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Abstract

Ocean Island Basalts (OIBs) are generated by mantle plumes, with their geochemistry controlled by a combination of source

composition, temperature, and thickness of overlying lithosphere. For example, OIBs erupting onto thicker, older oceanic

lithosphere are expected to exhibit signatures indicative of higher average melting pressures. Here, we quantitatively investigate

this relationship using a global dataset of Neogene and younger OIB compositions. Local lithospheric thicknesses are estimated

using theoretical plate-cooling models and Bayes factors are applied to identify trends. Our findings provide compelling evidence

for a correlation between OIB geochemistry and lithospheric thickness, with some variables SiO2, Al2O3, FeO, Lu, Yb and λ2)

showing linear trends that can be attributed to increasing average melting pressure, whereas others (λ0 and λ1, CaO) require a

bi-linear fit with a change in gradient at ˜55 km. Observed variations in highly incompatible elements are consistent with melt

fractions that decrease with increasing lithospheric thickness, as expected. Nevertheless, at thicknesses beyond ˜55 km, the

implied melt fraction does not decrease as rapidly as suggested by theoretical expectations. This observation is robust across

different lithospheric thickness estimates, including those derived from seismic constraints. We interpret this result as weak

plumes failing to effectively thin overlying lithosphere and/or producing insufficient melt to erupt at the surface, in combination

with a ‘memory effect’ of incomplete homogenisation of melts during their ascent. This view is supported by independent

estimates of plume buoyancy flux, indicating that OIB magmatism on older lithosphere may be biased towards hotter plumes.
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Key Points:6

• We quantify the relationship between lithospheric thickness and OIB geochem-7

istry: the so-called lid effect.8

• Observed trends are controlled by pressure-related variations in melt fraction, min-9

eral assemblage, and spinel-garnet phase transition.10

• Magmatism beneath older lithosphere may be biased towards hotter plumes that11

more effectively thin and penetrate overlying lithosphere.12
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Abstract13

Ocean Island Basalts (OIBs) are generated by mantle plumes, with their geochem-14

istry controlled by a combination of source composition, temperature, and thickness of15

overlying lithosphere. For example, OIBs erupting onto thicker, older oceanic lithosphere16

are expected to exhibit signatures indicative of higher average melting pressures. Here,17

we quantitatively investigate this relationship using a global dataset of Neogene and younger18

OIB compositions. Local lithospheric thicknesses are estimated using theoretical plate-19

cooling models and Bayes factors are applied to identify trends. Our findings provide com-20

pelling evidence for a correlation between OIB geochemistry and lithospheric thickness,21

with some variables (SiO2, Al2O3, FeO, Lu, Yb and λ2) showing linear trends that can22

be attributed to increasing average melting pressure, whereas others (λ0 and λ1, CaO)23

require a bi-linear fit with a change in gradient at ∼ 55 km. Observed variations in highly24

incompatible elements are consistent with melt fractions that decrease with increasing25

lithospheric thickness, as expected. Nevertheless, at thicknesses beyond ∼ 55 km, the26

implied melt fraction does not decrease as rapidly as suggested by theoretical expecta-27

tions. This observation is robust across different lithospheric thickness estimates, includ-28

ing those derived from seismic constraints. We interpret this result as weak plumes fail-29

ing to effectively thin overlying lithosphere and/or producing insufficient melt to erupt30

at the surface, in combination with a ‘memory effect’ of incomplete homogenisation of31

melts during their ascent. This view is supported by independent estimates of plume buoy-32

ancy flux, indicating that OIB magmatism on older lithosphere may be biased towards33

hotter plumes.34

Plain Language Summary35

Most of Earth’s volcanoes occur at tectonic plate boundaries, but some emerge within36

plate interiors in so-called intra-plate settings. These volcanoes are believed to mark the37

surface expression of mantle plumes: hot, buoyant columns that rise from the core-mantle-38

boundary towards the surface. As they rise, lower pressures near the surface facilitate39

melting. However, the lithosphere – Earth’s rigid outermost shell – limits plume ascent,40

and therefore controls the final (lowest) melting pressure of mantle plumes (the ‘lid ef-41

fect’). Here, we collate and analyse a global geochemical dataset of oceanic island basalts42

– the products of plume melting – to test this hypothesis. Using a range of diagnostics43

and a novel probabilistic analytical approach, we find that some geochemical parame-44

ters either linearly increase or decrease with lithospheric thickness, whereas other trends45

exhibit abrupt changes. We propose potential explanations for these patterns, focusing46

on factors such as the melt fraction (which is sensitive to temperature and pressure) and47

variations in mantle mineralogy at different depths. Notably, we suggest that there is48

a higher chance of observing volcanism above hotter plumes in regions of thicker litho-49

sphere and identify a ‘memory effect’, whereby their geochemistry to some extent pre-50

serves information from the initial melting process.51

1 Introduction52

While the majority of Earth’s volcanism is concentrated at tectonic plate bound-53

aries, there are many volcanic activities that occur within plate interiors and/or extend54

across plate boundaries. Although some of this volcanism has been attributed to edge-55

driven convection, shear-driven upwelling and bursts in slab flux (e.g., King & Ander-56

son, 1998; Conrad et al., 2011; D. R. Davies & Rawlinson, 2014; Rawlinson et al., 2017;57

Mather et al., 2020; Duvernay et al., 2021), the majority displays characteristics that im-58

ply an association with mantle plumes – hot, buoyant columns that rise from the core-59

mantle boundary towards the surface (e.g., Morgan, 1971; Griffiths & Campbell, 1990,60

1991; Duncan & Richards, 1991; Campbell, 2007; D. R. Davies & Davies, 2009, Figure 1).61

As they rise into the shallow mantle, plumes undergo partial melting, with voluminous62
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plume heads giving rise to Large Igneous Provinces and their tails producing lower frac-63

tion melts, termed Ocean Island Basalts (OIBs) in oceanic settings (e.g, White & McKen-64

zie, 1989). The geological, geophysical and geochemical characteristics of OIBs have been65

widely studied (e.g., White & McKenzie, 1989; Weaver, 1991; Courtillot et al., 1999; Li66

et al., 2014; D. R. Davies, Goes, & Sambridge, 2015; Jones et al., 2016; Iaffaldano et al.,67

2018; P. W. Ball et al., 2019; Nebel et al., 2019; Jones et al., 2019; Bao et al., 2022). Nev-68

ertheless, despite mantle-plume theory being well established, our understanding remains69

incomplete concerning the interaction between plumes and overlying lithosphere – Earth’s70

rigid outermost shell – and its reflection in the geochemistry of OIBs.71

The lithospheric mantle is cool and refractory. Accordingly, it is unlikely to melt72

and generate magmas (e.g., Katz et al., 2003). In addition, the lithosphere is highly vis-73

cous and is therefore difficult to mechanically deform (e.g., Burov et al., 2007; Camp-74

bell, 2007; Burov & Gerya, 2014; Jones et al., 2017; Duvernay et al., 2021, 2022). As a75

consequence, it is expected to act as a lid that limits plume ascent and thereby dictate76

the lowest melting pressure for plume-derived melts (Figure 1). This behaviour is the77

so-called ‘lid effect’, first proposed by Watson and McKenzie (1991) and subsequently78

examined in several studies at both global (e.g. Ellam, 1992; Humphreys & Niu, 2009;79

