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Key Points:11

• Average turbulent temperature diffusivity is elevated by 1-2 orders of magnitude12

on the shelf compared to over the deep slope13

• A similar magnitude (O(1 Wm−2)) of heat is fluxed into the cold halocline from14

the Atlantic Water below as from the overlying surface layer15

• Heat fluxes as high as 50 Wm−2 are occasionally observed in the surface layer16
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Abstract17

Vertical profiles of temperature microstructure at 95 stations were obtained over the Beau-18

fort shelf and shelfbreak in the southern Canada Basin during a November 2018 research19

cruise. Two methods for estimating the dissipation rates of temperature variance and20

turbulent kinetic energy were compared using this dataset. Both methods require fit-21

ting a theoretical spectrum to observed temperature gradient spectra, but differ in their22

assumptions. The two methods agree for calculations of the dissipation rate of temper-23

ature variance, but not for that of turbulent kinetic energy. After applying a rigorous24

data rejection framework, estimates of turbulent diffusivity and heat flux are made across25

different depth ranges. The turbulent diffusivity of temperature is typically enhanced26

by about one order of magnitude in profiles on the shelf compared to near the shelfbreak,27

and similarly near the shelfbreak compared to profiles with bottom depth >1000 m. Depth28

bin means are shown to vary depending on the averaging method (geometric means tend29

to be smaller than arithmetic means and maximum likelihood estimates). The statisti-30

cal distributions of heat flux within the surface, cold halocline, and Atlantic water layer31

change with depth. Heat fluxes are typically <1 Wm−2, but are greater than 50 Wm−2
32

in ∼8% of the overall data. These largest fluxes are located almost exclusively within33

the surface layer, where temperature gradients can be large.34

Plain Language Summary35

In the Arctic Ocean, the mixing of water masses due to turbulence has important36

impacts on heat transport, influencing sea ice formation and loss. In this study, we quan-37

tify mixing using vertical profiles of temperature measured at high spatial resolution that38

were obtained during a November 2018 research cruise near the shelf and shelfbreak of39

the Canada Basin. We compare two methods for performing this estimation, and eval-40

uate scenarios when either method might fail. Turbulent mixing rates are found to be41

higher over the shelf compared to the shelfbreak, and higher over the shelfbreak than the42

deep ocean, possibly due to interactions between currents and bottom topography. We43

also quantify rates of heat transport through three distinct water masses (the surface layer,44

a cold subsurface layer, and a warm water mass originating from the Atlantic Ocean).45

These findings are valuable for constraining Arctic Ocean heat budgets, as well as for46

establishing best practices when estimating turbulent mixing from high resolution tem-47

perature profiles.48

1 Introduction49

Turbulent diffusion plays a critical role in ocean mixing. Turbulent fluxes of dy-50

namic tracers such as heat and salt set interior stratification, while fluxes of passive trac-51

ers such as nutrients and oxygen play an important role in the ocean’s biogeochemistry52

(e.g., Yu et al., 2019; Warner & Moum, 2019; Freilich & Mahadevan, 2019; Uchida et al.,53

2019; Brandt et al., 2015; Gnanadesikan et al., 2012). On a larger scale, oceanic circu-54

lation and thus global climate is sensitive to turbulent diffusivities (Melet et al., 2022).55

Although the impacts can be seen at these largest spatial scales, the turbulent processes56

themselves occur at much smaller scales that can be difficult to resolve in conventional57

field measurements.58

1.1 Diffusivities in the Arctic Ocean59

Compared to other ocean basins, the Arctic Ocean has relatively low levels of tur-60

bulence, due in part to its strong near-surface stratification, which inhibits turbulence61

and vertical mixing. The presence of sea ice can also inhibit turbulence by limiting wind-62

driven energy input (Morison et al., 1985; Rainville & Woodgate, 2009). Rainville and63

Winsor (2008), for instance, observed turbulent diffusivities in the range of 10−6−10−4
64
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m2s−1 over the Lomonosov Ridge, in contrast to average diffusivities of 10−5−10−3 m2s−1
65

(and even higher near the bottom) across ridges in the non-polar global ocean noted by66

Waterhouse et al. (2014). In the cold halocline of the Amundsen Basin, Fer (2009) re-67

ported typical turbulent temperature diffusivities of 10−6 − 10−5 m2s−1. Double dif-68

fusion is a dominant mechanism for vertical mixing in many of the central Arctic basins;69

in the Laptev Sea, for instance, double diffusive staircases may be prevalent and asso-70

ciated with low turbulence away from the continental slope, while elevated turbulent dif-71

fusivities > 10−4 m2s−1 have been observed in bottom boundary layers on the shelf (Lenn72

et al., 2009, 2011).73

This work focuses specifically on the Canada Basin, where heat fluxes can influ-74

ence sea ice growth and retreat, in turn affecting mechanisms that generate turbulence.75

A reduction in sea ice during the last decade in this region has, for instance, contributed76

to increasing the energy of the near-inertial internal wave field (Dosser & Rainville, 2016).77

Pan-Arctic changes in turbulent dissipation and heat flux, likely associated with increased78

energy transfer from wind, have already been observed over the past decade (Dosser et79

al., 2021), although any link between sea ice loss and increased turbulence in the west-80

ern Arctic Ocean has yet to be established (Fine & Cole, 2022). Nonetheless, vertical81

fluxes are especially relevant as enhanced upward heat flux can delay freezing, leading82

to shorter periods of the year when ice is present and less ice overall by the end of the83

winter.84

Close to the coast, a number of water masses and currents coexist. Fig. 1 shows85

the potential temperature and absolute geostrophic currents (calculated as described in86

the next section) along one example cross-shelf transect (see Fig. 2 for the location). Prior87

observations indicate enhanced turbulent mixing over the shelfbreak, most likely due to88

the tides (Lincoln et al., 2016). Warm Pacific summer water (PSW) flows through Bering89

Strait and across the Chukchi Sea via different flow branches that ultimately enter the90

Canada Basin via Barrow Canyon (Lin et al., 2019). Upon exiting the canyon, the flow91

splits into the westward-flowing Chukchi Slope Current and the eastward-flowing Beau-92

fort Shelfbreak Jet as illustrated in Fig. 1 of Lin et al. (2021). Through much of the Canada93

Basin, the PSW remains near the surface, typically at depths < 100 m (Pickart et al.,94

2009). In the past several decades, increasing heat content of the PSW delivered via Bering95

Strait has been correlated with a receding sea ice edge in the Canada Basin (Timmermans96

et al., 2018; Woodgate et al., 2010). Heat transport dynamics in this region are further97

influenced by the warm and salty Atlantic water (AW) layer between 150-500 m depth,98

which is typically insulated from the surface by the cold halocline layer comprised of rem-99

nant Pacific winter water (Nikolopoulos et al., 2009; Timmermans & Marshall, 2019) (Fig.100

1a).101

1.2 Measuring turbulent diffusivity102

Turbulence in the ocean acts at scales from cm to m by increasing gradients and103

enhancing the effect of molecular diffusion compared to a laminar flow. Direct methods104

for estimating turbulent diffusivity typically require measurements of microstructure shear,105

but shear measurements are easily contaminated by vibrations, and thus require special-106

ized sampling platforms like free-falling profilers or gliders (Goto et al., 2016). As such,107

diffusivities are not typically or easily measured during research cruises, in contrast to108

the data obtained from more ubiquitous platforms like conductivity-temperature-depth109

(CTD) rosettes. As a result, diffusivity observations are sparse despite their importance110

for constraining models of global ocean circulation (Waterhouse et al., 2014; Simmons111

et al., 2004). While turbulence measurements are sparse globally, there are particularly112

few documented measurements in the Arctic Ocean (Waterhouse et al., 2014).113

As an alternative to using microstructure shear, diffusivity can also be estimated114

from measurements of temperature microstructure (e.g., Luketina & Imberger, 2001; Rud-115
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Figure 1. Vertical section of (a) background potential temperature (from the CTD) with

contours of potential density (kg m−3) overlain and (b) absolute geostrophic velocity (derived

from the hull-mounted acoustic Doppler current profiler (ADCP)) for the example transect KTO

(see Fig. 2 for the location of the transect). The major water masses and currents are identified.

