑢

𝐞# +
𝑑Ω
𝑑𝑢

𝐞$ = 𝐞! +
𝑑𝑓(𝑢, 𝑣, 𝑤)

𝑑𝑢
𝐞$

𝑑𝐫
𝑑𝑣

=
𝑑𝑋
𝑑𝑣

𝐞! +
𝑑𝑌
𝑑𝑣

𝐞" +
𝑑𝑍
𝑑𝑣

𝐞# +
𝑑Ω
𝑑𝑣

𝐞$ = 𝐞" +
𝑑𝑓(𝑢, 𝑣, 𝑤)

𝑑𝑣
𝐞$

𝑑𝐫
𝑑𝑤 =

𝑑𝑋
𝑑𝑤 𝐞! +

𝑑𝑌
𝑑𝑤 𝐞" +

𝑑𝑍
𝑑𝑤 𝐞# +

𝑑Ω
𝑑𝑤 𝐞$ = 𝐞# +

𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑤 𝐞$

	, (5) 208 

where 𝐞! = 𝜕𝐫/𝜕𝑋, 𝐞" = 𝜕𝐫/𝜕𝑌, 𝐞# = 𝜕𝐫/𝜕𝑍, and 𝐞$ = 𝜕𝐫/𝜕Ω represent the basis vectors of 209 

the tangent space at a given point on the manifold. These expressions, derived from the 210 

parameterizations established in Equation (2), enable the construction of the metric tensor that 211 

encapsulates the intrinsic geometric properties of the manifold.  212 

Building upon the vectorial relationships delineated in Eq. (5), we now direct our attention to the 213 

metric coefficients, which serve as the fundamental descriptors of the manifold’s intrinsic 214 

geometry. By incorporating the expressions from Eq. (5) into the structure of Eq. (3), we arrive at 215 

the components of the metric tensor 𝑔 as: 216 

𝑔 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 + I

𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑢 J

% 𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑢

𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑣

𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑢

𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑤

𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑣

𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑢 1 + I

𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑣 J

% 𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑣

𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑤

𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑤

𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑢

𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑤

𝑑𝑓(𝑢, 𝑣, 𝑤)
𝑑𝑣

1 + I
𝑑𝑓(𝑢, 𝑣, 𝑤)

𝑑𝑤
J
%

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

	 , (6) 217 

For brevity and clarity in subsequent discussions and derivations, we shall refer to the metric tensor 218 

in its matrix form as 𝑔: 219 

𝑔 = L
𝑔&& 𝑔&% 𝑔&'
𝑔%& 𝑔%% 𝑔%'
𝑔'& 𝑔'% 𝑔''

M	 , (7) 220 
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where each element 𝑔()  of the metric tensor is the inner product of 𝑑𝐫/𝑑𝑖  and 𝑑𝐫/𝑑𝑗  (for 𝑖, 𝑗 221 

representing the natural coordinates 𝑢, 𝑣, 𝑤) and 𝑔 is a symmetric matrix (i.e., 𝑔() = 𝑔)(). This 222 

tensor reflects the intrinsic curvature of the manifold and includes the derivatives of the function 223 

𝑓, which encodes the spatial correlation. 224 

3.2 Computing geodesic distances in 4D manifold embedding 225 

In the context of manifold theory, geodesic distance is defined as the shortest path between two 226 

points on a curved surface, much like ‘straight lines’ are in Euclidean space. In Euclidean geometry, 227 

the shortest path is simply a straight line, representing the most direct distance between two points. 228 

In contrast, on a manifold possessing intrinsic curvature, geodesic paths embody the manifold's 229 

complex geometry. By applying the metric tensor as established in Eqs. (6) or (7), we can 230 

demonstrate that distances within the 𝑢𝑣𝑤-plane correspond directly to those within the 𝑋𝑌𝑍Ω 231 

manifold. This isometry between the 𝑢𝑣𝑤-plane and the 𝑋𝑌𝑍Ω manifold signifies that, despite the 232 

curvature present, they retain equivalent geometric properties. Recognizing this isometric 233 

relationship is crucial as it allows geostatistical methods to adapt to the dynamic geological 234 

processes that shape subsurface media. 235 

The geodesic distance, denoted 𝑑*  , represents the shortest path between any two points on a 236 

manifold, capturing the essence of the curvature of the space. The computation of this distance for 237 

points (𝑢+, 𝑣+, 𝑤+) and (𝑢&, 𝑣&, 𝑤&) in curved space is typically achieved by evaluating the integral: 238 

