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Abstract

Seismicity at active volcanoes provides crucial constraints on the dynamics of magma systems and complex fault activation

processes preceding and during an eruption. We characterize time-dependent spectral features of volcanic earthquakes at Axial

Seamount with unsupervised machine learning methods, revealing mixed frequency signals that emerge from the continuous

waveforms about 15 hours before eruption onset. The events migrate along pre-existing fissures, suggesting that they represent

brittle crack opening driven by influx of magma or volatiles. These results demonstrate the power of novel machine learning

algorithms to characterize subtle changes in magmatic processes associated with eruption preparation, offering new possibilities

for forecasting Axial’s anticipated next eruption. This novel method is generalizable and can be employed to identify similar

precursory signals at other active volcanoes.
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Key Points:8

• Unsupervised learning separated regular earthquakes and precursory mixed fre-9

quency earthquakes (MFEs) based on different spectral patterns10

• The regular earthquakes have strong tidal modulation, corresponding to failures11

on the caldera ring faults triggered by tidal stress changes12

• The MFEs emerge 15 hours before eruption and migrate along pre-existing fissures,13

likely associated with eruption preparation processes14
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Abstract15

Seismicity at active volcanoes provides crucial constraints on the dynamics of magma16

systems and complex fault activation processes preceding and during an eruption. We17

characterize time-dependent spectral features of volcanic earthquakes at Axial Seamount18

with unsupervised machine learning methods, revealing mixed frequency signals that emerge19

from the continuous waveforms about 15 hours before eruption onset. The events mi-20

grate along pre-existing fissures, suggesting that they represent brittle crack opening driven21

by influx of magma or volatiles. These results demonstrate the power of novel machine22

learning algorithms to characterize subtle changes in magmatic processes associated with23

eruption preparation, offering new possibilities for forecasting Axial’s anticipated next24

eruption. This novel method is generalizable and can be employed to identify similar pre-25

cursory signals at other active volcanoes.26

Plain Language Summary27

Our research used observations of small earthquakes to understand the dynamic28

behaviors of magma and fault systems before and during a volcano eruption. Specifically,29

we used machine learning techniques to search for signature waveform patterns that may30

inform us of their associated physical processes. At Axial Seamount, an active under-31

water volcano, we discovered distinct patterns in earthquake signals preceding and dur-32

ing the 2015 eruption. Based on event spectral patterns, we identified signals of mixed-33

frequency earthquakes that emerge about 15 hours before the eruption starts and mi-34

grate along pre-existing eruptive fissures. The spectral pattern involves a mixture of low35

frequency energy following the first arrivals, which we interpret to represent opening of36

cracks and being filled with magma or gases. Our study demonstrates that we can use37

machine learning algorithms to detect subtle changes in volcanic signals and help us bet-38

ter understand the processes leading up to an eruption. This may help us in forecast-39

ing Axial’s upcoming eruption and can possibly be applied to other active volcanoes too.40

1 Introduction41

Seismic observations can provide important constraints on the structure of a vol-42

cano and its dynamic behavior in volcanic cycles (Wilcock et al., 2016; Wilding et al.,43

2023; Tan et al., 2019; Gudmundsson et al., 2016). Questions remain on how magma moves44

in the subsurface preceding an eruption and how soon before an eruption this process45
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begins. Recent advances in unsupervised machine learning methods (Holtzman et al.,46

2018; Cotton & Ellis, 2011; Holtzman et al., 2021; Sawi et al., 2022; Yoon et al., 2015;47

Seydoux et al., 2020; Jenkins et al., 2021) offer the opportunity to mine large waveform48

archives to find subtle differences in the spectral content of seismic signals. These dif-49

ferences can be interpreted with respect to changes in source characteristics and the volcano-50

tectonic processes that drive brittle failure, providing a time-dependent image of phys-51

ical processes that lead up to an eruption.52

Axial Seamount is a well-instrumented, active submarine volcano on the Juan de53

Fuca Ridge (Figure 1) with a long record of geophysical data that covers the last three54

eruptions in 1998, 2011, and 2015 (Wilcock et al., 2018, 2016; Nooner & Chadwick, 2016),55

including documentation of the eruptive fissures and lava flows of the recent 2015 erup-56

tion (Chadwick et al., 2016), and 3-D images of its shallow magma chamber (Arnulf et57

al., 2014). Five months before the most recent eruption in April 2015, seismicity at Ax-58

ial Seamount has been recorded by a local, cabled, 7-station ocean bottom seismome-59

ter (OBS) network operated in real-time by the Ocean Observatories Initiative (OOI)60

(Kelley et al., 2014). The OBS array recorded signals from a variety of sources (Wilcock61

et al., 2016). Here we apply unsupervised machine learning methods to the 4 months be-62

fore and during the 2015 eruption to find precursory signals with distinct frequency con-63

tent.64

2 Supervised and Unsupervised ML65

We combined supervised machine learning (ML) techniques (Zhu & Beroza, 2019;66

Zhu et al., 2022) with cross-correlation-based, high-resolution earthquake relative loca-67

tion methods (Waldhauser & Ellsworth, 2000; Waldhauser et al., 2020; Lomax et al., 2000,68

2009) to develop a catalog of 240,000 earthquakes (M = -1.74 to 3.45) for Axial Seamount69

from 2014 to 2021. The new earthquake catalog illuminates the caldera ring faults and70

the fissures that were active during the previous eruptions (Figure 1) (Wilcock et al., 2016;71

Waldhauser et al., 2020).72

We then apply an unsupervised machine learning method (SpecUFEx, Holtzman73

et al., 2018) to the 4 months of pre-eruption data to characterize spectral patterns in the74

waveforms. SpecUFEx is an unsupervised spectral feature extraction algorithm origi-75

nally developed using ML methods for audio pattern recognition (Cotton & Ellis, 2011)76
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Figure 1. Heatmap of earthquake density at Axial Seamount from Nov 2014 to Dec 2021.

Mixed-frequency earthquakes (MFEs) one day before the eruption are shown in light blue dots.