The station locations are indicated by the grey triangles. Bathymetry comes from the ship’s

echosounder, and a 2D spline interpolation was used to create these transects from the CTD and

ADCP measurements.
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dick et al., 2000; Moum & Nash, 2009; Scheifele et al., 2021; Goto et al., 2021). This ap-116

proach has the advantage that measurements are not affected by platform vibrations to117

the same extent as shear-based methods. Fast-sampling temperature probes can thus118

be mounted onto a CTD rosette, making data collection readily accessible on most cruises119

where CTD profiles are already being made. Provided that appropriate corrections and120

quality controls are applied, turbulence estimates from both free-falling and CTD rosette-121

attached microstructure temperature profilers have been shown to generally agree with122

concurrent shear-based estimates (Goto et al., 2016, 2018).123

A key difficulty when using temperature microstructure is that the Batchelor length124

scale, where the molecular diffusion of temperature becomes the dominant process, is smaller125

than the Kolmogorov length scale, where the viscous dissipation of turbulent kinetic en-126

ergy becomes dominant. Estimates of turbulent parameters ideally require that the full127

turbulence subrange down to the Kolmogorov and Batchelor scales is resolved. This means128

that for a given sampling rate, profiling instruments that measure temperature microstruc-129

ture must maintain slower descent rates in order to resolve the Batchelor length scale130

than would be necessary when measuring shear microstructure.131

The two key goals of this work are 1) to explore options for turbulence data col-132

lection using temperature microstructure collected from a CTD rosette, and 2) to de-133

scribe the spatial distribution of turbulent diffusivities and heat fluxes over the shelf and134

slope of the southern Canada Basin. Specifically, we present a novel comparison of two135

methods for calculating turbulent diffusivities and establish data rejection criteria for136

each method that account for differences between observed and theoretical turbulent spec-137

tra, the sudden deceleration of the rosette, low signal to noise ratios and differences be-138

tween the methods. Our quality controlled dataset is then used to estimate the spatial139

structure of turbulent diffusivities and heat fluxes across the shelf and slope, showing en-140

hanced diffusivities in shallower waters, and quantifying the rate of heating of the cold141

halocline waters by both surface and Atlantic Waters at the time of the observations.142

The dataset is described in Section 2. Section 3 presents the two methods for es-143

timating turbulent diffusivities from temperature microstructure and details the rejec-144

tion criteria appropriate for measurements obtained from a CTD rosette. The statistics145

and spatial distributions of temperature diffusivity and heat flux in the region are de-146

scribed in Section 4. Conclusions follow in Section 5.147

2 Data148

A research cruise aboard the USCGC Healy took place in the Canada Basin in October-149

November 2018, with the primary goal of studying the boundary current system. A Rock-150

land Scientific MicroRider-1000 (referred to as MR from this point onward) was attached151

to a rosette alongside a Sea-Bird 911+ CTD. The MR is a self-contained turbulence pro-152

filer with two FP07 thermistor probes, which each sample temperature at 512 Hz. The153

sampling capabilities and physical setup of the MR attached to a CTD rosette are very154

similar to the χpods of Moum and Nash (2009). χpods are small, self-contained instru-155

ments equipped with fast response thermistors and accelerometers to measure instru-156

ment motion; they have previously been used for turbulence studies on moorings (e.g.,157

Moum et al., 2013) and on lowered CTDs (e.g., Holmes et al., 2016; Lele et al., 2021).158

Although the MR is capable of recording microstructure shear, this functionality was not159

exploited during this cruise since the signal would have been contaminated by vibrations160

of the rosette.161

CTD profiles and measurements of temperature microstructure were made on the162

shelf, slope, and farther offshore. These profiles comprise of 12 cross-shelf sections in ad-163

dition to one section across Barrow Canyon on the northeast Chukchi shelf (Fig. 2). In164

total, 95 MR profiles and 133 CTD profiles with temperature and salinity binned to 1165
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Figure 2. Map of the study area with transect names and inset indicating study location.

Solid circles indicate profiles where temperature microstructure and CTD data are available.

Open circles indicate profiles where only CTD data are available due to thermistor malfunction.

Bottom depths come from IBCAOv3 (Jakobsson et al., 2012). Contour lines indicate bottom

depth in metres.

m resolution were obtained (38 MR profiles were rejected due to sensor malfunction; at166

these locations, only CTD data are available). Microscale temperature was recorded by167

two thermistors on the MR (Ch1 and Ch2). All results in this paper have been derived168

from Ch1 because slightly more data was retained from Ch1 after applying rejection cri-169

teria (Section 3), suggesting better data quality compared to the other channel.170

Any portions of the profiles from depths < 10 m were excluded to avoid contam-171

ination by the ship’s wake. Most profiles end in a period of stepped speed reduction. These172

portions were identified manually for each profile and were also excluded from the anal-173

ysis. Because data were collected mostly on the shelf and in the vicinity of the shelfbreak,174

the maximum depth reached by these profiles ranges from 20-385 m, which is quite shal-175

low compared to other open-ocean field studies. As a result, the descent speed of the rosette176

was generally slow, around 0.55 ms−1, giving a nominal vertical resolution at 512 Hz of177

0.1 cm.178

Background vertical temperature gradient, dT/dz, and squared buoyancy frequency,179

N2 = − g

ρ0

∂ρ

∂z
(1)

where ρ0 is a reference density, g is gravitational acceleration, and ∂ρ/∂z is the verti-180

cal density gradient, were calculated using 1 m-binned temperature and salinity profiles181

obtained by the CTD. For both temperature and salinity, observations from two redun-182

dant sensors were averaged. Density overturns were seldom observed in 7 of the 133 CTD183

profiles. In data segments where overturns were present, N2 was set to zero.184
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Direct velocity measurements were made during the cruise using an RDI Ocean Sur-185

veyor 150 kHz acoustic Doppler current profiler (ADCP) mounted on Healy’s hull. The186

near-surface blanking region extended to roughly 18 m, and the bottom blanking typ-187

ically extended 10 m above the seafloor. For details on the data acquisition and process-188

ing, the reader is referred to Dabrowski et al. (2022). The barotropic tidal signal was re-189

moved from the velocity profiles using the Oregon State University model (Padman &190

Erofeeva, 2004). Absolute geostrophic velocities were subsequently computed by refer-191

encing the CTD-derived thermal wind shear using the de-tided ADCP profiles, follow-192

ing the procedure described in Pickart et al. (2016).193

3 Methods194

3.1 Turbulence analysis195

In the presence of turbulence, the frequency or wavenumber spectrum for such quan-196

tities as kinetic energy and temperature fluctuation gradient (∇T ′) has been observed197

to follow a universal form that can be predicted by considering fluid convection and molec-198

ular diffusion (Batchelor, 1959). By fitting theoretical forms to observed ∇T ′ spectra,199

the turbulent parameters χ and ε—the rates of dissipation of temperature variance and200

turbulent kinetic energy, respectively—can be calculated, and, subsequently, turbulent201

diffusivities can be estimated. Theoretical forms for the ∇T ′ spectrum have been described202

by Batchelor (1959) and Kraichnan (1968). Both forms are similar in shape and scale203

similarly with χ and ε. The difference in χ recovered by integrating the Batchelor spec-204

trum versus the Kraichnan spectrum is small. We use the Kraichnan spectrum in this205

paper for all computations.206

We generate ∂T ′

∂z wavenumber spectra using Rockland Scientific’s ODAS MATLAB207

processing library following the methods described in Rockland Scientific’s Technical Note208

039 (Lueck et al., 2020). Only ∂T
∂t was measured, but ∂T

∂z was obtained by assuming a209

constant descent rate over each spectral window (within each 2 s window, descent rate210

varies by only 1-2%). Wavenumbers are obtained by dividing frequencies by the constant211

descent rate. Because the background gradient varies much more slowly than the fluc-212

tuations, we take ∂T
∂z = ∂T ′

∂z . The turbulence is assumed to be isotropic such that the213

magnitudes of vertical variance also represent horizontal variance in temperature. Thus,214

we can make the approximation (∇T ′)2 = 3(∂T
′

∂z )2. Each spectrum is generated from215

2 s of data, and adjacent spectral windows overlap by 1 s.216

Several stages of electronic signal processing within the MR contribute noise to the217

signal, according to known functions for noise outputs from each electronic component.218

