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Abstract

While yearly budgets of CO2 and evapotranspiration (ET) above forests can be readily obtained from eddy-covariance measure-

ments, the quantification of their respective soil (respiration and evaporation) and canopy (photosynthesis and transpiration)

components remains an elusive yet critical research objective. To this end, methods capable of reliably partitioning the measured

ET and F c fluxes into their respective soil and plant sources and sinks are highly valuable. In this work, we investigate four

partitioning methods (two new, and two existing) that are based on analysis of conventional high frequency eddy-covariance

(EC) data. The physical validity of the assumptions of all four methods, as well as their performance under different scenarios,

are tested with the aid of large eddy simulations, which are used to replicate eddy-covariance field experiments. Our results

indicate that canopies with large, exposed soil patches increase the mixing and correlation of scalars; this negatively impacts

the performance of the partitioning methods, all of which require some degree of uncorrelatedness between CO2 and water

vapor. In addition, best performance for all partitioning methods were found when all four flux components are non-negligible,

and measurements are collected close to the canopy top. Methods relying on the water-use efficiency (W) perform better when

W is known a priori, but are shown to be very sensitive to uncertainties in this input variable especially when canopy fluxes

dominate. We conclude by showing how the correlation coefficient between CO2 and water vapor can be used to infer the

reliability of different W parameterizations.
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Abstract24

While yearly budgets of CO2 and evapotranspiration (ET ) above forests can be read-25

ily obtained from eddy-covariance measurements, the quantification of their respective26

soil (respiration and evaporation) and canopy (photosynthesis and transpiration) com-27

ponents remains an elusive yet critical research objective. To this end, methods capa-28

ble of reliably partitioning the measured ET and Fc fluxes into their respective soil and29

plant sources and sinks are highly valuable. In this work, we investigate four partition-30

ing methods (two new, and two existing) that are based on analysis of conventional high31

frequency eddy-covariance (EC) data. The physical validity of the assumptions of all four32

methods, as well as their performance under different scenarios, are tested with the aid33

of large eddy simulations, which are used to replicate eddy-covariance field experiments.34

Our results indicate that canopies with large, exposed soil patches increase the mixing35

and correlation of scalars; this negatively impacts the performance of the partitioning36

methods, all of which require some degree of uncorrelatedness between CO2 and water37

vapor. In addition, best performance for all partitioning methods were found when all38

four flux components are non-negligible, and measurements are collected close to the canopy39

top. Methods relying on the water-use efficiency (W ) perform better when W is known40

a priori, but are shown to be very sensitive to uncertainties in this input variable espe-41

cially when canopy fluxes dominate. We conclude by showing how the correlation co-42

efficient between CO2 and water vapor can be used to infer the reliability of different W43

parameterizations.44

Plain Language Summary45

Forests and vegetated ecosystems play a crucial role in the exchange of CO2 and46

water vapor with the atmosphere. During the day, plants absorb CO2 through photo-47

synthesis (P ), releasing water vapor via transpiration (T ). On the other hand, the for-48

est floor contributes to CO2 through respiration (R), and moist soil leads to water va-49

por evaporation (E). While tall towers currently measure total CO2 (Fc = P+R) and50

water vapor (ET = E + T ) exchanges, distinguishing the contributions from soil res-51

piration and evaporation versus tree photosynthesis and transpiration remains a chal-52

lenge. This study addresses this gap by investigating methods to separate Fc and ET53

into their individual components. Using a simulated forest environment with a virtual54

meteorological tower, the study tests four methods to estimate respiration, photosyn-55

thesis, evaporation, and transpiration. Results reveal that more reliable estimates are56

obtained when measurements are collected close to the forest top, especially without sig-57

nificant vegetation gaps leading to strong mixing. Additionally, the study highlights the58

expected errors in two approaches when faced with real-world uncertainties. By eluci-59

dating optimal conditions for method application, this research contributes to advanc-60

ing our understanding of ecosystem-atmosphere interactions and informs the accurate61

measurement of vital components in the carbon and water cycles.62

1 Introduction63

Land-atmosphere exchanges of water vapor and CO2 are important components64

of the global water and carbon cycles. In this context, vegetated canopies, such as forests,65

play an important role in both cycles through their contributions to evapotranspiration66

(ET ) and net CO2 exchange (Fc). Facilitated by an extensive network of eddy-covariance67

(EC) towers setup across the globe, we are currently able to quantify the long-term bud-68

gets for both quantities over many land use types. Nonetheless, long-term quantification69

of their individual soil (evaporation and respiration) and plant canopy (transpiration and70

photosynthesis) components is an equally important but much more challenging research71

goal. While different methods have been proposed to measure one or more of these com-72

ponents, such as soil chambers, sap-flow and leaf-level measurements, they are still un-73
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able to offer unified long-term measurements (yearly scale) of all components across dif-74

ferent ecosystems. This poses a challenge to understanding, for instance, how different75

environmental, meteorological, and climatological conditions affect these processes, which76

are urgent research questions as we attempt to mitigate and adapt to climate change and77

variability (Mengis et al., 2015; Kirschbaum & McMillan, 2018; Dusenge et al., 2019; Baslam78

et al., 2020; Wang et al., 2022). Therefore, the development and implementation of prac-79

tical and accurate methods to partition the total ET and Fc fluxes that are currently80

being measured world-wide is a significant objective, particularly if such methods can81

solely rely on eddy-covariance data.82

Several methods have been proposed in the last decade to partition the total ET83

and Fc. In terms of CO2 components, one of the most popular approaches consists of84

modeling soil respiration (Rsoil) based on a soil temperature response function (Reichstein85

et al., 2005; Lasslop et al., 2010), thus obtaining gross-primary productivity (GPP ) as86

GPP = Fc−Rsoil. The conceptual framework behind each of the various available par-87

titioning algorithms for ET varies widely. For instance, after reviewing ET partition-88

ing results from several sites, Wei et al. (2017) proposed a formulation linking T/ET to89

the leaf-area index (LAI). Perez-Priego et al. (2018) and X. Li et al. (2019), on the other90

hand, adopted a physiological approach; the authors use a big-leaf scheme to first model91

and later relate plant conductance to transpiration. Other authors explored the direct92

connection between plant photosynthesis and transpiration — through the ecosystem water-93

use efficiency (eW = GPP/ET ) — to derive empirical formulations based on the cor-94

relation between these components (Zhou et al., 2016; Scott & Biederman, 2017). In ad-95

dition, machine learning algorithms have also been used (Nelson et al., 2018; Rigden et96

al., 2018; Eichelmann et al., 2022) to link T or E to environmental variables. While these97

approaches have gained attention and multi-comparison studies have become more pop-98

ular (Nelson et al., 2020), they usually invoke uncertain models for individual compo-99

nents or require additional (and hard to measure) environmental variables, precluding100

their wider implementation. For instance, most of these methods require GPP as an in-101

put in order to partition ET , thus increasing the uncertainties in their outputs. There-102

fore, approaches able to simultaneously partition CO2 and ET , based solely on available103

EC data, offer many advantages over the previously mentioned methods.104

A particularly useful class of partitioning methods, that this paper focuses on, are105

approaches based on turbulent statistics computed from high-frequency data. Not only106

do they require few (usually only water use efficiency) or no extra inputs, but they also107

allow the simultaneous and consistent partitioning of ET and Fc flux components. Three108

previously proposed methods are the flux-variance similarity (FVS)(Scanlon & Sahu, 2008;109

Scanlon & Kustas, 2010; Scanlon et al., 2019), the modified relaxed-eddy accumulation110

(MREA) (C. Thomas et al., 2008), and the conditional eddy covariance (CEC) (Zahn111

et al., 2022).112

Zahn et al. (2022) intercompared FVS, MREA and CEC across four experimen-113

tal sites, including a grass site with independent estimates of transpiration and a forest114

site with soil respiration measurements. While reasonable results were obtained in dif-115

ferent situations for all three approaches, a general conclusion regarding their broad ap-116

plicability across different ecosystems was not attained. Part of the challenge is related117

to the difficulty in validating the methods’ formulation and results. In addition, validat-118

ing their universality — i.e., when and where they perform well — would require tower119

data across a wide range of ecosystem types and climatic conditions that could result120

in various combinations of flux component strengths.121

Previously, Klosterhalfen, Moene, et al. (2019) used LES to investigate the phys-122

ical assumptions and the performance of the FVS method. The authors showed that FVS123

is very sensitive to one of the assumptions invoked during its derivation, a necessary al-124

gebraic manipulation to obtain a closed system of equations. FVS was also found to be125

very sensitive to the plant water-use efficiency (W ), which is the only input to the model126
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that is not directly computed from the time series. Thus, the main disadvantage of the127

FVS method is that it presumes that a very important piece of information, W , is al-128

ready known. However, the challenge remains that while different alternatives to param-129

eterize W are available (Skaggs et al., 2018; Scanlon et al., 2019), the different options130

usually do not match and are shown to result in different flux partitioning outputs (Wagle131

et al., 2021). In addition, many studies (Sulman et al., 2016; Klosterhalfen, Graf, et al.,132

2019; Wagle et al., 2021; Zahn et al., 2022) have shown that, depending on the site, the133

rate of valid solutions found by the FVS method can be as low as 30%.134

To overcome limitations of field experiments in answering many of the open research135

questions, in this study we use numerical simulations of canopy flows relying on the Large-136

Eddy Simulations (LES) (Stoll et al., 2020) technique with embedded virtual flux tow-137

ers and sensors. One of the biggest advantages LES offers in the present study is that138

the true flux components and water-use efficiency are known inputs; therefore, the re-139

sults for the implemented partitioning methods, which are applied to time series sam-140

pled during the simulation, can be validated. We thus further investigate the advantages141

and limitations of FVS, MREA, and CEC. In contrast to the FVS method, the formu-142

lation of which starts from the similarity equations for variances but then invokes em-143

pirical assumptions, both CEC and MREA are fully empirical approaches based on the144

assumption that CO2 and H2O are similarly transported by turbulence from their shared145

soil and canopy sinks and sources. While their formulation cannot be rigorously proven,146

their assumptions and performance can be extensively tested in LES under various con-147

ditions.148

Cognizant of potential limitations of FVS, CEC, and MREA, in the present study149

we also formulate and test two related approaches. The first approach is the conditional150

eddy accumulation or CEA, which complements the other tested methods better. The151

Conditional Eddy Accumulation method combines quadrant analyses and the traditional152

Relaxed Eddy Accumulation method (Businger & Oncley, 1990). While it uses similar153

principles as adopted by the Modified Relaxed Accumulation method (see C. Thomas154

et al. (2008) and Zahn et al. (2022)) and CEC, CEA’s formulation also includes down-155

drafts in its framework, and yields different results. The second method is a hybrid ap-156

proach that assimilates W into the CEC method, and is here called CECw. The idea be-157

hind CECw is to investigate how much skill the water-use efficiency alone adds to par-158

titioning.159

An important question with these multiple available approaches is under what con-160

ditions (measurement height, season, canopy characteristics, etc.) are some approaches161

more accurate than others. As discussed by Zahn et al. (2022), the assumption that ed-162

dies from the soil can be distinguished from those coming from the plant canopy would163

suggest that more realistic results should be obtained for both methods over sparser canopies164

(a conclusion we will revisit here). The authors also concluded that the high-frequency165

data should be measured as close as possible to the canopy so as to sample the trans-166

porting eddies before turbulence mixes canopy and soil fluxes. One question that remains167

open is whether sparser canopies allow a higher measurement height given the stronger168

horizontal distinction between canopy and soil. The importance of plant canopy “open-169

ness” is thus investigated in the present simulations. To that end, we first simulate flow170

over a homogeneous canopy, where the canopy presence (i.e., fluxes and drag) is felt at171

every grid point of the lower part of the domain; to simulate canopy sparseness, we then172

include exposed patches of soil resembling crop organizations such as vineyards. Another173

related key question is how (not if) the methods’ performances are affected by the rel-174

ative magnitude of soil versus canopy fluxes. To address that question, we investigate175

a broad range of combinations of the ratios of photosynthesis/respiration and transpi-176

ration/evaporation, and how they influence the outcome of each method.177

Overall, this paper explores how similarity-based partitioning approaches perform178

under various conditions encountered in real field experiments, and how simple turbu-179
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lence measurements can help understand the biophysiological behavior of plant canopies.180

The following questions are investigated181

1. How does the sparseness of the canopy impact the assumptions of the methods182

and their performance?183

2. How does the magnitude of the individual four flux components influence parti-184

tioning skill?185

3. What is the role of the measurement height for different levels of canopy sparse-186

ness?187

4. How sensitive are the FVS and CECw methods to errors in water use efficiency?188

The answers to these questions will further deepen our understanding of ET and Fc par-189

titioning and the reliability of the investigated methods. They will also help to broadly190

identify the best practices for future experimental campaigns aimed at obtaining flux com-191

ponent estimates.192

2 Theory193

We start this section with a brief summary of the partitioning methods investigated,194

where the main equations and necessary inputs are discussed. Throughout the text, the195

concentrations of CO2 and H2O are defined as c and q, respectively. The velocity com-196

ponents in the streamwise (x), cross-stream (y), and vertical directions (z) are u, v, and197

w, while the deviation of a variable µ around its time and/or space average µ is denoted198

using a prime µ′ = µ− µ. An important note to make here is that, for the remainder199

of the paper, we will not distinguish between soil and plant respiration. All the tested200

methods cannot make this distinction either since they are interrogating the properties201

of air parcels coming from the plants with the lumped information about gross primary202

production (GPP ), and thus they partition net ecosystem exchange into GPP and Rsoil.203

In our LES setup and the rest of the paper, however, CO2 will be emitted from the soil204

only, and we will refer to it as R, while the simulated plants only assimilate CO2, and205

we refer to that flux as photosynthesis (P ).206

2.1 Brief description of the partitioning methods207

In what follows, a summary of the FVS, CEC, and the newly proposed CEA and208

CECw, is presented. We note that results for the MREA method, previously explored209

in Zahn et al. (2022), were almost identical to CEC and thus will not be reported in this210

paper.211

2.1.1 Flux-variance similarity (FVS) method212

The flux-variance similarity method combines the similarity equations for variances213

of c and q with the water-use efficiency W = P/T (Scanlon & Sahu, 2008; Scanlon &214

Kustas, 2010). More specifically, it rewrites the budgets by separating the two scalars215

into their soil (cr for respiration and qe for evaporation) and canopy (cp for photosyn-216

thesis and qt for transpiration) components. To close the system of equations, the fol-217

lowing approximations are needed (G. Katul et al., 1995)218

ρcp,cr ≈ ρw,cr

ρw,cp

and ρqt,qe ≈ ρw,qe

ρw,qt

, (1)219
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where ρxy is the correlation coefficient between the variables x and y. After some alge-220

bra, the final equations for the ratios of flux components are221

EFVS

TFVS
=− ρ2cp,cr + ρ2cp,cr

√
1− ρ−2

cp,cr

(
1−W 2σ2

q/σ
2
cp

)
, (2a)222

RFVS

PFVS
=− ρ2cp,cr ± ρ2cp,cr

√
1− ρ−2

cp,cr

(
1− σ2

c/σ
2
cp

)
, (2b)223

224

where ρcp,cr and σcp , the standard deviation of cp, are directly computed by the two fol-225

lowing complementary equations (Skaggs et al., 2018; Scanlon et al., 2019),226

σ2
cp =

(
1− ρ2c,q

)
(σqσcW )

2
(
σ2
qw

′c′
2 − 2ρc,qσqσcw′c′ w′q′ + σ2

cw
′q′

2
)

[
σ2
cw

′q′ + σ2
qw

′c′W − ρc,qσqσc

(
w′c′ + w′q′W

)]2 , (3)227

ρ2cp,cr =

(
1− ρ2c,q

)
σ2
qσ

2
c

(
w′c′ − w′q′W

)2(
σ2
qw

′c′
2 − 2ρc,qσqσcw′q′ w′c′ + σ2

cw
′q′

2
) (

σ2
c − 2ρc,qσqσcW + σ2

qW
2
) . (4)228

229

The standard deviation of c, σc, and q, σq, and the correlation coefficient between c and230

q, ρc,q, are also needed and can be directly computed from the measured time series. The231

water-use efficiency — which is an input to the method — must be separately measured232

or estimated (a description of how to parameterize W can be found elsewhere (Scanlon233

& Kustas, 2010; Skaggs et al., 2018; Zahn et al., 2022)). For our numerical simulations,234

W is a known input. However, even the correct water-use efficiency will only result in235

realistic solutions if the following conditions are met (Scanlon et al., 2019)236

ρ−1
c,q

σc

σq
≤ w′c′

w′q′
< ρc,q

σc

σq
for ρc,q < 0, and (5a)237

w′c′

w′q′
< ρc,q

σc

σq
for ρc,q > 0. (5b)238

239

Failure to satisfy the above expressions has been shown to be the main cause of low avail-240

ability of physically valid solutions across sites (Wagle et al., 2021; Zahn et al., 2022).241

2.1.2 Conditional eddy covariance (CEC) method242

The conditional eddy covariance method (Zahn et al., 2022) expands the MREA243

framework proposed by C. Thomas et al. (2008). Similarly to MREA, CEC condition-244

ally samples ejections originating from the soil that are rich in CO2 and H2O (w′ > 0,245

c′ > 0, and q′ > 0); in addition, it also samples ejections that were in contact with246

the canopy and are depleted in CO2 and rich in water vapor (w′ > 0, c′ < 0, and q′ >247

0), which is not done in the MREA framework. The data points of a time series of length248

N that are identified to be in contact with soil or canopy are then used to compute “sam-249

ple” fluxes of evaporation (fE) and respiration (fR) or transpiration (fT ) and photosyn-250

thesis (fP ) (see Figure 1 in Zahn et al. (2022)). These sample fluxes are given by the fol-251

lowing expressions252

fE =
1

N

∑
ISw

′q′ and fR =
1

N

∑
ISw

′c′ (6)253

fT =
1

N

∑
ICw

′q′ and fP =
1

N

∑
ICw

′c′, (7)254

255

where IS is an indicator function that selects only “soil surface eddies”, i.e., data points256

that satisfy c′ > 0, q′ > 0, w′ > 0; IC, on the other hand, selects only eddies that were257

in touch with the canopy where we expect c′ < 0, q′ > 0, w′ > 0. Sample fluxes were258

only computed when the respective quadrant contained at least 2% of the data points.259

If, on the other hand,
∑

IS/N < 2% (or
∑

IC/N < 2% ), we attribute all fluxes to260

canopy (or soil) components.261
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The expressions given in (6) and (7) are not the actual fluxes of each component;262

instead, they are assumed to be “sample” indicative fluxes that we can use to estimate263

the ratio of the total fluxes by the following:264

rET =
fE
fT

=
ECEC

TCEC
and rRP =

fR
fP

=
RCEC

PCEC
. (8)265

266

The separate flux components are then obtained by combining the flux ratios with the267

expressions for total fluxes (ET = T +E and Fc = R+ P ). However, as discussed by268

Zahn et al. (2022), a mathematical constraint (division by zero) happens whenever RCEC

PCEC
≈269

−1, but affects only the partitioning for CO2 flux components. Because the FVS method270

also computes the flux ratios, the same mathematical constraint arises when RFVS

PFVS
≈271

−1. Therefore, solutions in this limit must be carefully inspected (and removed) for both272

methods.273

2.1.3 Conditional Eddy Accumulation (CEA) method274

The traditional Relaxed Eddy Accumulation method (Businger & Oncley, 1990)275

was derived as an alternative to eddy-covariance measurements for scalars s that can-276

not be measured at a high frequency. The method consists of separately measuring the277

average scalar concentrations associated with updrafts (s+) and concentrations associ-278

ated with downdrafts (s−), estimating the total scalar flux (Fs) as279

Fs = βσw(s+ − s−), (9)280
281

where σw is the standard deviation of the vertical velocity and β is a constant.282

By taking into account only updrafts rich in CO2 and H2O, C. Thomas et al. (2008)283

modified equation (9) and proposed the MREA method. The CEA method, on the other284

hand, retains the information from downdrafts and estimates an analogue to s+ and s−285

for each individual flux component. In the framework proposed here, we compute c+r and286

q+e (using c′ > 0, q′ > 0, w′ > 0) and c−r and q−e (c′ < 0, q′ < 0, w′ < 0), both repre-287

senting respiration and evaporation (note that the fluxes in both cases are positive). For288

canopy components, we compute c+p and and q+t (c′ < 0, q′ > 0, w′ > 0) and c−p and289

and q−t (c′ > 0, q′ < 0, w′ < 0), where the fluxes are now negative for c (photosyn-290

thesis) and positive for q (transpiration). These conditional averages are computed as291

c+r =
1

N+
S

∑
c′I+S and q+e =

1

N+
S

∑
q′I+S , (10)292

c−r =
1

N−
S

∑
c′I−S and q−e =

1

N−
S

∑
q′I−S , (11)293

c+p =
1

N+
C

∑
c′I+C and q+t =

1

N+
C

∑
q′I+C , (12)294

c−p =
1

N−
C

∑
c′I−C and q−t =

1

N−
C

∑
q′I−C , (13)295

296

where N and I are the number of sampled events and the indicator functions defined ac-297

cording to the origin of fluxes (subscript ‘S’ for soil and ‘C’ for canopy) separated by up-298

drafts (+) and downdrafts (−).299

By assuming that the coefficient β is constant or weakly dependent on stability (Businger300

& Oncley, 1990; G. G. Katul et al., 1996; Zahn et al., 2023), and that σw is the same re-301

gardless of conditional sampling, we approximate the flux ratios as302

rET =
ECEA

TCEA
=
q+e − q−e

q+t − q−t
, (14)303

rRP =
RCEA

PCEA
=
c+r − c−r

c+p − c−p
. (15)304

305
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A diagram illustrating the method is shown in Figure 1, where we show points clas-306

sified following the conditional sampling, as well as the average values as defined in (10)–307

(13). When plant components dominate the fluxes (E and R), we expect the denomi-308

nator in (14) and (15) to be larger, as indicated in plot 1a and b; however, for fluxes dom-309

inated by soil components, the numerators are larger (plot 1c and 1d).310

Figure 1. Quadrant plots illustrating the Conditional Eddy Accumulation (CEA) method,

where the points selected to compute ratios in Eqs. (14) (plots a and c) and (15) (plots b and d)

are shown. Figure generated using time series from large-eddy simulations. Plots a) and b) have

ratios T/E=|P |/R=5, while plots c) and d) have ratios T/E=|P |/R=0.2.