Dasgupta et al., 2010; Niu et al., 2011; Niu, 2021) and regional scales (e.g. Gibson & Geist,80

2010; D. R. Davies, Rawlinson, et al., 2015; Hole & Millett, 2016; Liu et al., 2016; Klöcking81

et al., 2018). Despite this extensive body of work, a complete and statistically rigorous82

assessment of the relationship between lithospheric thickness and the geochemistry of83

plume-derived magmas has not yet been established: previous studies have either described84

this relationship qualitatively or only made use of simple linear statistics (e.g. Ellam,85

1992; Humphreys & Niu, 2009; Niu et al., 2011; D. R. Davies, Rawlinson, et al., 2015;86

Niu, 2021). Several important questions remain, including:87

1. Do available geochemical data statistically support existence of a lid effect?88

2. Are observed trends consistent with theoretical expectations for partial melting89

at different pressures?90

3. What other processes might be affecting observed trends?91

The last few years have seen progress in several areas that are pertinent to answering92

these questions. There has been a steady increase in the quantity and accessibility of high-93

quality data available on melt geochemistry, improvements in the accuracy and resolu-94

tion of lithospheric thickness datasets, and the advent of comprehensive statistical tech-95

niques to examine any potential relationship between the two. There is, therefore, an96

opportunity to undertake a critical revaluation of evidence for the lid effect.97

Our study exploits an extensive and carefully curated dataset of geochemical anal-98

yses for OIBs, extracted from the ever-growing open-source GeoRoc database (https://georoc.eu).99

The dataset is filtered to eliminate those samples whose geochemistry has been strongly100

altered after initial magma generation. Alongside the geochemical parameters examined101

by previous studies, we analyse geochemical diagnostics on Rare Earth Elements (REEs)102

that have been recently proposed by O’Neill (2016) and are expected to show a clear pres-103

sure signal owing to their sensitivity to melt fraction and the spinel-garnet phase tran-104

sition. The latter, a pressure-sensitive aluminium-rich phase change, induces a substan-105

tial change to the peridotite mineral assemblage, with different REEs exhibiting vary-106

ing compatibility between the two phases (e.g., Sun & Liang, 2013; Wood et al., 2013).107

Furthermore, we exploit new estimates of lithospheric thickness, based upon both the-108

oretical models of oceanic spreading and observational constraints from seismic data (Richards,109

Hoggard, Crosby, et al., 2020; Hoggard, Czarnota, et al., 2020). Using a probabilistic Bayesian110

approach that is capable of detecting sharp changes in geochemical trends, we investi-111

gate the role of lithospheric thickness in controlling OIB geochemistry and explore the112

mechanisms that underpin the trends that we observe.113
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Figure 1. Schematic cartoon illustrating how oceanic lithosphere acts as a lid, hindering the

ascent of mantle plumes. The dashed line represents the spinel-garnet transition. When a plume

rises beneath thin lithosphere, large melt volumes will be produced with more melts generated

within the spinel stability field, thus exhibiting a low-pressure signature. Conversely, when a

plume rises beneath thick lithosphere, melt volumes are smaller and melting will principally occur

within the garnet stability field, displaying a high-pressure signature.

The remainder of our paper is structured as follows. In Section 2.1, we introduce114

our OIB database, our approach to filtering this data, and the geochemical diagnostics115

examined. In Section 2.2, we describe the lithospheric thickness estimates at each indi-116

vidual island, derived using both plate-cooling models and local constraints from surface-117

wave tomography models. In Section 2.3 we present a probabilistic Bayesian approach118

developed and utilised to analyse relationships between geochemistry and lithospheric119

thickness. Our results are presented in Section 3, with their sensitivities, implications120

for our understanding of the lid-effect, the role of the lithosphere in modulating plume121

melting, and other processes affecting OIB chemistry, discussed in Section 4.122

2 Methods123

2.1 Geochemical Dataset124

In compiling our geochemical database of the products of plume melting in oceanic125

settings, we have chosen to focus solely on OIB data and neglect data associated with126

Large Igneous Provinces (LIPs). This omission is because LIPs are the melt-products127

of plume heads and are also often associated with continental break-up. They regularly128

occur in the vicinity of the continent-ocean boundary and consequently often display a129

strong crustal signature (e.g., Chung & Jahn, 1995; Owen-Smith et al., 2017; J. H. F. L. Davies130

et al., 2021). It is also therefore difficult to estimate lithospheric thickness at the time131

of eruption (e.g., Hill, 1991; Courtillot et al., 1999).132

2.1.1 Source of Analyses133

Geochemical data for major and trace element concentrations are compiled from134

OIB data in the GeoRoc database. As the number of high-quality glass samples is lim-135
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ited, the data are derived principally from analyses of bulk rocks (with some additional136

glass analyses where available). The GeoRoc database contains geochemical information137

from over 20,000 OIB samples from the Atlantic, Indian and Pacific Oceans, with their138

locations mapped in Figure 2 and listed in Tables S1 and S2. Our database incorporates139

concentrations of major (SiO2, Al2O3, MgO, FeO, TiO2, Na2O, K2O, CaO, P2O5) and140

trace elements (REEs, U, Nb, Ba, Th), as well as derivative parameters describing REE141

patterns (λ0, λ1 and λ2, from O’Neill, 2016). Major elements with high concentrations142

are likely influenced by the stabilities of minerals under varying pressure and their com-143

patibilities in mantle peridotite. We expect that major elements with lower concentra-144

tions (usually < 5 wt. %) and trace elements are sensitive to phase changes and the melt145

fraction, which, in turn, are sensitive to pressure. The combined use of both major and146

trace element parameters can therefore offer a more complete picture of the impact of147

the lithospheric lid on mantle melting processes.148

2.1.2 Database Filtering149

Melts generated from peridotite melting are subject to various physiochemical pro-150

cesses during their ascent and whilst residing in magma chambers, such as fractional crys-151

tallisation and crustal assimilation (e.g., Sisson & Grove, 1993; Class & Goldstein, 1997;152

Straub et al., 2013; Ubide et al., 2022). Additionally, post-eruptive hydrothermal alter-153

ation can substantially alter the original chemical signature of basalts (e.g., Saito et al.,154

2015; Khogenkumar et al., 2016). Some previous studies of the lid effect have chosen to155

use all available OIB geochemical data without attempting to screen samples that are156

heavily impacted by these additional processes (e.g., Humphreys & Niu, 2009). In our157

analyses, however, we have filtered OIB samples to isolate those that exhibit a compo-158

sition most similar to that of the primitive magma. We therefore restrict our dataset to159

samples that have not undergone excessive alteration or fractional crystallization after160

initial generation. We do so by applying the following filters to the data:161

1. Only those samples with SiO2 43–54 wt.% are accepted in order to exclude melts162

that fall outside of the basalt field (Figure 3a);163

2. Only samples with MgO 7–16 wt.% are accepted. Values with MgO < 7 wt.% are164

likely to have been subjected to extensive fractional crystallisation (e.g., Sisson165