The noise spectrum varies with profiling speed and temperature gradient, so noise is com-219

puted individually for each spectral window as described in Rockland Scientific’s Tech-220

nical Note 040 (Lueck, 2019).221

We explore two methods for fitting theoretical ∇T ′ spectra to observations: the222

full spectrum (FS) method and the resolved wavenumber (RW) method. The following223

subsections describe each in detail. χ, the dissipation rate of temperature variance, is224

defined in the temperature variance equation as225

χ = 2κ(∇T ′)2, (2)226

where the overline indicates a time average, and κ is the molecular diffusivity of tem-227

perature, which varies with temperature, salinity, and pressure. Exploiting Parseval’s228

theorem, χ can be calculated by integrating the fitted Kraichnan spectrum:229

χ = 6κ

∫ ∞

0

ΨT ′
z
(k)dk, (3)230

–7–
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where k is wavenumber and ΨT ′
z
(k) is the Kraichnan spectrum of the vertical temper-231

ature fluctuation gradient.232

By assuming turbulence is steady, isotropic, and homogeneous, turbulent diffusiv-233

ities can be estimated from either χ or turbulent kinetic energy dissipation rate, ε, as234

described in the following subsections. The resolved wavenumber method relies on the235

additional assumption that salt and density diffusivities are equal; thus, one diffusivity236

estimate referred to as κe (κe = κT = κρ) is output, whereas the full spectrum method237

outputs two different-valued diffusivities (κT and κρ). It is generally assumed that in re-238

gions where mixing is dominated by turbulence, the eddy diffusivity representing both239

salt and temperature is equal. However, Fer (2009) found that independent estimates240

of κT and κρ were not always equal in the central Arctic Ocean away from boundaries,241

where turbulence is low.242

Both of the methods assume the following: 1) T ′ arises only from turbulence; 2)243

only the environmental signal contributes to observed T ′; 3) the turbulence is in steady244

state, such that the production rate is balanced by the dissipation rate of temperature245

variance; 4) the turbulence is homogeneous; and 5) the turbulence is isotropic. However,246

these assumptions are not always met. For instance, in locations that are already well-247

mixed in the vertical (e.g. highly turbulent boundary layers with low stratification and248

negligible background gradients), turbulence will be under-predicted since overturning249

motions will not produce gradients and will thus be invisible to the temperature sensors.250

Some non-environmental sources of T ′, such as from water entrained in the rosette, can251

violate assumption 2 and are considered in our spectral rejection criteria (Section 3.4).252

Assumptions 3-5 are necessary if Equations 3 (and all subsequent equations involving253

χ), 8, and 9 are to be used.254

3.2 Full spectrum method255

The most commonly used method for fitting theoretical turbulence spectra to oceanic256

temperature gradient spectra uses the entire observed spectrum to perform a Maximum257

Likelihood Estimate (MLE) fit. This method for obtaining turbulent parameters from258

temperature microstructure was first detailed by Ruddick et al. (2000) and has since been259

applied in other studies (e.g., Goto et al., 2021; Scheifele et al., 2018). Unlike a tradi-260

tional least squares fit, the maximum likelihood approach is unbiased even when the er-261

rors are non-Gaussian (Ruddick et al., 2000). We will henceforth refer to the method de-262

scribed in this section, which utilizes Ruddick et al. (2000)’s MLE approach, as the full-263

spectrum (FS) method.264

The dissipation length scale for temperature variance, k−1
B (where kB is the Batch-265

elor wavenumber), is not resolved in some cases: given typical ranges for ε, the dissipa-266

tion rate of turbulent kinetic energy, in the western Arctic Ocean (∼ 10−11 to 10−8m2s−3
267

as observed by, e.g., Scheifele et al. (2018)), Batchelor length scales around 1 to 0.1cm268

could be expected. The smallest length scales are thus at the limit of the typical O(0.1cm)269

resolutions obtained in this study based on descent rate and sampling frequency (Sec-270

tion 2). However, in practice these scales cannot be resolved due to limitations in the271

dynamic response of the FP07 thermistors at high frequencies, when ε exceeds ∼ 10−8
272

m2s−3, or during periods when the instrument descent rate was faster than the mean273

rate. Additional considerations on how descent rate may constrain estimates of ε can be274

found in Appendix B.275

Because the FS method fits a theoretical spectrum to the entire range of observed276

wavenumbers (even those that are noise-contaminated or only partially resolved), some277

adjustments to the original data must be made to try to compensate for the measured278

signal rolling off prematurely at high wavenumbers (e.g., Goto et al., 2016; Bluteau et279

al., 2017). As such, observations are boosted by dividing the observed spectrum by the280

double-pole FP07 transfer function from Gregg and Meagher (1980):281
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H(f) = [1 + (2πτf)2]−2, (4)282

where τ is the time constant required for a 1−e−1 rise in signal and f is frequency in283

Hz. However, because FP07s are handmade, they differ from one another in glass thick-284

ness and shape, and, as a result, in time response (Gregg & Meagher, 1980). As it is not285

practical to measure τ for individual sensors, we follow Goto et al. (2021) by using a fixed286

time constant of τ = 3 ms, which is consistent (within about a factor of two) with typ-287

ical values used in the literature (e.g., Gregg & Meagher, 1980; Nash et al., 1999).288

When the observed spectrum is boosted with the transfer function, the noise—which289

contributes to the overall observed signal—is also boosted. For this reason, the trans-290

fer function is also applied to the estimated noise spectrum (see Section 3.1) and the boosted291

noise is added to the theoretical turbulence spectrum, prior to fitting to observations:292

Ψfit = ΨKraichnan +
Ψnoise

H(f)
, (5)293

where the theoretical spectrum that is fit to observations, the Kraichnan spectrum, and294

the noise spectrum are represented by Ψfit, ΨKraichnan, and Ψnoise, respectively. The295

boosted noise spectrum is then subtracted before integrating for χ.296

The FS method, detailed in Ruddick et al. (2000), uses a fitting algorithm wherein297

the Batchelor wavenumber, kB , is adjusted while the value of χ is set by the integral of298

the observed spectrum minus the noise spectrum. The kB corresponding to the Kraich-299

nan spectrum that is the most likely theoretical form for the observation is selected.300

The Batchelor wavenumber corresponds to the length scale at which molecular dif-301

fusion of temperature becomes effective. ε is related to kB as302

ε = (2πkB)
4νκ2, (6)303

where ν is the kinematic viscosity, which varies with temperature, salinity, and pressure304

(Batchelor, 1959). The turbulent diffusivities of temperature and density, κT and κρ, are305

then calculated. κT depends on χ as306

κT =
1
2χ(
dT
dz

)2 , (7)307

assuming a balance between production and dissipation in the temperature variance equa-308

tion (Osborn & Cox, 1972). κρ depends on ε as309

κρ =
Γε

N2
, (8)310

assuming a balance between shear production, buoyancy production, and turbulent dis-311

sipation in the turbulent kinetic energy equation (Osborn, 1980). Γ is often referred to312

as the mixing efficiency, and a value of Γ = 0.2 is used (Moum, 1996; St. Laurent & Schmitt,313

1999).314

Descent rate limits the wavenumbers resolvable by the sensors—higher descent rates315

cause smaller spatial scales to be unresolved. Calculations of ε from the FS method (εFS)316

can be affected by descent rate resolvability because ε depends on kB , which typically317

occurs towards or even past the lower spatial limit of resolution. The issue of resolvabil-318

ity limits on εFS due to descent rate is discussed in Appendix B.319
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Figure 3. a) Comparison of χ calculated using the FS and RW methods for no signal-to-noise

ratio (SNR) rejection, rejection for SNR<1.5, and rejection for SNR<2. Colour bar indicates

relative point density. The solid one-to-one line indicates where the methods agree perfectly,

and the dashed lines indicate one order of magnitude difference in χ between methods. b) For a

rejection threshold of SNR<2, example rejected spectra (red box) and non-rejected spectra (green

box) from both methods are shown to illustrate how differences in fit method affect estimation of

χ.