𝑑* = QR
𝑑𝐫
𝑑𝜆
R𝑑𝜆 (8) 239 
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The integrand in Eq. (8) involves the norm of the differential position vector 𝑑𝐫/𝑑𝜆, which, when 240 

squared, can be expressed in matrix form using the metric tensor 𝑔 as presented in Eq. (7). This is 241 

mathematically represented by: 242 

R
𝑑𝐫
𝑑𝜆R

%

= U𝑑𝑢
𝑑𝜆

𝑑𝑣
𝑑𝜆

𝑑𝑤
𝑑𝜆
V L
𝑔&& 𝑔&% 𝑔&'
𝑔%& 𝑔%% 𝑔%'
𝑔'& 𝑔'% 𝑔''

M

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝑢
𝑑𝜆
𝑑𝑣
𝑑𝜆
𝑑𝑤
𝑑𝜆⎦
⎥
⎥
⎥
⎥
⎤

	 . (9) 243 

The trajectory connecting two subsurface points, (𝑢+, 𝑣+, 𝑤+) and (𝑢&, 𝑣&, 𝑤&), can be elegantly 244 

described using parametric equations. The parameter 𝜆, ranging from 0 to 1, linearly interpolates 245 

the coordinates between these two points as:  246 

𝑢(𝜆) = 𝑢+ + (𝑢& − 𝑢+)𝜆
𝑣(𝜆) = 𝑣+ + (𝑣& − 𝑣+)𝜆
𝑤(𝜆) = 𝑤+ + (𝑤& −𝑤+)𝜆

	. (10) 247 

From this formulation of Eq. (10), the derivatives with respect to 𝜆 are simply the differences in 248 

the respective coordinates: 𝑑𝑢/𝑑𝜆 = 𝑢& − 𝑢+, 𝑑𝑣/𝑑𝜆 = 𝑣& − 𝑣+, and 𝑑𝑤/𝑑𝜆 = 𝑤& −𝑤+.  249 

Substituting these derivatives into the norm of ‖𝑑𝐫/𝑑𝜆‖%, we obtain: 250 

R
𝑑𝐫
𝑑𝜆R

%

= (𝑢& − 𝑢+)%𝑔&& + (𝑣& − 𝑣+)%𝑔%% + (𝑤& −𝑤+)%𝑔''
+2[(𝑢& − 𝑢+)(𝑣& − 𝑣+)𝑔&% + (𝑢& − 𝑢+)(𝑤& −𝑤+)𝑔&' + (𝑣& − 𝑣+)(𝑤& −𝑤+)𝑔%']	. (11)

 251 

The arc length, representing the geodesic distance that correlates two data locations, is then 252 

determined by integrating the norm as: 253 

𝑑*(𝑢&, 𝑣&, 𝑤&; 𝑢+, 𝑣+, 𝑤+) = Q R
𝑑𝐫
𝑑𝜆
R 𝑑𝜆

&

+
. (12) 254 
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The numerical integration of the geodesic distances, as formulated in Eq. (12), is accomplished 255 

using the Gauss-Legendre quadrature method. This approach is carefully chosen to complement 256 

the intricate geometry of the manifold in question. Notably, the complexity of the manifold—such 257 

as high frequency fluctuations—necessitates a higher number of sampling points (abscissae) to 258 

ensure precision. Consequently, there exists an inherent balance to be struck between the precision 259 

of the results and the computational demands of the process. Optimizing the efficiency of these 260 

calculations is essential, as it has profound implications for the scalability and utility of the 261 

geostatistical methods being developed. 262 

While the concept of a 4D manifold may be abstract and imperceptible, the practical application 263 

of geostatistical analysis in this study is grounded within our 3D reality. The methodologies 264 

elucidated in Sections 3.1 and 3.2 simplify the theoretical 4D model into a tangible 3D 265 

computational problem. This simplification, which is central to the manifold embedding technique, 266 

constitutes the essence of this study. It facilitates the integration of advanced theoretical concepts 267 

into actionable geostatistical analyses, effectively navigating the complexities that higher-268 

dimensional models present. 269 

3.3 Implementation and efficacy of geodesic kernels in manifold embedded spatial analysis 270 

The concept of geodesic distance inherently captures spatial affinity, which can be adeptly 271 

integrated into a multitude of spatial interpolation methods, such as nearest neighbor algorithms, 272 

inverse distance weighting, and clustering algorithms, to refine our understanding of spatial 273 

relationships. Although geodesic distances are versatile in application, this study has chosen 274 

Gaussian process regression (GPR) to align with the commonly preferred methods in the field (i.e., 275 
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simple kriging), utilizing it to demonstrate the implementation and benefits of our manifold 276 

embedding approach. 277 

To facilitate our Gaussian process analysis for property distribution, two geodesic kernels of the 278 