Also shown are the caldera rim (white solid line), the 1.5 km depth contour of the Axial magma

chamber (AMC) (dashed white line), eruptive fissures (orange lines), and lava flows (yellow lines)

of the 2015 eruption and the OBS array (white triangles). The heatmap shows the number of

earthquakes in each bin (bin size 25m × 25m).

and has been later adapted to characterize seismic waveforms of earthquakes (Holtzman77

et al., 2018), acoustic emissions (Holtzman et al., 2021), icequakes (Sawi et al., 2022),78

and repeating earthquakes (Sawi et al., 2023). It takes event spectrograms as input and79

applies nonnegative matrix factorization (NMF) and hidden Markov models (HMM) to80

reduce the dimensionality of the spectral features and remove features that are common81

to all signals. For each earthquake, we calculate a fingerprint matrix by counting the num-82

ber of state transitions in the state sequence matrix from the HMM output. The finger-83

prints are condensed representations of the original earthquake spectrograms while still84

keeping their time-dependent spectral information. We further compress the fingerprints85

by principal component analysis (PCA) and finally apply K-means clustering to iden-86

tify earthquake clusters that have common spectral features (Holtzman et al., 2018). We87

focus our analysis on the 4 months of seismicity leading up to the eruption on April 24,88
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2015. We use waveform data from broadband OBS station AXCC1 and learned the fea-89

ture dictionary on a representative subset of ∼9,000 events in the week before the erup-90

tion. We then use the learned dictionary to calculate features of the ∼4 months of seis-91

micity starting from the beginning of 2015 until the eruption onset.92

3 Spectral differences93

K-means clustering of the fingerprints separates the events into two main groups94

with small but distinct differences in spectral features in the waveforms between the groups95

(Figure 2A and 2D). To investigate which characteristic spectral features might contribute96

to the separation of the two earthquake clusters, we examine the representative patterns97

of the condensed fingerprints. By stacking the top 100 representative fingerprints in each98

cluster (Figure 2B and 2E), we identify the active states (bright spots in stacked finger-99

prints). These active states are the characteristic features that define the spectral fea-100

ture space. We project these characteristic features in the fingerprints back onto the HMM101

and NMF mappings (emissions matrix in Figure S3A and spectral dictionary in Figure102

S3B) to solve for their frequency-dependent sensitivity kernel (Figure S3C). Comparing103

the frequency dependency of the characteristic features in the two clusters, we find that104

one cluster has events with lower frequency content coming in shortly (∼1 s) after the105

P-arrival. Thus we define the earthquakes in this cluster as mixed-frequency earthquakes106

(MFEs) and the events in the other cluster as regular earthquakes (EQs). The spectral107

differences can also be seen in the stacked spectrograms (Figure 2C and 2F) of the top108

100 representative events and their waveforms (Figure 2A and 2D).109

4 Spatio-temporal distribution110

The separation based on spectral characteristics reveals differences in the spatiotem-111

poral evolution of the earthquakes in the two groups (Figure 3, Movie S1). Approximately112

24 hours prior to the eruption, the MFEs start lighting up the eastern margin of the caldera113

along the southern segment of the eruptive fissures (Figure 1). These MFEs locate close114

to the roof of the Axial magma chamber (∼1.5 km; 15). ∼15 hours before the eruption,115

a distinct burst of MFEs migrates from the caldera center northward along the eastern116

margin of the caldera at a speed of 4.4 km/h (arrow in Figure 3B). The peak hourly mo-117

ment release of the MFEs during that burst is about two orders of magnitude above back-118

ground, and 40 times that released by all regular earthquakes in the same period. Af-119
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Figure 2. Spectral characteristics of events in the two main clusters. Waveform examples of

one representative event in each cluster (A and D), stacked fingerprints (B and E), and stacked

spectrograms (C and F) using 100 events in each cluster. The stacked fingerprints and stacked

spectrograms are color scaled by their maximum value. 1○ and 2○ in F mark the impulsive P

arrival and the low-frequency tail.

ter this initial burst, the MFE activity subsides for a couple of hours and then, about120

3.5 hours before the eruption, a second burst of MFEs occurred, reversing the path of121

the previous burst and migrating southward (at a speed of 1.1 km/hr) and eventually122

upward towards the location where the lava first erupted on the seafloor (Wilcock et al.,123

2016) (Figure 3B). After that point and for the next hour, the MFEs spread out across124

the entire fault system during the course of the eruption. The second MFE burst is char-125

acterized by a steep increase in seismic moment release starting about 4 hours and peak-126

ing 1 hour before the eruption onset. Peak hourly moment release is about 30 times that127

of the first burst, while the moment release from regular earthquakes leading up to the128

eruption is comparably insignificant. Once the eruption starts, MFE moment release con-129

tinuously decreases, while that from regular earthquakes increases.130

Different from the MFEs, the regular earthquakes locate primarily in the south-131

ern part of the caldera (Figure S5). They occur on both the eastern and western walls132

of the ring fault, which suggests that the spectral fingerprints are not sensitive to event133

location relative to the seismic station. The regular earthquake cluster also includes events134

during the pre-eruption inflation period as well as the rapid deflation period after the135

eruption started, that is, when the fault slip motion on the caldera ring faults reversed136

–6–
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Figure 3. Pre-eruption temporal evolution of the two spectral clusters. The MFEs (top pan-

els) and earthquakes (bottom panels) spatiotemporal distribution in ∼1 week (A and C), ∼2 days

(B and D), and 8 hours (E and F) time scale. The top and bottom panels are plotted with the

same time axis for MFEs (A, B, and E) and earthquakes (C, D, and F) activity. The red and

blue curves (A - D) are hourly seismicity rates. Grey curves (A - F) show volcano inflation repre-

sented by detided differential uplift measurement between two bottom pressure recorders (BPRs)

at sites MJ03E and MJ03F (Figure 1)(Chadwick et al., 2022). Dashed red and blue curves (E

and F) show the binned seismic moment of the MFEs and earthquakes during the eruption. The

dashed black vertical line (A - F) marks the time of eruption onset at 8:01 when the lava first

reaches the seafloor(Wilcock et al., 2016). Arrows in (B) point to northward and southward

migration prior to the eruption. The dashed gray vertical line (E and F) marks the time of maxi-

mum inflation at 7:03 (E and F).
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from normal faulting to thrust faulting (Wilcock et al., 2016). This suggests that the fin-137

gerprints are also not sensitive to the reversal of fault slip motion.138

Tidal triggering of earthquakes is observed at Axial seamount, especially prior to139

the eruption (Wilcock et al., 2016; Scholz et al., 2019; Tan et al., 2019; Tolstoy et al.,140

2002). Here, we compare the temporal correlation between the two spectral clusters we141

identified and the ocean tide to understand their driving mechanisms. We find that the142

rate of regular earthquakes closely follows the tidal cycle over the observation period (Fig-143

ure 3D, Figure S6). Given their locations and the temporal correlation with the tides,144

we infer that these earthquakes generally occur on critically stressed ring faults and are145

triggered by small stress changes. The MFE cluster, during the same period, shows rather146

sparsely distributed bursts of events (Figure S4A) which mostly lie along the eastern edge147

of the caldera to the north (Figure S7). Among these bursts, we do not observe a clear148

migration pattern over long distances (Figure S7) as seen in the two very active bursts149

that relate to the north-south migration ∼15 hours and ∼3.5 hours before the eruption150

onset (Figure 3B). The timings of the MFE bursts correlate with the tides in many cases151