2.1.4 Combining CEC and water use efficiency311

Both CEC and CEA have the practical advantage of not requiring a priori knowl-312

edge of the water use efficiency. However, if W is known, it can in fact inform both meth-313

ods. Therefore, we now combine the flux ratios as defined by the CEC method with the314
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water-use efficiency and derive an alternative partitioning method that we will refer to315

as CECw. The goal of this new model is to investigate if, given the correct water-use ef-316

ficiency, a simpler method could perform similarly to the FVS method, potentially be-317

ing easier to implement and yielding solutions more often. This ultimately will indicate318

how important W is to the skill of the FVS method.319

We start the derivation by combining the water-use efficiency (W = P/T ) and320

the flux ratios as defined by CEC (rRP = R/P and rET = E/T ),321

W =
P

T
=

R

E

rET

rRP
= Z

rET

rRP
, (16)322

323

where we define Z = R/E.324

Rewriting the equations for total fluxes and introducing the definitions of W and325

Z, we have326

Fc =W × T +R, (17)327

T =ET − R

Z
. (18)328

329

Combining equations (17) and (18) and rewriting for R, we get the following expression330

for soil respiration331

RCECw =
Fc −W × ET

1− W
Z

=
Fc −W × ET

1− rET

rRP

, (19)332

333

where the ratios rRP and rET are computed from equations (6)–(8). Similarly, we can334

obtain an expression for TCECw335

TCECw =
Fc −W × ET × rRP

rET

1− rRP

rET

. (20)336

337

Corresponding expressions can be derived for PCECW and ECECW , or they can then be338

computed as the residuals of the total eddy-covariance (EC) fluxes (both approaches yield339

identical results since the total flux expression are directly used in the derivation). Be-340

cause rET > 0 and rRP < 0, this equation has no mathematical singularity. Nonethe-341

less, under certain conditions the method can result in negative transpiration or respi-342

ration. Therefore, we must also ensure that TCECw > 0 and RCECw > 0. In addition,343

we also tested the method by computing the ratios following the CEA method (expres-344

sions (14) and (15)), but the results for CECw were similar and thus not included here.345

3 Methods346

This section describes the setup of our numerical simulations and how the time se-347

ries were sampled and processed for partitioning.348

3.1 Large-eddy simulations349

The LES algorithm used in this study has been extensively tested over homoge-
neous and heterogeneous surfaces, with and without resolved roughness elements (Bou-
Zeid et al., 2005; Kumar et al., 2006; Q. Li & Bou-Zeid, 2019; Huang & Bou-Zeid, 2013;
Zahn & Bou-Zeid, 2023). Its formulation is based on the solution of the spatially filtered
incompressible continuity (equation (21)) and Navier-Stokes (equation (22)) equations
under the Boussinesq approximation. The conservation equation for a scalar s (equa-
tion (23)) is also solved for cr, cp, qe, and qt. Since only neutral conditions are consid-
ered, the effects of buoyancy are ignored in our analyses. To ensure that our canopy flow
simulations, covering ≈ 14% of the ABL (1km) height, closely represent the turbulent
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profiles expected when the full ABL is simulated, we followed the recommendations from
Zahn and Bou-Zeid (2023). In this setup, in addition to a large-scale pressure term, the
force balance also includes a stress at the top of the domain in addition to the Corio-
lis term. More details are given below and discussed in Zahn and Bou-Zeid (2023).

∂ũi

∂xi
=0, (21)

∂ũi

∂t
+ ũj

(
∂ũi

∂xj
− ∂ũj

∂xi

)
=− ∂p∗

∂xi
− ∂τij

∂xj
+ fcϵij3(ũj − uG

j ) +Di, (22)

∂s̃

∂t
+ ũj

∂s̃

∂xj
=− ∂πsj

∂xj
+ Ss. (23)

In the above expressions, a filtered variable µ is denoted as µ̃. ũi is the resolved (filtered)350

velocity field (i=1,2,3); xi is the position vector; τij is the anisotropic part of the subgrid-351

scale (SGS) stress tensor; fc = 1.4×10−4 is the Coriolis parameter; uG
j is a large scale352

pressure forcing imposed in terms of a geostrophic wind; πsj is the SGS scalar flux, and353

Ss represents volumetric sinks/sources of the scalar s. A modified resolved dynamic pres-354

sure, p∗, is defined to include the resolved and SGS turbulent kinetic energy (Bou-Zeid355

et al., 2005). The reference density is taken as 1 and is thus omitted from the equations.356

The term Di represents the drag force exerted by the canopy elements on the flow and357

was computed as358

Di = −CDaũi|ũi|, (24)359
360

where CD is the drag coefficient and a is the leaf-area density. The drag coefficient was361

modeled following Pan, Follett, et al. (2014),362

CD = min
(
(⟨ũi⟩ /A)B , CD,max

)
, (25)363

364

where A is a velocity scale, B a negative power-law exponent, and CD,max the maximum365

drag coefficient. This formulation represents the change in canopy drag caused by the366

variation in the wind speed, which can cause the canopy elements to bend, thus mod-367

ifying the canopy resistance through the drag coefficient. As shown by Pan, Follett, et368

al. (2014), this drag model improves the representation of higher order statistics. How-369

ever, the parameters A, B, and CD,max are canopy dependent and can be experimen-370

tally found if data are available. For our numerical study, we conducted various simu-371

lations for different combinations of the parameters tested by Pan, Follett, et al. (2014).372

We selected the parameters that resulted in the best comparison between the simula-373

tion and the velocity statistics profiles from Su et al. (1998) (more details in the section374

3.1.2). The best match was observed for A = 0.22 m/s, B = −1, and CD,max = 0.3.375

The SGS stress is modeled using the scale-dependent Lagrangian dynamic model376

(Bou-Zeid et al., 2005), where a constant turbulent SGS Prandtl number of 0.4 is used377

to infer the SGS diffusivity and compute the unresolved scalar fluxes. To ensure that the378

velocity field satisfies the continuity equation, a Poisson equation is solved for pressure379

p∗ at every time step. The vertical derivatives are computed by a second-order centered380

finite difference scheme, implemented on a uniform staggered grid, while a pseudo-spectral381

method is implemented for horizontal derivatives. Finally, the explicit second-order Adams–Bashforth382

method is used for time stepping.383

The horizontal boundary conditions are periodic. At the top, we imposed a stress384

term, (τxz, τyz) = (u2
S cosα, u2

S sinα), where uS is the kinematic stress magnitude and385

α is the angle between the stress vector and the x-axis. Following the steps in Zahn and386

Bou-Zeid (2023), we used uS=0.3 m/s and α = 174◦. In addition, we imposed a stream-387

wise large-scale pressure forcing (uG, vG) = (8, 0) m/s. Finally, we simulated constant388

flux profiles for all scalars by imposing an SGS flux (sink or source) as the top bound-389

ary condition for c and q matching the total flux magnitude imposed inside the domain390

(ground + canopy).391
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As previously discussed (Su et al., 1998; Watanabe, 2004; Zahn & Bou-Zeid, 2023),392

the inclusion of a top stress (and/or scalar flux) results in strong velocity and scalar gra-393

dients near the top boundary. However, Watanabe (2004) also showed that their region394

of interest (≈ 70% of the lower domain) was unaffected, resulting in the same turbulence395

statistics of a pressure-driven flow. To confirm this finding, we ran individual simulations396

driven by a non-zero top stress or by an imposed pressure force, confirming Watanabe397

(2004)’s results and also verifying that the partitioning results were consistent and in-398

dependent of the choice of the top boundary condition or flow forcing. Nonetheless, we399

confine our analyses to the bottom part of the domain, z ≤ 5h (≈ 65% of domain depth).400

3.1.1 Simulating plant and soil contributions of CO2 and H2O401

One of the main goals of our simulations is to reproduce (and sample) c and q un-402

der different combinations of canopy and soil fluxes. This would require running several403

simulations where the contributions from the various sinks and sources vary. Not only404

would this be computationally expensive, but it would also likely cover only a limited405

area of the phase space between T/E and P/R. An easier approach, as adopted by Klosterhalfen,406

Moene, et al. (2019) is to obtain solutions for canopy and soil separately, and then lever-407

age the linear nature of equation (23) that allows solution superposition to reconstruct408

the results based on different imposed fluxes. Following this idea, we solve this scalar409

balance equation separately for plant (cp and qt) and soil (cr and qe) scalars, where c =410

cp + cr and q = qe + qt. Thus, only plant components have a source or sink term rep-411

resenting canopy transpiration and photosynthesis, while their bottom wall boundary412

condition is set to zero flux. Soil components, on the other hand, have an imposed sur-413

face flux at the bottom representing evaporation and respiration.414

After simulating all four scalars separately, we can then recover the desired turbu-415

lent statistic for c and q. In addition, we can easily adjust the respective contributions416

of soil and plant components by first multiplying the original statistics of cp, cr, qt, and417

qe by the respective scaling factors. Note that this is only possible if q is treated as a pas-418

sive scalar (otherwise the buoyant feedback from q on ui will render the advective term419

in the scalar equation non-linear in q). Thus, all our simulations are neutral with respect420

to q. To further decrease the complexity of our simulations and interpretation of results,421

we also considered the flow neutral with respect to temperature, thus simulating a fully422

neutral canopy flow.423

3.1.2 Domain configuration and data sampling424

A summary of the main details of our simulations is shown in table 1. The domain425

contains (Nx × Ny × Nz) = (384 × 256 × 128) grid points, and aspect ratios (Lx/Lz,426

Ly/Lz) = (3,2), where Lz is vertical domain height. This setup results in dx = dy =427

dz. In addition, the ratio of the domain height to the canopy height, h, is Lz/h = 8,428

which is in the range (Lz/h =3–14) commonly adopted in the literature for canopy flows429

(Shaw & Schumann, 1992; Su et al., 1998; Watanabe, 2004; Yue et al., 2007; Dupont &430

Brunet, 2008; Mao et al., 2008; Pan, Chamecki, & Isard, 2014; Chen et al., 2020). Ad-431

ditional simulations with different domain height, aspect ratios, grid resolution, mean432

flow forcing, and soil roughness length z0 all indicated that the partitioning results are433

not sensitive to the design of the domain.434

The analyses shown in this study used both spatial and temporal statistics. The435

spatial statistics (averaged in the cross-stream direction and time) were sampled after436

the kinetic energy and the flux profiles reached equilibrium. For the temporal statistics,437

we also included 24 virtual “eddy-covariance towers” across the domain, where the ve-438

locity and all simulated scalars were sampled at all vertical grid points every 25 time steps439

(i.e., every 0.25 s). This is sufficient here since the smallest resolved eddy is ∼ 2dx =440

2 m and its advective time across a grid node at a mean wind speed of 1 m/s (see ve-441
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Table 1. Parameters of our simulations. Lz, Ly, and Lx (m) are the dimensions in z, y, and

x directions; Nz, Ny, and Nx are the number of grid points in the three directions, while Nh is

the number of grid points representing the canopy; dx, dy, and dz are the grid resolution; h (m)

is the canopy height; uS is the imposed friction velocity at the domain top (m/s); z0 (m) is the

roughness length of the soil surface; LAI is the leaf-area index; dt is the time step (s).

Simulation parameter Units Value

Nx, Ny, Nz 384, 256, 128

Nh 16

Lz m 140

Lx/Lz, Ly/Lz 3, 2

dx/dz, dy/dz 1, 1

Lz/h 8

z0/h 0.00285

uS m/s 0.3

LAI m2m−2 2.0

dt s 0.01

locity profiles in A1) is thus 2s; we thus sample the smallest eddies with 6 points. To en-442

sure convergence of the time series, we sampled over a period of approximately 20 eddy443

turnover times (Lz/u∗).444

To represent the canopy, we used the leaf-area density and the source profiles Sq445

(Figure 2) for water-vapor mixing ratio following Shaw and Schumann (1992) and Su et446

al. (1998). As in these studies, we also set the leaf-area index (LAI) to 2. The same source447

profile shown in Figure 2 was rescaled and used as a source for transpiration in the trans-448

port equation for qt, and as a sink for photosynthesis in the equation for cp.449

A homogeneous forest was first simulated by imposing a drag force and scalar sources/sinks450

at every horizontal grid point of the first 16 vertical levels. To investigate how the sparse-451

ness of the canopy influences the partitioning methods, we designed two new domains.452

The first domain replicates a vineyard (Figure 3) with rows oriented parallel to the y axis.453

The ratio of the width of the vegetation rows (rv) to the width of the bare soil rows (rs)454

is 0.81, where rv/h=0.639 and rs/h=0.77. The second domain is representative of a sparse455

orchard, where “clusters” of vegetation of length rv×rv are separated horizontally from456

other clusters by a distance rs. In both cases we kept the same canopy leaf-area density457

(LAI=2); thus, the effective leaf-area density is LAIe = LAI(Av/At), where At is the458

total area of the xy plane and Av is the area occupied by canopy elements. For the first459

and second domains, we thus have LAIe=0.98 and 0.42, respectively. In addition, the460

same canopy flux profiles and leaf-area density (Figure 2) were imposed. As boundary461

condition, we imposed a homogeneous soil flux, i.e., the same respiration and evapora-462

tion magnitudes being emitted from under the canopies, as well as from the exposed soil.463

Simulations with heterogeneous soil fluxes were tested, but are not shown here since the464

key conclusions remained the same. In addition, we found no sensitivity in the results465

based on the location of the towers (i.e., vegetated grid cell versus a bare soil grid cell).466

The mean wind profile and kinetic energy resultant from all three domains are shown467

in the Supplementary Information, Figure S1.468
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Figure 2. Leaf-area density and source profile for water vapor mixing ratio imposed in the

LES (Shaw & Schumann, 1992; Su et al., 1998). The crosses indicate the values used in the nu-

merical simulations.

To validate our LES setup, we followed Su et al. (1998) and compared our numer-469

ical results with field experimental data from Shaw et al. (1988) over a sparse forest (LAI≈2).470

This simulation was neutral with an LAD and source profiles (only water vapor) as shown471

in Figure 2. In addition, the lower boundary condition for water vapor was zero surface472

flux given the negligible evaporation at the experimental site.473

A comparison between our LES results and the experimental data is included in474

the appendix (Figure A1). Along with the spatial statistics, we also show the temporal475

statistics computed as the ensemble average across the 24 towers in the domain. Good476

agreement is seen between spatially and temporally averaged results for all statistics. In477

particular, both spatial and temporal results for quadrant flux fractions (quadrant anal-478

yses) of momentum and water vapor are very similar and follow the experimental trends479

well. In addition, while not directly used by the partitioning algorithms, the skewness480

of u and w using a dynamic drag model are in better agreement with observations than481

when a constant drag coefficient is used (comparison not shown here). Overall, we can482

conclude that the time series are converged and can be used for partitioning as described483

next.484
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Figure 3. LES domain representing a vineyard (top) and clusters of trees (bottom).
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3.2 Implementation of partitioning methods485

Following the simulation and sampling of time series, we implemented all partition-486

ing methods following the same steps as in field experiments. For FVS and CECw, we487

used the “real” water-use efficiency, which is imposed in the simulation. The flux com-488

ponents computed at every vertical grid point for all 24 towers were later averaged, re-489

sulting in one single profile for all four components and all four methods. The variabil-490

ity around the average values is illustrated in Figure S2 of the Supplementary Informa-491

tion.492

As previously explained, our LES setup allows us to reconstruct the time series of493

c and q that would result from any combination of ET and Fc flux components. To in-494

vestigate as many combinations as possible — from stronger soil fluxes to fluxes dom-495

inated by canopy components — we linearly increased T/ET by in increments of 0.025496

from 0 to 1, while keeping T constant. Similarly, the ratio P/RP , where we defined RP =497

R + |P |, was increased from −1 to 0, in increments of 0.025, as P was kept constant.498

Note that RP uses the absolute value of photosynthesis to ensure a ratio smaller than499

unity. Thus, the water-use efficiency remains the same for each of the 1600 flux combi-500

nations we generate.501

The performance of each method was quantified by computing the biases of the canopy502

flux components. More specifically, we compute the bias of the flux ratios (T/ET and503

P/RP ) as follows,504

biasT/ET =
T − Tpart

ET
, (26)505

biasP/RP =
P − Ppart

RP
, (27)506

507

where T and P are the imposed transpiration and photosynthesis fluxes that we wish508

to retrieve in the partitioning, while Tpart and Ppart are the flux components obtained509

by any of the four partitioning methods (FVS, CEC, CEA, and CECw). Note that the510

bias computed for Fc components is not traditional in the sense that RP is not a phys-511

ical quantity, but it was here defined in analogy with ET as a way to avoid division by512

zero whenever P ≈ −R. This bias offers more insightful information, compared to one513

normalized with Fc, regarding the best estimates of P .514

4 Results and Discussion515

We start this section by discussing the impact of canopy sparseness on transport516

efficiency; in particular, how the presence of gaps, or “canyons”, influence turbulence mix-517

ing, and what are the implications for flux partitioning. We follow the discussion by in-518

vestigating the performance of each partitioning method for different measurement heights,519

flux component strength combinations, and canopy sparseness. We conclude our anal-520

yses by illustrating how turbulence data can be helpful in understanding biophysiolog-521

ical variables, such as the water-use efficiency.522

4.1 Effect of canopy sparseness on mixing efficiency523

A common feature across all four partitioning methods is their requirement of a524

degree of uncorrelatedness between soil and plant flux components: the parcels emanat-525

ing from the soil and plants cannot be well mixed (correlated) if the separate signals are526

to be captured. The CEC, CEA, and CECw methods further require the presence of ed-527

dies that were in contact with the soil, and were subsequently transported to the sen-528

sor level without being fully mixed. Therefore, one expects that plant canopies with ex-529

posed gaps, such as vineyards, would offer a suitable environment for these methods. To530

explore the differences in turbulent statistics in different plant canopy configurations, we531

show in Figure 4 the correlation coefficient between cr and cp, namely ρcp,cr , as well as532
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the skewness (Skcp and Skcr ) of both quantities obtained from simulations over a ho-533

mogeneous canopy, a vineyard, and a cluster domain. Note that ρcp,cr is here used as534

a measure of the degree of mixing between soil and canopy air parcels; for instance, in535

the event when ρcp,cr = −1, the parcels are fully mixed and no relevant partitioning536

information can be extracted.537

1.0 0.8 0.6 0.4 0.2
cp, cr

0

1

2

3

4

5

z/
h

a)

0 1 2 3 4
Skcr

b)cr

cp

0.25 0.00 0.25
Skcp

Homogeneous Vineyard Cluster

Figure 4. Correlation between soil and plant components, and their individual skewness, over

homogeneous and heterogeneous canopies. Note that part (b) has a top and bottom x-axes.