Gaussian and exponential kernels are employed. In general, the Gaussian kernel indicates a gradual 279 

decay of spatial similarity with incremental distance, suggesting a predominant influence of 280 

proximal points. In contrast, the Exponential kernel denotes a more precipitous decrease in 281 

similarity as the distance increases, accentuating a distinct demarcation between proximate and 282 

remote points. Specifically, the Gaussian kernel we adopt is defined as follows (Jayasumana et al., 283 

2015; Piao and Park, 2023): 284 

𝑘(𝐱&, 𝐱%) = exp I−
𝑑*(𝐱&; 𝐱+)%

2𝜌% J	, (13) 285 

and the exponential kernel is introduced as: 286 

𝑘(𝐱&, 𝐱%) = exp I−
𝑑*(𝐱&; 𝐱+)

𝜌 J	, (14) 287 

where 𝜌 is the parameter that dictates the scale of correlation on the manifold, influencing the 288 

spatial reach over which data points are considered to be significantly correlated. 289 

The geodesic distance 𝑑*(𝐱&; 𝐱+) , derived from Equations (12), adheres to the essential metric 290 

properties: non-negativity ( 𝑑*(𝐱&; 𝐱+) ≥ 0 ), symmetry ( 𝑑*(𝐱&; 𝐱+) = 𝑑*(𝐱+; 𝐱&) ), and the 291 

triangle inequality (𝑑*(𝐱+; 𝐱&) + 𝑑*(𝐱&; 𝐱%) ≥ 𝑑*(𝐱+; 𝐱%)) for all points within manifold ℳ.  292 

This theoretical advancement in geostatistical analysis is a practical application of isometric 293 

embedding. By extending traditional 3D Euclidean spaces to include a fourth dimension, Ω, we 294 

enrich the spatial model to more accurately encapsulate critical variations. This aligns with the 295 
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principles of isometric embedding, ensuring spatial relationships are preserved, as per Curriero 296 

(2007). Though discussions by Feragen et al. (2015) highlight the careful consideration required 297 

in non-Euclidean spaces, our empirical validation within a scaled-down domain supports the 298 

positive definiteness of the covariance matrix derived from the exponential kernel. 299 

The validation process provides a preliminary basis for the applicability of a kernel to larger 300 

domains. However, it is acknowledged that this extrapolation must be approached with caution. 301 

Adequate verification as the domain size increases is essential to ensure that the scalability of the 302 

model is empirically supported. This level of scrutiny is critical to maintaining the reliability and 303 

computational practicability of geostatistical models, especially when considering the dynamic 304 

geological processes in subsurface media. 305 

3.4 Practical implications of manifold embedding for geological characterization 306 

In the established manifold embedding construct, as defined by Eq. (6) and Eq. (12), the gradients 307 

𝑑𝑓/𝑑𝑢, 𝑑𝑓/𝑑𝑣, and 𝑑𝑓/𝑑𝑤 maintain a vital connection with the metric tensor 𝑔. These gradients 308 

provide insights into the spatial orientation of geological structures at any specific point 309 

(𝑢,, 𝑣,, 𝑤,). In a spatially variable system guided by two-point statistics, properties demonstrate 310 

pronounced correlations in directions orthogonal to the gradient vector (𝑑𝑓/𝑑𝑢, 𝑑𝑓/𝑑𝑣, 𝑑𝑓/𝑑𝑤). 311 

This orthogonal characteristic suggests that geological features naturally extend in orientations 312 

where the rate of change of a property is minimized, aligning with the established principles of 313 

spatial correlation within the traditional geostatistical framework, and introducing the additional 314 

complexity of non-stationarity. 315 

The work of Park et al. (2024) provides an in-depth exploration of this relationship, offering a 316 

detailed exposition on the inherent connection between the directional orientation of spatial 317 
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correlations in geological features and the level-set curves that define the curvature of geological 318 

layers at any given horizon. This key concept forms the bedrock of the manifold embedding 319 

method, which significantly augments geostatistical analysis by incorporating the non-stationary 320 

behavior present within geological data. The present study takes these foundational ideas, 321 

originally confined to a 2D setting as presented by Park et al. (2024), and extends them into a 3D 322 

framework. This extension allows for the establishment of a direct correlation with the three-323 

dimensional geometric characteristics of geological features. 324 

To bring the theoretical constructs of manifold embedding into alignment with the practical aspects 325 

of geological surveying, one may consider the role of pole to plane measurements derived from 326 

strike and dip observations routinely recorded during fieldwork. These empirical measurements 327 

serve as real-world representations of the gradients discussed earlier. They are oriented 328 

perpendicularly to the strike and dip directions, analogous to the gradient vector (𝑑𝑓/𝑑𝑢, 𝑑𝑓/329 