(Figure S4), but they locate further to the north compared with the tidal driven earth-152

quakes (Figure 3). We do not observe systematic offset between the timing of the MFE153

bursts and the peak of regular earthquakes. This suggests that the underlying driver for154

the two different types of earthquakes may be the same (e.g., magma pressure), or that155

the drivers respond to the tidal forcing in a similar way.156

5 Possible mechanisms157

Two possible explanations of the spectral feature difference are path effect and source158

effect. Spatially variant attenuation patterns, especially in local complex volcanic struc-159

tures, may cause differences in frequency content if observed along different paths. How-160

ever, we find that the same clustering analysis carried out at other stations (AXAS1, AXEC2)161

in the OBS network gives similar groupings (Supplementary materials, Figure S2). If path162

effects were causing the clustering, we would expect different event groupings at stations163

that sample different source-receiver paths. It is also possible that attenuation or veloc-164

ity changes occur in a region that is local to the source. However, we find that closely165

located and timed events from the two groups still show different spectral behavior at166

a common station. Therefore, we infer that the spectral difference between the two groups167

is likely caused by differences in the source mechanisms.168

–8–
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There are many possibilities that can explain source differences, including differ-169

ences in fault stress state, faulting mechanisms, or the effects of fluid. Wilcock et al. (2016)170

detected southward migration of pre-eruption seismicity along the east wall in the hours171

before the eruption and associated it with southward dike propagation and opening of172

eruptive fissures. It is possible that the MFEs are tracking magma flows into the open-173

ing cracks and thus include non-double-couple components from the crack opening mode174

in contrast to simple shear failures of earthquakes on the ring faults (Foulger et al., 2004).175

In this process, the low-frequency content in the MFE waveforms might be generated176

by magma or volatiles filling the crack, as observed in studies at other regions (Chouet177

& Matoza, 2013; Cui et al., 2021; Woods et al., 2018; Song et al., 2023).178

When comparing the moment release of MFEs with available differential elevation179

data (Nooner & Chadwick, 2016) we find that the peak moment coincides with the peak180

in inflation about one hour before the eruption (Figure 3H). Moment release for the earth-181

quakes, on the other hand, is highest during the time of rapid deflation after lava erupted.182

This suggests the MFEs are associated with magmatic processes during the pre-eruption183

inflation process, while the regular earthquakes are triggered by the stress change on the184

ring faults as the magma chamber deflates. In the pre-eruption period, the MFEs in the185

north also correlate with the region of maximum uplift observed in deformation measure-186

ment (Nooner & Chadwick, 2016), illuminating the segment of the eruptive fissure where187

the following eruption started.188

Given that the MFEs locate along the eruptive fissures near the roof of the magma189

chamber and the documented high CO2 content at the Axial seamount (Dixon et al.,190

1988), the MFEs are likely caused by brittle crack opening and subsequent movement191

of magma and/or volatiles into the zones of weakness created by increasing magma pres-192

sure. In fact, the observation that they distribute widely in space and time suggests they193

are more likely related to CO2 release as opposed to magma movement. Because MFEs194

are detected for months prior to the eruption, it implies there is an extended period of195

magma intrusion or volatile release possibly associated with inflating sills. However, the196

behavior of early MFE bursts suggests that this magmatic process may occur at a small197

scale at depth so that they do not show a clear migration pattern along the dike, con-198

sistent with the presence of volatiles. As the magma pressure builds up, the dike finally199

forms along the weakened zones and initiates the southward propagation, which is ob-200

–9–
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served as intense MFE activity starting ∼3.5 hours before the eruption. Figure 4 shows201

a cartoon summarizing the physical processes and associated seismicity at Axial.202

Figure 4. Cartoon summarizing observations. Tidal-driven earthquakes occur on caldera ring

faults while the MFEs track movement of volatiles and magma prior to the eruption. Inset shows

possible mechanisms of the MFEs. 1○ and 2○ correspond to the crack opening (brittle onset in

Figure 2F) and volatile/magma influx (low-frequency tail in Figure 2F) processes.

Short-term volcano eruption forecasting has long been a challenging task due to203

the lack of clear and reliable precursory signals. Common prediction metrics include long-204

term deformation measurement, changes in tidal triggering, and short-term seismicity205

increase (Wilcock et al., 2018, 2016; Nooner & Chadwick, 2016). In this study, unsuper-206

vised ML revealed the emergence of a precursory signal defined as MFEs. These signals207

differ substantially from volcano-tectonic (VT; White and McCausland (2016)) or long-208

period (LP; Woods et al. (2018); Song et al. (2023)) earthquakes or tremors (Dempsey209

et al., 2020), as they contain both short and long period waves. Although they may re-210

semble some of the previously reported hybrid frequency earthquakes (HFE; Harrington211

and Brodsky (2007); Yu et al. (2021); Coté et al. (2010); Cui et al. (2021)), our obser-212

vations suggest that their mechanism might be different. Interpretations of previously213

observed hybrid earthquakes include path effects caused by strong attenuation or low-214

velocity layers, and source effects due to low stress drop, slow rupture speed, or fluid res-215

onance. Our analysis indicates that the characteristic spectral features of the MFEs likely216

originate from source effects rather than path effects, making them a potential precur-217
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sory signal to track magma movement or volatile release at depth. This precursory MFE218

activity intensifies ∼15 hours before the eruption and peaks ∼1 hour before the magma219

reaches the seafloor, which offers an opportunity to improve short-term eruption fore-220

casting on time scales of hours to days. With the capability to identify such precursory221

signal in real time, we can now monitor these signals as Axial is preparing for its next222

eruption to occur within the 2025-2030 time period (Chadwick et al., 2022). More im-223

portantly, the novel use of unsupervised machine learning opens up a new opportunity224

to investigate whether such precursory seismic signals exist at other active volcanoes.225
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Holtzman, B., Paté, A., Paisley, J., Waldhauser, F., & Repetto, D. (2018). Machine283

learning reveals cyclic changes in seismic source spectra in geysers geothermal284

field. Science advances, 4 (5), eaao2929.285

Jenkins, W. F., Gerstoft, P., Bianco, M. J., & Bromirski, P. D. (2021). Unsupervised286

deep clustering of seismic data: Monitoring the ross ice shelf, antarctica. Jour-287

nal of Geophysical Research: Solid Earth, 126 (9), e2021JB021716.288

Kelley, D. S., Delaney, J. R., & Juniper, S. K. (2014). Establishing a new era of289

submarine volcanic observatories: Cabling axial seamount and the endeavour290

segment of the juan de fuca ridge. Marine Geology , 352 , 426–450.291

Lomax, A., Michelini, A., Curtis, A., & Meyers, R. (2009). Earthquake location,292

direct, global-search methods. Encyclopedia of complexity and systems science,293