& Grove, 1993) and may contain clinopyroxene and/or plagioclase phenocrysts or166

have experienced clinopyroxene and plagioclase crystallisation, complicating in-167

terpretation of major element trends. Samples with MgO > 16 wt.% are rejected168

because they are likely to contain olivine phenocrysts (Figures 3a and 3b, e.g., Al-169

barède et al., 1997);170

3. Samples with a loss on ignition (LOI) > 3 wt.% are rejected to eliminate basalts171

subjected to excessive levels of post-eruptive hydrothermal alteration (e.g., Green-172

berger et al., 2012);173

4. Samples with Nb/U < 30, La/Nb > 1.2, or La/Ba and Nb/U values outside of the174

ellipse of Fitton et al. (1991) are rejected because they are likely to have been con-175

taminated by continental crust (e.g., Rudnick, 1995; Condie, 1999; Hofmann, 2003,176

Figures 3c and 3d).177

Applying these filters to the global OIB dataset results in a subset of 1,737 samples, each178

consisting of concentrations of major elements, trace elements and REEs.179

2.1.3 Correction for Fractional Crystallisation180

When magma travels through the lithosphere or remains in a magma chamber, any181

fractional crystallisation that occurs alters the concentration of major and trace elements182

in the remaining melt (e.g., Jackson et al., 2012; Ubide et al., 2022). Provided that the183

mineral phases that have crystallised are not complex, we can ‘revert’ this process to es-184

–5–
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Figure 2. (a) Present-day oceanic lithospheric age from Seton et al. (2020) with locations

of selected OIB samples (black dots). Only the name of the archipelago for each island group is

displayed, but each individual island’s lithospheric age and thickness are considered separately

during the analysis. (b) Present-day oceanic lithospheric thickness based on a global plate-cooling

model (Richards, Hoggard, Crosby, et al., 2020). (c) Present-day oceanic lithospheric thickness

constrained by surface-wave tomography (Hoggard, Czarnota, et al., 2020).
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Figure 3. OIB database and sample filtering criteria. (a) SiO2 versus MgO; coloured dots =

original samples coloured by Gaussian kernel density estimation, normalised from 0 to 1; dashed

lines = filtering criteria corresponding to SiO2 43–54 wt.% and MgO 7–16 wt.%; white circles =

subset of data that pass all filtering criteria. (b) Same for TiO2 versus MgO. (c) Same for Nb/U

versus La/Nb, where criteria of > 30 and < 1.2, respectively, are applied. (d) Same for La/Ba

versus La/Nb, where only samples inside the ellipse of Fitton et al. (1991) are accepted.

timate concentrations of both major and trace elements in the primary magma. To do185

so, we use the Petrolog3 software (Danyushevsky & Plechov, 2011) to reintroduce olivine186

into evolved OIBs until MgO concentrations reach 16 wt.%, which is the assumed MgO187

content of magma that is in equilibrium with the mantle (e.g., Norman & Garcia, 1999).188

Despite some studies showing that minerals fractionate throughout magma ascent (e.g.,189

Lundstrom et al., 2003; Liu et al., 2016), we make the simplifying assumption that this190

olivine did not crystallise until melts reached a magma chamber at ∼ 0.3 GPa (∼9 km191

depth). This choice of depth roughly coincides with the Moho, where the drop in den-192

sity from mantle to crustal rocks results in melts becoming neutrally buoyant, allowing193

magma to remain in the chamber for a more extended period of time (Ryan, 1988, 1994).194

In the continuous, pure fractional crystallisation process, we assume that partition co-195

efficients for trace elements in olivine remain constant. For each individual OIB sample,196

we use the major element calculations of Petrolog3 to determine how much olivine to ‘add197

back in’ to obtain the composition of the primitive magma. Accordingly, the concentra-198

tion of each trace element in the primitive magma (cp) is calculated via199

cp =
cl

(1−X)D−1
, (1)200

where cl is the measured concentration of each element in the sample, X is the fraction201

of olivine crystallised, and D is the associated partition coefficient (Shaw, 1970).202

–7–



manuscript submitted to Geochemistry, Geophysics, Geosystems

2.1.4 Shape of REE patterns203

Due to their high charge and large ionic radii, REEs behave as incompatible ele-204

ments in most mantle minerals. Moreover, the consistency of REE chemical valence makes205

their ionic radius systematically decrease with increasing atomic number (so-called lan-206

thanide contraction; Ahrens, 1952). Since REEs occupy identical crystal lattice positions,207

their partition coefficients therefore exhibit a systematic dependence on atomic number,208

with lower atomic number REEs (Light Rare Earth Elements; LREEs) possessing larger209

radii and being more incompatible. Accordingly, during partial melting, REEs with a210

smaller atomic number more preferentially enter the melt than their heavier counterparts,211

an imbalance that is particularly pronounced at low degrees of melting. A caveat to this212

basic behaviour is that heavy rare earth elements (HREEs) readily substitute for Al3+213

in garnet and, hence, can be compatible in garnet. As such, low-fraction melts gener-214

ated within the garnet stability field will have lower HREE concentrations than equiv-215

alent melts generated in the spinel stability field. Many laboratory experiments have been216

conducted to constrain the partition coefficients of REEs, with results consistent with217

these aforementioned theoretical predictions (e.g., Fujimaki et al., 1984; McKenzie & O’Nions,218

1991; Johnson, 1994, 1998). It is also worth noting that, due to the general incompat-219

ibility of REEs in all low-pressure mineral phases, their relative proportions are gener-220

ally unaffected by fractional crystallisation at low pressure.221

The systematic variation in REE behavior is best illustrated by plotting the log222

of their relative abundances as a function of atomic size: as demonstrated by O’Neill (2016),223

such patterns can be fit by polynomials with different shape coefficients. Given current224

analytical precision, third-order polynomials are usually sufficient to fit measured REE225

patterns. Their coefficients are denoted as λi (where i = 0, 1, 2) and can vary indepen-226

dently of one another. λi values also have a physical significance: (i) λ0 measures the227

average log concentration of REEs (excluding Eu) normalized to their chondritic con-228

centrations, with higher λ0 indicating higher average REE concentrations; (ii) λ1 mea-229

sures the linear slope of the pattern (with increasing values for larger slopes), where pos-230

itive λ1 values indicate LREE enrichment relative to HREE and negative λ1 values in-231

dicate HREE enrichment relative to LREE; (iii) λ2 describes the quadratic curvature of232

the pattern (with increasing absolute values for larger curvatures), where positive and233

negative λ2 indicate concave or convex REE patterns, respectively. In contrast to the234

simple ratios between two REEs, such as Ce/Y and La/Sm, that have been extensively235

used in previous studies (e.g., Ellam, 1992; Humphreys & Niu, 2009; Niu, 2021), λi con-236

siders all REEs except Eu and is more robust to the idiosyncrasies of individual element237

behavior.238

2.2 Lithospheric Thickness and Eruptive Age239

The thickness of oceanic lithosphere as a function of ocean floor age is commonly240

approximated through one of two theoretical cooling models: (i) the half-space model,241

in which lithospheric thickness is proportional to the square root of lithospheric age (Turcotte242

& Oxburgh, 1967); and (ii) the plate model, where lithospheric thickness increases with243

plate age, but asymptotes towards a constant value beyond a certain age due to heat re-244

supply from below (McKenzie, 1967). Plate-model predictions have been shown to pro-245

vide an improved match to heat flow and bathymetry observations in older ocean floor246

and also inferences of lithosphere-asthenosphere boundary (LAB) depth obtained from247

seismology (McKenzie, 1967; Parsons & Sclater, 1977; Richards et al., 2018; Richards,248