As shown in Figure 4a, the correlation between soil and plant components approaches538

−1 at lower levels above the vineyard and the cluster domains. The implication is that539

soil respiration is mixed faster and at a lower height above the soil when wide gaps be-540

tween plants are present. This, it turns out, is due to stronger shear turbulence gener-541

ation by the gaps, compared to the homogeneous setup. Therefore, ejections enriched542

in CO2, representing the soil surface, are more likely to be sampled before being fully543

mixed into the flow over the homogeneous canopy. Figure 4b further corroborates this544

argument by indicating greater skewness for cr in the homogeneous domain at z/h <545

2. In this case, greater skewness indicates that more parcels were sampled with high cr546

values as a result of ejections carrying parcels enriched in CO2. The same is true for Skcp ,547

shown to be negative at the canopy top over the homogeneous case. Figure 4b also in-548

dicates that scalars emitted by the canopy distributed profile have smaller skewness mag-549

nitudes than the scalar emitted at ground level due to stronger mixing inside the canopy.550

According to Edburg et al. (2012), strong and intermittent organized turbulence struc-551

tures penetrate the entire canopy, albeit infrequently, and cause bursts of scalars emit-552

ted from the soil.553

Overall, these results contradict our initial expectation that exposed patches of soil554

improve the representativeness of soil respiration in conditional sampling analyses. In555

fact, they indicate that the opposite is true, i.e., that the presence of wide gaps (or canyons)556
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increases turbulence mixing of soil fluxes, potentially worsening the performance of CEC557

and CEA. Nonetheless, while vegetated canopies with the presence of open canyons and558

gaps are non-ideal, it is still necessary that the vegetated canopy of interest be porous559

enough such that updrafts originating below the canopy can escape vertically. As dis-560

cussed by Zahn et al. (2022), canopies that are too dense might lead to uncoupled flows561

and lateral advection of soil fluxes (C. K. Thomas et al., 2013) that are not only prob-562

lematic to partitioning, but to flux quantification in general.563

4.2 Partitioning versus flux component strength at various elevations564

In this section we explore the performance of all four partitioning methods eval-565

uated with regards to measurement height and the relative magnitude of plant and soil566

fluxes of CO2 and H2O. This analysis will then enable a more comprehensive evaluation567

of all methods, which previously had only been numerically explored for a few combi-568

nations of fluxes (Klosterhalfen, Moene, et al., 2019).569

As expected based on the comparison of mixing efficiency across domains — in-570

dicating faster mixing of soil and canopy scalars when large gaps are present — the par-571

titioning performance for both heterogeneous domains is slightly worse than those over572

the homogeneous case. Thus, we will focus on the results for the homogeneous canopy573

simulation, noting that the figures for both heterogeneous domains are included in the574

supplementary information in Figures S3–S10.575

The biases in the partitioning (reported for T and P , from which the skill for E576

and R can be inferred since the sum of the fluxes is known in all models) computed by577

the FVS method are shown in Figure 5. These results clearly indicate that, as long as578

the water-use efficiency is known exactly and the method converges to a solution, the579

FVS method has an excellent performance across all flux magnitude combinations. The580

biases for both T and P slightly decrease from z = h to z = 3h as a consequence of581

the smaller errors in the approximations in equation 1 as the scalars correlations increase582

at higher levels, but are still not perfect (i.e., ρcp,cr ̸= −1 and ρqt,qe ̸= +1), as will583

be discussed in section 4.3. Nonetheless, over heterogeneous domains (Figures S3 and584

S7 of the SI) we observe regions with greater biases (≈ 0.2) as a result of strong turbu-585

lent mixing, as shown in the previous section, which also causes |ρc,q| to be close to unity.586

Equations 2a and 2b, as well as expression 5, are sensitive to ρc,q under these conditions,587

sometimes resulting in larger errors or lack of convergence to a realistic solution. As a588

reminder, for each level and each flux combination, we average the four flux components589

across all 24 towers; thus, in some cases (at higher levels or greater correlations), not all590

towers resulted in valid solutions and were not included in the average. A more detailed591

discussion on the sensitivity of the FVS method is presented in section 4.3 and 4.4.592

The bias with regard to the correct ratio T/ET (top panel) and R/RP (bottom593

panel) obtained by the CEC method is shown in Figure 6. An important feature to note594

is that the bias is generally much smaller for the carbon components, a finding that ap-595

plies to all other methods we have tested (they all partition Fc remarkably well, except596

when R ≈ −P ). The reason behind this smaller bias is that the sign of the CO2 flux597

determines which component dominates, which is not the case for ET since both E and598

T are positive. For instance, Fc < 0 clearly indicates that P dominates. CEC, CECw,599

and CEA, by construction, assume that greater or smaller P also entails greater or smaller600

T (i.e., constant water use efficiency with typical, not too small or large, values). Thus,601

larger errors are expected for ET partitioning when this expectation is not met (i.e., away602

from the 1:1 diagonal on the figures).603

This can be further illustrated by focusing on z/h = 1, where we can identify a604

region with |(T − TCEC)|/ET ≤ 0.2; in particular, we see that the best agreement is605

expected when the ratios −P/R and T/E grow in tandem. On the other hand, greater606

errors are expected when one component overwhelmingly dominates the other. Thus, one607
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Figure 5. The top three plots show the bias in the partitioning of ET following the FVS

method at z/h = 1, 2, 3, where the colors represent the bias in transpiration, (T − TFV S)/ET .

Bottom plots show the bias for CO2 components, defined as (P − PFV S)/RP , where RP =

R + |P |. Regions in gray represent combinations where no physical solutions were found because

RFVS ≈ −PFVS. Flux combinations inside the area delimited by the white dashed lines represent

the condition −P/RP − 0.15 < T/ET < −P/RP + 0.15, from which we will later select points for

further analysis. Colorbar is limited to ±1 for easy comparison with subsequent figures.

requirement for good performance of CEC is that the ratios P/T and R/E should not608

be too dissimilar. However, note that regions where |(T−TCEC)|/ET ≥ 0.4 correspond609

to flux combinations that are unusual or physically improbable. For instance, the top610

left corner would indicate fluxes dominated by transpiration and respiration, but with611

little evaporation and photosynthesis. Such occurrence is unlikely given the expected pro-612

portionality between transpiration and carbon assimilation as defined by the water-use613

efficiency. Soil components, on the other hand, share physical drivers such as soil mois-614

ture and temperature, as well as turbulence intensity near the surface, but they are more615

loosely coupled compared to their canopy counterparts. After rain, for instance, it is pos-616

sible that respiration could be suppressed by soil saturation (Xu et al., 2004), while evap-617

oration would be large.618

As we move to higher levels, the region where |(T − TCEC)|/ET ≤ 0.2 becomes619

narrower, and good performance for CEC in partitioning water vapor flux is confined620

to cases when R is on the order of −P . Similarly, biases for Fc components increase at621

higher levels, but remain smaller than for water components. These results corroborate622

previous experimental findings (Zahn et al., 2022) suggesting that the best performance623

of the CEC method is achieved for measurements collected as close to the canopy as pos-624
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Figure 6. Same as 5, but for the CEC method.

sible, ensuring that some uncorrelatedness between the various sinks and sources is sam-625

pled.626

Results for the CEA method (Figure 7) are slightly superior, but broadly similar,627

to CEC. The biases for ET and Fc partitioning are lower, and CEA outperforms CEC628

significantly at higher levels. Similarly, larger errors in ET partitioning are expected for629

flux combinations that are less likely to occur, for the same reason as CEC. On the other630

hand, Fc partitioning remains very accurate as long as the net flux is not ≈ 0.631

Lastly, we show the results obtained with the CECw method. Interestingly, despite632

similar assumptions to CEC, it performs better than the former in partitioning ET , dis-633

playing a wider range where biases are smaller than 20% and consistent performance at634

least up to z/h = 3. Further, its performance in partitioning Fc is also quite different635

from CEC or CEA, with much better performance when R ≈ −P , and worse perfor-636

mance away from the 1:1 diagonal. Note that these results are also dependent on prior637

knowledge of the water-use efficiency, and thus the performance of the CECw method638

share this shortcoming with the FVS method. In addition, although not performing as639

well as FVS when W is known, the CECw method is easier to implement and its poor640

performance, e.g. where (T − TCECw)/ET ≥ ±0.4 , is restricted to regions with un-641

likely flux combinations as with CEC and CEA. Such result highlights the importance642

of the water-use efficiency for more accurate ET partitioning estimates. In this regard,643

even a simpler approach, such as CECw, can yield reliable results when W is known. In644

addition, as long as CO2 fluxes are not mostly dominated by respiration — where the645

method did not find valid solutions, as shown in Figure 8 — CECw does not suffer from646

the same convergence issues as reported for the FVS method in previous studies. Thus,647

CECw seems to be a good complement to the FVS method, ensuring a complete record648

of flux components that are consistent with the WUE that both methods require. Yet,649
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Figure 7. Same as 5, but for the CEA method.

the resulting complete record will also be subject to the uncertainty that results from650

uncertainty in WUE.651

4.3 Revisiting physical assumptions652

One of the main advantages of investigating the partitioning methods through nu-653

merical simulations is the possibility of assessing their physical and mathematical assump-654

tions. By simulating all four scalars separately, we are now able to investigate if the ap-655

proximations adopted by Scanlon and Sahu (2008) and Scanlon and Kustas (2010) in656

their mathematical derivation, as well as the assumption of eddies enriched in CO2 com-657

ing from the soil, invoked for both CEC and CEA, are appropriate.658

The expressions given by equation (1) represent the main source of uncertainty in659

the FVS method (not considering the ability to estimate W ). These approximations as-660

sume that the correlation coefficient between plant and soil CO2 (ρcp,cr ) can be estimated661

as the ratio of their respective transfer efficiencies (ρw,cp/ρw,cr ), the same applying to662

H2O components. Such approximation was first proposed by G. Katul et al. (1995) in663

their study of similarity between temperature and water vapor. Bink and Meesters (1997)664

later demonstrated that ρT,q ≈ ρw,T /ρw,q can yield satisfactory results as long as ρw,T <665

ρw,q, that is, when water vapor is more efficiently transported by turbulence than tem-666

perature; if the opposite is true (ρw,T > ρw,q), then the appropriate approximation is667

ρT,q ≈ (ρw,T /ρw,q)
−1.668

Following the arguments of Bink and Meesters (1997), Scanlon and Sahu (2008)669

assumed that the transfer efficiency of plant components, cp and qt, are greater than the670

transfer efficiency of soil components, cr and qe, due to data sampling being done above671
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Figure 8. Same as 5, but for the CECw method.

the canopy (i.e., close to the sink of cp and qt). Thus, for c we need to satisfy ρw,cp >672

ρw,cr , which clearly implies |ρcp,cr | ≤ 1.673

Figure 9 shows how this approximation (a value of 1 in the plot implying zero er-674

ror) holds over a homogeneous canopy, as well as for the two sparse canopies described675

in 3.1.2. Results for CO2 and H2O are the same, thus only the former are shown. In ad-676

dition, note that these results do not depend on the magnitude of soil and canopy fluxes,677

meaning that the same results hold regardless of the magnitude of respiration (evapo-678

ration) and photosynthesis (transpiration). Overall, it is clear that the approximation679

is worse below the canopy top (although less relevant since partitioning methods are not680

applied in this region), where the transfer efficiency of respiration is greater given the681

proximity to the soil. Above the canopy, on the other hand, the approximation is more682

appropriate, almost reaching equality. In addition, the faster convergence towards unity683

in sparser canopies is a consequence of the more efficient turbulent mixing in the pres-684

ence of gaps, as previously discussed.685

For z/h ≥ 3, the magnitudes of the correlation ρcp,cr — as well as ρqt,qe and ρc,q686

(not shown in the figure) — reach values close to unity for all three simulations, caus-687

ing the approximation in Equation (1) to approach equality. However, the derivation of688

the FVS method requires |ρc,q| < 1 (see equation 5), i.e., it is undefined in case of per-689

fect correlation. As expected, we verified that this constraint is not satisfied — and thus690

fewer valid solutions are available — more often at z/h = 3.1 than at z/h = 1.5 (Fig-691

ure S13 in the Supplementary Information). In addition, this behavior was observed more692

often when photosynthesis dominated the total CO2 flux, and for heterogeneous domains.693

Therefore, on one hand FVS requires a degree of decorrelation between scalars; on694

the other hand, its mathematical approximations in equation (1) are more accurate in695
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Figure 9. Profile of the ratio defined in equation (1). When this ratio reaches unity, it in-

dicates that the approximation is valid. Profiles were obtained by averaging the correlation

coefficients at each level across all 24 towers.

regions where the different scalars are better mixed and their correlations are almost per-696

fect. These contradictory requirements, also observed by Klosterhalfen, Moene, et al. (2019),697

add complexity to the interpretation of field data partitioning using FVS, and poten-698

tially decrease the number of valid partitioning estimates.699

A different approach to guarantee equality of expression (1) would be its multipli-700

cation by a correction factor, as done by Klosterhalfen, Moene, et al. (2019). Nonethe-701

less, as shown by the authors, the correction values obtained from their simulations vary,702

and the extrapolation to real field data is impractical. Thus, we do not pursue this cor-703

rection here. With the limited information we usually have from experimental data, we704

can only hypothesize that a measurement height where there is strong, but not complete,705

mixing is preferable for the FVS method, and should result in the smallest uncertain-706

ties with regards to (1).707

The main assumption behind the CEC, CECw and CEA methods is that, consid-708

ering that the measurements are done close enough to the sinks and sources, we are able709

to distinguish turbulent structures coming from the soil or from the canopy. More specif-710

ically, we are able to sample eddies enriched in CO2 that were in contact with the sur-711

face and carry the respiration signature. These methods further expand this idea by also712
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considering eddies that were in contact with the canopy, and thus are depleted in CO2.713

To investigate if this assumption is appropriate, we show in Figure 10 instantaneous snap-714

shots of c′r, c
′
p, and the total CO2, c

′, simulated for a homogeneous domain. As a reminder,715

cr and cp were simulated separately and later used to reconstruct c. For this simulation,716

we set P = −R.717

The snapshot of cr in Figure 10d clearly shows the presence of turbulent structures718

enriched in CO2 right above the surface (see for instance, x/Lz ≈ 1.5, 2.4). These same719

structures persist — although with smaller concentration given the assimilation of CO2720

— in the reconstructed field of total c in Figure 10f. Similarly, we can observe regions721

depleted in CO2 as a result of assimilation (e.g., z/Lz ≈ 3.0 in Figure 10e) and that722

are still present in the field of total CO2. However, note that these structures are only723

distinguishable below z/h = 3 (white dashed line); above that level, turbulent mixing724

becomes stronger and we are no longer able to separate plant and soil signals. These re-725

sults thus lend credibility to the assumption that we can distinguish the origin of eddies726

solely based on high-frequency measurements. They also support previous conclusions727

(Zahn et al., 2022) that CEC, and this also applies to CEA and CECw, is more likely728

to perform better when sampling is done as close as possible to the canopy top.729

In Figures 10a–c we show an example of the quadrant analyses of a time series mea-730

sured at z/h = 1.2. Points on the first quadrant — related to respiration (w′ > 0, c′ >731

0, q′ > 0) — have larger concentrations than on the second (w′ > 0, c′ < 0, q′ > 0),732

which is related to photosynthesis. This asymmetry — evident in the skewness profile733

shown in Figure 4 — is caused by stronger bursts of parcels enriched in CO2 that were734

“trapped” under the canopy and took longer to be ejected. Carbon assimilation, on the735

other hand, is the strongest at the top of the canopy (Figure 2), and thus air parcels de-736

pleted in CO2 located around z/h ≈ 1 are mixed faster, as indicated by the transfer737

efficiency of cp. Despite the asymmetry, the quadrant plot of c shows that conditional738

sampling is able to distinguish between the contribution of soil and canopy eddies, and739

can thus be used to infer the conditional flux ratios (equation 8).740

The main difference observed in the patterns over homogeneous and heterogeneous741

domains (vineyard and cluster, Figures S11 and S12 of the SI) is the blending height at742

which full mixing of flux components happens. As expected from the greater turbulent743

mixing efficiency in sparser canopies, ejections carrying the soil signature are shorter lived,744

being almost fully mixed with the flow above z > 2h; for the cluster-like domain these745

structures are only distinguishable below z < h. These results suggest that in very open746

canopies, the measurement height should be even closer to the canopy, ideally at the canopy747

top, to ensure the best performance possible for CEC and CEA. It is important to note748

that better total flux convergence, away from the influence of individual plant compo-749

nents, is expected away from the canopy at a height of at least 1.4 h (Pattey et al., 2006).750

To avoid loss of information caused by EC measurements close to the canopy top (both751

for homogeneous and heterogeneous configurations), one approach would be the simul-752

taneous placement of an EC system at z = h, which will be used to estimate the flux753

ratios (E/T and R/P ), and one system further away from the effects of the canopy layer754

(z > 1.4h). By considering that the flux ratios measured at the canopy top are con-755

served, we can use this information to obtain converged flux components further away756

from the canopy.757

4.4 Sensitivity of FVS and CECw to water-use efficiency758

As shown in previous sections, the FVS and CECw methods are reliable partition-759

ing approaches when the water-use efficiency is known. However, such information is usu-760

ally not available from measurements, and different parameterizations of W can be im-761

plemented (Skaggs et al., 2018; Zahn et al., 2022). Wagle et al. (2021) compared differ-762

ent approaches to parameterize W , more specifically how to model the interstomatal CO2763
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Figure 10. Panels a-c show the quadrant plot between the different components of c and q

from a time series measured at z/h ≈ 1.2. Only ejections (w′ > 0) are included. Note that the

conditional sampling implemented by the CEC is based on plot c). The bottom three panels

show instantaneous fields of d) c′r, e) c
′
p, and (f) c′ = c′r + c′p. The white dashed line represents

the height z = 3h. In this neutral simulation over a homogeneous canopy, R = −P = 1 mg

m−2s−1.

concentration, finding that the variability across different W models depends on the type764

of crop.765
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To investigate the sensitivity of both methods to uncertainties in the water-use ef-766

ficiency, we repeated the partitioning with FVS and CECw after increasing W by up to767

100% or reducing it by up to 90%. That is, the water-use efficiency fed to both meth-768

ods, Winput, was increased by up to 2 times or reduced to 0.1 times its original value,769

Wreal, used in LES to generate the time series. This range was selected based on the vari-770

ability detected for W using different parameterizations (Zahn et al., 2022; Wagle et al.,771

2020) and thus represent uncertainties expected in field experiments. Large variability772

is also expected for different biomes and plant species as shown in the summary by Fatichi773

et al. (2022), where W was found to vary by a factor of five across different vegetation774

types.775

The sensitivity of FVS and CECw to water-use efficiency is shown in Figure 11,776

where two examples with different flux components are presented. In both cases, TFVS777

increases/decreases by ≈ ±50% as W changes by ±90% of its original value at z = 1.7.778

PFVS, on the other hand, departs faster from its correct value when the water-use effi-779

ciency is overestimated. For instance, PFVS/P ≈ 0.5 when W increases by 50%, while780

PFVS/P ≈ 1.25 when W decreases by 90%. In contrast to FVS, TCECw is less sensitive781

to changes in W , while PCECw rapidly departs from the true value as the water-use ef-782

ficiency decreases or increases. In addition, results for CECw are also dependent on the783

magnitude of the different flux components (compare plots 11b and 11d), and thus gen-784

eralization to other conditions is more challenging.785

To illustrate how the sensitivity of these methods to W vary with different flux mag-786

nitude combinations, we plot a phase diagram for biases in T and P obtained by FVS787