𝑑𝑣, 𝑑𝑓/𝑑𝑤), which signifies the most substantial change in the value of a property. Consequently, 330 

the spatial correlation extending in the direction counter to this gradient vector becomes observable 331 

in the field as the orientation of the pole to the geological plane. This provides a pragmatic 332 

approach to deciphering subsurface structures. 333 

Incorporating the manifold embedding approach as detailed in Eqs. (7) and (12), it is crucial to 334 

acknowledge that while the gradients 𝑑𝑓/𝑑𝑢, 𝑑𝑓/𝑑𝑣, and 𝑑𝑓/𝑑𝑤, derived from the metric tensor 335 

𝑔 , impart directional insights at a given point (𝑢,, 𝑣,, 𝑤,)  on the manifold. However, these 336 

gradients do not inform the magnitude of spatial correlation, a limitation intrinsic to pole to plane 337 

measurements derived from strike and dip readings. Such measurements provide orientation data 338 

but fall short of quantifying the correlation scale. 339 
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 340 

Figure 2. Representation of a geological feature with pole to plane vectors indicating the 341 
orientation of spatial correlations at point (𝑢,, 𝑣,, 𝑤,), demonstrating the application of manifold 342 
embedding in modeling geological structures. 343 

Refer to Fig. 2, which illustrates a geological dome comprising multiple planar features amenable 344 

to pole to plane measurement. Data from borehole logs or 3D seismic profiles serve as exemplary 345 

3D representations of such features. The pole to plane vector, 𝐩 , at a measurement location 346 

(𝑢,, 𝑣,, 𝑤,) on a planar geologic feature 𝐿, is expressed as:  347 

𝐩-!,/!,0! = g−
𝑑𝐿
𝑑𝑢
h
-!,/!,0!

−
𝑑𝐿
𝑑𝑣
h
-!,/!,0!

−
𝑑𝐿
𝑑𝑤

h
-!,/!,0!

i
1

	 , (15) 348 

with its magnitude normalized to unity: 349 

jI
𝑑𝐿
𝑑𝑢
h
-!,/!,0!

J
%

+ I	
𝑑𝐿
𝑑𝑣
h
-!,/!,0!

J
%

+ I
𝑑𝐿
𝑑𝑤

h
-!,/!,0!

J
%

= 1	. (16) 350 

This vector 𝐩  encapsulates solely the orientation of the spatial correlation at the location of 351 

investigation, necessitating additional methods to ascertain the magnitude of the correlation scale. 352 
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Such an understanding is imperative for the precise modeling of geological non-stationarity and 353 

for the enhanced interpretation of subsurface structures as part of geostatistical analyses. 354 

The present state of methodology does not provide the means to directly quantify the magnitude 355 

of the correlation scale from pole to plane measurements. The absence of this metric poses 356 

significant challenges in the comprehensive characterization of spatial correlations within 357 

geological features. Preliminary insights suggest that the thickness of geological formations 358 

observed at boreholes might serve as a proxy for the correlation scale, offering a potential avenue 359 

for future research. This hypothesis posits that the extent of geological features could be indicative 360 

of the magnitude of spatial correlation. The pursuit of methodologies to substantiate the correlation 361 

scale from the observed thickness of geological features forms a promising direction for future 362 

studies, aimed at bridging the existing gap in geostatistical analysis. 363 

To provide a tangible understanding of how pole to plane information translates into estimations 364 

of geological properties, consider the following simplifying assumption: the magnitude of the 365 

correlation scale is held constant, and a scalar factor 𝛽 is introduced to link the manifold gradient 366 

vector (𝑑𝑓/𝑑𝑢, 𝑑𝑓/𝑑𝑣, 𝑑𝑓/𝑑𝑤)  with the pole to plane information (−𝑑𝐿/𝑑𝑢,−𝑑𝐿/𝑑𝑣,−𝑑𝐿/367 

𝑑𝑤): 368 

U𝑑𝑓
𝑑𝑢

𝑑𝑓
𝑑𝑣

𝑑𝑓
𝑑𝑤

V
1
= 𝛽 U𝜕𝐿

𝜕𝑢
𝜕𝐿
𝜕𝑣

𝜕𝐿
𝜕𝑤

V
1
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4. Results  371 

4.1 Incorporating pole-to-plane information in 3D estimation 372 

a. b. c. 