–10–
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An example FS fit to a boosted spectrum is shown inside the green box in Fig. 3320

(thick brown line).321

3.3 Resolved wavenumber method322

To circumvent the difficulties in estimating the dynamic response of individual FP07323

probes, Moum and Nash (2009) proposed an alternative to the FS method. Rather than324

fitting the theoretical spectrum to the entire range of observations, their method can be325

used to fit to the portion of the viscous-convective subrange in a range of wavenumbers326

where the spectrum is resolved. From here on, we will refer to this fitting method as the327

resolved wavenumber (RW) method.328

The advantage of this technique is that noise and small scale resolvability need not329

be considered, since they affect only higher wavenumbers outside of the portion of the330

spectrum used to perform the fit. Thus the method makes no assumptions about the noise331

spectrum or transfer function. Moum and Nash (2009) previously used a sensor-dependent332

correction after measuring the time response of individual thermistors, but it is not nec-333

essary to do so when the upper frequency used for the fit is in the range of 10-15Hz (their334

fit range extended as high as 40Hz).335

However, since the fit does not include the shape of the spectrum in the vicinity336

of the spectral roll-off, an additional assumption that κT = κρ is required for an un-337

ambiguous fit. This gives an expression for ε,338

ε =
N2χ

2Γ
(

dT
dz

)2 , (9)339

which follows from Equations 7 and 8. A Kraichnan spectrum fit is obtained by requir-340

ing that the integral over the resolved part of the observed spectrum matches the inte-341

gral of the Kraichnan spectrum over the same wavenumber range. Using the fitted spec-342

trum, χ is calculated from Equation 3, and ε from Equation 9.343

An example RW fit is shown inside the green box in Fig. 3 (thick teal line). The344

wavenumber range used to perform the fit is indicated by the dashed grey lines; the up-345

per wavenumber is either kB/2 or the wavenumber associated with a frequency of 15 Hz346

(whichever is smaller), and the lower wavenumber is either the smallest resolved wavenum-347

ber or 2 cpm (whichever is larger). The observed spectrum is unaffected by both instru-348

ment noise and roll off within this range, so noise does not need to be considered when349

using the RW method.350

3.4 Rejection criteria351

In order to establish confidence in the results, criteria for removing contaminated352

or untrustworthy spectra are required. This is also necessary for a rigorous comparison353

of the FS and RW methods. Data rejection is achieved using several criteria described354

briefly in this subsection. For further details on the criteria, including how the rejection355

thresholds for each criterion were chosen, see Appendix A. If a spectrum triggers one or356

more of the rejection criteria, it is excluded from further analysis.357

Rejection by spectral misfit: The mean absolute deviation (MAD) is a mea-358

sure of spectral misfit that is used to reject spectra that do not resemble the theoreti-359

cal Kraichnan form. MAD is defined360

MAD =
1

n

kn∑
ki=k1

∣∣∣∣Ψobs

Ψth
−
〈
Ψobs

Ψth

〉∣∣∣∣ , (10)361
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where Ψobs is the observed spectrum and Ψth is the corresponding fitted Kraichnan spec-362

trum. n is the total number of wavenumbers, ki, included in both the fitted and observed363

spectra. For both FS and RW methods, a spectrum is rejected if MAD > 1.4.364

Rejection by descent speed: The MR was attached to a CTD rosette that en-365

trains large volumes of water as it descends. During periods of abrupt deceleration, tur-366

bulent water that was entrained within the frame can overtake the probes, leading to high367

observed turbulence. Under some conditions, the MR may even reverse direction and briefly368

travel upwards, causing it to sample through its own turbulent wake (for example, dur-369

ing high wave conditions).370

We define a descent speed threshold, wt, that is adjustable with descent rate and371

is determined independently for each spectral window. The threshold is372

wt = 0.75w3, (11)373

where w3 refers to the mean descent speed from the past 3 s of data (or since the start374

of the profile, for the first 3 s). Any spectrum with w < wt is rejected. All spectra from375

1.5 s after w increases back above wt are also rejected.376

Rejection by SNR: In cases of weak turbulence or laminar flow, instrument noise377

can be comparable to or larger than the measured signal. The signal-to-noise ratio (SNR)378

is the ratio of the integral of the observed spectrum to the integral of the predicted noise379

spectrum, with both spectra having first been boosted by the double-pole correction of380

Gregg and Meagher (1980) (Equation 4). Spectra with SNR < 2 are rejected for both381

FS and RW methods. In the following analyses involving κT (Section 4.3), locations with382

SNR below the threshold are set to have diffusivity equal to the molecular value so long383

as |dT/dz| > 0.001 ◦Cm−1 (see Section 4).384

Rejection due to FS and RW disagreement: Given the different assumptions385

of the FS and RW method, we can establish confidence in our estimates when they both386

yield similar results. Accordingly, spectra that have greater than one order of magnitude387

difference between χRW and χFS are rejected.388

4 Results and discussion389

4.1 Rejection statistics390

The proportion of all data rejected by each criterion are shown in Fig. 4. The over-391

all proportion of data rejected by the MAD criterion is around 5% with the FS method392

and 6% with the RW method, suggesting that the fitting algorithms of both methods393

are similarly robust.394

The percentage of rejected indices in this study is high compared to other stud-395

ies. For instance, Scheifele et al. (2018) rejected 33.9% of their ∇T ′ spectra using the396

FS method to estimate ε. Here we reject 67.8 (66.3)% overall using the RW (FS) method.397

There are several reasons for such high levels of data rejection: more rejection criteria—398

other authors often consider one or two, but not all, of the criteria described here; the399

requirement for agreement between methods; low levels of turbulence in the Arctic Ocean400

environment, which corresponds with high levels of SNR rejection; and an abundance401

of shallow profiles (45 of 95 profiles were < 50m), from which a large proportion of data402

were rejected due to instrument deceleration, especially compared to the deep ocean where403

profiles tend to be longer and constant descent rates can be maintained for longer pe-404

riods.405

Low SNR is a major cause for rejection in this dataset. SNR-rejected spectra rep-406

resent places where the signal may have been low enough that negligible turbulence and407
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Figure 4. Percentage of spectra rejected due to the MAD, descent rate, and SNR rejection

criteria. Other than MAD, the criteria are independent of method. The TOTAL rejected cate-

gory refers to the percentage of spectra rejected by one or more of the other criteria. Imposing

molecular values for turbulence parameters at all SNR-rejected locations with |dT/dz| > 0.001
◦Cm−1 reduces the total rejected spectra by over 10% for each method (indicated by shaded

areas on TOTAL bars).
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Figure 5. Comparison of a) χFS versus χRW and b) εFS versus εRW . The data have been

quality controlled using all rejection criteria except rejection due to FS/RW disagreement. Colour

indicates relative point density. The solid line indicates the one-to-one line, and dashed lines

indicate one order of magnitude deviation from the one-to-one line.

effectively laminar flow can be assumed. It is not surprising that SNR is the dominant408

cause of rejection in this data set, since turbulence is highly intermittent in space and409

time (Cael & Mashayek, 2021). However, an inherent limitation when using scalar spec-410

tra to estimate turbulence is that low SNR can also occur due to an absence of background411

gradients, regardless of the strength of turbulence. Thus, we assume that diffusivities412

are dominated by molecular values, i.e. κT = κ, only when two conditions are met: 1)413

SNR is below the rejection threshold and 2) |dT/dz| > 0.001 ◦Cm−1, a threshold cho-414

sen based on the difference in distribution of |dT/dz| associated with SNR-rejected spec-415

tra compared to all |dT/dz| measurements. After imposing molecular diffusivity at these416

locations, the total data rejected is 52.4 (51.4)% overall for the RW (FS) method—a re-417

duction by over 10% for both methods. Another benefit of assigning a molecular value418

to low SNR, high |dT/dz| spectra is to reduce the bias in properties averaged over mul-419

tiple profiles, which otherwise would include only measurements in actively turbulent re-420

gions. However, this approach may result in slightly underestimated κT overall, since some421

spectra rejected by SNR could have very low diffusivity without necessarily being at the422

molecular level.423

4.2 Establishing confidence in χ424

After applying all rejection criteria (except for rejection due to FS and RW disagree-425

ment), we found that the two methods agreed within one order of magnitude 87.7% of426

the time for χ, but only 53.2% of the time for ε (Fig. 5). This is because of differences427

in the assumptions about the turbulent cascade that affect the estimation of ε: in the428

