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Abstract

Methane (CH4) is a prominent greenhouse gas responsible for about 20% of all atmospheric radiative forcing. As we notice
trends in increasing global temperatures, understanding and detecting these emissions has become increasingly important. This
requires the creation of robust greenhouse gas plume detectors. Previous work at the NASA Jet Propulsion Laboratory has
shown Convolutional Neural Networks (CNN) to be an appropriate solution to map methane sources from future imaging
spectrometer missions, such as Carbon Mapper. However, current models suffer from a high rate of false positives due to false
enhancements in the detected images.

We have compiled datasets from two Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) California

campaigns. We then trained a GoogleNet CNN Classifier model on each campaign. The baseline current model uses a Unimodal

column-wise matched filter (CMF). This results in a model known to be sensitive to false enhancements, such as water/water

vapor, bright/dark surfaces, or confuser materials with similar absorption wavelengths to methane. We first note improvements

between the Unimodal CMF model and a new Surface-Controlled CMF model, whose dataset matches that of the Unimodal

CMF model, but removes enhancements not matching the absorption wavelength of methane. From this, we note minimal

improvement (1% increase in F1 score). We then experiment with various auxiliary products measuring albedo (rgbmu,

SWALB), vegetation (NDVI, ENDVI), and water (h2o, NDWI) indices designed to combat issues known to produce false

enhancements. After training on these new input representations for both campaigns, we noticed a significant improvement

in the multi-channel model’s results. We observe an increase in the F1 score for classifying positive tiles from 0.78 to 0.86

when trained using auxiliary albedo indices, showing promise for future use of auxiliary products in improving methane plume

detectors.
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Methane Detection
• Methane (CH4) is a greenhouse gas largely responsible for 

increasing global temperatures
• We want to detect and monitor plumes from airborne and 

spaceborne missions
• Carbon Mapper is launching a hyperspectral satellite to perform 

such monitoring globally

 CNN Model
• Using Convolutional Neural Networks, we have created deep 

learning models to automate methane detection
• The current unimodal CMF pipeline suffers from a high rate of false 

positives due to false enhancements
• We’ve improved this performance by 29.7% by adding auxiliary 

products as input

Background

• Observed improvements with CMF + All 6 Aux Products model. F1 
score increased from 0.64 to 0.84.

• Extended model to EMIT dataset. Observed greatest performance 
impact in CMF + All 6 Aux Products model. F1 score increased from 
0.76 to 0.80.

• Water aux products appeared to have largest impact on model F1 
score (0.82 airborne, 0.78 spaceborne)

• Experiment further with alternate datasets and auxiliary products
• Further work is required with spaceborne data to determine the 

efficacy of auxiliary products

• The Carbon Mapper team acknowledges the support of their sponsors including the High Tide 
Foundation and other philanthropic donors. A portion of this work was performed at the Jet 
Propulsion Laboratory, California Institute of Technology. Copyright 2023 California Institute of 
Technology. Government sponsorship acknowledged.

• Further funding was provided by the Michael and Edweena Werner SURF Fellowship

• The CMF+All Aux model is able to reject many of the visibly 
obvious false positives produced by the CMF-only model

CMF-Only False Positives All-Aux False Positives

• Trained models with various combinations of auxiliary products on 
airborne dataset (CalCH4 (2018) + COVID (2020) + GAO (2020))

• F1 Score increases from 0.64 to 0.83 (29.7%) with the inclusion of 
all six auxiliary products

• Notably, even the inclusion of one aux product (if correctly chosen) 
can have a positive effect on model F1 Score

Methods

• Introduce the Unimodal CMF model with auxiliary products from 
radiance
• Water Indices: CIBR water vapor @ 940+1140nm, NDWI = 

NIDX(NIR, SWIR1)
• Albedo: Mean RGB, SWALB = SWIR2/cos(sza)
• Vegetation: NDVI = NIDX(NIR, R), ENDVI = NIDX(NIR + G, 2B) 

where NIDX(B1, B2) = !"#!$
!"%!$

Results

Airborne Analysis

• Tested the impact of alternative input representation on models 
trained on EMIT Spectrometer data

• Observed smaller, but still significant increase in F1 from 0.76 to 
0.80 (5.3%) with the inclusion of all six aux products

Conclusions

Future Work
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Data

• Primarily using data from three airborne campaigns
• Using data from two AVIRIS-NG California campaigns from 2018 

(CalCH4) and 2020 (COVID)
• Using data from GAO California campaign from 2020
• Additionally, experiment with spaceborne data from EMIT 

spectrometer aboard the ISS

H2O: CIBR water vapor @ 
940+1140nm

Mean RGB NDVI = NIDX(NIR, R)

NDWI = NiDX(NIR, SWIR1) SWALB = SWIR2/cos(sza) ENDVI = NIDX(NIR + G, 2B)
Where NIDX(B1, B2) =!"#!$

!"%!$