(Figure C1) and CECw (Figure C2) when W varies from 100% to −50% of its original788

value. Not only Tpart and Ppart vary in opposite directions, which is expected given their789

connection through W , but over/underestimation is governed by the combination of T/ET790

and P/RP ratios, as well as by whether W is over/underestimated. For FVS, larger er-791

rors are expected when W is over/underestimated under conditions when canopy fluxes792

dominate (see upper right corners in Figure C1).793

Besides having W as an input, the implementation of the FVS method requires the794

correlation coefficient between q and c as well as their variances. As a consequence, er-795

rors in the time series associated with field measurements, sensor limitations, as well as796

as post-processing data techniques, are further sources of uncertainty to partitioning es-797

timates. For instance, Detto and Katul (2007) show that the necessary density effect cor-798

rections (DEC) of the c and q time series measured by open-gas analyzers greatly im-799

pact all their higher order statistics, in particular for c. Gao et al. (2020), on the other800

hand, criticizes DEC, suggesting that it affects the high frequencies of the c spectra, im-801

pacting similarity between scalars and their statistics. Thus, because the FVS method802

directly relies on σc and ρc,q, its performance is likely influenced by uncertainties in these803

corrections, which potentially impact the number of valid solutions found as has been804

reported in other studies (Sulman et al., 2016; Klosterhalfen, Graf, et al., 2019; Zahn et805

al., 2022). In these cases, solutions were not found when expression (5) was not satis-806

fied. However, further investigation of this hypothesis and quantification of such errors807

are left for other studies since it cannot be easily replicated in large-eddy simulations.808

4.5 Connecting biophysiological variables to turbulence statistics809

In this section, we explore the connection between the water-use efficiency, as im-810

posed in our simulations, and the correlation coefficient ρc,q retrieved from the final sim-811

ulated turbulence data. Figure 12a shows the variation of W/Wf , where we defined a812

“total” flux water-use efficiency Wf = Fc/ET , with ρc,q at four heights above the canopy.813

In addition, for all heights, we only show flux component combinations presented on the814

phase diagrams when −P/RP − 0.15 < T/ET < −P/RP + 0.15 (see dashed lines in815

the first plot of Figure 5). This constraint not only selects periods when all methods per-816
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Figure 11. Sensitivity of the FVS and CECw methods to variability in the water-use effi-

ciency at z/h=1.7, where Winput is the water-use efficiency used for partitioning, while Wreal

is the water-use efficiency imposed in the simulation. Panels a) and c) show how transpiration

varies, while panels b) and d) show results for photosynthesis. Simulation on the left side corre-

spond to T = E=50 Wm−2, P = 1 mg m−2s−1, and R = 1.1 mg m−2s−1. Fluxes imposed in the

simulation shown on the right were T=65 Wm−2, E=50 Wm−2, P = 1.7 mg m−2s−1, and R =

1.1 mg m−2s−1

formed well, but also removes the most “unphysical” or rare flux component combina-817

tions.818

First we note that W/Wf = (1 + E/T )(1 − R/P )−1; therefore, W/Wf > 0 im-819

plies R < P while W/Wf < 0 implies R > P . A stronger connection between W/Wf >820

0 and ρc,q is noticed at the top of the canopy, with W/Wf increasing as the correlation821

increases from −1 to ≈ 0.5. The same trend is still visible at z/h = 2, although it is822

less “continous”, with the presence of “gaps”, as we go above this level. Overall, for W/Wf >823

0, the increase of respiration or evaporation both invariably lead to an increase in W/Wf824

given that Wf = Fc/ET decreases when R increases (for a constant P ) or when E in-825

creases (constant T ). However, when W/Wf < 0, a further increase in R leads to a de-826

crease in the ratio W/Wf , while an increase in E causes its increase (arrows in Figure827

12a). The transition in the sign of W/Wf occurs at different values of ρc,q depending on828

the height, but clearly the ratio of water-use efficiencies is better defined when canopy829

components dominate the total fluxes and W/Wf > 0.830

The relation between T/ET and ρc,q is shown in Figure 12b. CEC predicts a good831

agreement, on average, with the true T/ET ratios, while CEA underestimates the true832

ratios (note that CEA outperforms CEC in other regions of the phase diagram that were833

not included following the condition −P/RP − 0.15 < T/ET < −P/RP + 0.15). The834

CECw method clearly diverges from the expected trends for ρc,q > 0.50, performing835

similarly to the other methods when plant components become more important. Regard-836

ing the FVS method, it underestimates T/ET when ρc,q is very negative, i.e., when the837

CO2 fluxes are strongly dominated by photosynthesis, but closely follows the expected838

LES (simulated) values as the correlation coefficient becomes positive. Overall, the re-839

lation between the ratios T/ET and ρc,q follows the behavior shown in our previous study840
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Figure 12. Panel (a) shows the relation between the ratio W/Wf and ρc,q at heights

z/h = 1, 2, 3, 4, where W = P/T and Wf = Fc/ET were computed from the imposed (“true”)

flux components. Panel (b) shows the ratio T/ET versus correlation at z/h = 1 for the imposed

(LES) values, as well as the results obtained by each partitioning method. A “cluster” of markers

of the same color contains points with the same R/P ratio but different E/T ratios, and the

different clusters thus have different R/P (as indicated by arrows of increasing R and E). Both

panels contain only flux combinations following −P/RP − 0.15 < T/ET < −P/RP + 0.15 as

shown in the delimited region in Figure 5.

(Zahn et al., 2022), which only used field data (although in that study the true flux com-841

ponents were not known).842

As previously mentioned, the measurement or parameterization of the water-use843

efficiency in field experiments is still a challenge, and its connection to ρc,q might help844

select the best parameterization model, or at least verify their plausibility, under certain845
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conditions. Therefore, the aim of the previous analysis in this section is to examine whether846

we can use ρc,q as a screening tool for W/Wf , and ecosystem function more broadly. While847

such results cannot be generalized or be used for prediction with certainty at this point,848

they are a first good step towards obtaining more reliable ecosystem information from849

simple eddy-covariance measurements. To this end, we now replicate the analyses for water-850

use efficiency, as shown in Figure 12, using field data collected at the Treehaven forest851

(see Appendix B and table B1 for a description of the site). We calculate W from five852

different parametrizations of water use efficiency (all described in Zahn et al. (2022)),853

and then obtain the exact field-measured Wf and ρc,q. Figure 13 depicts W/Wf versus854

ρc,q using these field data; we show the half-hourly data points as well as the average ra-855

tios (black markers) in bins of ∆ρc,q = 0.05.856

Figure 13. Scatter plot of the ratio W/Wf versus ρc,q at the NEON site Treehaven (TREE),

where Wf = Fc/ET . Black markers show the average over intervals ∆ρc,q = 0.05. Data mea-

sured in Spring of 2018 and 2019, only for unstable conditions (i.e., positive heat flux) and when

W from all methods were available are shown. Each plot represents a different parameteriza-

tion of the water-use efficiency, more specifically the parameterization of the interstomatal CO2

concentration, cs. These models assume a) constant cs, b) constant ratio between interstomatal

and near canopy CO2 concentration, cs/cc, c) the ratio cs/cc is linearly proportional to vapor-

pressure deficit (D), d) the ratio cs/cc is linearly proportional to
√
D, e) the optimization model

proposed by (Scanlon et al., 2019). More details on each model are available in (Zahn et al.,

2022).

Results for field data show a very similar trend (and magnitudes) to numerical re-857

sults, where all models seem to follow a similar increase in the magnitude of W/Wf as858

the correlation tends towards zero (from either side). Furthermore, models involving the859

water-vapor pressure D (Figures c and d) seem less robust, showing more scatter and/or860

lower magnitudes of W/Wf than the remaining models. All models indicate a linear in-861

crease of W/Wf with increasingly positive correlation, which might suggest that these862

sites experience more variability in respiration than in evaporation (as can be inferred863

from the trends shown in figure 12). The same plot over three other NEON sites show864

similar results (Figures S14–S16 of the supplementary information). Overall, while this865
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analysis cannot evaluate the skill of a water-use efficiency model, it can increase our con-866

fidence in its use given that, on average, it follows the expected behavior with regards867

to ρc,q. In addition, filtering out data points that fall outside the two “clusters” that can868

be seen in figure 13 for positive and negative ρc,q might help reducing periods with higher869

uncertainties.870

5 Conclusion871

In this study, we used large-eddy simulations to investigate partitioning methods872

that are based on the statistics of turbulent fluctuations of scalar concentrations above873

canopies. Our simulations replicated field experiments over homogeneous and heteroge-874

neous (i.e., with the presence of gaps in the vegetation) domains. The performance of875

each method — namely FVS, CEC, CEA, and CECw — were evaluated with regards876

to measurement height, flux component strength, and canopy structure. We can now syn-877

thesize the results to answer the five questions posed in the introduction.878

1. The intercomparison of turbulent statistics across three different domains — a ho-879

mogeneous forests, a “vineyard-like” canopy with parallel rows, and a domain with880

square “clusters” of vegetation — revealed how the presence of open gaps of ex-881

posed soil impacts partitioning methods. Overall, the larger these canyons (such882

as the cluster domain), the greater the mixing of scalars. As a consequence, mix-883

ing of q and c (from soil and canopy) occurs faster, and at lower heights, when large884

gaps are present in the domain. Thus, all partitioning methods were negatively885

impacted by increased canopy heterogeneity. This is the opposite of our initial hy-886

pothesis, which postulated that the presence of wider patches of soil would facil-887

itate the separate sampling of ejections from the soil and from the canopy. Nonethe-888

less, all methods still require a somewhat porous canopy to guarantee the coupling889

between the air masses above and below, and to allow ejections enriched in CO2890

to escape from the soil towards the sensor, as conceptualized by CEC, CEA and891

CECw methods. Therefore, homogeneous vegetation with a low to moderate LAI892

would be the best suited for these partitioning approaches.893

2. Our numerical results indicate that CO2 partitioning, almost invariably, had lower894

errors than evapotranspiration partitioning. The lowest errors occurred when the895

ratios T/E and P/R were proportional. Flux combinations where some methods896

performed poorly were usually characterized by atypical combinations, such as large897

photosynthesis but negligible transpiration, that are not expected in real field data.898

This lends confidence that these methods can provide results with sufficient ac-899

curacy to advance the understanding of ecosystems, optimize water use in agri-900

culture, or for other practical applications where the carbon-water cycle coupling901

is important. Nonetheless, it is important to note that these “atypical” flux com-902

binations might occur under specific circumstances. For instance, differences be-903

tween anisohydric and isohydric stomatal behavior may manifest as differences that904

are perpendicular to the “ideal” diagonal. To this end, more research is needed905

to determine a priori when (and where) “off-diagonal” conditions are expected.906

3. The best performance of CEC is expected near the canopy top (z/h ≈ 1) when907

all flux components are non-negligible. CEA yielded comparable results to CEC,908

but outperformed the latter at all three levels in the context of numerical exper-909

iments. CECw also performed well at the canopy top, and its performance remained910

almost unaltered at higher levels. For a known water-use efficiency, the FVS method,911

followed by CECw, is the most reliable approach. Therefore, the choice of the best912

method to apply hinges on the measurement height, flux ratio, and uncertainty913

in W .914

4. Partitioning estimates from FVS and CECw respond differently to over and un-915

derestimation of the water-use efficiency. By changing W by up to 100%, TFVS916

changes by approximately ± 50%, while PFVS can decrease by 100%. TCECw, on917
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the other had, was found to be less sensitive to changes in W for the two cases918

investigated, while PCECw increased/decreased by up to 100% as for the FVS method.919

Overall, these ranges can inform us about expected errors in the output of both920

methods as a result of uncertainties in W , which can vary significantly depend-921

ing on the parameterization used.922

5. By combining the CEC method and the water-use efficiency (CECw), we observed923

an improvement in the partitioning output relative to CEC. Not only does CECw924

result in smaller errors for a wider combination of flux components, but it also re-925

sulted in satisfactorily accuracy at higher measurement elevations than CEC. This926

underscores the value of the information that the water-use efficiency adds to sim-927

ple partitioning methods. In addition, given their shared connection through W ,928

we suggest the concurrent implementation of FVS and CECw as a way to max-929

imize the number of available solutions over a period.930

6. Finally, we identified a connection between the water-use efficiency — a variable931

informing us about the plant functioning — and the correlation between q and c,932

a turbulent quantity. We further showed that this numerical result is in agreement933

with field data analyses. This exciting finding opens a path towards recovering bio-934

physiological variables from simple high-frequency data measurements.935

7. For readers interested in applying these methods for field data, and given the vari-936

ability of the skill and solution availability of the different methods with measure-937

ment height, flux ratio, and input uncertainty, our recommendation is to concur-938

rently apply all methods, and potentially MREA. This can increase confidence in939

the outputs when the methods agree, but when they do not, the various analy-940

ses presented here can guide the user on which method is most likely to be more941

accurate under given conditions. An important contribution in this regard of the942

present paper is the introduction of two new methods for this partitioning approach,943

the CECw and the CEA.944

Because our analyses focused on neutral conditions, we cannot readily extrapolate these945

results to all stability conditions. Nonetheless, we hypothesize that as long as no strong946

stratification — hindering strong updrafts from carrying soil fluxes — or strong convec-947

tion, strongly mixing the scalars — are present, the conclusions we draw in this paper948

should still be valid (i.e., for weakly stable or unstable conditions). We also limited our949

exploration of canopy domain configuration to three cases; thus, it is possible that dif-950

ferent results may emerge if, for instance, the gaps between rows of vegetation were smaller.951

Likewise, soil and canopy heterogeneity, including spatial variability of fluxes, LAI and952

LAD, would be closer to real canopies, but were out of the scope of the present study.953

Such additional analyses are left to future studies.954

It is also important to acknowledge the inherent limitations of simulations in re-955

producing field experiments. For instance, given the resolution constraint, we are not able956

to represent all range of small eddies possibly carrying fluxes from surface and canopy957

and mixing the scalars, as well as the different scales of heterogeneity in real canopies.958

Likewise, simulations represent an idealized state (e.g., neutral stability) rarely observed959

in field experiments. Thus, the results discussed in this paper depict a “baseline” sce-960

nario of how these methods operate, noting that these results may not hold exactly in961

field experiments for different reasons. For instance, a previous publication (Zahn et al.,962

2022) showed superior performance of CEC in partitioning transpiration above a grass963

site. Despite the superior numerical results obtained by CEA and FVS in the current964

paper, CEC still outperforms CEA and FVS above this site (Figure S17 in the supple-965

mentary information). To this end, additional implementation and comparison against966

independent measurements of one or more of flux components might help elucidate the967

performance of these methods in real ecosystems.968

Overall, the results presented here contribute to better understanding of partition-969

ing methods based on high-frequency eddy-covariance data. More importantly, they also970
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show the possibility of extracting valuable information from simple measurements that971

are becoming increasingly more available (eddy-covariance systems). Even when we take972

into account the specific site and/or meteorological conditions that meet the requirements973

for such analyses — thus reducing the number of ideal sites — we are still able to ob-974

tain new information across many potential sites at no cost of additional data. Further-975

more, while these numerical findings should be applied with care to real measurements,976

our findings can guide the design of future experiments focusing on partitioning. To this977

end, the following considerations should be taken into account when designing new ex-978

periments: 1) the measurement height of the EC system should be as close to the canopy979

as possible (z/h <3), ideally with one measurement level around z/h ≈1 to better sam-980

ple eddies emanating from the soil; 2) the canopy should be porous enough (visible soil981

from above), but ideally continuous (not patchy); 3) the partitioning methods should only982

be implemented (or trusted) when all four flux components are expected to be non-negligible.983
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Appendix A Validation of LES setup984
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Figure A1. Validation of the LES set-up. Continuous lines represent the spatially and tem-

porally averaged statistics, while dashed lines are the temporal statistics computed from the

ensemble average of the 24 virtual eddy-covariance towers, and markers are statistics from a

field experiment by (Shaw et al., 1988). Top row shows the velocity profile (a), nondimensional

standard deviation of velocity components (b) and water vapor (c), and skewness of u and w

(d). The middle row depicts the correlation coefficient between u and w (e) and w and q (f), and

the nondimensional stress (g) and water vapor flux profiles (h). The bottom row shows the flux

fraction in the four quadrants for momentum (i) and water vapor flux (j), while the ratio between

quadrants is shown in (k) (sweeps/ejections) for momentum and (l) for water vapor fluxes.
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Appendix B Experimental Data985

High-frequency eddy-covariance data from four sites managed by the National Eco-986

logical Observatory Network (NEON) (2022) were download for the years of 2018 and987

2019. We selected these sites based on the low ratio between measurement (z) and canopy988

(h) heights. In addition, the forests are sparse enough such that some coupling between989

below and above canopy flows is expected. Thus, both the low measurement height and990

canopy sparseness satisfy the requirements for implementation of all partitioning meth-991

ods, as discussed in Zahn et al. (2022). A brief description of each site is shown in Ta-992

ble B1.993

Table B1. Summary of the experimental data used in this study. LAI is the leaf-area index

(National Ecological Observatory Network, 2021) estimated by aerial images during summer.

Site ID Name Location z/h LAI

BONA Bonanza Creek Fairbanks North Star County, AK 2.4 1.8

DEJU Delta Junction Southeast Fairbanks County, AK 2.2 1.2

HARV Harvard Forest Worcester County, MA 1.5 1.9

TREE Treehaven Lincoln county, WI 1.6 -

Data were collected by the same instruments across all sites, consisting of an en-994

closed gas analyzer (model Li-7200, LiCor Inc., Lincoln, NB) and a three-dimensional995

sonic anemometer (model CSAT-3, Campbell Scientific Inc., Logan, UT) acquiring data996

at 20 Hz. The raw data were processed following the same procedures described in Zahn997

et al. (2022). In addition to computing turbulent quantities such as correlations and co-998

variances, we also computed the water-use efficiency for these four sites as999

W = 0.65
cc − cs
qc − qs

, (B1)1000

1001

where qc and cc are H2O and CO2 atmospheric mean concentrations near the canopy,1002

and qs and cs are the mean intercellular concentrations. While qs is calculated by as-1003

suming stomatal saturation, a parameterization needs to be adopted for cs. In our anal-1004

ysis, we implemented five different models for cs described in Zahn et al. (2022), thus1005

obtaining five estimates of W .1006

–33–



manuscript submitted to JGR: Biogeosciences

Appendix C Phase diagrams of sensitivity to water-use efficiency1007
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Figure C1. Phase diagrams indicating the sensitivity of the FVS method to uncertainties in

the water-use efficiency. TFVS/T is shown on the left side, while PFVS/P is shown on the right

side. Note that FVS does not find valid solutions when plant components dominate as W is un-

derestimated.
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Figure C2. Phase diagrams indicating the sensitivity of the CECw method to uncertainties in

the water-use efficiency. TCECw/T is shown on the left side, while PCECw/P is shown on the right

side. Only errors of up to 100% (TCECw/T=2 or PCECw/P=2) are shown.
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Abstract24

While yearly budgets of CO2 and evapotranspiration (ET ) above forests can be read-25

ily obtained from eddy-covariance measurements, the quantification of their respective26

soil (respiration and evaporation) and canopy (photosynthesis and transpiration) com-27

ponents remains an elusive yet critical research objective. To this end, methods capa-28

ble of reliably partitioning the measured ET and Fc fluxes into their respective soil and29

plant sources and sinks are highly valuable. In this work, we investigate four partition-30

ing methods (two new, and two existing) that are based on analysis of conventional high31

frequency eddy-covariance (EC) data. The physical validity of the assumptions of all four32

methods, as well as their performance under different scenarios, are tested with the aid33

of large eddy simulations, which are used to replicate eddy-covariance field experiments.34