 

Figure 3. Cross-sectional representations of the pole to plane field in a hypothetical 3D domain at 373 
sections (𝑢 = 25, 𝑣 = 25, and 𝑤 = 25), visualizing the spatial derivatives 𝑑𝐿/𝑑𝑢, 𝑑𝐿/𝑑𝑣, and 374 
𝑑𝐿/𝑑𝑤, according to the defined functions and constraint of Eq. (16). 375 

 376 

In this hypothetical case, the property distributed across the 3D domain is defined as an abstract, 377 

unitless measure and estimated. Additionally, the spatial scales presented in this case are grid-378 

based coordinates devoid of physical units. This construct is devised for representing the 379 

developed manifold embedding techniques to focus the unique capability of the developed method 380 

and bears no direct correlation to any specific, quantifiable physical attributes.  381 

Figures 3a, 3b, and 3c demonstrate the incorporation of the pole-to-plane field to a hypothetical 382 

property distribution within a 3D domain. The 3D domain of consideration is consistently scaled 383 

between 1 and 50 along the 𝑤-, 𝑣-, and 𝑢-directions. These figures depict slices of 𝑑𝐿/𝑑𝑢, 𝑑𝐿/𝑑𝑣, 384 

and 𝑑𝐿/𝑑𝑤 at three central cross-sections (𝑢 = 25, 𝑣 = 25, and 𝑤 = 25), respectively. For the 385 

purpose of this hypothetical scenario, we define the following arbitrary functions at any given 386 

location (𝑢, 𝑣, 𝑤) in the domain as the the local pole-to-plane information:  387 
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𝑑𝐿
𝑑𝑢 = −

6𝜋
𝐶 sin q

2𝜋𝑢
50 r ,

𝑑𝐿
𝑑𝑣 = −

5
𝐶 	, and	

𝑑𝐿
𝑑𝑤 =

25
𝐶 	, 388 

where the normalizing constant 𝐶 = u𝑑𝐿/𝑑𝑢% + 𝑑𝐿/𝑑𝑣% + 𝑑𝐿/𝑑𝑤%	 following Eq. (16).  389 

To compose the geodesic kernel adopted in GPR that reflects the pole-to-plane information, 390 

Gaussian kernel of Eq. (13) was used. For the interested readers of the GPR estimation theory, 391 

refer Piao and Park (2023).  392 

For the estimation, a single conditioning data of 4.725 given at the location (28, 43, 21) was used. 393 

In addition, the scalar factor 𝛽 of Eq. (17) set to 10, and the correlation scale 𝜌 of Eq. (13) is 394 

postulated to be 120. For the numerical integration of Eq. (12), five abscissae were used 395 

considering the gently changing pole-to-plane fields (Fig. 3). In the estimation, small 396 

regularization factor of 1×10–2 was applied for the estimation stability.  397 

In the depicted scenario, Fig. 4 offers a visual representation of the regression outcomes, which 398 

resembles plunging geological fold often observed in a textbook. However, it is note worthy that 399 

such a shape cannot be estimated by conventional methods grounded in two-point statistics, and 400 

the unique capability of the developed method is evident. Figure 4a demonstrates a 3D rendering 401 

of the property distribution across the domain, with the remaining 1/8th of the volume 402 

(corresponding to from 1 to 25 along the 𝑢- and 𝑣-directions, and from 26 to 50 along 𝑤-direction) 403 

intentionally cropped off to show the internal estimation result. Figure 4b reveals the lower half of 404 

the domain along the 𝑤-axis, with arrows indicating the pole-to-plane direction at 𝑤 = 25. As 405 

shown in the figure, the pole-to-plane arrows are symmetrical with 𝑢 = 25 as the axis. Figures 4c 406 

to 4e, conversely, present 2D cross-sectional views at the constant planes of 𝑤 = 25, 𝑣 = 25, and 407 

𝑢 = 25, respectively, which resembles toy examples of plunging fold shown in the textbook. 408 
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These visualizations are pivotal for the explication of spatial variability and offer a quantitative 409 

portrayal of the theoretical constructs applied within a geological framework. The graphical 410 

representations serve as a bridge between the abstract manifold theory developed in the present 411 

study and the tangible geostatistical application when spatial non-stationarity exist in the spatial 412 

correlation structure, enhancing the interpretability of subsurface characterizations. 413 

a. b.  

  
 

c. d. e. 

 

Figure 4. Gaussian process regression visualizations of property distribution within a 3D domain, 414 
illustrating a plunging geological fold structure: (a) shows the complete property distribution, (b) 415 
represents the lower half of the domain along the 𝑤-axis with pole to plane arrows, and (c-e) 416 
display cross-sectional views at constant planes of 𝑤 = 25, 𝑣 = 25, and 𝑢 = 25, respectively. 417 
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In practice, as opposed to the idealized scenario previously discussed, pole-to-plane data are often 418 

gathered in a discrete manner, originating from limited field surveys or sparse sampling in 3D 419 

geophysical data (seismic profiles). This discrete nature necessitates the use of interpolation 420 

techniques to construct a continuous spatial representation throughout the 3D domain. However, 421 

it is crucial to acknowledge that the integrity of the original orientation data may be compromised 422 