5 , 2449–2473.294

Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic earth-295

quake location in 3d and layered models: Introduction of a metropolis-gibbs296

method and comparison with linear locations. Advances in seismic event297

location, 101–134.298

Nooner, S. L., & Chadwick, W. (2016). Inflation-predictable behavior and co-299

eruption deformation at axial seamount. Science, 354 (6318), 1399–1403.300

Sawi, T., Holtzman, B., Walter, F., & Paisley, J. (2022). An unsupervised machine-301

learning approach to understanding seismicity at an alpine glacier. Journal of302

Geophysical Research: Earth Surface, e2022JF006909.303

Sawi, T., Waldhauser, F., Holtzman, B. K., & Groebner, N. (2023). Detecting304

repeating earthquakes on the san andreas fault with unsupervised machine305

learning of spectrograms. The Seismic Record , 3 (4), 376–384.306

Schaff, D. P., & Waldhauser, F. (2005). Waveform cross-correlation-based differen-307

tial travel-time measurements at the northern california seismic network. Bul-308

letin of the Seismological Society of America, 95 (6), 2446–2461.309

Scholz, C. H., Tan, Y. J., & Albino, F. (2019). The mechanism of tidal triggering of310

earthquakes at mid-ocean ridges. Nature communications, 10 (1), 2526.311

Seydoux, L., Balestriero, R., Poli, P., Hoop, M. d., Campillo, M., & Baraniuk, R.312

(2020). Clustering earthquake signals and background noises in continuous313

–13–



manuscript submitted to Geophysical Research Letters

seismic data with unsupervised deep learning. Nature communications, 11 (1),314

3972.315

Song, Z., Tan, Y. J., & Roman, D. C. (2023). Deep long-period earthquakes at316

akutan volcano from 2005 to 2017 better track magma influxes compared317

to volcano-tectonic earthquakes. Geophysical Research Letters, 50 (10),318

e2022GL101987.319

Tan, Y. J., Waldhauser, F., Tolstoy, M., & Wilcock, W. S. (2019). Axial seamount:320

Periodic tidal loading reveals stress dependence of the earthquake size distribu-321

tion (b value). Earth and Planetary Science Letters, 512 , 39–45.322

Tolstoy, M., Vernon, F. L., Orcutt, J. A., & Wyatt, F. K. (2002). Breathing of the323

seafloor: Tidal correlations of seismicity at axial volcano. Geology , 30 (6), 503–324

506.325

Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location326

algorithm: Method and application to the northern hayward fault, california.327

Bulletin of the seismological society of America, 90 (6), 1353–1368.328

Waldhauser, F., Wilcock, W., Tolstoy, M., Baillard, C., Tan, Y., & Schaff, D. (2020).329

Precision seismic monitoring and analysis at axial seamount using a real-time330

double-difference system. Journal of Geophysical Research: Solid Earth,331

125 (5), e2019JB018796.332

White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for333

estimating intrusive volumes and forecasting eruptions. Journal of Volcanology334

and Geothermal Research, 309 , 139–155.335

Wilcock, W. S., Dziak, R. P., Tolstoy, M., Chadwick Jr, W. W., Nooner, S. L.,336

Bohnenstiehl, D. R., . . . others (2018). The recent volcanic history of ax-337

ial seamount: Geophysical insights into past eruption dynamics with an eye338

toward enhanced observations of future eruptions. Oceanography , 31 (1), 114–339

123.340

Wilcock, W. S., Tolstoy, M., Waldhauser, F., Garcia, C., Tan, Y. J., Bohnenstiehl,341

D. R., . . . Mann, M. E. (2016). Seismic constraints on caldera dynamics from342

the 2015 axial seamount eruption. Science, 354 (6318), 1395–1399.343

Wilding, J. D., Zhu, W., Ross, Z. E., & Jackson, J. M. (2023). The magmatic web344

beneath hawai ‘i. Science, 379 (6631), 462–468.345

Woods, J., Donaldson, C., White, R. S., Caudron, C., Brandsdóttir, B., Hudson,346
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Key Points:8

• Unsupervised learning separated regular earthquakes and precursory mixed fre-9

quency earthquakes (MFEs) based on different spectral patterns10

• The regular earthquakes have strong tidal modulation, corresponding to failures11

on the caldera ring faults triggered by tidal stress changes12

• The MFEs emerge 15 hours before eruption and migrate along pre-existing fissures,13

likely associated with eruption preparation processes14
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Abstract15

Seismicity at active volcanoes provides crucial constraints on the dynamics of magma16

systems and complex fault activation processes preceding and during an eruption. We17

characterize time-dependent spectral features of volcanic earthquakes at Axial Seamount18

with unsupervised machine learning methods, revealing mixed frequency signals that emerge19

from the continuous waveforms about 15 hours before eruption onset. The events mi-20

grate along pre-existing fissures, suggesting that they represent brittle crack opening driven21

by influx of magma or volatiles. These results demonstrate the power of novel machine22

learning algorithms to characterize subtle changes in magmatic processes associated with23

eruption preparation, offering new possibilities for forecasting Axial’s anticipated next24

eruption. This novel method is generalizable and can be employed to identify similar pre-25

cursory signals at other active volcanoes.26

Plain Language Summary27

Our research used observations of small earthquakes to understand the dynamic28

behaviors of magma and fault systems before and during a volcano eruption. Specifically,29

we used machine learning techniques to search for signature waveform patterns that may30

inform us of their associated physical processes. At Axial Seamount, an active under-31

water volcano, we discovered distinct patterns in earthquake signals preceding and dur-32

ing the 2015 eruption. Based on event spectral patterns, we identified signals of mixed-33

frequency earthquakes that emerge about 15 hours before the eruption starts and mi-34

grate along pre-existing eruptive fissures. The spectral pattern involves a mixture of low35

frequency energy following the first arrivals, which we interpret to represent opening of36

cracks and being filled with magma or gases. Our study demonstrates that we can use37

machine learning algorithms to detect subtle changes in volcanic signals and help us bet-38

ter understand the processes leading up to an eruption. This may help us in forecast-39

ing Axial’s upcoming eruption and can possibly be applied to other active volcanoes too.40