FS method ε is calculated from kB , which is instantaneously proportional to the turbu-429

lent strain rate of the smallest eddies. In the RW method ε is related to spectral levels430

in a way that is applicable to a time- or space-averaged turbulent mixing event such that431

Γ can be reasonably assumed to take a constant value, and that κρ = κT . In contrast,432

χ is calculated the same way in each method by integrating the fitted theoretical spec-433

trum.434

Background conditions can affect the validity of assumptions necessary for estimat-435

ing ε, which differ in each method. The RW method assumes constant Γ, which may be436

violated, especially in locations where dissipation is driven by double diffusion (DD) (Inoue437
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Figure 6. Distribution of the density ratio, Rρ, for all non-rejected observations. Approxi-

mately 2% of data is in the diffusive convection susceptible regime (0.5 < Rρ < 1), and approxi-

mately 1% is in the salt finger regime (1 < Rρ < 2).

et al., 2007; Polyakov et al., 2019). The density ratio, Rρ = (α∂T
∂z )/(β

∂S
∂z ), where α and438

β are the coefficients of thermal expansion and haline contraction, can be used to iden-439

tify regions susceptible to instability by DD. We follow Merrifield et al. (2016) who, based440

on Schmitt (1979), estimate that DD instabilities with growth rates exceeding the buoy-441

ancy period can develop for 0.5 < Rρ < 2, where 0.5 < Rρ < 1 is the susceptible442

range for diffusive convection instability, and 1 < Rρ < 2 is susceptible to salt finger-443

ing. Of the non-rejected observations in this dataset, only about 2% are within the dif-444

fusive convective range, and 1% are in the salt finger range (Fig. 6). Nearly all of the445

salt finger-susceptible Rρ in this dataset were observed in the upper 100 m, where warm446

summer Pacific water overlies cooler and relatively fresher remnant winter water. Although447

conditions are sometimes susceptible to the growth of DD instabilities, they may not de-448

velop if sufficiently strong turbulent mixing disrupts layer formation (St. Laurent & Schmitt,449

1999). In this dataset, DD steps are not present and it is unlikely that DD was respon-450

sible for significant temperature variance, unlike in the central Canada Basin where DD451

is often observed (e.g., Timmermans et al., 2008; Padman & Dillon, 1989).452

Challenges associated with measuring high wavenumber temperature variance at453

the descent rates used during the cruise can also limit our confidence in the FS fits for454

ε, especially for determining kB , which is the wavenumber at which the spectrum rolls455

off and thus depends on both the turbulence and the unknown time-response of the ther-456

mistor. Because of the fourth-order kB dependence in Equation 6, a factor of two un-457

certainty in τ produces a factor of 16 uncertainty in ε.458

Given the large differences in ε and our inability to identify whether either method459

is more accurate, we focus only on χ going forward. The FS fit depends on both χ and460
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ε, so errors in ε may contribute to errors in χ. However, the effect on χ of varying ε is461

mitigated by applying the FS and RW disagreement rejection criterion described in Sec-462

tion 3.4, since a χFS significantly affected by errors in εFS will be rejected on the ba-463

sis of disagreement with χRW .464

4.3 Spatial patterns of turbulent temperature diffusivity465

Three transects of κT give some insight into the patterns and variability of shelf466

and shelf-break turbulence in the region (Fig. 7). Although only κT,FS is depicted, sim-467

ilar patterns and magnitudes are obtained using κT,RW .468

Diffusivity tends to be large (> 10−4 m2s−1) in the upper 50-75 m, above the cold469

halocline. These shallowest waters may be subject to mixing by wind and bottom-enhanced470

turbulence on the shelf. Few sections included non-rejected MR data beyond the depth471

of the shelf, however, two transects (OS2 and KTO) include data available down to 300472

m. These two transects exhibit considerably patchy κT through the cold halocline and473

the AW, with values ranging from the molecular level up to O(10−4) m2s−1 (Fig. 7 a,c).474

Interestingly, a region of elevated κT in Fig. 7c is located mostly within the 0ms−1 ve-475

locity contour, where geostrophic shears are weak. In general, no correlation between Richard-476

son number (Ri) and κT was observed. However, our estimates of Ri are limited by the477

resolution of the ADCP velocities (4 m vertical resolution with 18 m surface blanking),478

which could mean that the velocity length scales used to calculate Ri were too large to479

capture instabilities that give rise to elevated κT .480

Patches of low diffusivity (near 10−7 m2s−1) are not uncommon, especially within481

the AW layer (e.g. Fig. 7c). κT estimates are not included for the shallowest shelf wa-482

ters in most transects, where SNR is below the rejection threshold and dT/dz is too low483

to characterize diffusivity with this method. In these locations, it is hypothesized that484

the energetic conditions of the shelf environment have caused the water to be well-mixed,485

and thus the method of using scalar spectra for turbulence estimation cannot be applied.486

The statistical distribution of κT is shown in Fig. 8 with depth ranges that cor-487

respond to dT/dz regimes from Fig. 10. Fig. 8 shows values estimated using the FS method.488

Values of κT > 10−1 m2s−1 (1% of all κT ) have been excluded, since they have unphys-489

ically large values. Although this cutoff is somewhat arbitrary, it is imposed to control490

for non-physical values that have evaded all rejection criteria. κT tends to follow a log-491

skew-normal distribution with a tail towards higher values. This is consistent with Cael492

and Mashayek (2021), who observed that the log-skew-normal distribution is often most493

appropriate for turbulent processes. However, the distribution of κT,FS near the surface494

(0-80 m) does not exhibit a clear peak, but rather plateaus between 5×10−2 and 5×495

10−5 m2s−1. A distinct peak around 10−5 m2s−1 is seen below 80 m. The distribution496

of κT,RW (not shown) is similar.497

The elevated values of κT at depths greater than 160 m arise from a single profile498

at the northernmost end of section PRE near 147◦W (Fig 2). This profile exhibited κT ∼499

10−2 m2s−1 from around 340 m to the end of the cast at 375 m, which was 75 m above500

the sea floor. This portion of the profile exhibited very low dT/dz, potentially due to501

bottom boundary-enhanced turbulence in proximity to the Beaufort Shelfbreak Jet, which502

is known to be especially energetic (Pickart et al., 2009; Spall et al., 2018). Except for503

this anomalous profile, κT tends to shift towards lower values with increasing depth.504

To understand the relationship between turbulence and bathymetry in this region,505

we compared averaged profiles of κT on the shelf (defined as having bottom depths ≤50506

m), shelfbreak (bottom depths from 50 to 1000 m), and over the deep slope (bottom depth507

≥1000 m). Comparisons are sensitive to the averaging method (Schulz et al., 2023), and508

so depth-binned mean profiles created using an arithmetic average, a geometric average,509

and a maximum likelihood estimator for the expectation value (henceforth referred to510
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Figure 7. Transects of κT from the sections (a) OS2, (b) PRW, (c) KTO. Red dots indicate

locations with non-rejected data used to interpolate the κT field. Contours of potential density

(kg m−3; black) and absolute geostrophic velocity (m s−1; grey). Here κT is calculated using the

FS method. Bathymetry comes from the ship’s echosounder, and a 2D spline interpolation was

used to create these transects from the MR profiles. Note differences in x-axis ranges.
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Figure 8. Distribution of κT , colour-coded by depth range (see legend). Note that values

below 1.5 × 10−7 m2s−1 are below the molecular diffusivity threshold and are thus non-physical,

but have evaded all rejection criteria. Similarly, we consider κT > 10−1 m2s−1 to be non-physical

and exclude them from further analysis. Here κT is calculated using the FS method.
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Figure 9. Bin averaged κT profiles at the shelf, shelfbreak, and deep slope regions using (a)

an arithmetic average, (b) an MLE, and (c) a geometric average. Here κT is calculated using

the FS method. Dashed lines indicate number of data points in each depth bin (corresponding

the to upper x-axis). Bin size is 10 m for the shelf and 20 m for the shelfbreak and deep slope.

Error bars are calculated as standard deviation in log space within each bin. Arithmetically av-

eraged temperature (d) and salinity (e) profiles are also shown. A constant molecular diffusivity

(κ = 1.5 × 10−7 m2s−1) is imposed at the location of any spectrum with both |dT/dz| > 0.001
◦Cm−1 and SNR below the rejection threshold.
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Table 1. Average κT (units m2s−1) over all depth bins calculated three ways (arithmetic

mean, MLE, geometric mean) for three regions (shelf, shelfbreak, deep slope).