Hoggard, Crosby, et al., 2020). Accordingly, the plate model is our preferred reference249

and we test two different versions of it: one derived from globally averaged subsidence250

and heatflow data and the second providing optimal fits to subsets of these data from251

each individual oceanic basin (Atlantic, Indian and Pacific Oceans; Richards, Hoggard,252

Crosby, et al., 2020). We present results for the latter in the main text and also conduct253

assessments of the sensitivity of our results to this choice, with a summary presented in254
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the Supplementary Information. In all cases, the potential temperature in the model is255

fixed to 1333◦C and the base of the lithosphere is assumed to follow the 1175 ± 50◦C256

isotherm (Richards, Hoggard, Crosby, et al., 2020).257

A limitation of theoretical cooling models is that they assume oceanic lithospheric258

thickness varies solely as a function of ocean-floor age and, hence, cannot capture local259

deviations away from this average behaviour. Seismological observations, particularly260

from surface-wave tomography, provide a way of mapping these local variations in litho-261

spheric thickness, including those potentially induced by the impingement of mantle plumes262

(Ballmer et al., 2011; Schaeffer & Lebedev, 2013; Richards, Hoggard, White, & Ghelichkhan,263

2020; Duvernay et al., 2022). Accordingly, to complement our plate-model derived es-264

timates of lithospheric thickness and explore the sensitivity of our results to regional litho-265

spheric thickness variations, we also make use of a seismologically derived model of litho-266

spheric thickness from Hoggard, Czarnota, et al. (2020).267

We separate ocean islands into two categories: products from off-axis and on-axis268

plumes. For off-axis islands, we estimate lithospheric thickness using the aforementioned269

plate-cooling and seismologically derived models. Unfortunately, neither theoretical cool-270

ing models nor global-scale seismic estimates are good at constraining lithospheric thick-271

ness above on-axis plumes. The former do not capture the consequences of increased melt272

generation and hence thicker crust above plumes, while the latter suffer from the lim-273

ited resolution of surface waves at depths shallower than ∼ 75 km (White & McKen-274

zie, 1989; Priestley & McKenzie, 2006). For on-axis islands, we therefore obtain litho-275

spheric thickness from local estimates of crustal thickness, assuming that melting extended276

to the top of the underlying mantle as is observed in ophiolites (e.g., Pallister & Hop-277

son, 1981). Seismic estimates for Moho depths are as follows: Iceland ∼ 20–30 km (White278

et al., 1996); Ninetyeast Ridge, ∼ 15–25 km (Grevemeyer et al., 2001); Walvis Ridge ∼279

10–25 km (for lithosphere that is now aged between 60 Ma and 100 Ma; Goslin & Sibuet,280

1975; Graça et al., 2019). At each of these sites, we calculate average lithospheric thick-281

ness according to 1
2 (hmax+hmin), where hmax and hmin are the maximum and minimum282

estimates of Moho depth, respectively.283

Estimating lithospheric thickness at the time of eruption requires knowledge of litho-284

spheric age at that time, which can be obtained by subtracting the OIB age from the285

present-day lithospheric age (Figure 2a). Present-day lithospheric age for each island is286

obtained from the global grid of Seton et al. (2020), with the age range of OIBs on each287

island constrained, where possible, by the onset and termination of the shield stage of288

volcanism or, in cases where geological constraints on the shield period are unavailable289

or unclear, the maximum and minimum age of OIB samples (Tables S1 and S2).290

To estimate lithospheric thickness at the time of eruption for off-axis plumes, we291

assume that both the present-day lithospheric age (tcrust) and the OIB age (tOIB) on each292

island follow a Gaussian distribution as293

tcrust ∼ N (µ1, σ
2
1), (2)294

295

tOIB ∼ N (µ2, σ
2
2), (3)296

where µ1 is the oceanic crustal age, σ1 is half of the age misfit, µ2 is the mean of max-297

imum and minimum OIB eruption ages, and σ2 is a quarter of the length of the OIB ma-298

jor eruption period. tcrust and tOIB can be considered as independent random variables,299

thus the age of oceanic lithosphere at the time of OIB volcanism (terupt) should also fol-300

low a Gaussian distribution given by301

terupt ∼ N (µ1 − µ2, σ
2
1 + σ2

2). (4)302

Lithospheric thickness is estimated from the theoretical cooling models by assuming that303

it lies between the 1125 ◦C and 1225 ◦C isotherms. We assume that lithospheric thick-304
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ness (z) at a given time follows a Gaussian distribution according to305

z ∼ N (µ3, σ
2
3), (5)306

in which µ3 is the mean of the lithospheric thickness obtained from the 1125◦C and 1225◦C307

isotherms and σ3 is a quarter of the difference in depth between them. For each island,308

we randomly choose a terupt based on Equation (4) and calculate the corresponding litho-309

spheric thickness using Equation (5). Iteratively repeating this process until reaching a310

stable distribution of thickness estimates yields the plate-model-derived mean value of311

lithospheric thickness beneath each ocean island.312

For the seismically constrained estimates of lithospheric thickness, we test two end-313

member scenarios: (i) lithospheric thickness at the time of eruption is equivalent to that314

of the present day; and (ii) following eruption and movement away from the location of315

the plume tail, the lithosphere has re-thickened to its present-day value by conductive316

cooling following a half-space model. The true scenario likely falls between these two as-317

sumptions. Both assumptions yield similar results, likely because the majority of OIBs318

in our dataset are young (< 10 Ma) and the lithosphere cannot substantially rethicken319

over such a short time frame. Correcting for this process makes no appreciable differ-320

ence to our results (< 5 km thickness change; see Supplementary Tables S4 and S5) and321

the size of this correction is generally smaller than the depth range covered by the 1175±322

50◦C isotherms. When using seismically derived estimates of lithospheric thickness, we323

therefore adopt the first option above.324

Estimated lithospheric thickness at the time of eruption, based on either the basin-325

specific plate models (Richards, Hoggard, Crosby, et al., 2020) or seismological constraints326

(Hoggard, Czarnota, et al., 2020), are tabulated in Supplementary Tables S4 and S5. Plate327

model thicknesses for the Atlantic basin are slightly greater than those derived from the328

global-average model, whereas in the Indian and Pacific basins, lithospheric thickness329

estimates from basin-based models are similar to, or thinner than, those of the global330

model (Supplementary Figure S1).331

2.3 Bayesian Model Selection332

To investigate the variation of each geochemical parameter with lithospheric thick-333

ness, we have plotted and parameterised OIB geochemical data against lithospheric thick-334

ness at the time of eruption. To understand whether a particular dataset suggests a trend,335

or a change in gradient, we make use of Bayes factors: the ratio of the evidence or marginal336

likelihood between two competing statistical models (Jeffreys, 1935; Kass & Raftery, 1995).337

The evidence represents the integral of the likelihood over the prior for a given model338

choice. In our case, it quantitatively evaluates how likely it is to generate the observed339

geochemical dataset, based on a specified model (i.e., a function that describes the trend340

of the geochemical parameters against lithospheric thickness). Therefore, given two or341

more competing models, the model with the larger evidence is preferred. Computing the342

evidence is difficult, particularly for large dimension models, but for this problem we use343