1 Introduction41

Seismic observations can provide important constraints on the structure of a vol-42

cano and its dynamic behavior in volcanic cycles (Wilcock et al., 2016; Wilding et al.,43

2023; Tan et al., 2019; Gudmundsson et al., 2016). Questions remain on how magma moves44

in the subsurface preceding an eruption and how soon before an eruption this process45
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begins. Recent advances in unsupervised machine learning methods (Holtzman et al.,46

2018; Cotton & Ellis, 2011; Holtzman et al., 2021; Sawi et al., 2022; Yoon et al., 2015;47

Seydoux et al., 2020; Jenkins et al., 2021) offer the opportunity to mine large waveform48

archives to find subtle differences in the spectral content of seismic signals. These dif-49

ferences can be interpreted with respect to changes in source characteristics and the volcano-50

tectonic processes that drive brittle failure, providing a time-dependent image of phys-51

ical processes that lead up to an eruption.52

Axial Seamount is a well-instrumented, active submarine volcano on the Juan de53

Fuca Ridge (Figure 1) with a long record of geophysical data that covers the last three54

eruptions in 1998, 2011, and 2015 (Wilcock et al., 2018, 2016; Nooner & Chadwick, 2016),55

including documentation of the eruptive fissures and lava flows of the recent 2015 erup-56

tion (Chadwick et al., 2016), and 3-D images of its shallow magma chamber (Arnulf et57

al., 2014). Five months before the most recent eruption in April 2015, seismicity at Ax-58

ial Seamount has been recorded by a local, cabled, 7-station ocean bottom seismome-59

ter (OBS) network operated in real-time by the Ocean Observatories Initiative (OOI)60

(Kelley et al., 2014). The OBS array recorded signals from a variety of sources (Wilcock61

et al., 2016). Here we apply unsupervised machine learning methods to the 4 months be-62

fore and during the 2015 eruption to find precursory signals with distinct frequency con-63

tent.64

2 Supervised and Unsupervised ML65

We combined supervised machine learning (ML) techniques (Zhu & Beroza, 2019;66

Zhu et al., 2022) with cross-correlation-based, high-resolution earthquake relative loca-67

tion methods (Waldhauser & Ellsworth, 2000; Waldhauser et al., 2020; Lomax et al., 2000,68

2009) to develop a catalog of 240,000 earthquakes (M = -1.74 to 3.45) for Axial Seamount69

from 2014 to 2021. The new earthquake catalog illuminates the caldera ring faults and70

the fissures that were active during the previous eruptions (Figure 1) (Wilcock et al., 2016;71

Waldhauser et al., 2020).72

We then apply an unsupervised machine learning method (SpecUFEx, Holtzman73

et al., 2018) to the 4 months of pre-eruption data to characterize spectral patterns in the74

waveforms. SpecUFEx is an unsupervised spectral feature extraction algorithm origi-75

nally developed using ML methods for audio pattern recognition (Cotton & Ellis, 2011)76
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Figure 1. Heatmap of earthquake density at Axial Seamount from Nov 2014 to Dec 2021.

Mixed-frequency earthquakes (MFEs) one day before the eruption are shown in light blue dots.

Also shown are the caldera rim (white solid line), the 1.5 km depth contour of the Axial magma

chamber (AMC) (dashed white line), eruptive fissures (orange lines), and lava flows (yellow lines)

of the 2015 eruption and the OBS array (white triangles). The heatmap shows the number of

earthquakes in each bin (bin size 25m × 25m).

and has been later adapted to characterize seismic waveforms of earthquakes (Holtzman77

et al., 2018), acoustic emissions (Holtzman et al., 2021), icequakes (Sawi et al., 2022),78

and repeating earthquakes (Sawi et al., 2023). It takes event spectrograms as input and79

applies nonnegative matrix factorization (NMF) and hidden Markov models (HMM) to80

reduce the dimensionality of the spectral features and remove features that are common81

to all signals. For each earthquake, we calculate a fingerprint matrix by counting the num-82

ber of state transitions in the state sequence matrix from the HMM output. The finger-83

prints are condensed representations of the original earthquake spectrograms while still84

keeping their time-dependent spectral information. We further compress the fingerprints85

by principal component analysis (PCA) and finally apply K-means clustering to iden-86

tify earthquake clusters that have common spectral features (Holtzman et al., 2018). We87

focus our analysis on the 4 months of seismicity leading up to the eruption on April 24,88
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2015. We use waveform data from broadband OBS station AXCC1 and learned the fea-89

ture dictionary on a representative subset of ∼9,000 events in the week before the erup-90

tion. We then use the learned dictionary to calculate features of the ∼4 months of seis-91

micity starting from the beginning of 2015 until the eruption onset.92

3 Spectral differences93

K-means clustering of the fingerprints separates the events into two main groups94

with small but distinct differences in spectral features in the waveforms between the groups95

(Figure 2A and 2D). To investigate which characteristic spectral features might contribute96

to the separation of the two earthquake clusters, we examine the representative patterns97

of the condensed fingerprints. By stacking the top 100 representative fingerprints in each98

cluster (Figure 2B and 2E), we identify the active states (bright spots in stacked finger-99

prints). These active states are the characteristic features that define the spectral fea-100

ture space. We project these characteristic features in the fingerprints back onto the HMM101

and NMF mappings (emissions matrix in Figure S3A and spectral dictionary in Figure102

S3B) to solve for their frequency-dependent sensitivity kernel (Figure S3C). Comparing103

the frequency dependency of the characteristic features in the two clusters, we find that104

one cluster has events with lower frequency content coming in shortly (∼1 s) after the105

P-arrival. Thus we define the earthquakes in this cluster as mixed-frequency earthquakes106

(MFEs) and the events in the other cluster as regular earthquakes (EQs). The spectral107

differences can also be seen in the stacked spectrograms (Figure 2C and 2F) of the top108

100 representative events and their waveforms (Figure 2A and 2D).109

4 Spatio-temporal distribution110

The separation based on spectral characteristics reveals differences in the spatiotem-111

poral evolution of the earthquakes in the two groups (Figure 3, Movie S1). Approximately112