if the data acquired from these measurements or samplings are not sufficiently dense. Furthermore, 423 

the interpolation process in 3D can be a computationally intensive task, introducing potential 424 

constraints on computational efficiency. Such considerations underscore the importance of striking 425 

an optimal balance between the resolution of data and the computational resources required in 426 

geostatistical modeling endeavors. 427 

4.2 Geostatistical simulations and the hydraulic estimates 428 

The developed manifold embedding method, diverging from conventional two-point statistics, 429 

adeptly visualizes geological dome shapes as illustrated in Fig. 5. This technique overcomes the 430 

computational complexities associated with geodesic distance calculations and transcends the 431 

limitations of traditional search algorithms in non-Euclidean spaces. With the impracticality of 432 

exhaustive sequential estimations across extensive domains, the algorithm employs GPR within a 433 

sequential simulation, adopting a random path to approach unexplored locations and weaving in 434 

randomness to capture spatial uncertainty. Upon estimating an initial subset of data, the GPR-435 

based approach continues into a deterministic estimation phase for the remaining locations, 436 

mirroring the process presented in Fig. 4. This strategy ensures a robust representation of 437 

uncertainty while managing the computational load inherent in large spatial domains. 438 
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For representing geological structures (i.e., geological dome), functions were defined for any point 439 

within the domain by coordinates (𝑢, 𝑣, 𝑤). The gradients of these functions are: 440 

𝑑𝐿
𝑑𝑢 = −3.75(𝑢 − 50) exp g

(𝑢 − 50)% + (𝑣 − 50)%

2 ⋅ 40% i 441 

	
𝑑𝐿
𝑑𝑣 = −3.75(𝑣 − 50) exp g

(𝑢 − 50)% + (𝑣 − 50)%

2 ⋅ 40% i 	 , and 442 

𝑑𝐿
𝑑𝑤 = −

40
𝐶  443 

Here, 𝐶	 is the normalization factor from the magnitude of these gradients, ensuring consistency 444 

with Equation (16). In Figs. 5a and 5b, the manifold gradient vectors, derived from Eq. (17), are 445 

combined with GPR using the geodesic Gaussian kernel from Eq. (13) for unconditional 446 

simulation. In contrast, Figs. 5c and 5d utilizes the exponential kernel from Eq. (14) in the 447 

simulation process. Both cases employ a scalar factor 𝛽 of 4 and a correlation scale 𝜌 of 12 for 448 

calculating geodesic distances as per Eq. (12) where regularization factor of 1×10–2 was used for 449 

the estimation (Piao and Park, 2023). For this development, 50 synthetic data points were 450 

generated unconditionally at random locations within the domain, assuming a normal distribution 451 

with mean 0 and variance 1. Subsequently, 450 locations were estimated stochastically in a 452 

sequential manner, while the remaining points were estimated deterministically. 453 

Figure 5 showcases the 3D distribution of a hypothetical property delineated using Gaussian and 454 

exponential kernels, consistently scaled between 1 and 100 along the 𝑤-, 𝑣-, and 𝑢-directions. The 455 

figures capture the spatial non-stationarity manifested through variable orientations and elongation 456 

patterns across different areas. Figs. 5a and 5c offer a comprehensive view of the domain, while 457 

Figs. 5b and 5d zoom into the lower half along the w-axis, highlighting the pole to plane vectors 458 

at  𝑤 = 50 with radial symmetry around the center axes at 𝑢 = 50 and 𝑣 = 50. Such directional 459 
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vectors, often derived from field surveys or 3D geophysical explorations, are interpolated to 460 

reconstruct geological features, with their availability directly influencing the precision of the 461 

geological characterization. The Gaussian kernel simulation outlines a mean of –0.042 and a 462 

standard deviation of 0.779, with the property values spanning from –3.663 to 3.443 and 463 

approximating a normal distribution. 464 

a. b. 

 
c. d. 

 

Figure 5. Comparative 3D distribution of a hypothetical property across a domain using Gaussian 465 
(a, b) and exponential (c, d) kernels, highlighting the impact of kernel choice on spatial 466 
heterogeneity and property distribution. In the figure, (a) and (c) show full domain distributions, 467 
while (b) and (d) display lower halves with pole to plane vectors at 𝑤 = 50. 468 

 469 
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Conversely, the results from the exponential kernel, depicted in Figs. 5c and 5d, present the entire 470 

domain and a sectional view, respectively. The exponential kernel yields a more condensed 471 

distribution, evidenced by a reduced standard deviation of 0.388, indicating a rapid decay of 472 

similarity with increased distance. This leads to more subdued structural features across the 473 

domain, with less extensive lengths and widths relative to those from the Gaussian simulation. 474 