Our results indicate that canopies with large, exposed soil patches increase the mixing35

and correlation of scalars; this negatively impacts the performance of the partitioning36

methods, all of which require some degree of uncorrelatedness between CO2 and water37

vapor. In addition, best performance for all partitioning methods were found when all38

four flux components are non-negligible, and measurements are collected close to the canopy39

top. Methods relying on the water-use efficiency (W ) perform better when W is known40

a priori, but are shown to be very sensitive to uncertainties in this input variable espe-41

cially when canopy fluxes dominate. We conclude by showing how the correlation co-42

efficient between CO2 and water vapor can be used to infer the reliability of different W43

parameterizations.44

Plain Language Summary45

Forests and vegetated ecosystems play a crucial role in the exchange of CO2 and46

water vapor with the atmosphere. During the day, plants absorb CO2 through photo-47

synthesis (P ), releasing water vapor via transpiration (T ). On the other hand, the for-48

est floor contributes to CO2 through respiration (R), and moist soil leads to water va-49

por evaporation (E). While tall towers currently measure total CO2 (Fc = P+R) and50

water vapor (ET = E + T ) exchanges, distinguishing the contributions from soil res-51

piration and evaporation versus tree photosynthesis and transpiration remains a chal-52

lenge. This study addresses this gap by investigating methods to separate Fc and ET53

into their individual components. Using a simulated forest environment with a virtual54

meteorological tower, the study tests four methods to estimate respiration, photosyn-55

thesis, evaporation, and transpiration. Results reveal that more reliable estimates are56

obtained when measurements are collected close to the forest top, especially without sig-57

nificant vegetation gaps leading to strong mixing. Additionally, the study highlights the58

expected errors in two approaches when faced with real-world uncertainties. By eluci-59

dating optimal conditions for method application, this research contributes to advanc-60

ing our understanding of ecosystem-atmosphere interactions and informs the accurate61

measurement of vital components in the carbon and water cycles.62

1 Introduction63

Land-atmosphere exchanges of water vapor and CO2 are important components64

of the global water and carbon cycles. In this context, vegetated canopies, such as forests,65

play an important role in both cycles through their contributions to evapotranspiration66

(ET ) and net CO2 exchange (Fc). Facilitated by an extensive network of eddy-covariance67

(EC) towers setup across the globe, we are currently able to quantify the long-term bud-68

gets for both quantities over many land use types. Nonetheless, long-term quantification69

of their individual soil (evaporation and respiration) and plant canopy (transpiration and70

photosynthesis) components is an equally important but much more challenging research71

goal. While different methods have been proposed to measure one or more of these com-72

ponents, such as soil chambers, sap-flow and leaf-level measurements, they are still un-73
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able to offer unified long-term measurements (yearly scale) of all components across dif-74

ferent ecosystems. This poses a challenge to understanding, for instance, how different75

environmental, meteorological, and climatological conditions affect these processes, which76

are urgent research questions as we attempt to mitigate and adapt to climate change and77

variability (Mengis et al., 2015; Kirschbaum & McMillan, 2018; Dusenge et al., 2019; Baslam78

et al., 2020; Wang et al., 2022). Therefore, the development and implementation of prac-79

tical and accurate methods to partition the total ET and Fc fluxes that are currently80

being measured world-wide is a significant objective, particularly if such methods can81

solely rely on eddy-covariance data.82

Several methods have been proposed in the last decade to partition the total ET83

and Fc. In terms of CO2 components, one of the most popular approaches consists of84

modeling soil respiration (Rsoil) based on a soil temperature response function (Reichstein85

et al., 2005; Lasslop et al., 2010), thus obtaining gross-primary productivity (GPP ) as86

GPP = Fc−Rsoil. The conceptual framework behind each of the various available par-87

titioning algorithms for ET varies widely. For instance, after reviewing ET partition-88

ing results from several sites, Wei et al. (2017) proposed a formulation linking T/ET to89

the leaf-area index (LAI). Perez-Priego et al. (2018) and X. Li et al. (2019), on the other90

hand, adopted a physiological approach; the authors use a big-leaf scheme to first model91

and later relate plant conductance to transpiration. Other authors explored the direct92

connection between plant photosynthesis and transpiration — through the ecosystem water-93

use efficiency (eW = GPP/ET ) — to derive empirical formulations based on the cor-94

relation between these components (Zhou et al., 2016; Scott & Biederman, 2017). In ad-95

dition, machine learning algorithms have also been used (Nelson et al., 2018; Rigden et96

al., 2018; Eichelmann et al., 2022) to link T or E to environmental variables. While these97

approaches have gained attention and multi-comparison studies have become more pop-98

ular (Nelson et al., 2020), they usually invoke uncertain models for individual compo-99

nents or require additional (and hard to measure) environmental variables, precluding100

their wider implementation. For instance, most of these methods require GPP as an in-101

put in order to partition ET , thus increasing the uncertainties in their outputs. There-102

fore, approaches able to simultaneously partition CO2 and ET , based solely on available103

EC data, offer many advantages over the previously mentioned methods.104

A particularly useful class of partitioning methods, that this paper focuses on, are105

approaches based on turbulent statistics computed from high-frequency data. Not only106

do they require few (usually only water use efficiency) or no extra inputs, but they also107

allow the simultaneous and consistent partitioning of ET and Fc flux components. Three108

previously proposed methods are the flux-variance similarity (FVS)(Scanlon & Sahu, 2008;109

Scanlon & Kustas, 2010; Scanlon et al., 2019), the modified relaxed-eddy accumulation110

(MREA) (C. Thomas et al., 2008), and the conditional eddy covariance (CEC) (Zahn111

et al., 2022).112

Zahn et al. (2022) intercompared FVS, MREA and CEC across four experimen-113

tal sites, including a grass site with independent estimates of transpiration and a forest114

site with soil respiration measurements. While reasonable results were obtained in dif-115

ferent situations for all three approaches, a general conclusion regarding their broad ap-116

plicability across different ecosystems was not attained. Part of the challenge is related117

to the difficulty in validating the methods’ formulation and results. In addition, validat-118

ing their universality — i.e., when and where they perform well — would require tower119

data across a wide range of ecosystem types and climatic conditions that could result120

in various combinations of flux component strengths.121

Previously, Klosterhalfen, Moene, et al. (2019) used LES to investigate the phys-122

ical assumptions and the performance of the FVS method. The authors showed that FVS123

is very sensitive to one of the assumptions invoked during its derivation, a necessary al-124

gebraic manipulation to obtain a closed system of equations. FVS was also found to be125

very sensitive to the plant water-use efficiency (W ), which is the only input to the model126
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that is not directly computed from the time series. Thus, the main disadvantage of the127

FVS method is that it presumes that a very important piece of information, W , is al-128

ready known. However, the challenge remains that while different alternatives to param-129

eterize W are available (Skaggs et al., 2018; Scanlon et al., 2019), the different options130

usually do not match and are shown to result in different flux partitioning outputs (Wagle131

et al., 2021). In addition, many studies (Sulman et al., 2016; Klosterhalfen, Graf, et al.,132

2019; Wagle et al., 2021; Zahn et al., 2022) have shown that, depending on the site, the133

rate of valid solutions found by the FVS method can be as low as 30%.134

To overcome limitations of field experiments in answering many of the open research135

questions, in this study we use numerical simulations of canopy flows relying on the Large-136

Eddy Simulations (LES) (Stoll et al., 2020) technique with embedded virtual flux tow-137

ers and sensors. One of the biggest advantages LES offers in the present study is that138

the true flux components and water-use efficiency are known inputs; therefore, the re-139

sults for the implemented partitioning methods, which are applied to time series sam-140

pled during the simulation, can be validated. We thus further investigate the advantages141

and limitations of FVS, MREA, and CEC. In contrast to the FVS method, the formu-142

lation of which starts from the similarity equations for variances but then invokes em-143

pirical assumptions, both CEC and MREA are fully empirical approaches based on the144

assumption that CO2 and H2O are similarly transported by turbulence from their shared145

soil and canopy sinks and sources. While their formulation cannot be rigorously proven,146

their assumptions and performance can be extensively tested in LES under various con-147

ditions.148

Cognizant of potential limitations of FVS, CEC, and MREA, in the present study149

we also formulate and test two related approaches. The first approach is the conditional150

eddy accumulation or CEA, which complements the other tested methods better. The151

Conditional Eddy Accumulation method combines quadrant analyses and the traditional152

Relaxed Eddy Accumulation method (Businger & Oncley, 1990). While it uses similar153

principles as adopted by the Modified Relaxed Accumulation method (see C. Thomas154

et al. (2008) and Zahn et al. (2022)) and CEC, CEA’s formulation also includes down-155

drafts in its framework, and yields different results. The second method is a hybrid ap-156

proach that assimilates W into the CEC method, and is here called CECw. The idea be-157

hind CECw is to investigate how much skill the water-use efficiency alone adds to par-158

titioning.159

An important question with these multiple available approaches is under what con-160

ditions (measurement height, season, canopy characteristics, etc.) are some approaches161

more accurate than others. As discussed by Zahn et al. (2022), the assumption that ed-162

dies from the soil can be distinguished from those coming from the plant canopy would163

suggest that more realistic results should be obtained for both methods over sparser canopies164

(a conclusion we will revisit here). The authors also concluded that the high-frequency165

data should be measured as close as possible to the canopy so as to sample the trans-166

porting eddies before turbulence mixes canopy and soil fluxes. One question that remains167

open is whether sparser canopies allow a higher measurement height given the stronger168

horizontal distinction between canopy and soil. The importance of plant canopy “open-169

ness” is thus investigated in the present simulations. To that end, we first simulate flow170

over a homogeneous canopy, where the canopy presence (i.e., fluxes and drag) is felt at171

every grid point of the lower part of the domain; to simulate canopy sparseness, we then172

include exposed patches of soil resembling crop organizations such as vineyards. Another173

related key question is how (not if) the methods’ performances are affected by the rel-174

ative magnitude of soil versus canopy fluxes. To address that question, we investigate175

a broad range of combinations of the ratios of photosynthesis/respiration and transpi-176

ration/evaporation, and how they influence the outcome of each method.177

Overall, this paper explores how similarity-based partitioning approaches perform178

under various conditions encountered in real field experiments, and how simple turbu-179
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lence measurements can help understand the biophysiological behavior of plant canopies.180

The following questions are investigated181

1. How does the sparseness of the canopy impact the assumptions of the methods182

and their performance?183

2. How does the magnitude of the individual four flux components influence parti-184

tioning skill?185

3. What is the role of the measurement height for different levels of canopy sparse-186

ness?187

4. How sensitive are the FVS and CECw methods to errors in water use efficiency?188

The answers to these questions will further deepen our understanding of ET and Fc par-189

titioning and the reliability of the investigated methods. They will also help to broadly190

identify the best practices for future experimental campaigns aimed at obtaining flux com-191

ponent estimates.192

2 Theory193

We start this section with a brief summary of the partitioning methods investigated,194

where the main equations and necessary inputs are discussed. Throughout the text, the195

concentrations of CO2 and H2O are defined as c and q, respectively. The velocity com-196

ponents in the streamwise (x), cross-stream (y), and vertical directions (z) are u, v, and197

w, while the deviation of a variable µ around its time and/or space average µ is denoted198

using a prime µ′ = µ− µ. An important note to make here is that, for the remainder199

of the paper, we will not distinguish between soil and plant respiration. All the tested200

methods cannot make this distinction either since they are interrogating the properties201

of air parcels coming from the plants with the lumped information about gross primary202

production (GPP ), and thus they partition net ecosystem exchange into GPP and Rsoil.203

In our LES setup and the rest of the paper, however, CO2 will be emitted from the soil204

only, and we will refer to it as R, while the simulated plants only assimilate CO2, and205

we refer to that flux as photosynthesis (P ).206

2.1 Brief description of the partitioning methods207

In what follows, a summary of the FVS, CEC, and the newly proposed CEA and208

CECw, is presented. We note that results for the MREA method, previously explored209

in Zahn et al. (2022), were almost identical to CEC and thus will not be reported in this210

paper.211

2.1.1 Flux-variance similarity (FVS) method212

The flux-variance similarity method combines the similarity equations for variances213

of c and q with the water-use efficiency W = P/T (Scanlon & Sahu, 2008; Scanlon &214

Kustas, 2010). More specifically, it rewrites the budgets by separating the two scalars215

into their soil (cr for respiration and qe for evaporation) and canopy (cp for photosyn-216

thesis and qt for transpiration) components. To close the system of equations, the fol-217

lowing approximations are needed (G. Katul et al., 1995)218

ρcp,cr ≈ ρw,cr

ρw,cp

and ρqt,qe ≈ ρw,qe

ρw,qt

, (1)219
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where ρxy is the correlation coefficient between the variables x and y. After some alge-220

bra, the final equations for the ratios of flux components are221

EFVS

TFVS
=− ρ2cp,cr + ρ2cp,cr

√
1− ρ−2

cp,cr

(
1−W 2σ2

q/σ
2
cp

)
, (2a)222

RFVS

PFVS
=− ρ2cp,cr ± ρ2cp,cr

√
1− ρ−2

cp,cr

(
1− σ2

c/σ
2
cp

)
, (2b)223

224

where ρcp,cr and σcp , the standard deviation of cp, are directly computed by the two fol-225

lowing complementary equations (Skaggs et al., 2018; Scanlon et al., 2019),226

σ2
cp =

(
1− ρ2c,q

)
(σqσcW )

2
(
σ2
qw

′c′
2 − 2ρc,qσqσcw′c′ w′q′ + σ2

cw
′q′

2
)

[
σ2
cw

′q′ + σ2
qw

′c′W − ρc,qσqσc

(
w′c′ + w′q′W

)]2 , (3)227

ρ2cp,cr =

(
1− ρ2c,q

)
σ2
qσ

2
c

(
w′c′ − w′q′W

)2(
σ2
qw

′c′
2 − 2ρc,qσqσcw′q′ w′c′ + σ2

cw
′q′

2
) (

σ2
c − 2ρc,qσqσcW + σ2

qW
2
) . (4)228

229

The standard deviation of c, σc, and q, σq, and the correlation coefficient between c and230

q, ρc,q, are also needed and can be directly computed from the measured time series. The231

water-use efficiency — which is an input to the method — must be separately measured232

or estimated (a description of how to parameterize W can be found elsewhere (Scanlon233

& Kustas, 2010; Skaggs et al., 2018; Zahn et al., 2022)). For our numerical simulations,234

W is a known input. However, even the correct water-use efficiency will only result in235

realistic solutions if the following conditions are met (Scanlon et al., 2019)236

ρ−1
c,q

σc

σq
≤ w′c′

w′q′
< ρc,q

σc

σq
for ρc,q < 0, and (5a)237

w′c′

w′q′
< ρc,q

σc

σq
for ρc,q > 0. (5b)238

239

Failure to satisfy the above expressions has been shown to be the main cause of low avail-240

ability of physically valid solutions across sites (Wagle et al., 2021; Zahn et al., 2022).241

2.1.2 Conditional eddy covariance (CEC) method242

The conditional eddy covariance method (Zahn et al., 2022) expands the MREA243

framework proposed by C. Thomas et al. (2008). Similarly to MREA, CEC condition-244

ally samples ejections originating from the soil that are rich in CO2 and H2O (w′ > 0,245

c′ > 0, and q′ > 0); in addition, it also samples ejections that were in contact with246

the canopy and are depleted in CO2 and rich in water vapor (w′ > 0, c′ < 0, and q′ >247

0), which is not done in the MREA framework. The data points of a time series of length248

N that are identified to be in contact with soil or canopy are then used to compute “sam-249

ple” fluxes of evaporation (fE) and respiration (fR) or transpiration (fT ) and photosyn-250

thesis (fP ) (see Figure 1 in Zahn et al. (2022)). These sample fluxes are given by the fol-251

lowing expressions252

fE =
1

N

∑
ISw

′q′ and fR =
1

N

∑
ISw

′c′ (6)253

fT =
1

N

∑
ICw

′q′ and fP =
1

N

∑
ICw

′c′, (7)254

255

where IS is an indicator function that selects only “soil surface eddies”, i.e., data points256

that satisfy c′ > 0, q′ > 0, w′ > 0; IC, on the other hand, selects only eddies that were257

in touch with the canopy where we expect c′ < 0, q′ > 0, w′ > 0. Sample fluxes were258

only computed when the respective quadrant contained at least 2% of the data points.259

If, on the other hand,
∑

IS/N < 2% (or
∑

IC/N < 2% ), we attribute all fluxes to260

canopy (or soil) components.261
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The expressions given in (6) and (7) are not the actual fluxes of each component;262

instead, they are assumed to be “sample” indicative fluxes that we can use to estimate263

the ratio of the total fluxes by the following:264

rET =
fE
fT

=
ECEC

TCEC
and rRP =

fR
fP

=
RCEC

PCEC
. (8)265

266

The separate flux components are then obtained by combining the flux ratios with the267

expressions for total fluxes (ET = T +E and Fc = R+ P ). However, as discussed by268

Zahn et al. (2022), a mathematical constraint (division by zero) happens whenever RCEC

PCEC
≈269

−1, but affects only the partitioning for CO2 flux components. Because the FVS method270

also computes the flux ratios, the same mathematical constraint arises when RFVS

PFVS
≈271

−1. Therefore, solutions in this limit must be carefully inspected (and removed) for both272

methods.273

2.1.3 Conditional Eddy Accumulation (CEA) method274

The traditional Relaxed Eddy Accumulation method (Businger & Oncley, 1990)275

was derived as an alternative to eddy-covariance measurements for scalars s that can-276

not be measured at a high frequency. The method consists of separately measuring the277

average scalar concentrations associated with updrafts (s+) and concentrations associ-278

ated with downdrafts (s−), estimating the total scalar flux (Fs) as279

Fs = βσw(s+ − s−), (9)280
281

where σw is the standard deviation of the vertical velocity and β is a constant.282

By taking into account only updrafts rich in CO2 and H2O, C. Thomas et al. (2008)283

modified equation (9) and proposed the MREA method. The CEA method, on the other284

hand, retains the information from downdrafts and estimates an analogue to s+ and s−285

for each individual flux component. In the framework proposed here, we compute c+r and286

q+e (using c′ > 0, q′ > 0, w′ > 0) and c−r and q−e (c′ < 0, q′ < 0, w′ < 0), both repre-287

senting respiration and evaporation (note that the fluxes in both cases are positive). For288

canopy components, we compute c+p and and q+t (c′ < 0, q′ > 0, w′ > 0) and c−p and289

and q−t (c′ > 0, q′ < 0, w′ < 0), where the fluxes are now negative for c (photosyn-290

thesis) and positive for q (transpiration). These conditional averages are computed as291

c+r =
1

N+
S

∑
c′I+S and q+e =

1

N+
S

∑
q′I+S , (10)292

c−r =
1

N−
S

∑
c′I−S and q−e =

1

N−
S

∑
q′I−S , (11)293

c+p =
1

N+
C

∑
c′I+C and q+t =

1

N+
C

∑
q′I+C , (12)294

c−p =
1

N−
C

∑
c′I−C and q−t =

1

N−
C

∑
q′I−C , (13)295

296

where N and I are the number of sampled events and the indicator functions defined ac-297

cording to the origin of fluxes (subscript ‘S’ for soil and ‘C’ for canopy) separated by up-298

drafts (+) and downdrafts (−).299

By assuming that the coefficient β is constant or weakly dependent on stability (Businger300

& Oncley, 1990; G. G. Katul et al., 1996; Zahn et al., 2023), and that σw is the same re-301

gardless of conditional sampling, we approximate the flux ratios as302

rET =
ECEA

TCEA
=
q+e − q−e

q+t − q−t
, (14)303

rRP =
RCEA

PCEA
=
c+r − c−r

c+p − c−p
. (15)304

305
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A diagram illustrating the method is shown in Figure 1, where we show points clas-306

sified following the conditional sampling, as well as the average values as defined in (10)–307

(13). When plant components dominate the fluxes (E and R), we expect the denomi-308

nator in (14) and (15) to be larger, as indicated in plot 1a and b; however, for fluxes dom-309

inated by soil components, the numerators are larger (plot 1c and 1d).310

Figure 1. Quadrant plots illustrating the Conditional Eddy Accumulation (CEA) method,

where the points selected to compute ratios in Eqs. (14) (plots a and c) and (15) (plots b and d)

are shown. Figure generated using time series from large-eddy simulations. Plots a) and b) have

ratios T/E=|P |/R=5, while plots c) and d) have ratios T/E=|P |/R=0.2.