Shelf Shelfbreak Deep

Arithmetic 1.9× 10−3 4.3× 10−4 5.2× 10−5

MLE 2.1× 10−2 2.9× 10−4 6.3× 10−6

Geometric 2.3× 10−6 1.4× 10−6 5.7× 10−7

as MLE) are included (Fig. 9 a-c). The MLE is calculated according to Baker and Gib-511

son (1987), who showed that the MLE is less likely to underestimate log-normally dis-512

tributed turbulent parameters, which are intermittent in time and space, compared to513

an arithmetic mean, when sample size is small. We have already shown that the distri-514

bution of κT is approximately log-skew-normal, which may have implications for the choice515

in averaging method. Davis (1996) argued that the arithmetic mean may be the most516

reliable when the sample distribution is uncertain, compared to other methods (e.g. us-517

ing the MLE) that assume a lognormal distribution, especially when the sample size is518

small. It is not the intent here to identify any one averaging method as better than an-519

other, but, for the purpose of future comparisons, the outcomes from each are included.520

There is a clear correlation between bottom depth and κT throughout the water521

column for the arithmetic average and the MLE, in which the shelf and shelfbreak pro-522

files exhibit enhanced turbulent diffusivity by up to 1-2 orders of magnitude at the same523

water depths compared to the deep slope profiles. In the deep slope averages, κT is typ-524

ically between 10−6 and 10−5 m2s−1 between 100-200 m—a range of depths that encom-525

passes the cold halocline—which is consistent with observations of κT from Fer (2009)526

throughout the cold halocline in the Amundsen Basin. However, error bars are large due527

to the inherent patchiness of turbulence, and we have omitted the shallowest and deep-528

est bin for the averaged shelf profiles in Fig. 9 since nearly all observations within these529

bins were either rejected or set to molecular diffusivity due to low SNR. The geometri-530

cally averaged profiles do not vary in κT to the same extent between the shelf, shelfbreak,531

and deep slope.532

Mean turbulent temperature diffusivities through the full range of measured depths533

at the shelf, shelfbreak, and deep slope are shown in Table 1 for each averaging method.534

Using an arithmetic mean and MLE, there is approximately one to two order of mag-535

nitude decrease in κT on the shelf versus shelfbreak, and on the shelfbreak versus deep536

slope. Using a geometric mean yields similar κT on the shelf and shelfbreak, and an or-537

der of magnitude decrease over the deep slope.538

For the majority of their observations, Schulz et al. (2023) reported average ver-539

tical diffusivity during the MOSAiC expedition (see Rabe et al., 2022) to be largest us-540

ing an arithmetic and smallest using a geometric mean, with the MLE typically having541

magnitude somewhere in between. This trend is also observed over the deep slope, which542

is the depth region most similar to the mid-basin environment where the MOSAiC ob-543

servations were made. The geometrically averaged κT is smaller than the arithmetic mean544

and MLE in all three depth regions, as is expected for a log-normally distributed vari-545

able. In contrast, the MLE is about one order of magnitude larger than the arithmetic546

mean on the shelf and shelfbreak.547

The number of κT estimates used in each bin is indicated by the dashed lines in548

Fig. 9. For instance, few profiles achieved maximum depths below 300 m, so for these549

bins, the estimates of κT are poor representatives of averages. Similarly, there were few550

profiles on the shelfbreak that reached maximum depths ≥ 40 m.551
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Figure 10. Histogram of background dT/dz, measured from the CTD, colour-coded by depth

range. Only the 95 profiles with working MR are included.

4.4 Background temperature and heat flux552

Temperature gradients at 10-100 m scales across the study region are correlated553

with three distinct ocean layers (Fig. 10). In the region 0 to 80 m, gradients are very554

small (most measurements have magnitude < 5×10−3 ◦Cm−1) and are normally dis-555

tributed about zero. This region represents the surface layer, and is comprised of sev-556

eral distinct water masses: newly formed cold winter water on the shelf, a surface mixed557

layer in the basin away from the shelf, and warm remnant PSW. These different water558

masses are distinguishable by background temperature in section KTO (Fig. 1). Due to559

its composite nature, the surface layer is patchy with respect to temperature, and it is560

thus not surprising that both positive and negative dT/dz are present. Between 80 and561

160 m, the distribution of dT/dz peaks near zero with long tails in both the positive and562

negative directions. This is the depth region corresponding to the cold halocline. At 160563

m and below, the background temperature gradient is almost always negative and, un-564

like at depths < 160 m, the distribution does not peak near zero. This strong signal of565

negative dT/dz is due to the warm and salty AW.566

Heat exchanges between water masses in the Arctic Ocean (e.g., between warm AW567

and the overlying cold halocline) can affect water mass properties as well as sea ice for-568

mation and melt, with implications for global climate systems (e.g., Maykut & Unter-569

steiner, 1971; Polyakov et al., 2020; Rippeth et al., 2015). Estimates of turbulent diffu-570

sivity and heat flux are therefore important for understanding the dynamics of the re-571

gion. Heat flux, F , is linearly related to both the background temperature gradient and572

the temperature diffusivity:573

F = −κT
dT

dz
Cpρ, (12)574

where Cp and ρ are the specific heat capacity and the in-situ density of sea water. Note575

that heat flux is defined so that negative dT/dz (the spatially averaged vertical temper-576

ature gradient) yields a positive flux, which implies an upward transport of heat.577

Heat flux distributions are separated into depth ranges in Fig. 11. The heat fluxes578

with the largest magnitudes (> 10 Wm−2) are seen most often in the 0-80 m depth cat-579
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Figure 11. Histogram of heat flux in three depth ranges. Only observations with SNR above

the rejection threshold are included. Heat fluxes are calculated from κT,FS .

egory, and only rarely at depths > 80 m. This is likely because the surface waters tend580

to exhibit the largest κT and also tend to be patchy in temperature, which can result581

in sharp gradients and large heat fluxes. In the deeper and typically less energetic wa-582

ters, the heat flux magnitudes tend to be smaller. The 80-160 m fluxes peak around 0583

Wm−2, while the peak of the 160-400 m fluxes is shifted slightly toward positive values,584

since these deepest observations are associated with almost exclusively negative dT/dz585

(Fig. 10) and thus upward heat flux.586

4.4.1 Heat flux into the cold halocline at the AW thermocline587

Heat flux into the cold halocline was calculated for individual profiles following a588

similar method to Rippeth et al. (2015) in which an average κT is estimated for an en-589

tire layer, along with a bulk mean temperature gradient that approximates dT
dz ≈ ∆T

∆Z ,590

where ∆Z is the layer thickness and ∆T is the potential temperature difference between591

the top and bottom of the layer. Arithmetic averages are used for the sake of compar-592

ison with other literature. The core of the cold halocline was defined for each profile to593

be the depth at which the lowest temperature was observed, between the 1026 and 1027594

kg/m3 isopycnals. We then calculated the mean heat flux into the cold halocline above595

and below its core using bulk temperature gradients and averaged κT over the upper and596

lower portions of the cold halocline. An average heat flux into the cold halocline from597

above (below) of -2.8±2.8 Wm−2 (1.2±3.0 Wm−2) was calculated from 15 profiles with598

maximum depth greater than the base of the cold halocline. Thus, net inward heat flux599

is estimated as 4.0±4.1 Wm−2, with a slightly larger amount of heat entering from the600

–22–



manuscript submitted to JGR: Oceans

surface, rather than the deeper ocean, at this time of year. This inward heat flux would601

eventually erode the cold halocline in the absence of seasonally inflowing cold, salty wa-602

ter from ice formation upstream on the Bering and Chukchi shelves (e.g., Itoh et al., 2012;603

Pacini et al., 2019), or locally on the Beaufort shelf (Dabrowski et al., 2022; Jackson et604

al., 2015).605

Heat flux through the upper bound of the AW varies throughout the Arctic Ocean.606