Despite this, the mean property value stands at –0.041, with a range from –3.029 to 3.268, showing 475 

a distribution breadth akin to that of the Gaussian kernel. 476 

Assuming the hypothetical property illustrated in Fig. 5 represents log-transformed hydraulic 477 

conductivity values of a confined aquifer, we can deduce the groundwater head distribution and 478 

particle transport pathlines as demonstrated in Fig. 6. For this simulation, MODFLOW-2005 was 479 

employed, using 3D voxels measuring 100×100×10 meters (Δ𝑢 × Δ𝑣 × Δ𝑤) along the 𝑢-, 𝑣-, and 480 

𝑤-directions. The transmissivity (𝑇) within the domain was calculated by the exponentiation of 481 

the property values, expressed as 𝐓 = exp(2𝐳) , with 𝐳  representing the log-transformed 482 

transmissivity (Fig. 5). Consequently, the transmissivity range for the Gaussian kernel scenario 483 

spans from 0.0007 to 978.5 m2 day–1, while the exponential kernel yields a range from 0.0023 to 484 

689.5 m2 day–1. In this simplified flow model, specified head boundaries were set at 1100 m for 485 

𝑢 = 1  and 𝑢 = 100 , with no-flow boundaries at 𝑣 = 1  and 𝑣 = 100 . Additionally, a fully 486 

penetrating extraction well with a constant head of 1050 m was posited at the center of the domain 487 

at 𝑢 = 50 and 𝑣 = 50. 488 

Figures 6a and 6c depict the drawdown distributions resulting from a centrally located constant 489 

head well, modeled on the simulations using the Gaussian and exponential kernels, respectively. 490 

The drawdown contours in these figures are influenced by the permeability variations within the 491 
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aquifer, where they either conform to low permeability barriers or follow pathways of higher 492 

permeability. Consequently, the drawdown patterns display complex geometries that deviate from 493 

the symmetric ellipsoidal shapes typically observed in homogeneous aquifers. The complexity is 494 

particularly accentuated in Fig. 6a, which reflects the extensive and varied property structures 495 

associated with the Gaussian kernel as observed in Figs. 5a and 5b. Conversely, the drawdown in 496 

Fig. 6c, influenced by the exponential kernel, exhibits a more diffuse spread. 497 

Particle path streamlines provide a nuanced representation of subsurface heterogeneity, effectively 498 

illustrating how the flow interacts with varying permeability structures. In Figs. 6b and 6d, 499 

backward particle path streamlines emanate from the central wellbore, utilizing the specific 500 

discharge 𝐪 = 𝐓/Δ𝑤 × ∇𝐇 , where 𝐓  is transmissivity distribution, Δ𝑤  is the voxel thickness 501 

along the 𝑤-direction, and  ∇𝐇 represents the gradient of the hydraulic head distribution in Figs. 502 

6a and 6c. In the streamline estimations, 400 particles are randomly distributed within narrow 503 

interval of 𝑢 = 50 and 𝑣 = 50 along the whole thichness of the confined aquifer (from 0 to 100 504 

along  𝑤-axis) so that the particle starts from the central abstraction well into the domain. These 505 

streamlines converge upon the wellbore, predominantly influenced by dome-shaped permeability 506 

structures shown in Fig. 5. Consequently, they highlight a zone of influence extending from the 507 

wellbore to the lower portion of the constant head boundaries, suggesting that the water quality 508 

and quantity of the centrally located well are significantly impacted by inputs from the lower 509 

regions of the boundaries. The streamline dispersion contrast between Figs. 6a and 6c is notable; 510 

streamlines from the Gaussian kernel simulation exhibit a more eccentric pattern with a less 511 

dispersed distribution (Fig. 6b). In comparison, those from the exponential kernel display a 512 

relatively uniform dispersion (Fig. 6d). These disparities underscore how the inherent spatial 513 

characteristics modeled by each kernel can define the flow dynamics within the domain. 514 
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a. b. 

 
c. d. 

 

Figure 6. Hydraulic head distribution and particle pathlines in a confined aquifer modeled with 515 
MODFLOW-2005, illustrating the effects of hydraulic conductivity values derived from Gaussian 516 
(a, b) and exponential (c, d) kernels. In the figure, (a, c) show drawdown distributions around a 517 
central well, while (b, d) depict pathlines indicating the influence of permeability variations on 518 
flow patterns, with 400 particles starting near the wellbore and highlighting zones of influence and 519 
dispersion differences between kernels. 520 