2.1.4 Combining CEC and water use efficiency311

Both CEC and CEA have the practical advantage of not requiring a priori knowl-312

edge of the water use efficiency. However, if W is known, it can in fact inform both meth-313

ods. Therefore, we now combine the flux ratios as defined by the CEC method with the314
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water-use efficiency and derive an alternative partitioning method that we will refer to315

as CECw. The goal of this new model is to investigate if, given the correct water-use ef-316

ficiency, a simpler method could perform similarly to the FVS method, potentially be-317

ing easier to implement and yielding solutions more often. This ultimately will indicate318

how important W is to the skill of the FVS method.319

We start the derivation by combining the water-use efficiency (W = P/T ) and320

the flux ratios as defined by CEC (rRP = R/P and rET = E/T ),321

W =
P

T
=

R

E

rET

rRP
= Z

rET

rRP
, (16)322

323

where we define Z = R/E.324

Rewriting the equations for total fluxes and introducing the definitions of W and325

Z, we have326

Fc =W × T +R, (17)327

T =ET − R

Z
. (18)328

329

Combining equations (17) and (18) and rewriting for R, we get the following expression330

for soil respiration331

RCECw =
Fc −W × ET

1− W
Z

=
Fc −W × ET

1− rET

rRP

, (19)332

333

where the ratios rRP and rET are computed from equations (6)–(8). Similarly, we can334

obtain an expression for TCECw335

TCECw =
Fc −W × ET × rRP

rET

1− rRP

rET

. (20)336

337

Corresponding expressions can be derived for PCECW and ECECW , or they can then be338

computed as the residuals of the total eddy-covariance (EC) fluxes (both approaches yield339

identical results since the total flux expression are directly used in the derivation). Be-340

cause rET > 0 and rRP < 0, this equation has no mathematical singularity. Nonethe-341

less, under certain conditions the method can result in negative transpiration or respi-342

ration. Therefore, we must also ensure that TCECw > 0 and RCECw > 0. In addition,343

we also tested the method by computing the ratios following the CEA method (expres-344

sions (14) and (15)), but the results for CECw were similar and thus not included here.345

3 Methods346

This section describes the setup of our numerical simulations and how the time se-347

ries were sampled and processed for partitioning.348

3.1 Large-eddy simulations349

The LES algorithm used in this study has been extensively tested over homoge-
neous and heterogeneous surfaces, with and without resolved roughness elements (Bou-
Zeid et al., 2005; Kumar et al., 2006; Q. Li & Bou-Zeid, 2019; Huang & Bou-Zeid, 2013;
Zahn & Bou-Zeid, 2023). Its formulation is based on the solution of the spatially filtered
incompressible continuity (equation (21)) and Navier-Stokes (equation (22)) equations
under the Boussinesq approximation. The conservation equation for a scalar s (equa-
tion (23)) is also solved for cr, cp, qe, and qt. Since only neutral conditions are consid-
ered, the effects of buoyancy are ignored in our analyses. To ensure that our canopy flow
simulations, covering ≈ 14% of the ABL (1km) height, closely represent the turbulent
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profiles expected when the full ABL is simulated, we followed the recommendations from
Zahn and Bou-Zeid (2023). In this setup, in addition to a large-scale pressure term, the
force balance also includes a stress at the top of the domain in addition to the Corio-
lis term. More details are given below and discussed in Zahn and Bou-Zeid (2023).

∂ũi

∂xi
=0, (21)

∂ũi

∂t
+ ũj

(
∂ũi

∂xj
− ∂ũj

∂xi

)
=− ∂p∗

∂xi
− ∂τij

∂xj
+ fcϵij3(ũj − uG

j ) +Di, (22)

∂s̃

∂t
+ ũj

∂s̃

∂xj
=− ∂πsj

∂xj
+ Ss. (23)

In the above expressions, a filtered variable µ is denoted as µ̃. ũi is the resolved (filtered)350

velocity field (i=1,2,3); xi is the position vector; τij is the anisotropic part of the subgrid-351

scale (SGS) stress tensor; fc = 1.4×10−4 is the Coriolis parameter; uG
j is a large scale352

pressure forcing imposed in terms of a geostrophic wind; πsj is the SGS scalar flux, and353

Ss represents volumetric sinks/sources of the scalar s. A modified resolved dynamic pres-354

sure, p∗, is defined to include the resolved and SGS turbulent kinetic energy (Bou-Zeid355

et al., 2005). The reference density is taken as 1 and is thus omitted from the equations.356

The term Di represents the drag force exerted by the canopy elements on the flow and357

was computed as358

Di = −CDaũi|ũi|, (24)359
360

where CD is the drag coefficient and a is the leaf-area density. The drag coefficient was361

modeled following Pan, Follett, et al. (2014),362

CD = min
(
(⟨ũi⟩ /A)B , CD,max

)
, (25)363

364

where A is a velocity scale, B a negative power-law exponent, and CD,max the maximum365

drag coefficient. This formulation represents the change in canopy drag caused by the366

variation in the wind speed, which can cause the canopy elements to bend, thus mod-367

ifying the canopy resistance through the drag coefficient. As shown by Pan, Follett, et368

al. (2014), this drag model improves the representation of higher order statistics. How-369

ever, the parameters A, B, and CD,max are canopy dependent and can be experimen-370

tally found if data are available. For our numerical study, we conducted various simu-371

lations for different combinations of the parameters tested by Pan, Follett, et al. (2014).372

We selected the parameters that resulted in the best comparison between the simula-373

tion and the velocity statistics profiles from Su et al. (1998) (more details in the section374

3.1.2). The best match was observed for A = 0.22 m/s, B = −1, and CD,max = 0.3.375

The SGS stress is modeled using the scale-dependent Lagrangian dynamic model376

(Bou-Zeid et al., 2005), where a constant turbulent SGS Prandtl number of 0.4 is used377

to infer the SGS diffusivity and compute the unresolved scalar fluxes. To ensure that the378

velocity field satisfies the continuity equation, a Poisson equation is solved for pressure379

p∗ at every time step. The vertical derivatives are computed by a second-order centered380

finite difference scheme, implemented on a uniform staggered grid, while a pseudo-spectral381

method is implemented for horizontal derivatives. Finally, the explicit second-order Adams–Bashforth382

method is used for time stepping.383

The horizontal boundary conditions are periodic. At the top, we imposed a stress384

term, (τxz, τyz) = (u2
S cosα, u2

S sinα), where uS is the kinematic stress magnitude and385

α is the angle between the stress vector and the x-axis. Following the steps in Zahn and386

Bou-Zeid (2023), we used uS=0.3 m/s and α = 174◦. In addition, we imposed a stream-387

wise large-scale pressure forcing (uG, vG) = (8, 0) m/s. Finally, we simulated constant388

flux profiles for all scalars by imposing an SGS flux (sink or source) as the top bound-389

ary condition for c and q matching the total flux magnitude imposed inside the domain390

(ground + canopy).391
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As previously discussed (Su et al., 1998; Watanabe, 2004; Zahn & Bou-Zeid, 2023),392

the inclusion of a top stress (and/or scalar flux) results in strong velocity and scalar gra-393

dients near the top boundary. However, Watanabe (2004) also showed that their region394

of interest (≈ 70% of the lower domain) was unaffected, resulting in the same turbulence395

statistics of a pressure-driven flow. To confirm this finding, we ran individual simulations396

driven by a non-zero top stress or by an imposed pressure force, confirming Watanabe397

(2004)’s results and also verifying that the partitioning results were consistent and in-398

dependent of the choice of the top boundary condition or flow forcing. Nonetheless, we399

confine our analyses to the bottom part of the domain, z ≤ 5h (≈ 65% of domain depth).400

3.1.1 Simulating plant and soil contributions of CO2 and H2O401

One of the main goals of our simulations is to reproduce (and sample) c and q un-402

der different combinations of canopy and soil fluxes. This would require running several403

simulations where the contributions from the various sinks and sources vary. Not only404

would this be computationally expensive, but it would also likely cover only a limited405

area of the phase space between T/E and P/R. An easier approach, as adopted by Klosterhalfen,406

Moene, et al. (2019) is to obtain solutions for canopy and soil separately, and then lever-407

age the linear nature of equation (23) that allows solution superposition to reconstruct408

the results based on different imposed fluxes. Following this idea, we solve this scalar409

balance equation separately for plant (cp and qt) and soil (cr and qe) scalars, where c =410

cp + cr and q = qe + qt. Thus, only plant components have a source or sink term rep-411

resenting canopy transpiration and photosynthesis, while their bottom wall boundary412

condition is set to zero flux. Soil components, on the other hand, have an imposed sur-413

face flux at the bottom representing evaporation and respiration.414

After simulating all four scalars separately, we can then recover the desired turbu-415

lent statistic for c and q. In addition, we can easily adjust the respective contributions416

of soil and plant components by first multiplying the original statistics of cp, cr, qt, and417

qe by the respective scaling factors. Note that this is only possible if q is treated as a pas-418

sive scalar (otherwise the buoyant feedback from q on ui will render the advective term419

in the scalar equation non-linear in q). Thus, all our simulations are neutral with respect420

to q. To further decrease the complexity of our simulations and interpretation of results,421

we also considered the flow neutral with respect to temperature, thus simulating a fully422

neutral canopy flow.423

3.1.2 Domain configuration and data sampling424

A summary of the main details of our simulations is shown in table 1. The domain425

contains (Nx × Ny × Nz) = (384 × 256 × 128) grid points, and aspect ratios (Lx/Lz,426

Ly/Lz) = (3,2), where Lz is vertical domain height. This setup results in dx = dy =427

dz. In addition, the ratio of the domain height to the canopy height, h, is Lz/h = 8,428

which is in the range (Lz/h =3–14) commonly adopted in the literature for canopy flows429

(Shaw & Schumann, 1992; Su et al., 1998; Watanabe, 2004; Yue et al., 2007; Dupont &430

Brunet, 2008; Mao et al., 2008; Pan, Chamecki, & Isard, 2014; Chen et al., 2020). Ad-431

ditional simulations with different domain height, aspect ratios, grid resolution, mean432

flow forcing, and soil roughness length z0 all indicated that the partitioning results are433

not sensitive to the design of the domain.434

The analyses shown in this study used both spatial and temporal statistics. The435

spatial statistics (averaged in the cross-stream direction and time) were sampled after436

the kinetic energy and the flux profiles reached equilibrium. For the temporal statistics,437

we also included 24 virtual “eddy-covariance towers” across the domain, where the ve-438

locity and all simulated scalars were sampled at all vertical grid points every 25 time steps439

(i.e., every 0.25 s). This is sufficient here since the smallest resolved eddy is ∼ 2dx =440

2 m and its advective time across a grid node at a mean wind speed of 1 m/s (see ve-441
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Table 1. Parameters of our simulations. Lz, Ly, and Lx (m) are the dimensions in z, y, and

x directions; Nz, Ny, and Nx are the number of grid points in the three directions, while Nh is

the number of grid points representing the canopy; dx, dy, and dz are the grid resolution; h (m)

is the canopy height; uS is the imposed friction velocity at the domain top (m/s); z0 (m) is the

roughness length of the soil surface; LAI is the leaf-area index; dt is the time step (s).

Simulation parameter Units Value

Nx, Ny, Nz 384, 256, 128

Nh 16

Lz m 140

Lx/Lz, Ly/Lz 3, 2

dx/dz, dy/dz 1, 1

Lz/h 8

z0/h 0.00285

uS m/s 0.3

LAI m2m−2 2.0

dt s 0.01

locity profiles in A1) is thus 2s; we thus sample the smallest eddies with 6 points. To en-442

sure convergence of the time series, we sampled over a period of approximately 20 eddy443

turnover times (Lz/u∗).444

To represent the canopy, we used the leaf-area density and the source profiles Sq445

(Figure 2) for water-vapor mixing ratio following Shaw and Schumann (1992) and Su et446

al. (1998). As in these studies, we also set the leaf-area index (LAI) to 2. The same source447

profile shown in Figure 2 was rescaled and used as a source for transpiration in the trans-448

port equation for qt, and as a sink for photosynthesis in the equation for cp.449

A homogeneous forest was first simulated by imposing a drag force and scalar sources/sinks450

at every horizontal grid point of the first 16 vertical levels. To investigate how the sparse-451

ness of the canopy influences the partitioning methods, we designed two new domains.452

The first domain replicates a vineyard (Figure 3) with rows oriented parallel to the y axis.453

The ratio of the width of the vegetation rows (rv) to the width of the bare soil rows (rs)454

is 0.81, where rv/h=0.639 and rs/h=0.77. The second domain is representative of a sparse455

orchard, where “clusters” of vegetation of length rv×rv are separated horizontally from456

other clusters by a distance rs. In both cases we kept the same canopy leaf-area density457

(LAI=2); thus, the effective leaf-area density is LAIe = LAI(Av/At), where At is the458

total area of the xy plane and Av is the area occupied by canopy elements. For the first459

and second domains, we thus have LAIe=0.98 and 0.42, respectively. In addition, the460

same canopy flux profiles and leaf-area density (Figure 2) were imposed. As boundary461

condition, we imposed a homogeneous soil flux, i.e., the same respiration and evapora-462

tion magnitudes being emitted from under the canopies, as well as from the exposed soil.463

Simulations with heterogeneous soil fluxes were tested, but are not shown here since the464

key conclusions remained the same. In addition, we found no sensitivity in the results465

based on the location of the towers (i.e., vegetated grid cell versus a bare soil grid cell).466

The mean wind profile and kinetic energy resultant from all three domains are shown467

in the Supplementary Information, Figure S1.468
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Figure 2. Leaf-area density and source profile for water vapor mixing ratio imposed in the

LES (Shaw & Schumann, 1992; Su et al., 1998). The crosses indicate the values used in the nu-

merical simulations.

To validate our LES setup, we followed Su et al. (1998) and compared our numer-469

ical results with field experimental data from Shaw et al. (1988) over a sparse forest (LAI≈2).470

This simulation was neutral with an LAD and source profiles (only water vapor) as shown471

in Figure 2. In addition, the lower boundary condition for water vapor was zero surface472

flux given the negligible evaporation at the experimental site.473

A comparison between our LES results and the experimental data is included in474

the appendix (Figure A1). Along with the spatial statistics, we also show the temporal475

statistics computed as the ensemble average across the 24 towers in the domain. Good476

agreement is seen between spatially and temporally averaged results for all statistics. In477

particular, both spatial and temporal results for quadrant flux fractions (quadrant anal-478

yses) of momentum and water vapor are very similar and follow the experimental trends479

well. In addition, while not directly used by the partitioning algorithms, the skewness480

of u and w using a dynamic drag model are in better agreement with observations than481

when a constant drag coefficient is used (comparison not shown here). Overall, we can482

conclude that the time series are converged and can be used for partitioning as described483

next.484
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Figure 3. LES domain representing a vineyard (top) and clusters of trees (bottom).
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3.2 Implementation of partitioning methods485

Following the simulation and sampling of time series, we implemented all partition-486

ing methods following the same steps as in field experiments. For FVS and CECw, we487

used the “real” water-use efficiency, which is imposed in the simulation. The flux com-488

ponents computed at every vertical grid point for all 24 towers were later averaged, re-489

sulting in one single profile for all four components and all four methods. The variabil-490

ity around the average values is illustrated in Figure S2 of the Supplementary Informa-491

tion.492

As previously explained, our LES setup allows us to reconstruct the time series of493

c and q that would result from any combination of ET and Fc flux components. To in-494

vestigate as many combinations as possible — from stronger soil fluxes to fluxes dom-495

inated by canopy components — we linearly increased T/ET by in increments of 0.025496

from 0 to 1, while keeping T constant. Similarly, the ratio P/RP , where we defined RP =497

R + |P |, was increased from −1 to 0, in increments of 0.025, as P was kept constant.498

Note that RP uses the absolute value of photosynthesis to ensure a ratio smaller than499

unity. Thus, the water-use efficiency remains the same for each of the 1600 flux combi-500

nations we generate.501

The performance of each method was quantified by computing the biases of the canopy502

flux components. More specifically, we compute the bias of the flux ratios (T/ET and503

P/RP ) as follows,504

biasT/ET =
T − Tpart

ET
, (26)505

biasP/RP =
P − Ppart

RP
, (27)506

507

where T and P are the imposed transpiration and photosynthesis fluxes that we wish508

to retrieve in the partitioning, while Tpart and Ppart are the flux components obtained509

by any of the four partitioning methods (FVS, CEC, CEA, and CECw). Note that the510

bias computed for Fc components is not traditional in the sense that RP is not a phys-511

ical quantity, but it was here defined in analogy with ET as a way to avoid division by512

zero whenever P ≈ −R. This bias offers more insightful information, compared to one513

normalized with Fc, regarding the best estimates of P .514

4 Results and Discussion515

We start this section by discussing the impact of canopy sparseness on transport516

efficiency; in particular, how the presence of gaps, or “canyons”, influence turbulence mix-517

ing, and what are the implications for flux partitioning. We follow the discussion by in-518

vestigating the performance of each partitioning method for different measurement heights,519

flux component strength combinations, and canopy sparseness. We conclude our anal-520

yses by illustrating how turbulence data can be helpful in understanding biophysiolog-521

ical variables, such as the water-use efficiency.522

4.1 Effect of canopy sparseness on mixing efficiency523

A common feature across all four partitioning methods is their requirement of a524

degree of uncorrelatedness between soil and plant flux components: the parcels emanat-525

ing from the soil and plants cannot be well mixed (correlated) if the separate signals are526

to be captured. The CEC, CEA, and CECw methods further require the presence of ed-527

dies that were in contact with the soil, and were subsequently transported to the sen-528

sor level without being fully mixed. Therefore, one expects that plant canopies with ex-529

posed gaps, such as vineyards, would offer a suitable environment for these methods. To530

explore the differences in turbulent statistics in different plant canopy configurations, we531

show in Figure 4 the correlation coefficient between cr and cp, namely ρcp,cr , as well as532
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the skewness (Skcp and Skcr ) of both quantities obtained from simulations over a ho-533

mogeneous canopy, a vineyard, and a cluster domain. Note that ρcp,cr is here used as534

a measure of the degree of mixing between soil and canopy air parcels; for instance, in535

the event when ρcp,cr = −1, the parcels are fully mixed and no relevant partitioning536

information can be extracted.537

1.0 0.8 0.6 0.4 0.2
cp, cr

0

1

2

3

4

5

z/
h

a)

0 1 2 3 4
Skcr

b)cr

cp

0.25 0.00 0.25
Skcp

Homogeneous Vineyard Cluster

Figure 4. Correlation between soil and plant components, and their individual skewness, over

homogeneous and heterogeneous canopies. Note that part (b) has a top and bottom x-axes.