Our average upward flux of 1.2±3.0 Wm−2 through the AW thermocline is smaller than607

the mean heat flux across the AW thermocline of 22±2 Wm−2 reported in Rippeth et608

al. (2015) at the continental slope north of Svalbard. Renner et al. (2018) and Meyer et609

al. (2017) also report relatively large heat fluxes (> 10 Wm−2) above the AW core in610

the Nansen Basin, and both Polyakov et al. (2019) and Schulz, Janout, et al. (2021) re-611

port fluxes of 3-4 Wm−2 near slope regions in the Eurasian Basin. In the Amundsen Basin612

away from steep bathymetry, smaller heat fluxes of O(0.1) Wm−2 have been observed613

(Fer, 2009; Guthrie et al., 2017).614

In many cases (e.g., Peterson et al., 2017; Meyer et al., 2017; Renner et al., 2018),615

episodically high Arctic Ocean heat fluxes one or more orders of magnitude larger than616

annual averages have been observed, and have been associated with storm events, AW617

shoaling, and seasonal ice melt. In the present Canada Basin dataset, some large upward618

fluxes at the top of the AW on the order of 10 Wm−2 are also observed. Such variabil-619

ity, combined with the relatively small number of profiles that reached AW depth, con-620

tributes to the large uncertainty associated with our estimates of AW thermocline flux621

and net flux into the cold halocline.622

4.4.2 Statistics of heat fluxes throughout the surface, cold halocline, and623

AW layers624

The distributions of heat flux throughout the surface layer, the cold halocline, and625

the AW are now considered (Fig. 12). These layers, which are visible in the example sec-626

tion shown in Fig. 1a, are defined as follows:627

• Surface layer water, which includes newly formed winter water, mixed layer basin628

water, and PSW: density less than 1026 kg m−3 and practical salinity less than629

31.5630

• Cold halocline water: density between 1026 and 1027 kg m−3, or temperature631

below -1 ◦C and depth below 75 m632

• AW: depth below 150 m and practical salinity greater than 34633

These definitions are based on empirical estimates of distinct water masses after634

examining the salinity, temperature, and density background across multiple sections.635

The conditions for each water mass deliberately do not overlap—that is, there are some636

data points that do not fall into any of the three categories. Such points occur most of-637

ten at interfaces where characteristics are mixed between two water masses. Using these638

narrow definitions allows for more confidence in water mass classification, compared to639

classification by depth only. As a result, the number of heat flux estimates is smaller when640

classifying by water mass compared to Fig. 11 where all non-rejected estimates are in-641

cluded.642

Surface waters exhibit both positive and negative heat fluxes with a slight bias to-643

ward positive (Fig. 12a). The nearest surface waters would likely have been cooling due644

to air-sea heat fluxes at the time of year when these measurements were made, causing645

such an upward flux of heat towards shallower depths. The observation of occasional up-646

ward heat fluxes of 10-50 Wm−2 above the warm PSW is notable, since even highly in-647

termittent fluxes of this magnitude could lead to warming of the cool surface layer and648

delayed freeze-up. Within the cold halocline layer (Fig. 12b), the heat flux distribution649
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Figure 12. Heat flux distributions for three distinct water masses: a) the surface layer, b) the

cold halocline, and c) the AW. Positive heat flux corresponds to upward heat transport. Only

observations with SNR above the rejection threshold are included. Heat fluxes are calculated

from κT,FS .
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is approximately centered about 0 Wm−2, indicating that a similar amount of heat is650

transported downward into the cold halocline from the surface layer (accounting for the651

negative fluxes) and upward from the AW layer (accounting for the positive fluxes), con-652

sistent with the findings of Schulz, Janout, et al. (2021) in the eastern Arctic. This rep-653

resents a net warming of the cold halocline and is consistent with the layer-averaged halo-654

cline heat flux calculation described earlier in this section. In the surface and cold halo-655

cline layers, most heat fluxes have magnitude 10 Wm−2 or less, with some larger fluxes656

>50 Wm−2 that comprise approximately 15% of the surface layer observations (repre-657

senting 8% of the observations overall). Within the AW layer (Fig. 12c), such larger heat658

fluxes are less common due to smaller temperature gradients. Heat flux throughout the659

AW is almost always upward, since the temperature of this water mass is elevated com-660

pared to the overlying cold halocline and none of the profiles were deep enough to see661

the temperature gradients reverse sign below the AW core.662

The turbulent heat fluxes from this near-coastal data set tend to be larger by about663

1-2 orders of magnitude in comparison to the double diffusive heat fluxes in the central664

Canada Basin calculated by Timmermans et al. (2008). Shaw and Stanton (2014) reported665

turbulent heat fluxes as high as 2 Wm−2 near the Northwind Ridge to the west of the666

Canada Basin, comparable to our median values of heat flux near the shelfbreak. The667

small number of large (>10 Wm−2) heat fluxes observed in this work may be the result668

of intermittent turbulence-generating events as flows interact with the steep shelfbreak669

bathymetry; the importance of boundary layers in mixing at the basin scale has has been670

previously demonstrated with microstructure measurements and tracer release exper-671

iments (e.g., Ledwell & Hickey, 1995; Holtermann & Umlauf, 2012), and some possible672

mechanisms for the conversion of unsteady lee wave energy to turbulence at boundaries673

in Arctic shelf seas have been proposed (e.g., Fer et al., 2020; Schulz, Büttner, et al., 2021).674

More comprehensive measurements in the future could clarify the frequency with which675

such fluxes occur, and the processes that generate them.676

5 Conclusions677

A total of 95 temperature microstructure profiles were obtained on the shelf and678

in the vicinity of the shelfbreak of the southern Canada Basin by attaching a microstruc-679

ture probe to a CTD rosette during an autumn 2018 research cruise. We compared two680

methods (FS and RW) for estimating turbulence parameters χ and ε, after applying sev-681

eral rigorous quality control measures.682

The quality control framework developed in this work assesses the signal-to-noise683

ratio, the quality of the spectral fit to the Kraichnan form, and the potential for con-684

tamination due to sudden instrument deceleration. No double diffusive steps were ob-685

served, and low (∼ 0.5 ms−1) instrument descent rates were maintained in this dataset.686

The FS and RW methods were found to yield similar results for χ after rejection crite-687

ria were applied to this particular dataset. Any future work involving ε and χ should688

consider the potential impact of DD instability, possibly by implementing a rejection cri-689

terion based on Rρ. The differences in the two methods suggest that the FS method is690

preferred for estimates of χ and ε when DD is involved and when ε is sufficiently small691

(such that kB can be reliably estimated using a FS fit). The RW method is likely to be692

more accurate when ε is large and when shear instability (rather than DD) dominates.693

We hypothesize that the two methods will provide consistent estimates when ε is small694

and when DD processes are weak, and that neither method should be applied when ε695

is large and DD is observed.696

Estimates of turbulent diffusivity were, on average, elevated in profiles obtained697

over shallower bathymetry compared to those obtained over the deep slope. We also ex-698

amined background temperature gradients and determined that three distinct layers in699

this region—the surface layer, the cold halocline, and the warm AW—could be charac-700
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terized via dT/dz. Vertical heat fluxes obtained from diffusivities were calculated for the701

three layers. Surface layer heat fluxes were both positive (upward) and negative (down-702

ward) with a slight bias toward positive. Heat fluxing into the cold halocline from above703

was found to be of the same order of magnitude as heat flux from the underlying AW.704