24 hours prior to the eruption, the MFEs start lighting up the eastern margin of the caldera113

along the southern segment of the eruptive fissures (Figure 1). These MFEs locate close114

to the roof of the Axial magma chamber (∼1.5 km; 15). ∼15 hours before the eruption,115

a distinct burst of MFEs migrates from the caldera center northward along the eastern116

margin of the caldera at a speed of 4.4 km/h (arrow in Figure 3B). The peak hourly mo-117

ment release of the MFEs during that burst is about two orders of magnitude above back-118

ground, and 40 times that released by all regular earthquakes in the same period. Af-119
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Figure 2. Spectral characteristics of events in the two main clusters. Waveform examples of

one representative event in each cluster (A and D), stacked fingerprints (B and E), and stacked

spectrograms (C and F) using 100 events in each cluster. The stacked fingerprints and stacked

spectrograms are color scaled by their maximum value. 1○ and 2○ in F mark the impulsive P

arrival and the low-frequency tail.

ter this initial burst, the MFE activity subsides for a couple of hours and then, about120

3.5 hours before the eruption, a second burst of MFEs occurred, reversing the path of121

the previous burst and migrating southward (at a speed of 1.1 km/hr) and eventually122

upward towards the location where the lava first erupted on the seafloor (Wilcock et al.,123

2016) (Figure 3B). After that point and for the next hour, the MFEs spread out across124

the entire fault system during the course of the eruption. The second MFE burst is char-125

acterized by a steep increase in seismic moment release starting about 4 hours and peak-126

ing 1 hour before the eruption onset. Peak hourly moment release is about 30 times that127

of the first burst, while the moment release from regular earthquakes leading up to the128

eruption is comparably insignificant. Once the eruption starts, MFE moment release con-129

tinuously decreases, while that from regular earthquakes increases.130

Different from the MFEs, the regular earthquakes locate primarily in the south-131

ern part of the caldera (Figure S5). They occur on both the eastern and western walls132

of the ring fault, which suggests that the spectral fingerprints are not sensitive to event133

location relative to the seismic station. The regular earthquake cluster also includes events134

during the pre-eruption inflation period as well as the rapid deflation period after the135

eruption started, that is, when the fault slip motion on the caldera ring faults reversed136
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Figure 3. Pre-eruption temporal evolution of the two spectral clusters. The MFEs (top pan-

els) and earthquakes (bottom panels) spatiotemporal distribution in ∼1 week (A and C), ∼2 days

(B and D), and 8 hours (E and F) time scale. The top and bottom panels are plotted with the

same time axis for MFEs (A, B, and E) and earthquakes (C, D, and F) activity. The red and

blue curves (A - D) are hourly seismicity rates. Grey curves (A - F) show volcano inflation repre-

sented by detided differential uplift measurement between two bottom pressure recorders (BPRs)

at sites MJ03E and MJ03F (Figure 1)(Chadwick et al., 2022). Dashed red and blue curves (E

and F) show the binned seismic moment of the MFEs and earthquakes during the eruption. The

dashed black vertical line (A - F) marks the time of eruption onset at 8:01 when the lava first

reaches the seafloor(Wilcock et al., 2016). Arrows in (B) point to northward and southward

migration prior to the eruption. The dashed gray vertical line (E and F) marks the time of maxi-

mum inflation at 7:03 (E and F).
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from normal faulting to thrust faulting (Wilcock et al., 2016). This suggests that the fin-137

gerprints are also not sensitive to the reversal of fault slip motion.138

Tidal triggering of earthquakes is observed at Axial seamount, especially prior to139

the eruption (Wilcock et al., 2016; Scholz et al., 2019; Tan et al., 2019; Tolstoy et al.,140

2002). Here, we compare the temporal correlation between the two spectral clusters we141

identified and the ocean tide to understand their driving mechanisms. We find that the142

rate of regular earthquakes closely follows the tidal cycle over the observation period (Fig-143

ure 3D, Figure S6). Given their locations and the temporal correlation with the tides,144

we infer that these earthquakes generally occur on critically stressed ring faults and are145

triggered by small stress changes. The MFE cluster, during the same period, shows rather146

sparsely distributed bursts of events (Figure S4A) which mostly lie along the eastern edge147

of the caldera to the north (Figure S7). Among these bursts, we do not observe a clear148

migration pattern over long distances (Figure S7) as seen in the two very active bursts149

that relate to the north-south migration ∼15 hours and ∼3.5 hours before the eruption150

onset (Figure 3B). The timings of the MFE bursts correlate with the tides in many cases151

(Figure S4), but they locate further to the north compared with the tidal driven earth-152

quakes (Figure 3). We do not observe systematic offset between the timing of the MFE153

bursts and the peak of regular earthquakes. This suggests that the underlying driver for154

the two different types of earthquakes may be the same (e.g., magma pressure), or that155

the drivers respond to the tidal forcing in a similar way.156

5 Possible mechanisms157

Two possible explanations of the spectral feature difference are path effect and source158

effect. Spatially variant attenuation patterns, especially in local complex volcanic struc-159

tures, may cause differences in frequency content if observed along different paths. How-160

ever, we find that the same clustering analysis carried out at other stations (AXAS1, AXEC2)161

in the OBS network gives similar groupings (Supplementary materials, Figure S2). If path162

effects were causing the clustering, we would expect different event groupings at stations163

that sample different source-receiver paths. It is also possible that attenuation or veloc-164

ity changes occur in a region that is local to the source. However, we find that closely165

located and timed events from the two groups still show different spectral behavior at166

a common station. Therefore, we infer that the spectral difference between the two groups167

is likely caused by differences in the source mechanisms.168
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There are many possibilities that can explain source differences, including differ-169

ences in fault stress state, faulting mechanisms, or the effects of fluid. Wilcock et al. (2016)170

detected southward migration of pre-eruption seismicity along the east wall in the hours171

before the eruption and associated it with southward dike propagation and opening of172

eruptive fissures. It is possible that the MFEs are tracking magma flows into the open-173

ing cracks and thus include non-double-couple components from the crack opening mode174

in contrast to simple shear failures of earthquakes on the ring faults (Foulger et al., 2004).175

In this process, the low-frequency content in the MFE waveforms might be generated176

by magma or volatiles filling the crack, as observed in studies at other regions (Chouet177

& Matoza, 2013; Cui et al., 2021; Woods et al., 2018; Song et al., 2023).178

When comparing the moment release of MFEs with available differential elevation179

data (Nooner & Chadwick, 2016) we find that the peak moment coincides with the peak180

in inflation about one hour before the eruption (Figure 3H). Moment release for the earth-181

quakes, on the other hand, is highest during the time of rapid deflation after lava erupted.182