As shown in Figure 4a, the correlation between soil and plant components approaches538

−1 at lower levels above the vineyard and the cluster domains. The implication is that539

soil respiration is mixed faster and at a lower height above the soil when wide gaps be-540

tween plants are present. This, it turns out, is due to stronger shear turbulence gener-541

ation by the gaps, compared to the homogeneous setup. Therefore, ejections enriched542

in CO2, representing the soil surface, are more likely to be sampled before being fully543

mixed into the flow over the homogeneous canopy. Figure 4b further corroborates this544

argument by indicating greater skewness for cr in the homogeneous domain at z/h <545

2. In this case, greater skewness indicates that more parcels were sampled with high cr546

values as a result of ejections carrying parcels enriched in CO2. The same is true for Skcp ,547

shown to be negative at the canopy top over the homogeneous case. Figure 4b also in-548

dicates that scalars emitted by the canopy distributed profile have smaller skewness mag-549

nitudes than the scalar emitted at ground level due to stronger mixing inside the canopy.550

According to Edburg et al. (2012), strong and intermittent organized turbulence struc-551

tures penetrate the entire canopy, albeit infrequently, and cause bursts of scalars emit-552

ted from the soil.553

Overall, these results contradict our initial expectation that exposed patches of soil554

improve the representativeness of soil respiration in conditional sampling analyses. In555

fact, they indicate that the opposite is true, i.e., that the presence of wide gaps (or canyons)556
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increases turbulence mixing of soil fluxes, potentially worsening the performance of CEC557

and CEA. Nonetheless, while vegetated canopies with the presence of open canyons and558

gaps are non-ideal, it is still necessary that the vegetated canopy of interest be porous559

enough such that updrafts originating below the canopy can escape vertically. As dis-560

cussed by Zahn et al. (2022), canopies that are too dense might lead to uncoupled flows561

and lateral advection of soil fluxes (C. K. Thomas et al., 2013) that are not only prob-562

lematic to partitioning, but to flux quantification in general.563

4.2 Partitioning versus flux component strength at various elevations564

In this section we explore the performance of all four partitioning methods eval-565

uated with regards to measurement height and the relative magnitude of plant and soil566

fluxes of CO2 and H2O. This analysis will then enable a more comprehensive evaluation567

of all methods, which previously had only been numerically explored for a few combi-568

nations of fluxes (Klosterhalfen, Moene, et al., 2019).569

As expected based on the comparison of mixing efficiency across domains — in-570

dicating faster mixing of soil and canopy scalars when large gaps are present — the par-571

titioning performance for both heterogeneous domains is slightly worse than those over572

the homogeneous case. Thus, we will focus on the results for the homogeneous canopy573

simulation, noting that the figures for both heterogeneous domains are included in the574

supplementary information in Figures S3–S10.575

The biases in the partitioning (reported for T and P , from which the skill for E576

and R can be inferred since the sum of the fluxes is known in all models) computed by577

the FVS method are shown in Figure 5. These results clearly indicate that, as long as578

the water-use efficiency is known exactly and the method converges to a solution, the579

FVS method has an excellent performance across all flux magnitude combinations. The580

biases for both T and P slightly decrease from z = h to z = 3h as a consequence of581

the smaller errors in the approximations in equation 1 as the scalars correlations increase582

at higher levels, but are still not perfect (i.e., ρcp,cr ̸= −1 and ρqt,qe ̸= +1), as will583

be discussed in section 4.3. Nonetheless, over heterogeneous domains (Figures S3 and584

S7 of the SI) we observe regions with greater biases (≈ 0.2) as a result of strong turbu-585

lent mixing, as shown in the previous section, which also causes |ρc,q| to be close to unity.586

Equations 2a and 2b, as well as expression 5, are sensitive to ρc,q under these conditions,587

sometimes resulting in larger errors or lack of convergence to a realistic solution. As a588

reminder, for each level and each flux combination, we average the four flux components589

across all 24 towers; thus, in some cases (at higher levels or greater correlations), not all590

towers resulted in valid solutions and were not included in the average. A more detailed591

discussion on the sensitivity of the FVS method is presented in section 4.3 and 4.4.592

The bias with regard to the correct ratio T/ET (top panel) and R/RP (bottom593

panel) obtained by the CEC method is shown in Figure 6. An important feature to note594

is that the bias is generally much smaller for the carbon components, a finding that ap-595

plies to all other methods we have tested (they all partition Fc remarkably well, except596

when R ≈ −P ). The reason behind this smaller bias is that the sign of the CO2 flux597

determines which component dominates, which is not the case for ET since both E and598

T are positive. For instance, Fc < 0 clearly indicates that P dominates. CEC, CECw,599

and CEA, by construction, assume that greater or smaller P also entails greater or smaller600

T (i.e., constant water use efficiency with typical, not too small or large, values). Thus,601

larger errors are expected for ET partitioning when this expectation is not met (i.e., away602

from the 1:1 diagonal on the figures).603

This can be further illustrated by focusing on z/h = 1, where we can identify a604

region with |(T − TCEC)|/ET ≤ 0.2; in particular, we see that the best agreement is605

expected when the ratios −P/R and T/E grow in tandem. On the other hand, greater606

errors are expected when one component overwhelmingly dominates the other. Thus, one607
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Figure 5. The top three plots show the bias in the partitioning of ET following the FVS

method at z/h = 1, 2, 3, where the colors represent the bias in transpiration, (T − TFV S)/ET .

Bottom plots show the bias for CO2 components, defined as (P − PFV S)/RP , where RP =

R + |P |. Regions in gray represent combinations where no physical solutions were found because

RFVS ≈ −PFVS. Flux combinations inside the area delimited by the white dashed lines represent

the condition −P/RP − 0.15 < T/ET < −P/RP + 0.15, from which we will later select points for

further analysis. Colorbar is limited to ±1 for easy comparison with subsequent figures.

requirement for good performance of CEC is that the ratios P/T and R/E should not608

be too dissimilar. However, note that regions where |(T−TCEC)|/ET ≥ 0.4 correspond609

to flux combinations that are unusual or physically improbable. For instance, the top610

left corner would indicate fluxes dominated by transpiration and respiration, but with611

little evaporation and photosynthesis. Such occurrence is unlikely given the expected pro-612

portionality between transpiration and carbon assimilation as defined by the water-use613

efficiency. Soil components, on the other hand, share physical drivers such as soil mois-614

ture and temperature, as well as turbulence intensity near the surface, but they are more615

loosely coupled compared to their canopy counterparts. After rain, for instance, it is pos-616

sible that respiration could be suppressed by soil saturation (Xu et al., 2004), while evap-617

oration would be large.618

As we move to higher levels, the region where |(T − TCEC)|/ET ≤ 0.2 becomes619

narrower, and good performance for CEC in partitioning water vapor flux is confined620

to cases when R is on the order of −P . Similarly, biases for Fc components increase at621

higher levels, but remain smaller than for water components. These results corroborate622

previous experimental findings (Zahn et al., 2022) suggesting that the best performance623

of the CEC method is achieved for measurements collected as close to the canopy as pos-624
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Figure 6. Same as 5, but for the CEC method.

sible, ensuring that some uncorrelatedness between the various sinks and sources is sam-625

pled.626

Results for the CEA method (Figure 7) are slightly superior, but broadly similar,627

to CEC. The biases for ET and Fc partitioning are lower, and CEA outperforms CEC628

significantly at higher levels. Similarly, larger errors in ET partitioning are expected for629

flux combinations that are less likely to occur, for the same reason as CEC. On the other630

hand, Fc partitioning remains very accurate as long as the net flux is not ≈ 0.631

Lastly, we show the results obtained with the CECw method. Interestingly, despite632

similar assumptions to CEC, it performs better than the former in partitioning ET , dis-633

playing a wider range where biases are smaller than 20% and consistent performance at634

least up to z/h = 3. Further, its performance in partitioning Fc is also quite different635

from CEC or CEA, with much better performance when R ≈ −P , and worse perfor-636

mance away from the 1:1 diagonal. Note that these results are also dependent on prior637

knowledge of the water-use efficiency, and thus the performance of the CECw method638

share this shortcoming with the FVS method. In addition, although not performing as639

well as FVS when W is known, the CECw method is easier to implement and its poor640

performance, e.g. where (T − TCECw)/ET ≥ ±0.4 , is restricted to regions with un-641

likely flux combinations as with CEC and CEA. Such result highlights the importance642

of the water-use efficiency for more accurate ET partitioning estimates. In this regard,643

even a simpler approach, such as CECw, can yield reliable results when W is known. In644

addition, as long as CO2 fluxes are not mostly dominated by respiration — where the645

method did not find valid solutions, as shown in Figure 8 — CECw does not suffer from646

the same convergence issues as reported for the FVS method in previous studies. Thus,647

CECw seems to be a good complement to the FVS method, ensuring a complete record648

of flux components that are consistent with the WUE that both methods require. Yet,649
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Figure 7. Same as 5, but for the CEA method.

the resulting complete record will also be subject to the uncertainty that results from650

uncertainty in WUE.651

4.3 Revisiting physical assumptions652

One of the main advantages of investigating the partitioning methods through nu-653

merical simulations is the possibility of assessing their physical and mathematical assump-654

tions. By simulating all four scalars separately, we are now able to investigate if the ap-655

proximations adopted by Scanlon and Sahu (2008) and Scanlon and Kustas (2010) in656

their mathematical derivation, as well as the assumption of eddies enriched in CO2 com-657

ing from the soil, invoked for both CEC and CEA, are appropriate.658

The expressions given by equation (1) represent the main source of uncertainty in659

the FVS method (not considering the ability to estimate W ). These approximations as-660

sume that the correlation coefficient between plant and soil CO2 (ρcp,cr ) can be estimated661

as the ratio of their respective transfer efficiencies (ρw,cp/ρw,cr ), the same applying to662

H2O components. Such approximation was first proposed by G. Katul et al. (1995) in663

their study of similarity between temperature and water vapor. Bink and Meesters (1997)664

later demonstrated that ρT,q ≈ ρw,T /ρw,q can yield satisfactory results as long as ρw,T <665

ρw,q, that is, when water vapor is more efficiently transported by turbulence than tem-666

perature; if the opposite is true (ρw,T > ρw,q), then the appropriate approximation is667

ρT,q ≈ (ρw,T /ρw,q)
−1.668

Following the arguments of Bink and Meesters (1997), Scanlon and Sahu (2008)669

assumed that the transfer efficiency of plant components, cp and qt, are greater than the670

transfer efficiency of soil components, cr and qe, due to data sampling being done above671
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Figure 8. Same as 5, but for the CECw method.

the canopy (i.e., close to the sink of cp and qt). Thus, for c we need to satisfy ρw,cp >672

ρw,cr , which clearly implies |ρcp,cr | ≤ 1.673

Figure 9 shows how this approximation (a value of 1 in the plot implying zero er-674

ror) holds over a homogeneous canopy, as well as for the two sparse canopies described675

in 3.1.2. Results for CO2 and H2O are the same, thus only the former are shown. In ad-676

dition, note that these results do not depend on the magnitude of soil and canopy fluxes,677

meaning that the same results hold regardless of the magnitude of respiration (evapo-678

ration) and photosynthesis (transpiration). Overall, it is clear that the approximation679

is worse below the canopy top (although less relevant since partitioning methods are not680

applied in this region), where the transfer efficiency of respiration is greater given the681

proximity to the soil. Above the canopy, on the other hand, the approximation is more682

appropriate, almost reaching equality. In addition, the faster convergence towards unity683

in sparser canopies is a consequence of the more efficient turbulent mixing in the pres-684

ence of gaps, as previously discussed.685

For z/h ≥ 3, the magnitudes of the correlation ρcp,cr — as well as ρqt,qe and ρc,q686

(not shown in the figure) — reach values close to unity for all three simulations, caus-687

ing the approximation in Equation (1) to approach equality. However, the derivation of688

the FVS method requires |ρc,q| < 1 (see equation 5), i.e., it is undefined in case of per-689

fect correlation. As expected, we verified that this constraint is not satisfied — and thus690

fewer valid solutions are available — more often at z/h = 3.1 than at z/h = 1.5 (Fig-691

ure S13 in the Supplementary Information). In addition, this behavior was observed more692

often when photosynthesis dominated the total CO2 flux, and for heterogeneous domains.693

Therefore, on one hand FVS requires a degree of decorrelation between scalars; on694

the other hand, its mathematical approximations in equation (1) are more accurate in695
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Figure 9. Profile of the ratio defined in equation (1). When this ratio reaches unity, it in-

dicates that the approximation is valid. Profiles were obtained by averaging the correlation

coefficients at each level across all 24 towers.

regions where the different scalars are better mixed and their correlations are almost per-696

fect. These contradictory requirements, also observed by Klosterhalfen, Moene, et al. (2019),697

add complexity to the interpretation of field data partitioning using FVS, and poten-698

tially decrease the number of valid partitioning estimates.699

A different approach to guarantee equality of expression (1) would be its multipli-700

cation by a correction factor, as done by Klosterhalfen, Moene, et al. (2019). Nonethe-701

less, as shown by the authors, the correction values obtained from their simulations vary,702

and the extrapolation to real field data is impractical. Thus, we do not pursue this cor-703

rection here. With the limited information we usually have from experimental data, we704

can only hypothesize that a measurement height where there is strong, but not complete,705

mixing is preferable for the FVS method, and should result in the smallest uncertain-706

ties with regards to (1).707

The main assumption behind the CEC, CECw and CEA methods is that, consid-708

ering that the measurements are done close enough to the sinks and sources, we are able709

to distinguish turbulent structures coming from the soil or from the canopy. More specif-710

ically, we are able to sample eddies enriched in CO2 that were in contact with the sur-711

face and carry the respiration signature. These methods further expand this idea by also712
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considering eddies that were in contact with the canopy, and thus are depleted in CO2.713

To investigate if this assumption is appropriate, we show in Figure 10 instantaneous snap-714

shots of c′r, c
′
p, and the total CO2, c

′, simulated for a homogeneous domain. As a reminder,715

cr and cp were simulated separately and later used to reconstruct c. For this simulation,716

we set P = −R.717

The snapshot of cr in Figure 10d clearly shows the presence of turbulent structures718

enriched in CO2 right above the surface (see for instance, x/Lz ≈ 1.5, 2.4). These same719

structures persist — although with smaller concentration given the assimilation of CO2720

— in the reconstructed field of total c in Figure 10f. Similarly, we can observe regions721

depleted in CO2 as a result of assimilation (e.g., z/Lz ≈ 3.0 in Figure 10e) and that722

are still present in the field of total CO2. However, note that these structures are only723

distinguishable below z/h = 3 (white dashed line); above that level, turbulent mixing724

becomes stronger and we are no longer able to separate plant and soil signals. These re-725

sults thus lend credibility to the assumption that we can distinguish the origin of eddies726

solely based on high-frequency measurements. They also support previous conclusions727

(Zahn et al., 2022) that CEC, and this also applies to CEA and CECw, is more likely728

to perform better when sampling is done as close as possible to the canopy top.729

In Figures 10a–c we show an example of the quadrant analyses of a time series mea-730

sured at z/h = 1.2. Points on the first quadrant — related to respiration (w′ > 0, c′ >731

0, q′ > 0) — have larger concentrations than on the second (w′ > 0, c′ < 0, q′ > 0),732

which is related to photosynthesis. This asymmetry — evident in the skewness profile733

shown in Figure 4 — is caused by stronger bursts of parcels enriched in CO2 that were734

“trapped” under the canopy and took longer to be ejected. Carbon assimilation, on the735

other hand, is the strongest at the top of the canopy (Figure 2), and thus air parcels de-736

pleted in CO2 located around z/h ≈ 1 are mixed faster, as indicated by the transfer737

efficiency of cp. Despite the asymmetry, the quadrant plot of c shows that conditional738

sampling is able to distinguish between the contribution of soil and canopy eddies, and739

can thus be used to infer the conditional flux ratios (equation 8).740

The main difference observed in the patterns over homogeneous and heterogeneous741

domains (vineyard and cluster, Figures S11 and S12 of the SI) is the blending height at742

which full mixing of flux components happens. As expected from the greater turbulent743

mixing efficiency in sparser canopies, ejections carrying the soil signature are shorter lived,744

being almost fully mixed with the flow above z > 2h; for the cluster-like domain these745

structures are only distinguishable below z < h. These results suggest that in very open746

canopies, the measurement height should be even closer to the canopy, ideally at the canopy747

top, to ensure the best performance possible for CEC and CEA. It is important to note748

that better total flux convergence, away from the influence of individual plant compo-749

nents, is expected away from the canopy at a height of at least 1.4 h (Pattey et al., 2006).750

To avoid loss of information caused by EC measurements close to the canopy top (both751

for homogeneous and heterogeneous configurations), one approach would be the simul-752

taneous placement of an EC system at z = h, which will be used to estimate the flux753

ratios (E/T and R/P ), and one system further away from the effects of the canopy layer754

(z > 1.4h). By considering that the flux ratios measured at the canopy top are con-755

served, we can use this information to obtain converged flux components further away756

from the canopy.757

4.4 Sensitivity of FVS and CECw to water-use efficiency758

As shown in previous sections, the FVS and CECw methods are reliable partition-759

ing approaches when the water-use efficiency is known. However, such information is usu-760

ally not available from measurements, and different parameterizations of W can be im-761

plemented (Skaggs et al., 2018; Zahn et al., 2022). Wagle et al. (2021) compared differ-762

ent approaches to parameterize W , more specifically how to model the interstomatal CO2763
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Figure 10. Panels a-c show the quadrant plot between the different components of c and q

from a time series measured at z/h ≈ 1.2. Only ejections (w′ > 0) are included. Note that the

conditional sampling implemented by the CEC is based on plot c). The bottom three panels

show instantaneous fields of d) c′r, e) c
′
p, and (f) c′ = c′r + c′p. The white dashed line represents

the height z = 3h. In this neutral simulation over a homogeneous canopy, R = −P = 1 mg

m−2s−1.

concentration, finding that the variability across different W models depends on the type764

of crop.765
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To investigate the sensitivity of both methods to uncertainties in the water-use ef-766

ficiency, we repeated the partitioning with FVS and CECw after increasing W by up to767

100% or reducing it by up to 90%. That is, the water-use efficiency fed to both meth-768

ods, Winput, was increased by up to 2 times or reduced to 0.1 times its original value,769

Wreal, used in LES to generate the time series. This range was selected based on the vari-770

ability detected for W using different parameterizations (Zahn et al., 2022; Wagle et al.,771

2020) and thus represent uncertainties expected in field experiments. Large variability772

is also expected for different biomes and plant species as shown in the summary by Fatichi773

et al. (2022), where W was found to vary by a factor of five across different vegetation774

types.775

The sensitivity of FVS and CECw to water-use efficiency is shown in Figure 11,776

where two examples with different flux components are presented. In both cases, TFVS777

increases/decreases by ≈ ±50% as W changes by ±90% of its original value at z = 1.7.778

PFVS, on the other hand, departs faster from its correct value when the water-use effi-779

ciency is overestimated. For instance, PFVS/P ≈ 0.5 when W increases by 50%, while780

PFVS/P ≈ 1.25 when W decreases by 90%. In contrast to FVS, TCECw is less sensitive781

to changes in W , while PCECw rapidly departs from the true value as the water-use ef-782

ficiency decreases or increases. In addition, results for CECw are also dependent on the783

magnitude of the different flux components (compare plots 11b and 11d), and thus gen-784

eralization to other conditions is more challenging.785

To illustrate how the sensitivity of these methods to W vary with different flux mag-786

nitude combinations, we plot a phase diagram for biases in T and P obtained by FVS787

(Figure C1) and CECw (Figure C2) when W varies from 100% to −50% of its original788

value. Not only Tpart and Ppart vary in opposite directions, which is expected given their789

connection through W , but over/underestimation is governed by the combination of T/ET790

and P/RP ratios, as well as by whether W is over/underestimated. For FVS, larger er-791

rors are expected when W is over/underestimated under conditions when canopy fluxes792

dominate (see upper right corners in Figure C1).793

Besides having W as an input, the implementation of the FVS method requires the794

correlation coefficient between q and c as well as their variances. As a consequence, er-795

rors in the time series associated with field measurements, sensor limitations, as well as796

as post-processing data techniques, are further sources of uncertainty to partitioning es-797

timates. For instance, Detto and Katul (2007) show that the necessary density effect cor-798

rections (DEC) of the c and q time series measured by open-gas analyzers greatly im-799

pact all their higher order statistics, in particular for c. Gao et al. (2020), on the other800

hand, criticizes DEC, suggesting that it affects the high frequencies of the c spectra, im-801

pacting similarity between scalars and their statistics. Thus, because the FVS method802

directly relies on σc and ρc,q, its performance is likely influenced by uncertainties in these803

corrections, which potentially impact the number of valid solutions found as has been804

reported in other studies (Sulman et al., 2016; Klosterhalfen, Graf, et al., 2019; Zahn et805

al., 2022). In these cases, solutions were not found when expression (5) was not satis-806

fied. However, further investigation of this hypothesis and quantification of such errors807

are left for other studies since it cannot be easily replicated in large-eddy simulations.808

4.5 Connecting biophysiological variables to turbulence statistics809

In this section, we explore the connection between the water-use efficiency, as im-810

posed in our simulations, and the correlation coefficient ρc,q retrieved from the final sim-811

ulated turbulence data. Figure 12a shows the variation of W/Wf , where we defined a812

“total” flux water-use efficiency Wf = Fc/ET , with ρc,q at four heights above the canopy.813

In addition, for all heights, we only show flux component combinations presented on the814

phase diagrams when −P/RP − 0.15 < T/ET < −P/RP + 0.15 (see dashed lines in815

the first plot of Figure 5). This constraint not only selects periods when all methods per-816
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Figure 11. Sensitivity of the FVS and CECw methods to variability in the water-use effi-

ciency at z/h=1.7, where Winput is the water-use efficiency used for partitioning, while Wreal

is the water-use efficiency imposed in the simulation. Panels a) and c) show how transpiration

varies, while panels b) and d) show results for photosynthesis. Simulation on the left side corre-

spond to T = E=50 Wm−2, P = 1 mg m−2s−1, and R = 1.1 mg m−2s−1. Fluxes imposed in the

simulation shown on the right were T=65 Wm−2, E=50 Wm−2, P = 1.7 mg m−2s−1, and R =

1.1 mg m−2s−1

formed well, but also removes the most “unphysical” or rare flux component combina-817

tions.818

First we note that W/Wf = (1 + E/T )(1 − R/P )−1; therefore, W/Wf > 0 im-819

plies R < P while W/Wf < 0 implies R > P . A stronger connection between W/Wf >820

0 and ρc,q is noticed at the top of the canopy, with W/Wf increasing as the correlation821

increases from −1 to ≈ 0.5. The same trend is still visible at z/h = 2, although it is822

less “continous”, with the presence of “gaps”, as we go above this level. Overall, for W/Wf >823

0, the increase of respiration or evaporation both invariably lead to an increase in W/Wf824

given that Wf = Fc/ET decreases when R increases (for a constant P ) or when E in-825

creases (constant T ). However, when W/Wf < 0, a further increase in R leads to a de-826

crease in the ratio W/Wf , while an increase in E causes its increase (arrows in Figure827

12a). The transition in the sign of W/Wf occurs at different values of ρc,q depending on828

the height, but clearly the ratio of water-use efficiencies is better defined when canopy829

components dominate the total fluxes and W/Wf > 0.830

The relation between T/ET and ρc,q is shown in Figure 12b. CEC predicts a good831

agreement, on average, with the true T/ET ratios, while CEA underestimates the true832

ratios (note that CEA outperforms CEC in other regions of the phase diagram that were833

not included following the condition −P/RP − 0.15 < T/ET < −P/RP + 0.15). The834

CECw method clearly diverges from the expected trends for ρc,q > 0.50, performing835

similarly to the other methods when plant components become more important. Regard-836

ing the FVS method, it underestimates T/ET when ρc,q is very negative, i.e., when the837

CO2 fluxes are strongly dominated by photosynthesis, but closely follows the expected838

LES (simulated) values as the correlation coefficient becomes positive. Overall, the re-839

lation between the ratios T/ET and ρc,q follows the behavior shown in our previous study840
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Figure 12. Panel (a) shows the relation between the ratio W/Wf and ρc,q at heights

z/h = 1, 2, 3, 4, where W = P/T and Wf = Fc/ET were computed from the imposed (“true”)

flux components. Panel (b) shows the ratio T/ET versus correlation at z/h = 1 for the imposed

(LES) values, as well as the results obtained by each partitioning method. A “cluster” of markers

of the same color contains points with the same R/P ratio but different E/T ratios, and the

different clusters thus have different R/P (as indicated by arrows of increasing R and E). Both

panels contain only flux combinations following −P/RP − 0.15 < T/ET < −P/RP + 0.15 as

shown in the delimited region in Figure 5.