Dynamic Nested Sampling (Skilling, 2006; Speagle, 2020), which gives both posterior and344

evidence estimates in a single analysis.345

The geochemical data include the raw and fractional crystallisation-corrected con-346

centrations of major elements, trace elements and λ values calculated from REE con-347

centrations. To determine whether a given geochemical parameter is sensitive to litho-348

spheric thickness or influenced by any potential sudden changes in mantle composition,349

such as the phase change from spinel to garnet peridotite, three models were compared:350

(i) a constant value model (which would imply no sensitivity to lithospheric thickness);351

(ii) a linear model (which suggests a lid effect); and (iii) a bi-linear model that permits352

a change in gradient at some depth determined by the data (Figure 4). We choose not353

to examine exponential models since they are monotonous, so incapable of describing a354
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Figure 4. Schematic cartoon showing (a) a constant model with one unknown parameter;

(b) a linear model with two unknown parameters; and (c) a bi-linear model with four unknown

parameters. Associated model variables are labelled.

reverse in a trend or detecting the depth of a potential trend change. To estimate pos-355

terior probability densities of the model parameters for each candidate model, we choose356

an independent Gaussian likelihood which is written as357

L(p|d) ∝ exp

−1

2

M∑
i=1

Ni∑
j=1

(pi − dj)
2

σ2

 , (6)358

where M is the number of islands, Ni the number of samples for each island i, pi is the359

model prediction of the geochemical concentration for island i, dj is the observed data360

value for each sample from that island, and σ is the overall standard error. This formu-361

lation assumes that the data follows the standard normal distribution at each lithospheric362

thickness.363

We fix values for the minimum and maximum lithospheric thicknesses (zmin and364

zmax in Figure 4), resulting in one, two and four unknown parameters for the constant,365

linear and bi-linear models, respectively. The use of Bayes factors to test the relative sup-366

port of competing models is subtly affected by the choice of priors. Regarding priors for367

the y values (i.e., the geochemical data), we adopt an empirical Bayes approach and set368

the prior to be Gaussian with mean and standard deviation equal to that of the over-369

all data. The mean and standard deviation of z (i.e., the lithospheric thickness of a pu-370

tative transition in the trend for the bi-linear model) are assumed to be 60 km and 5 km371

respectively, close to the average of all thickness data. To test the sensitivity of evidence372

calculations, we ran repeated tests that changed the standard deviation of the prior by373

±10%, which resulted in an average change of log10 evidence values of ±0.14. Similarly,374

changing the standard deviation by ±50% (a comparatively large change in the prior)375

resulted in an average change in the log10 evidence of ±0.18. We are therefore confident376

that the choice of priors for our Bayesian evidence calculations are reasonable and that377

sensitivity to the choice of priors is minor. Nonetheless, in the Bayesian evidence results378

herein, a reasonable error bound on the numerical log10 evidence values would be ±0.2.379

The evidences for constant, linear and bi-linear models are denoted as E0, E1, and380

E2, respectively. Since evidence values are typically vanishingly small numbers, they are381

usually represented by their logarithms. A candidate model with a larger evidence value382

is to be preferred, for example, model “A” with a log10 evidence of -1000 is a hundred383

times more likely than a competing model “B” with a log10 evidence of -1002. Gener-384

ally, a difference in the log10 evidence greater than 2 is taken to be statistically signif-385
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icant (Jeffreys, 1935; Kass & Raftery, 1995). We note that model evidence values can386

only be compared for the same geochemical parameter, as they are influenced by the range387

of values in the data and sample sizes. As a reminder, the constant model implies that388

a geochemical parameter is insensitive to changes in lithospheric thickness. The linear389

model can detect an overall trend but is incapable of describing a change or reversal in390

trend. The bi-linear model can be useful for identifying a change point in a trend and391

even detecting a reversal of the trend, but is more sensitive to outliers. For a given geo-392

chemical parameter, if log10E1−log10E0 > 2, we are confident in saying that it varies393

with lithospheric thickness. Furthermore, if log10E2 − log10E1 > 2, we can say that a394

change point or kink can be found in the data trend. In these cases, we provide histograms395

of the depth of the likely kink in the model and calculate its mean and standard devi-396

ation.397

2.4 Sensitivity to Sites with Large Numbers of Samples398

Due to the form of our likelihood function in Equation (6), clusters of large num-399

bers of measurements from a single site could potentially bias the results. Two notable400

examples of this are the large OIB sample sizes of Iceland and Hawaii. To test the ro-401

bustness of our results to potential biasing from these two localities, we repeat the cal-402

culation of posterior probability densities and evidence values for each geochemical pa-403

rameter using: (i) all data (i.e. our reference case); and (ii) the dataset with samples from404

both Iceland and Hawaii excluded. Removal of Hawaiian samples is of particular rele-405

vance because they represent the only OIBs located on thick lithosphere that are dom-406

inated by tholeiites (e.g., MacDonald & Katsura, 1964). All other OIBs at and beyond407

these lithospheric thicknesses consist predominantly or exclusively of alkali basalts (e.g.,408

Schmincke, 1982; Fisk et al., 1988; Gautier et al., 1990).409

3 Results410

To provide a relatively simple overview that gets at the essence of our results, we411

have chosen to focus in the main text on a preferred reference case. This case includes412

the initial correction of geochemical concentrations for the effects of fractional crystalli-413

sation, uses data from all OIB localities within our database, and adopts lithospheric thick-414

nesses from basin-specific plate-cooling models. While we discuss any important differ-415

ences that arise from changes to this reference setup in the main text, the full suite of416

associated figures and results are presented in the Supplementary Information.417

3.1 Geochemical Histograms418

Raw histograms of major element concentrations for all OIB data, before applica-419

tion of sample filters, display slightly skewed Gaussian-like distributions with peaks at420

approximately 7 wt.% for MgO, 48 wt.% for SiO2, 3 wt.% for TiO2, and 14 wt.% for Al2O3421

(blue bars in Figure 5a–d).The MgO peak at 7 wt.% broadly coincides with the mini-422

mum in magma density at 7–8 wt.% MgO calculated using Petrolog3 at 0.1 GPa, which423

is consistent with expectations that the lightest magmas are the most likely to erupt at424

the surface (see Supplementary Figure S2; Danyushevsky & Plechov, 2011). The con-425

tinuous distribution of major element concentrations is consistent with expectations for426

mixing of distinct, end-member reservoirs to varying extents, which is also supported by427

isotopic evidence (e.g., Hart et al., 1992). Filtering the raw data according to the cri-428

teria outlined in Section 2.1.2 has limited impact on distributions for SiO2, Al2O3 and429

TiO2, but the filtered MgO histogram retains only the right-hand side of the distribu-430

tion due to the sharp cut-off of samples with MgO < 7 wt.% (green bars in Figure 5a–431

d). Histograms of the REE shape parameters for filtered OIB samples exhibit more scat-432

ter and less clean unimodal behaviour (Figure 5e–g). Nevertheless, λ0 has a clear peak433

at ∼ 3.3. λ1 is left skewed, with a peak around 10 and more than 80% of samples have434
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Figure 5. Concentration histograms of (a) MgO; (b) SiO2; (c) TiO2; and (d) Al2O3 in our

OIB dataset. Original, unfiltered data are colored blue, while data in green represent the subset

of data remaining following application of screening filters outlined in Section 2.1.2. For simplic-

ity, histograms of (e) λ0, (f) λ1, and (g) λ2 values are shown only for filtered OIB samples.