From an environmental management standpoint, the intricacies of 3D flow patterns must be 521 

carefully considered when delineating a capture zone of a well, ensuring that the true nature of the 522 

hydraulic property distribution is incorporated, particularly when determining well locations and 523 

pumping rates. Similarly, the design of high-risk geological repositories, such as those for spent 524 

nuclear fuel or CO2 sequestration, requires a comprehensive understanding of these complex flow 525 
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dynamics to prevent adverse outcomes. In such a situation, the insentive of the developed method 526 

is evident and unique among the two-point statistics. Therefore, it is crucial to conduct an extensive 527 

assessment that not only contemplates all potential scenarios but also integrates advanced non-528 

stationary analytical techniques like those presented in this study, complementing conventional 529 

stationary geostatistical methods. 530 

5. Discussions and limitations 531 

In the realm of subsurface characterization, the discussion around manifold embedding within 532 

geostatistical models underscores its transformative impact despite certain limitations. While the 533 

method demands extensive computational resources due to the intricate calculations of geodesic 534 

distances, and thus poses scalability challenges, its precision in modeling spatial variability in 535 

subsurface media is unparalleled. As demonstrated by a hydraulic simulation in this study, without 536 

incorporation of actual spatial pattern of the hydraulic property distribution often showing non-537 

stationary characteristics, the simulated results and the analysis is mere a rough possibility having 538 

weak bonding to actual situation. 539 

One limitation of the method is the reliance on a considerable amount of secondary information, 540 

such as in-depth geophysical data and thorough field surveys. This requirement for rich directional 541 

data is critical for accurately depicting spatial correlations and the heterogeneity of subsurface 542 

structures, representing a significant advancement over conventional geostatistical models. 543 

The adaptability of traditional local search algorithms, which are integral for efficient conditioning 544 

in geostatistical models, also falls short in this context. These algorithms, traditionally developed 545 

around Euclidean distances, are not yet equipped to handle the complex geometry associated with 546 
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manifold embedding, suggesting an open field for future algorithmic development to better align 547 

with these advanced methodologies. 548 

However, the potential of the manifold embedding method comes to the fore in high-stakes or 549 

high-risk applications. In scenarios such as subsurface contaminant source and plume remediation 550 

design, geological repositories for spent fuel, CO2 storage reservoirs, and subsurface exploration 551 

for energy or mineral resources, the in-depth and accurate portrayal of local and global subsurface 552 

heterogeneity that can be obtained by the proposed method is crucial. For these applications, the 553 

computational intensity and requirement for extensive data are secondary considerations compared 554 

to the need for precision and detail in characterization. 555 

The proposed manifold embedding method offers a refined level of detail in the representation of 556 

subsurface characteristics, which is not commonly achievable with traditional two-point 557 

geostatistical approaches. This enhanced representational capacity is especially critical in 558 

applications where the spatial complexity of subsurface features has a direct impact on the 559 

phenomena of interest. While comparisons to conventional methods are necessary for a holistic 560 

understanding, it must be acknowledged that the advanced capabilities of manifold embedding in 561 

capturing detailed spatial variability set a new benchmark in the field. This is not to diminish the 562 

utility of traditional methods, which continue to offer value in many contexts, but rather to 563 

highlight the progression in methodological sophistication afforded by manifold embedding. Such 564 

advancements are crucial for advancing the accuracy and reliability of subsurface characterizations 565 

in complex geological scenarios. 566 

In summary, while manifold embedding presents challenges in terms of computational demand 567 

and data requirements other than the mathematical and computational complexity, its ability to 568 
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accurately capture non-stationary and complex spatial correlations makes it an invaluable tool in 569 

hydrogeology and geostatistics. Its application is particularly justified in contexts where the risks 570 

are high, and the need for precise and detailed subsurface characterization is paramount. The 571 

benefits of this method, in terms of the enhanced understanding and management of subsurface 572 

environments, significantly outweigh its limitations. 573 

6. Summary and Conclusions 574 

This study extends conventional geostatistics into the domain of manifold embedding, enabling 575 

3D subsurface characterization with a level of detail beyond the capabilities of traditional methods. 576 

Manifold embedding incorporates spatial variability through an additional dimension, capturing 577 

non-stationary properties essential for accurate geological modeling. 578 

Despite the computational intensity and substantial data requirements of the method, the precision 579 

of the spatial correlations it provides is vital for high-stakes applications like contaminant 580 

remediation and resource exploration. While current search algorithms are limited in addressing 581 

the complex geometry of the manifold, this presents an opportunity for developing advanced 582 

algorithms attuned to these sophisticated models. 583 

In summary, manifold embedding is a transformative approach in hydrogeology and geostatistics, 584 

offering significant advancements in understanding subsurface environments. Its comprehensive 585 

representation of spatial heterogeneity justifies the increased computational effort, setting a new 586 

standard for detailed and precise subsurface analysis. 587 
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