(Zahn et al., 2022), which only used field data (although in that study the true flux com-841

ponents were not known).842

As previously mentioned, the measurement or parameterization of the water-use843

efficiency in field experiments is still a challenge, and its connection to ρc,q might help844

select the best parameterization model, or at least verify their plausibility, under certain845
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conditions. Therefore, the aim of the previous analysis in this section is to examine whether846

we can use ρc,q as a screening tool for W/Wf , and ecosystem function more broadly. While847

such results cannot be generalized or be used for prediction with certainty at this point,848

they are a first good step towards obtaining more reliable ecosystem information from849

simple eddy-covariance measurements. To this end, we now replicate the analyses for water-850

use efficiency, as shown in Figure 12, using field data collected at the Treehaven forest851

(see Appendix B and table B1 for a description of the site). We calculate W from five852

different parametrizations of water use efficiency (all described in Zahn et al. (2022)),853

and then obtain the exact field-measured Wf and ρc,q. Figure 13 depicts W/Wf versus854

ρc,q using these field data; we show the half-hourly data points as well as the average ra-855

tios (black markers) in bins of ∆ρc,q = 0.05.856

Figure 13. Scatter plot of the ratio W/Wf versus ρc,q at the NEON site Treehaven (TREE),

where Wf = Fc/ET . Black markers show the average over intervals ∆ρc,q = 0.05. Data mea-

sured in Spring of 2018 and 2019, only for unstable conditions (i.e., positive heat flux) and when

W from all methods were available are shown. Each plot represents a different parameteriza-

tion of the water-use efficiency, more specifically the parameterization of the interstomatal CO2

concentration, cs. These models assume a) constant cs, b) constant ratio between interstomatal

and near canopy CO2 concentration, cs/cc, c) the ratio cs/cc is linearly proportional to vapor-

pressure deficit (D), d) the ratio cs/cc is linearly proportional to
√
D, e) the optimization model

proposed by (Scanlon et al., 2019). More details on each model are available in (Zahn et al.,

2022).

Results for field data show a very similar trend (and magnitudes) to numerical re-857

sults, where all models seem to follow a similar increase in the magnitude of W/Wf as858

the correlation tends towards zero (from either side). Furthermore, models involving the859

water-vapor pressure D (Figures c and d) seem less robust, showing more scatter and/or860

lower magnitudes of W/Wf than the remaining models. All models indicate a linear in-861

crease of W/Wf with increasingly positive correlation, which might suggest that these862

sites experience more variability in respiration than in evaporation (as can be inferred863

from the trends shown in figure 12). The same plot over three other NEON sites show864

similar results (Figures S14–S16 of the supplementary information). Overall, while this865
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analysis cannot evaluate the skill of a water-use efficiency model, it can increase our con-866

fidence in its use given that, on average, it follows the expected behavior with regards867

to ρc,q. In addition, filtering out data points that fall outside the two “clusters” that can868

be seen in figure 13 for positive and negative ρc,q might help reducing periods with higher869

uncertainties.870

5 Conclusion871

In this study, we used large-eddy simulations to investigate partitioning methods872

that are based on the statistics of turbulent fluctuations of scalar concentrations above873

canopies. Our simulations replicated field experiments over homogeneous and heteroge-874

neous (i.e., with the presence of gaps in the vegetation) domains. The performance of875

each method — namely FVS, CEC, CEA, and CECw — were evaluated with regards876

to measurement height, flux component strength, and canopy structure. We can now syn-877

thesize the results to answer the five questions posed in the introduction.878

1. The intercomparison of turbulent statistics across three different domains — a ho-879

mogeneous forests, a “vineyard-like” canopy with parallel rows, and a domain with880

square “clusters” of vegetation — revealed how the presence of open gaps of ex-881

posed soil impacts partitioning methods. Overall, the larger these canyons (such882

as the cluster domain), the greater the mixing of scalars. As a consequence, mix-883

ing of q and c (from soil and canopy) occurs faster, and at lower heights, when large884

gaps are present in the domain. Thus, all partitioning methods were negatively885

impacted by increased canopy heterogeneity. This is the opposite of our initial hy-886

pothesis, which postulated that the presence of wider patches of soil would facil-887

itate the separate sampling of ejections from the soil and from the canopy. Nonethe-888

less, all methods still require a somewhat porous canopy to guarantee the coupling889

between the air masses above and below, and to allow ejections enriched in CO2890

to escape from the soil towards the sensor, as conceptualized by CEC, CEA and891

CECw methods. Therefore, homogeneous vegetation with a low to moderate LAI892

would be the best suited for these partitioning approaches.893

2. Our numerical results indicate that CO2 partitioning, almost invariably, had lower894

errors than evapotranspiration partitioning. The lowest errors occurred when the895

ratios T/E and P/R were proportional. Flux combinations where some methods896

performed poorly were usually characterized by atypical combinations, such as large897

photosynthesis but negligible transpiration, that are not expected in real field data.898

This lends confidence that these methods can provide results with sufficient ac-899

curacy to advance the understanding of ecosystems, optimize water use in agri-900

culture, or for other practical applications where the carbon-water cycle coupling901

is important. Nonetheless, it is important to note that these “atypical” flux com-902

binations might occur under specific circumstances. For instance, differences be-903

tween anisohydric and isohydric stomatal behavior may manifest as differences that904

are perpendicular to the “ideal” diagonal. To this end, more research is needed905

to determine a priori when (and where) “off-diagonal” conditions are expected.906

3. The best performance of CEC is expected near the canopy top (z/h ≈ 1) when907

all flux components are non-negligible. CEA yielded comparable results to CEC,908

but outperformed the latter at all three levels in the context of numerical exper-909

iments. CECw also performed well at the canopy top, and its performance remained910

almost unaltered at higher levels. For a known water-use efficiency, the FVS method,911

followed by CECw, is the most reliable approach. Therefore, the choice of the best912

method to apply hinges on the measurement height, flux ratio, and uncertainty913

in W .914

4. Partitioning estimates from FVS and CECw respond differently to over and un-915

derestimation of the water-use efficiency. By changing W by up to 100%, TFVS916

changes by approximately ± 50%, while PFVS can decrease by 100%. TCECw, on917
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the other had, was found to be less sensitive to changes in W for the two cases918

investigated, while PCECw increased/decreased by up to 100% as for the FVS method.919

Overall, these ranges can inform us about expected errors in the output of both920

methods as a result of uncertainties in W , which can vary significantly depend-921

ing on the parameterization used.922

5. By combining the CEC method and the water-use efficiency (CECw), we observed923

an improvement in the partitioning output relative to CEC. Not only does CECw924

result in smaller errors for a wider combination of flux components, but it also re-925

sulted in satisfactorily accuracy at higher measurement elevations than CEC. This926

underscores the value of the information that the water-use efficiency adds to sim-927

ple partitioning methods. In addition, given their shared connection through W ,928

we suggest the concurrent implementation of FVS and CECw as a way to max-929

imize the number of available solutions over a period.930

6. Finally, we identified a connection between the water-use efficiency — a variable931

informing us about the plant functioning — and the correlation between q and c,932

a turbulent quantity. We further showed that this numerical result is in agreement933

with field data analyses. This exciting finding opens a path towards recovering bio-934

physiological variables from simple high-frequency data measurements.935

7. For readers interested in applying these methods for field data, and given the vari-936

ability of the skill and solution availability of the different methods with measure-937

ment height, flux ratio, and input uncertainty, our recommendation is to concur-938

rently apply all methods, and potentially MREA. This can increase confidence in939

the outputs when the methods agree, but when they do not, the various analy-940

ses presented here can guide the user on which method is most likely to be more941

accurate under given conditions. An important contribution in this regard of the942

present paper is the introduction of two new methods for this partitioning approach,943

the CECw and the CEA.944

Because our analyses focused on neutral conditions, we cannot readily extrapolate these945

results to all stability conditions. Nonetheless, we hypothesize that as long as no strong946

stratification — hindering strong updrafts from carrying soil fluxes — or strong convec-947

tion, strongly mixing the scalars — are present, the conclusions we draw in this paper948

should still be valid (i.e., for weakly stable or unstable conditions). We also limited our949

exploration of canopy domain configuration to three cases; thus, it is possible that dif-950

ferent results may emerge if, for instance, the gaps between rows of vegetation were smaller.951

Likewise, soil and canopy heterogeneity, including spatial variability of fluxes, LAI and952

LAD, would be closer to real canopies, but were out of the scope of the present study.953

Such additional analyses are left to future studies.954

It is also important to acknowledge the inherent limitations of simulations in re-955

producing field experiments. For instance, given the resolution constraint, we are not able956

to represent all range of small eddies possibly carrying fluxes from surface and canopy957

and mixing the scalars, as well as the different scales of heterogeneity in real canopies.958

Likewise, simulations represent an idealized state (e.g., neutral stability) rarely observed959

in field experiments. Thus, the results discussed in this paper depict a “baseline” sce-960

nario of how these methods operate, noting that these results may not hold exactly in961

field experiments for different reasons. For instance, a previous publication (Zahn et al.,962

2022) showed superior performance of CEC in partitioning transpiration above a grass963

site. Despite the superior numerical results obtained by CEA and FVS in the current964

paper, CEC still outperforms CEA and FVS above this site (Figure S17 in the supple-965

mentary information). To this end, additional implementation and comparison against966

independent measurements of one or more of flux components might help elucidate the967

performance of these methods in real ecosystems.968

Overall, the results presented here contribute to better understanding of partition-969

ing methods based on high-frequency eddy-covariance data. More importantly, they also970
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show the possibility of extracting valuable information from simple measurements that971

are becoming increasingly more available (eddy-covariance systems). Even when we take972

into account the specific site and/or meteorological conditions that meet the requirements973

for such analyses — thus reducing the number of ideal sites — we are still able to ob-974

tain new information across many potential sites at no cost of additional data. Further-975

more, while these numerical findings should be applied with care to real measurements,976

our findings can guide the design of future experiments focusing on partitioning. To this977

end, the following considerations should be taken into account when designing new ex-978

periments: 1) the measurement height of the EC system should be as close to the canopy979

as possible (z/h <3), ideally with one measurement level around z/h ≈1 to better sam-980

ple eddies emanating from the soil; 2) the canopy should be porous enough (visible soil981

from above), but ideally continuous (not patchy); 3) the partitioning methods should only982

be implemented (or trusted) when all four flux components are expected to be non-negligible.983
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Appendix A Validation of LES setup984

0 5
U/u * , U/Uh

0.0

0.5

1.0

1.5

2.0

z/
h

(a)

U/u *
U/Uh

0 2
u, v, w/u *

(b)

w
u
v

0 2
q/q *

(c)

1 0 1
Sku, w

(d) w
u

0.5 0.0
uw

0.0

0.5

1.0

1.5

2.0

z/
h

(e)

0.25 0.50
wq

(f)

0 1
/u2

*

(g)

0 1
w′q′/u * q *

(h)

2.5 0.0 2.5
w′u′x

0.0

0.5

1.0

1.5

2.0

z/
h

(i)
1
2
3
4

1 0 1
w′q′x

(j)
1
2
3
4

0 2
w′u′2/w′u′4

(k)

0 2
w′q′3/w′q′1

(l)

Figure A1. Validation of the LES set-up. Continuous lines represent the spatially and tem-

porally averaged statistics, while dashed lines are the temporal statistics computed from the

ensemble average of the 24 virtual eddy-covariance towers, and markers are statistics from a

field experiment by (Shaw et al., 1988). Top row shows the velocity profile (a), nondimensional

standard deviation of velocity components (b) and water vapor (c), and skewness of u and w

(d). The middle row depicts the correlation coefficient between u and w (e) and w and q (f), and

the nondimensional stress (g) and water vapor flux profiles (h). The bottom row shows the flux

fraction in the four quadrants for momentum (i) and water vapor flux (j), while the ratio between

quadrants is shown in (k) (sweeps/ejections) for momentum and (l) for water vapor fluxes.
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Appendix B Experimental Data985

High-frequency eddy-covariance data from four sites managed by the National Eco-986

logical Observatory Network (NEON) (2022) were download for the years of 2018 and987

2019. We selected these sites based on the low ratio between measurement (z) and canopy988

(h) heights. In addition, the forests are sparse enough such that some coupling between989

below and above canopy flows is expected. Thus, both the low measurement height and990

canopy sparseness satisfy the requirements for implementation of all partitioning meth-991

ods, as discussed in Zahn et al. (2022). A brief description of each site is shown in Ta-992

ble B1.993

Table B1. Summary of the experimental data used in this study. LAI is the leaf-area index

(National Ecological Observatory Network, 2021) estimated by aerial images during summer.

Site ID Name Location z/h LAI

BONA Bonanza Creek Fairbanks North Star County, AK 2.4 1.8

DEJU Delta Junction Southeast Fairbanks County, AK 2.2 1.2

HARV Harvard Forest Worcester County, MA 1.5 1.9

TREE Treehaven Lincoln county, WI 1.6 -

Data were collected by the same instruments across all sites, consisting of an en-994

closed gas analyzer (model Li-7200, LiCor Inc., Lincoln, NB) and a three-dimensional995

sonic anemometer (model CSAT-3, Campbell Scientific Inc., Logan, UT) acquiring data996

at 20 Hz. The raw data were processed following the same procedures described in Zahn997

et al. (2022). In addition to computing turbulent quantities such as correlations and co-998

variances, we also computed the water-use efficiency for these four sites as999

W = 0.65
cc − cs
qc − qs

, (B1)1000

1001

where qc and cc are H2O and CO2 atmospheric mean concentrations near the canopy,1002

and qs and cs are the mean intercellular concentrations. While qs is calculated by as-1003

suming stomatal saturation, a parameterization needs to be adopted for cs. In our anal-1004

ysis, we implemented five different models for cs described in Zahn et al. (2022), thus1005

obtaining five estimates of W .1006
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Appendix C Phase diagrams of sensitivity to water-use efficiency1007
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Figure C1. Phase diagrams indicating the sensitivity of the FVS method to uncertainties in

the water-use efficiency. TFVS/T is shown on the left side, while PFVS/P is shown on the right

side. Note that FVS does not find valid solutions when plant components dominate as W is un-

derestimated.
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Figure C2. Phase diagrams indicating the sensitivity of the CECw method to uncertainties in

the water-use efficiency. TCECw/T is shown on the left side, while PCECw/P is shown on the right

side. Only errors of up to 100% (TCECw/T=2 or PCECw/P=2) are shown.
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1. Mean wind and kinetic energy across domains
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Figure S1. Mean wind M = (U2+V 2)1/2 (a) and kinetic energy profiles (b) across the different

domains.
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2. Variability across towers
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Figure S2. Averaged flux profiles found by CEC, CECw, CEA, and FVS. Bars represent one

standard deviation from the mean computed across all 24 towers at every level z.
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3. Performance of Partitioning methods over a vineyard-like domain
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Figure S3. The top three plots show the bias in the partitioning of ET following the FVS

method at z/h = 1, 2, 3, where the colors represent the bias in transpiration, (T − TCEC)/ET .

Bottom plots show the bias for CO2 components, defined as (P−PCEC)/PR, where PR = R+|P |.

Regions in gray represent combinations when no physical solutions were found. Results over a

vineyard-like domain.
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Figure S4. Same as Figure S3, but for the CEC method.
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Figure S5. Same as Figure S3, but for the CEA method.
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Figure S6. Same as Figure S3, but for the CECw method.
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4. Performance of Partitioning methods over a cluster-like domain
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Figure S7. The top three plots show the bias in the partitioning of ET following the FVS

method at z/h = 1, 2, 3, where the colors represent the bias in transpiration, (T − TCEC)/ET .

Bottom plots show the bias for CO2 components, defined as (P−PCEC)/PR, where PR = R+|P |.

Regions in white represent periods when no physical solutions were found. Results over a cluster-

like domain.
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Figure S8. Same as Figure S7, but for the CEC method.
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Figure S9. Same as Figure S7, but for the CEA method.
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Figure S10. Same as Figure S7, but for the CECw method.
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5. Instantaneous fields of CO2 components over heterogeneus domains

Figure S11. Vineyard-like canopy. Panels a-c show the quadrant plot between the different

components of c and q from a time series measured at z/h ≈ 1.2. Only ejections (w′ > 0) are

included. Note that the conditional sampling implemented by the MREA and CEC is based on

plot c). The bottom three panels show instantaneous fields of d) c′r, e) c
′
p, and (f) c′ = c′r+c′p. The

white dashed line represents the height z = 3h. In this neutral simulation over a vineyard-like

canopy, R = −P = 1 mg kg−1s−1.
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Figure S12. Same as S11, but over a cluster-like canopy.
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6. Frequency of valid solutions for the FVS method
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Figure S13. Percentage of valid solutions found by the FVS method at two heights (z/h=1.5

and 3.1) over the homogeneous canopy (top figures) and heterogeneous canopy with clustered

vegetation (bottom figures). At each level, FVS was implemented across all 24 towers (time

series). The colorbar represents the percentage of valid solutions that were found for the various

combinations of flux components (i.e., 100% means that all 24 towers produced valid solutions).
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7. Relation between water-use efficiency and correlation coefficient using experimental

data

Figure S14. Scatter plot of the ratio W/Wf versus ρc,q at the NEON site Bonanza Creek

(BONA), where Wf = Fc/ET . Black markers show the average over intervals ∆ρc,q = 0.05. Data

measured in Spring of 2018 and 2019, only for unstable conditions (i.e., positive heat flux) and

when W from all models were available are shown. Each plot represents a different parameteriza-

tion of the water-use efficiency, more specifically the parameterization of the interstomatal CO2

concentration, cs. The models assume a) constant cs, b) constant ratio between interstomatal

and near canopy CO2 concentration, cs/cc, c) the ratio cs/cc is linearly proportional to vapor-

pressure deficit (D), d) the ratio cs/cc is linearly proportional to
√
D, e) the optimization model

proposed by (Scanlon et al., 2019). More details of each model in (Zahn et al., 2022).
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Figure S15. Same as S14, but for the NEON site Delta Junction (DEJU).

February 1, 2024, 4:55pm



: X - 15

Figure S16. Same as S14, but for the NEON site Harvard forest (HARV).
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8. Comparing partitioning methods above a grass field
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Figure S17. Daily average of partitioning components above a grass site in Kenya, where P

and R are shown in the top panel, transpiration in the mid panel, and evaporation in the third

panel. A description of the dataset and data processing can be found in (Zahn et al., 2022).
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