λ1 > 5. λ2 is somewhat bimodal, with a central peak at approximately -15 and a sub-435

sidiary peak at -40.436

3.2 Evidence Results437

3.2.1 Example of Statistical Results438

To illustrate our procedure for quantifying the relationship between lithospheric439

thickness and various geochemical parameters, we present two examples for Al2O3 and440

λ1 in Figure 6. Both use our reference setup, in which the global OIB dataset is filtered441

and corrected for fractional crystallisation, with lithospheric thickness evaluated via the442

basin-specific plate model. Black crosses represent individual OIB samples and log10 of443

the evidence is provided for each of the three types of model.444

For both Al2O3 and λ1, we find that the evidence increases by ∼ 160 when mov-445

ing from constant to linear models (compare Figure 6a with 6b, and 6e with 6f), sup-446

porting the existence of a lid effect for both Al2O3 and λ1. However, we see contrast-447

ing results when the bi-linear model is introduced. For Al2O3, evidence values for lin-448
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Figure 6. Statistical evidence evaluation results for Al2O3 and λ1 under our reference setup.

(a) Al2O3 as a function of lithospheric thickness fitted using a constant model; black crosses =

individual samples; blue shading = probability density; yellow line = mean model; red dotted

lines = expected spinel-garnet transition depths for typical mantle potential temperatures ex-

pected in plumes (e.g. Robinson & Wood, 1998; Klemme & O’Neill, 2000; Tomlinson & Holland,

2021); inset gives log10 evidence value. (b) Same for a linear model. (c) Same for a bi-linear

model; grey band = prior distribution for kink depth with one standard deviation width. (d)

Probability distribution of kink depths, shown as a green histogram; grey band = prior; yellow

line = mean value. (e–h) Same as a-d, albeit for λ1.

ear and bi-linear models are similar (Figure 6b–c), implying the absence of any obvious449

transition in the trend as a function of lithospheric thickness. The resulting probabil-450

ity distribution of potential kink depths is therefore broad and poorly constrained in Fig-451

ure 6d, and we infer that Al2O3 in OIBs decreases linearly with increasing lithospheric452

thickness, with no definitive kink. On the other hand, λ1 shows a clear preference for453

a bi-linear model, with an increase in the log10 evidence value of ∼ 87 over a linear model454

(Figure 6f–g). The associated probability distribution for the kink is tightly constrained455

in the depth range of 49–56 km, with an average of ∼ 52 km (Figure 6h). Based on this456

preferred bi-linear model, the most likely trend for λ1 is that it increases with lithospheric457

thickness until a depth of ∼ 52 km, before subsequently remaining approximately con-458

stant.459

3.2.2 Summary of Evidence Evaluation Results460

Values of log10E1−log10E0 and log10E2−log10E1 have been determined for each461

geochemical parameter, under our reference setup. As a reminder, when greater than a462
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Figure 7. Optimal model type for each geochemical parameter under our reference setup.

Ticks denote optimal model; strength of colour fill indicates level of preference for that model

type (i.e., when a simpler model has an evidence value that is within 20 but less than 2 of the

optimal model, it is filled with colour that linearly increases in intensity).

key threshold value of two (i.e. more than hundred-fold increase in the likelihood), the463

former indicates statistical preference for a linear model over a constant one, while the464

latter indicates a bi-linear rather than linear relationship.465

The preferred model for each geochemical parameter is shown in Figure 7, with fur-466

ther details in Figures 8–11, and can be summarised as follows:467

1. All geochemical parameters prefer either a linear or bi-linear model over a con-468

stant model, indicating universal sensitivity to lithospheric thickness.469

2. For major elements Al2O3, FeO, and SiO2, data are optimally fitted by linear mod-470

els (Figure 8). Conversely, TiO2, Na2O, K2O, CaO, and P2O5 data are optimally471

fitted by bi-linear models (Figure 9c–g);472

3. For trace elements, the highly incompatible elements La and Th are best fitted473

by bi-linear models (Figure 9a–b), whereas the less incompatible Yb and Lu are474

best fitted by linear models (Figure 10);475

4. For parameters describing REE patterns, λ0 and λ1 are optimally fitted by bi-linear476

models (Figure 11a–b), whereas λ2 prefers a linear model (Figure 11c).477

5. For geochemical parameters that prefer a bi-linear model, kink depths generally478

occur at lithospheric thicknesses of 50–60 km.479

4 Discussion480

4.1 Existence of a Lid Effect481

Lithospheric thickness dictates the minimum pressure of plume melting through482

the so-called ‘lid effect’. It affects OIB chemistry in two ways (e.g., Watson & McKen-483

zie, 1991; Humphreys & Niu, 2009; Niu, 2021). First, by inhibiting upwelling beyond a484

certain depth, lithospheric thickness limits the maximum melt fraction (F ). We there-485

fore expect F to be inversely proportional to lithospheric thickness, which will have a486

substantial impact on the concentrations of highly incompatible trace elements. Second,487

the pressure at which melting occurs has strong implications for the mineral phases present488

in the residue following partial melting. In particular, over the depth range of interest489

here, the stable aluminium-rich phase converts from garnet (Mg3Al2Si3O12) to spinel (MgAl2O4)490

with decreasing pressure, subsequently becoming plagioclase (CaAl2SiO8) at shallow depths491

beneath mid-oceanic spreading centers (e.g., Masaaki, 1980). Despite our analyses be-492

ing subject to uncertainty, particularly in relation to estimates of lithospheric thickness493

and assumptions on uniform source composition, the data support a linear or bi-linear494

trend between all geochemical parameters and lithospheric thickness, providing univer-495
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Figure 8. Statistical evidence evaluation results for major elements optimally fitted by linear

models, under our reference setup. (a) Results for SiO2 for all localities; black crosses = individ-

ual samples; blue shading = probability density; yellow line = mean model; red dotted lines =

spinel-garnet transition depths (e.g., Robinson & Wood, 1998; Klemme & O’Neill, 2000; Tomlin-

son & Holland, 2021). (b) Same for FeOT. (c) Same for Al2O3.

sal evidence for the lid effect and corroborating the conclusions of, for example, Humphreys496

and Niu (2009), Dasgupta et al. (2010) and Niu (2021).497

Nonetheless, it is clear from our results that different geochemical parameters ex-498

hibit distinct responses to the lid effect. Some trends (e.g., Al2O3) show a linear rela-499

tionship with lithospheric thickness, whereas others show a bi-linear relationship with500

an abrupt change at a certain depth (e.g., λ0, λ1). In the following sections, we discuss501

potential explanations for these behaviours. We start with major element trends that502

are best fitted by linear models, with an emphasis on the relationship to pressure-dependent503

mineral assemblages. We then discuss the remaining major and trace elements, relat-504

ing observed trends to the influence of variations in melt fraction and the spinel-garnet505

phase transition. Although Yb and Lu are best fitted by linear models, we include them506

in this section because their behaviour is associated with an interplay between F and507

the spinel-garnet phase transition. We finish by discussing REE trends, described by λi,508

drawing on the lessons learned from the interpretation of trace elements trends.509