This suggests the MFEs are associated with magmatic processes during the pre-eruption183

inflation process, while the regular earthquakes are triggered by the stress change on the184

ring faults as the magma chamber deflates. In the pre-eruption period, the MFEs in the185

north also correlate with the region of maximum uplift observed in deformation measure-186

ment (Nooner & Chadwick, 2016), illuminating the segment of the eruptive fissure where187

the following eruption started.188

Given that the MFEs locate along the eruptive fissures near the roof of the magma189

chamber and the documented high CO2 content at the Axial seamount (Dixon et al.,190

1988), the MFEs are likely caused by brittle crack opening and subsequent movement191

of magma and/or volatiles into the zones of weakness created by increasing magma pres-192

sure. In fact, the observation that they distribute widely in space and time suggests they193

are more likely related to CO2 release as opposed to magma movement. Because MFEs194

are detected for months prior to the eruption, it implies there is an extended period of195

magma intrusion or volatile release possibly associated with inflating sills. However, the196

behavior of early MFE bursts suggests that this magmatic process may occur at a small197

scale at depth so that they do not show a clear migration pattern along the dike, con-198

sistent with the presence of volatiles. As the magma pressure builds up, the dike finally199

forms along the weakened zones and initiates the southward propagation, which is ob-200
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served as intense MFE activity starting ∼3.5 hours before the eruption. Figure 4 shows201

a cartoon summarizing the physical processes and associated seismicity at Axial.202

Figure 4. Cartoon summarizing observations. Tidal-driven earthquakes occur on caldera ring

faults while the MFEs track movement of volatiles and magma prior to the eruption. Inset shows

possible mechanisms of the MFEs. 1○ and 2○ correspond to the crack opening (brittle onset in

Figure 2F) and volatile/magma influx (low-frequency tail in Figure 2F) processes.

Short-term volcano eruption forecasting has long been a challenging task due to203

the lack of clear and reliable precursory signals. Common prediction metrics include long-204

term deformation measurement, changes in tidal triggering, and short-term seismicity205

increase (Wilcock et al., 2018, 2016; Nooner & Chadwick, 2016). In this study, unsuper-206

vised ML revealed the emergence of a precursory signal defined as MFEs. These signals207

differ substantially from volcano-tectonic (VT; White and McCausland (2016)) or long-208

period (LP; Woods et al. (2018); Song et al. (2023)) earthquakes or tremors (Dempsey209

et al., 2020), as they contain both short and long period waves. Although they may re-210

semble some of the previously reported hybrid frequency earthquakes (HFE; Harrington211

and Brodsky (2007); Yu et al. (2021); Coté et al. (2010); Cui et al. (2021)), our obser-212

vations suggest that their mechanism might be different. Interpretations of previously213

observed hybrid earthquakes include path effects caused by strong attenuation or low-214

velocity layers, and source effects due to low stress drop, slow rupture speed, or fluid res-215

onance. Our analysis indicates that the characteristic spectral features of the MFEs likely216

originate from source effects rather than path effects, making them a potential precur-217
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sory signal to track magma movement or volatile release at depth. This precursory MFE218

activity intensifies ∼15 hours before the eruption and peaks ∼1 hour before the magma219

reaches the seafloor, which offers an opportunity to improve short-term eruption fore-220

casting on time scales of hours to days. With the capability to identify such precursory221

signal in real time, we can now monitor these signals as Axial is preparing for its next222

eruption to occur within the 2025-2030 time period (Chadwick et al., 2022). More im-223

portantly, the novel use of unsupervised machine learning opens up a new opportunity224

to investigate whether such precursory seismic signals exist at other active volcanoes.225
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Coté, D. M., Belachew, M., Quillen, A. C., Ebinger, C. J., Keir, D., Ayele, A., &253

Wright, T. (2010). Low-frequency hybrid earthquakes near a magma cham-254

ber in afar: quantifying path effects. Bulletin of the Seismological Society of255

America, 100 (5A), 1892–1903.256

Cotton, C. V., & Ellis, D. P. (2011). Spectral vs. spectro-temporal features for257

acoustic event detection. In 2011 ieee workshop on applications of signal pro-258

cessing to audio and acoustics (waspaa) (pp. 69–72).259

Cui, X., Li, Z., & Huang, H. (2021). Subdivision of seismicity beneath the summit260

region of kilauea volcano: Implications for the preparation process of the 2018261

eruption. Geophysical Research Letters, 48 (20), e2021GL094698.262

Dempsey, D., Cronin, S. J., Mei, S., & Kempa-Liehr, A. W. (2020). Automatic263

precursor recognition and real-time forecasting of sudden explosive volcanic264

eruptions at whakaari, new zealand. Nature communications, 11 (1), 3562.265

Dixon, J. E., Stolper, E., & Delaney, J. R. (1988). Infrared spectroscopic measure-266

ments of co2 and h2o in juan de fuca ridge basaltic glasses. Earth and Plane-267

tary Science Letters, 90 (1), 87–104.268

Foulger, G., Julian, B., Hill, D., Pitt, A., Malin, P., & Shalev, E. (2004). Non-269

double-couple microearthquakes at long valley caldera, california, provide270

evidence for hydraulic fracturing. Journal of Volcanology and Geothermal271

Research, 132 (1), 45–71.272
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Materials and Methods  

Earthquake catalog development 

We used continuous waveforms from November 16, 2014, to December 31, 2021, to 

build an ML-based earthquake catalog. This study focuses on analyzing the 4 months of 

pre-eruption seismicity rather than the entire cataloged period. The data were recorded 

by the OOI 7-station OBS network, which has two broadband stations and five short-

period stations. We used PhaseNet (Zhu & Beroza, 2019), a deep-learning phase picker, 

to detect and pick the P and S arrivals. The input data are continuous waveforms 

sampled at 200 Hz. We use a 15-second-long sliding window with a 3-second stepping 

length. During periods of high seismicity rate (e.g., the day of eruption), we used a 

smaller window size of 6 seconds to improve picker performance for smaller events that 

are in the same detection windows with larger events. We use an ML associator 

(GaMMA, Zhu et al., 2022) to associate the picks with seismic events. We require at least 

5 picks for an event to be associated. The ML workflow detects seismic signals not only 

from earthquakes but also from fin whale calls, seafloor impulsive events, and air-gun 

shots from active source experiments. We applied SpecUFEx (Holtzman et al., 2018) to 

the raw catalog to discriminate earthquakes from other seismic sources. 