In both the surface and cold halocline, heat fluxes tended to be within ±10 Wm−2, but705

were occasionally several times larger. In the AW layer, temperature gradients are more706

stable, and thus O(10) Wm−2 heat fluxes were observed less often compared to the over-707

lying layers.708

Our results support the measurement of temperature microstructure on routine hy-709

drographic surveys, since data can be used to estimate turbulent heat fluxes provided710

that strict rejection criteria are applied. Estimations of heat flux are important for con-711

straining heat budgets and therefore making predictions about sea ice formation and loss712

over time. Repeated measurements of this nature in the Canada Basin and throughout713

the Arctic Ocean could increase the breadth of observations in this unique and rapidly714

changing environment.715

Appendix A Additional details on the rejection criteria716

A1 Mean absolute deviation (MAD)717

MAD rejection occurs when the observed spectrum does not resemble the Kraich-718

nan spectrum. This may happen when flow is laminar or nearly laminar (that is, when719

turbulent diffusivities approach molecular values), or when environmental processes other720

than turbulence are present. Varying degrees of anisotropy in the turbulent field, often721

relating to the effect of stratification on the vertical dimension, can also influence how722

well an observed spectrum adheres to the theoretical form (Gargett, 1985). Thus, it is723

not always appropriate to fit a Kraichnan spectrum and doing so in these cases will likely724

yield unreliable estimates of the true environmental turbulence.725

For fits made using the FS method, MAD is calculated using every wavenumber;726

for fits made using the RW method, the region over which MAD is calculated is limited727

to the region of the fit. The criterion of rejection when MAD > 1.4 comes from the rec-728

ommended threshold of 2(2/d)1/2 where d = 4, the number of degrees of freedom (Ruddick729

et al., 2000).730

A2 Descent rate731

Spectra that are contaminated due to sudden rosette deceleration will measure el-732

evated non-enironmental turbulence (Goto et al., 2018). The instrument descent speed,733

w, varies across profiles because the maximum depths reached by profiles in this dataset734

range between 20 m and 400 m. Thus, a constant rejection threshold is not appropri-735

ate. In Equation 11, the coefficient 0.75 and the 3 s averaging window were chosen af-736

ter comparing MR temperature gradient variance from rejected portions of profiles to737

variance prior to the deceleration for multiple different averaging window sizes and co-738

efficients.739

We define the following variance ratio to test the effectiveness of the descent speed740

rejection criterion:741

Variance ratio =
var(∇T ′

before)

var(∇T ′
1s, rejected)

(A1)742

Here, var(∇T ′
before) is the variance of the temperature gradient fluctuations in the743

n-seconds prior to the start of a profile segment rejected by the descent rate criterion,744

where n defines the period of time used for the averaging window against which a given745
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Figure A1. Histograms of the base 10 logarithm of variance ratio for various rejection thresh-

olds at all descent rate-rejected segments. From left to right, averaging periods for the compari-

son segment in each column are 1, 3, 4, and 10 s. The vertical black line indicates where variance

ratio = 1: if the threshold is effective, most data should fall to the left of this line. The threshold

that was ultimately chosen (and its associated histogram) is indicated by the green box.

spectrum’s descent rate is compared. For example, in Equation 11, n = 3. var(∇T ′
1s, rejected)746

is the variance of the temperature gradient in a 1 s window within a segment rejected747

due to descent rate. When the rejection threshold for descent speed, wt, is correctly de-748

fined, the variance ratio should be < 1 most of the time, since periods of abrupt decel-749

eration exhibit enhanced temperature gradient variance due to turbulence compared to750

periods unaffected by deceleration.751

Histograms of variance ratio for all descent speed-rejected segments are shown in752

Fig. A1, with different wt. Averaging periods for the comparison segment (prior to de-753

celeration) of 1, 3, 5, and 10 s (columns, Fig. A1) were tested, and it was observed that754

using 5 and 10s segments caused a notable increase in number of rejected segments with755

variance ratio >1, especially for wt = 0.75wn and wt = 0.85wn. The difference in num-756

ber of segments with variance ratio >1 is less obvious between averaging windows of 1757

and 3s. However, to reduce the potentially biasing impact of short-lived (< 1s duration)758

turbulent events, we decided to use the longer averaging period of 3s.759

We additionally reject all spectra from 1.5s after w increases back above wt. This760

overshoot of 1.5s is a conservative estimate based on the observation that segments of761

profiles affected by deceleration contamination take at most 1.5 seconds to return to their762

baseline after a slowing event.763

For a 3s averaging window, the rejection threshold is w3 multiplied by some coef-764

ficient. The variance ratio was calculated for various coefficients (rows, Fig. A1). Ap-765

proximately 10% more rejection occurs when the threshold is defined with coefficient 0.75766

compared to 0.5, and there is similarly an increase around 10% between 0.85 and 0.75767

times. However, most of the additional rejection between the 0.5 and 0.75 thresholds oc-768

curs at variance ratio < 1. Thus, this rejection is probably warranted, since most rejected769

portions exhibit enhanced variance in ∇T ′. At the 0.85 threshold, there are a notable770

–27–



manuscript submitted to JGR: Oceans

number of rejected segments with variance ratio > 1, suggesting this threshold may be771

too aggressive. 0.75 is then most appropriate, yielding the descent rate threshold defined772

in Equation 11: wt = 0.75w3.773

A3 Signal-to-noise ratio (SNR)774

SNR is a property of the spectrum and does not depend on whether the FS or RW775

method is used, but we observed an artificial lower limit for χFS that is influenced by776

SNR and was used to determine our choice of rejection threshold. This limit is seen only777

with the FS method since instrument noise is considered only when fitting to all wavenum-778

bers. When the signal is low (and SNR is also low), the FS method often incorrectly fits779

the peak of the theoretical spectrum to the noise peak (Fig. 3b), resulting in a χ that780

is unrealistically large. This problem does not occur with the RW method, where the781

wavenumbers over which the noise spectrum is significant are not considered when per-782

forming the fit. However, the SNR rejection criterion is applied to all spectra irrespec-783

tive of method, since low signal is indicative of low temperature variance (due to either784

low turbulence or a well-mixed background, or both), and our methods for determining785

χ and ε rely on the presence of sufficiently strong temperature variance.786

Our rejection criterion of SNR < 2 is slightly stricter than Goto et al. (2018), who787

reject spectra with SNR < 1.5. However, in comparing the results between the two meth-788

ods, the lower limit on χFS was improved using the stricter rejection requirement of SNR789

< 2 (Fig. 3a).790

A4 Method difference791

The choice of rejection threshold for FS and RW disagreement must be a balance792

between including only trustworthy observations where the methods agree, and minimiz-793

ing the amount of data lost. We have set the threshold such that rejection occurs when794

the methods disagree by an order of magnitude, resulting in approximately 10% rejec-795

tion. However, if the threshold was to be implemented for method disagreements greater796

than a factor of 5, 17% of data would be rejected; for a factor of 3, ∼25% would be re-797

jected.798

Appendix B Descent rate limits on εFS799

The maximum resolvable wavenumber in cpm depends on the Nyquist frequency,800

which is one half of the sample frequency, fs, and descent rate, w:801

kmax =
( 12fs)

w
. (B1)802

The maximum resolvable wavenumber limit is relevant to the FS method, which803

calculates ε from an estimate of kB . In contrast, the RW method does not require es-804

timates of kB , and spectral values near kB are not used in the RW fitting algorithm. From805

Equations 6 and B1, the theoretical maximum resolvable ε when using the FS method806

depends on descent rate as807

εmax,FS =

(
2π

( 12fs)

w

)4

νκ2, (B2)808

assuming that kB must be fully resolved for an accurate estimate.809

When plotted against the scattered data ε versus w, εmax,FS (green curve in Fig.810

B1) reproduces the shape of the upper limit of the observed εFS (red dashed curve in811
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Figure B1. Both log ε from FS and RW plotted against instrument descent speed. εFS is

limited by fall speed while εRW is not. εmax,theoretical (green) assumes kB must be fully resolved

to obtain an accurate estimate of ε, and thus depends on sample frequency (512Hz in this study).

Observations indicate that the true limit for εFS is 0.51/4 times the predicted theoretical limit.

Fig. B1), but is displaced downward, corresponding to kmax = 2kB . This suggests that812

k > 2kB is required in order to be able to use the FS method for estimating ε.813

Acronyms814

CTD Conductivity-temperature-depth package815

ADCP Acoustic Doppler current profiler816

IBCAOv3 International Bathymetric Chart of the Arctic Ocean Version 3.0817

AW Atlantic water818

PSW Pacific summer water819

MR MicroRider-1000820

FS Full-spectrum821

MLE Maximum Likelihood Estimate822

RW Resolved wavenumber823

SNR Signal-to-noise ratio824

MAD Mean absolute deviation825

DD Double diffusion826

Open Research Section827

The unprocessed profiles obtained using the Microrider-1000 in .P file format and828

processed profiles of turbulent diffusivity with corresponding CTD and position in .nc829

file format can be accessed on Borealis (Musgrave & Yee, 2023). The echosounder and830

shipboard ADCP data for the cruise HLY1803 were used to create this manuscript (Pickart,831
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Robert, 2018). The MATLAB code used for the RW method is publicly available (Ocean832

Mixing Group (Oregon State University), 2020).833
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