4.2 Major Elements with Linear Trends510

Concentrations of the major elements SiO2, FeOT and Al2O3 in OIBs show a lin-511

ear dependence on lithospheric thickness (Figure 8). In mantle melts, these components512

are known to be buffered by the mineral assemblage of the mantle residue and the ob-513
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Figure 9. Statistical evidence evaluation results for geochemical parameters optimally fitted

by bi-linear models. Data and panel contents same as for Figure 8 but for (a) Th, (b) La, (c)

TiO2, (d) P2O5, (e) K2O, (f) Na2O, and (g) CaO. The horizontal bar below panel (d) shows the

probability distribution of the likely kink depth, with more opaque colors indicating that a kink

is more likely at that depth.

served trends are consistent both with experimental studies on the Calcium, Magnesium,514

Aluminium, Silicon (CMAS) system (e.g., Walter & Presnall, 1994) and with the results515

of previous observational studies (e.g., Humphreys & Niu, 2009; Niu et al., 2011; Niu,516

2021).517

SiO2 exhibits a moderate decrease with increasing lithospheric thickness (Figure518

8a). Its concentration in mantle melts is buffered by the two most abundant minerals519

in the upper mantle, olivine and orthopyroxene, according to the reaction520

(Mg,Fe)2SiO4 + SiO2 (melt)←−→ (Mg,Fe)2Si2O6 (7)521

Increasing pressure drives this reaction to the right, expanding the stability field of or-522

thopyroxene at the expense of olivine (e.g., Campbell & Nolan, 1974; Walter & Presnall,523

1994). As a consequence, as the average melting pressure increases beneath thicker litho-524

sphere, the residue contains more SiO2-rich orthopyroxene and the corresponding melts525
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Figure 10. Statistical evidence evaluation results for HREEs, which are optimally fitted by

linear models. Data and panel contents same as for Figure 9 but for (a) Yb and (b) Lu.

Figure 11. Statistical evidence evaluation results for REE shape parameters. Data and panel

contents same as for Figure 9, but for (a) λ0, (b) λ1 and (c) λ2. Note that λ0 and λ1 are opti-

mally fitted by bi-linear models, whereas λ2 is optimally fitted by a linear model.
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produced are increasingly SiO2-poor (e.g., Bohlen et al., 1980; Bohlen & Boettcher, 1981).526

We note that Herzberg (1992) further proposed that the decrease in SiO2 with increas-527

ing melt pressure stops at ∼ 45 wt.% SiO2 due to low melt fractions in the presence of528

garnet, but this cut-off behaviour is not observed in either our analyses or in previous529

studies (e.g., Scarrow & Cox, 1995; Dasgupta et al., 2010). We therefore suggest that530

the spinel-garnet transition has limited influence on the SiO2 content of OIBs, with re-531

action (7) and associated buffering of the silica content by olivine and orthopyroxene be-532

ing the key control.533

We also attribute the linear increase in FeOT with increasing lithospheric thick-534

ness (Figure 8b) to the relative stabilities of olivine and orthopyroxene as a function of535

pressure. Olivine contains more Fe than orthopyroxene and increasing the pressure sta-536

bilizes orthopyroxene at the expense of olivine. As a consequence, for similar melt frac-537

tions, high-pressure melts contain more Fe than low-pressure melts. The relative abun-538

dance of olivine and orthopyroxene in the residue was also used by Niu (2016) to explain539

the increase in FeOT in mid-ocean ridge basalts (MORB) with increasing ridge axial depth.540

Analysis of our OIB dataset suggests that this trend can be extended over a greater depth541

range than is possible with the MORB data alone.542

Al2O3 linearly decreases with increasing lithospheric thickness (Figure 8c), which543

we believe can be attributed to an increase in the Al content of clinopyroxene and, to544

a lesser extent, orthopyroxene, with increasing pressure. Al3+ can occupy either the tetra-545

hedral or octahedral sites within the pyroxene crystal lattice. The two tetrahedral sites546

are characterised by a central cation (usually Si4+) surrounded by four oxygen atoms,547

whereas the two larger octahedral sites are positions in which the central cation is sur-548

rounded by six oxygen atoms and are usually occupied with cations that have greater549

ionic radii, such as Ca2+. Increasing pressure shrinks the octahedral M1 and M2 sites550

in both pyroxenes and allows more Al3+ to enter the M1 site, which is the smaller of the551

two octahedral sites (Colson & Gust, 1989). The octahedral Al3+ can either be charge552

balanced by additional Al3+ replacing Si4+ in an adjacent tetrahedral site according to553

the reaction554

Ca2Si2O6 + 2Al3+ ←−→ CaAl2SiO6 + Si4+ +Ca2+ (8)555

or by Na+ or K+ replacing a divalent ion on the larger M2 site (Campbell & Borley, 1974;556

Safonov et al., 2011), according to reaction557

Ca2Si2O6 +Al3+ +Na+ ←−→ NaAlSi2O6 + 2Ca2+. (9)558

As a consequence, the Al2O3 content of the residual pyroxenes increases with increas-559

ing pressure and the Al2O3 concentration in the melt correspondingly decreases. This560

simple interpretation may be complicated, however, by Al3+ being buffered by reactions561

between spinel and pyroxene in the spinel stability field and between garnet and pyrox-562

ene in the garnet stability field. We might therefore have also expected a dependence563

on the spinel-garnet transition. The fact that our Al2O3 trends do not require a bi-linear564

model in our reference setup suggests that this is not the case, perhaps because both spinel565

and garnet contain two Al3+ ions and the increasing Al content of pyroxenes with pres-566

sure is therefore not affected by the spinel-garnet transition.567

In summary, we infer that variations in the concentration of major elements SiO2,568

FeOT, and Al2O3 in OIBs are dominated by gradual changes in mineral assemblage as569

a function of pressure rather than variations in F or effects arising from the spinel-garnet570

phase transition.571

4.3 Major and Trace Elements with Bi-linear Trends572

The behavior of trace elements, which do not form stoichiometric components in573

minerals, can be understood using the distribution coefficient, D, for the partitioning of574

the element between a mineral and the melt. During partial melting of mantle peridotite,575
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the concentration of a given element in the aggregate melt (Cl) during batch melting is576

given by577

Cl =
1

D′(1− F ) + F
Cs, (10)578

and, in the case of fractional melting, is579

Cl =
1

F

[
1− (1− F )

1
D′

]
Cs, (11)580

where D′ is the bulk partition coefficient, F is the melt fraction and Cs is the concen-581

tration of the element in the source before melting (Shaw, 1970, 1979). Cl is therefore582

controlled by the combined effect of D′ and F . Nevertheless, for incompatible trace el-583

ements where D′ is low (usually < 0.01), these equations can be simplified to584

Cl ≈
1

F
Cs, (12)585

indicating that Cl is proportional to
1
F , regardless of the melting mechanism. The lower586

the value of D′, the more reliable this approximation becomes. Similarly for moderately587

low values of D′ (i.e. < 0.2), given that melt fractions for OIBs are never higher than588