  

The final ML-catalog includes 244,321 earthquakes with a total of 1,016,761 P- and 

1,258,927 S-phase picks. We estimated moment magnitudes for the earthquakes 

following the same method used in Wilcock et al. (2016) and obtained magnitudes that 

range from -1.74 to 3.45. We computed initial hypocenter locations with a grid-search 

location algorithm (NonLinLoc, Lomax et al., 2000, 2009) together with a 3D tomographic 

velocity model (Baillard et al., 2019). The grid-search catalog of the earthquakes is then 

relocated using cross-correlation and double-difference methods following Waldhauser 

et al. (2020). 

 

Cross-correlation-based double-difference earthquake location  

In addition to the ML-based phase arrival times, we measure precise phase delay times 

using waveform cross-correlation following Waldhauser et al. (2020). We apply time-

domain cross-correlation (Schaff & Waldhauser, 2005) to filtered (4–50 Hz), vertical and 

horizontal component seismograms of pairs of events recorded at the same station and 

separated by no more than 1 km. We chose 0.5 s long correlation windows for P waves 

and 0.75 s windows for S waves and search over lags that are ±0.5 s. We compute delay 

times for a second pair of windows (0.75 s and 1 s) and retain only the measurements 

that agree within 0.01 s, thus reducing erroneous correlations due to cycle skipping, for 

example. From the 14.5 billion measurements, we keep only the correlation delay times 

for earthquake pairs with at least two measurements with cross-correlation coefficients 

Cf ≥ 0.8. When S-delay times are available from both horizontal components, we use 

them both but set their weights to half of their initial weights (i.e., squared correlation 

coefficient). The resulting correlation time database includes a total of 1.4 billion delay 

times. 

We can evaluate the consistency and accuracy of the two data sets by forming the 

difference between the correlation delay times and the delay times formed from the 
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picks for the corresponding event pair (Figure S1) (see Waldhauser et al., 2020). These 

differences have standard deviations of 96 ms (P waves) and 66 ms (S waves), indicating 

high consistency between the two data sets. Standard deviations of 81 ms (P waves) and 

50 ms (S waves) for differences from data with Cf ≥0.95 indicate the high accuracy of the 

PhaseNet picked arrival times, for both P and S arrivals. 

Finally, we relocated the earthquakes using the double-difference location algorithm 

HypoDD (Waldhauser & Ellsworth, 2000; Waldhauser, 2001) to invert both phase pick 

and cross-correlation time delays for precise relative hypocenter locations (see 

Waldhauser et al., 2020 for details). The relocated 7-year-long earthquake catalog 

includes 162,111 with magnitudes between -1.74 and 3.45.  

 

Spectral Clustering Analysis  

We apply K-means clustering on the principal components of the fingerprints learned by 

SpecUFEx (see above).  Here we focus on the characteristics of volcano-tectonic 

earthquakes, so we exclude other types of seismic signals (whale calls, seafloor impulsive 

events, tremors) in our analysis. We keep principal components that explained 80% of 

the variance. After inspecting the clustering results, we find that choosing the number of 

clusters as two would best cluster the earthquakes by their dominant spectral 

characteristics. While the first group includes signals that can be associated with typical 

earthquakes that represent shear failure, the second group includes signals that are 

similar to those of earthquakes, but have a lower frequency package arriving about 1 s 

after the P-wave onset (see Figure 2). We call these events MFEs (mixed frequency 

earthquakes). Increasing the number of clusters will subdivide the two main clusters into 

smaller clusters, still separating the signals from typical earthquakes from the MFE 

signals. 

We tested other clustering algorithms such as Hierarchical clustering and Gaussian 

Mixture Model. We find different clustering algorithms in general give similar results that 

show the separation of MFE and earthquake signals, with the K-means results showing 

less leakage between the two groups. 

To verify the spectral differences between MFEs and regular earthquakes identified by 

SpecUFEx, we run a test that takes the spectra of waveforms directly as input and clusters 

them by K-means. The clustering results still show the same general pattern of the two 

groups corresponding to MFEs and regular earthquakes. We compared the event cluster 

labels produced by clustering the event spectra and find ∼90% of them have the same 

cluster label as defined by clustering SpecUFEx fingerprints. However, we find increased 

leakage between the two groups. This suggests that the MFEs and regular earthquakes 

can be separated by their differences in spectral content, but additional temporal 

information in the fingerprints extracted by SpecUFEx helps better define them in the 

feature space. 
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Figure S1. Difference distribution of the picks as compared with the cross-correlation 

delay times. The bars of light to dark gray colors show cross-correlation delay time 

measurements of different correlation coefficient thresholds. The three panels show the 

distribution of the difference between the P phase and correlation on the vertical 

component and the S phase and correlation on two horizontal components.  
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Figure S2. Clustering result using waveforms at AXAS1 station. Spatiotemporal plots 

of MFEs and earthquakes cluster at ~one week (A and B) and two days (C and D) time 

scale. (A) and (C) shows MFE activities. (B) and (D) shows regular earthquake activities.  
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Figure S3. (A) HMM emissions matrix. (B) NMF spectral dictionary overlaid with curves 

showing frequency weights of the active states in the two stacked fingerprints. (C) 

Frequency dependent sensitivity kernel of the states in fingerprints. Red and blue 

curves show the characteristic states of the MFEs and earthquake group, respectively.  
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Figure S4. Pre-eruption spatiotemporal evolution of the two spectral clusters and 

their relative ratio. The MFEs (A) and earthquakes (B) spatiotemporal distribution in ~4 

months prior to eruption. (C) Histogram shows hourly percentage of MFEs in all pre-

eruption seismicity. Dashed red line shows the daily MFE ratio in the ~4 months prior 

to eruption. The inset shows hourly percentage of MFEs (red line) in a zoom-in 

window around eruption time. 
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Figure S5. Comparison of earthquakes and MFEs locations. MFEs locations (B) and 

spatiotemporal plot (A) on the day before eruption. Locations of regular earthquakes 

(D) and their spatiotemporal distribution (C) in the same time period. 
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Figure S6. Tidal correlation of the regular earthquakes (B) and MFEs (A). The grey 

curve shows Bottom-pressure recorder (BPR) measurements at AXCC1. The red and 

blue curves show the hourly seismicity rate of MFEs (A) and regular earthquakes (B). 
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Figure S7. (A - L) Pre-eruption MFE bursts and their locations. Left panel: 

spatiotemporal evolution pattern of the MFE bursts. Right panel: the locations of MFEs 

in the same time period colored by time. 
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Movie S1. (separate file) 

Animation of MFEs (left) and EQs (right) activity from Apr 23, 2015 to Apr 25, 2015. 

Outline of the caldera shown in black line, eruptive fissures of the 2011 and 2015 

eruptions in red, and stations in black triangles. 
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