∼ 0.2, we can simplify Equations (10) and (11) to589

Cl ≈
1

D′ + F
Cs. (13)590

In cases where D′ > 0.2 and differences in the partition coefficients for different591

minerals are large, which can occur, for example, across the spinel-garnet phase tran-592

sition, Cl is influenced by both pressure and the phase change. The case of spinel-garnet593

can be represented by a reaction between spinel and pyroxene to give garnet and olivine594

according to595

MgAl2O4 (Spinel) + 2Mg2Si2O6 ←−→ Mg3Al2Si3O12 (Garnet) +Mg2SiO4. (14)596

The transition is abrupt and temperature dependent (e.g. Klemme & O’Neill, 2000). For597

temperatures appropriate for mantle plumes, the transition occurs over a ∼ 5 km depth598

range somewhere between 70–85 km, depending on the mantle composition (e.g. Robin-599

son & Wood, 1998; Klemme & O’Neill, 2000; Wood et al., 2013; Tomlinson & Holland,600

2021). Note that the shallower plagioclase-spinel transition in peridotite is not relevant601

to this study because the plagioclase stability field extends only to pressures of 0.8 GPa602

in fertile lherzolite and to 0.6 GPa in depleted lherzolite, corresponding to depths of 24 km603

and 18 km, respectively (Borghini et al., 2010).604

For geochemical parameters that are best fitted by bi-linear models, we divide them605

into two groups: (i) elements exhibiting low partition coefficients (D′ < 0.2), includ-606

ing Th, La, Ti, P, K and Na, which we propose can be interpreted primarily in terms607

of melt fraction F (although Na and K may be further influenced by D values for py-608

roxenes at high pressure); and (ii) Ca, which requires consideration of both F and the609

spinel-garnet phase change. These bi-linear trends were not identified in previous stud-610

ies (e.g., Ellam, 1992; Humphreys & Niu, 2009; Dasgupta et al., 2010; Niu et al., 2011;611

Niu, 2021) and we discuss their likely origin.612

4.3.1 Incompatible elements613

D′ values for the incompatible elements investigated in this study decrease in the614

following order: Ti ≈ P ≈ Na > La > K > Th. All are optimally fitted by bi-linear mod-615

els, in which their concentrations initially increase rapidly with increasing lithospheric616

thickness, before remaining flat or increasing at a significantly reduced rate in the cases617

of Th, La, Ti, P, or slightly decreasing in the cases of K and Na. The kinks in slopes all618

occur at 50–60 km depth (Supplementary Figure S3).619
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Table 1. Partition coefficients for incompatible elements in the main peridotite minerals. D′
sprd

and D′
gprd are bulk partition coefficients for spinel peridotite (assuming model abundances of 59%

Ol, 28% Cpx, 8% Opx, 5% Sp) and garnet peridotite (55% Ol, 23% Cpx, 15% Opx, 7% Grt),

respectively. D in each mineral can vary as a function of mineral composition, temperature and

pressure.

Ol Opx Cpx Sp Grt D′
sprd D′

gprd

Th 0.0001 0.0001 0.00026 0.00001 0.0001 0.00014 0.00014
K 0.00018 0.001 0.002 0.0001 0.001 0.00075 0.00078
La 0.0004 0.002 0.054 0.01 0.01 0.016 0.014
Ti 0.02 0.1 0.18 0.15 0.28 0.078 0.087
P 0.1 0.03 0.05 0 0.1 0.075 0.078
Na 0.006 0.05 0.2 0 0.04 0.064 0.060
Lu 0.0015 0.06 0.28 0.01 7.7 0.085 0.61
Yb 0.0121 0.1036 0.5453 0.01 6.9 0.17 0.63

La, K and Th are highly incompatible in peridotites, regardless of whether the ma-620

jor aluminum-rich phase is spinel or garnet (D′ ≤ 0.01; Table 1). Following on from621

our interpretation of Equations (12) and (13) for such elements, at constant potential622

temperature, we expect variations in their concentration to be proportional to 1
F as a623

function of lithospheric thickness and insensitive to the spinel-garnet phase transition624

(dashed line in Figure 12a). This behaviour should impart an increase in incompatible625

trace element concentrations at larger thicknesses, with a steeper rate of increase at greater626

thicknesses. This prediction is consistent with the observed increase in incompatible el-627

ement concentrations with increasing lithospheric thickness beneath thinner lithosphere.628

When lithospheric thickness exceeds 50–60 km, however, it is not consistent with the slightly629

increasing, flat or decreasing concentrations observed. We can further demonstrate this630

aspect by converting our observed concentrations of La into estimates of F as a func-631

tion of lithospheric thickness (solid purple line in Figure 12a) and comparing it to the632

predicted F curves (note that the resulting F curve is insensitive to the choice of La or633

Th). There is an agreement between the shapes of the two curves for lithospheric thick-634

ness < 55 km but they become inconsistent at larger thicknesses, implying that another635

process modulates concentrations of incompatible elements beyond thicknesses of ∼ 55 km.636

The most important conclusion that can be drawn from the analyses of highly incom-637

patible Th and La is that F remains nearly constant for lithosphere thickness > 55 km.638

The moderately incompatible elements Na, P and Ti have D′ ∼ 0.06 − 0.08 in639

both the spinel and garnet stability fields and follow similar trends. For these elements,640

D′ cannot be neglected and Equation (13) should be used to interpret changes in their641

concentrations. Since D′ varies little with mineralogy for these elements, it can be re-642

garded as a constant and F becomes the dominant variable. As a consequence, exper-643

imental and theoretical constraints imply that these moderately incompatible element644

concentrations should again increase with increasing lithospheric thickness, with steeper645

rates of increase at greater thicknesses. The contribution from D′ should reduce the ef-646

fect of F , diluting the concentration ratio of these elements between the melts and residue647

at higher pressures without altering the underlying trend. This prediction is consistent648

with observations for lithospheric thicknesses less than 55 km, but it is inconsistent with649

thicker lithosphere trends, which again suggest minimal changes in F at larger thicknesses.650

This aspect is important to keep in mind for the following interpretations.651

Our analyses demonstrate that the concentrations of Na and K differ from other652

incompatible elements in that they show a slight decrease with increasing lithospheric653

thickness beyond the kink (Figure 9e and f). At these pressures, F is expected to be small654
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Figure 12. (a) Solid line = melt fraction (F ) as a function of lithospheric thickness inferred

from Equation (10) and the bi-linear trends for La concentrations, with basin-specific plate

model-derived estimates of lithospheric thickness; dashed lines = theoretical melt fraction for

decompression melting of dry, primitive peridotite at different potential temperatures from the

parameterisation of Katz et al. (2003), as modified by P. W. Ball et al. (2022); dash-dotted line

= same for a wet 1400◦C source with H2O = 500 ppm, which is thought to be an upper bound

for water content in plume source regions (e.g., Wallace, 1998; Asimow & Langmuir, 2003). (b)

Solidi for peridotite with 0–500 ppm water contents.

and to remain nearly constant with increasing lithospheric thickness. The observed trends655

in Na and K may therefore indicate that variations in D′ are playing a role. As discussed656

in Section 4.2, increasing pressure allows entry of Al3+ into the clinopyroxene M1 site.657

Via reaction (9), this substitution can be charge balanced by replacing a X2+ cation in658

the larger M2 site with Na+ and/or K+, resulting in an increase of D′ for K+ and Na+659

with increasing pressure. With minimal changes in F , this effect may explain their ob-660

served decrease in concentration with increasing lithospheric thickness, relative to highly661

incompatible La and Th, although we note that Na+ is expected to have a stronger affin-662

ity for the M2 site than K+ because its ionic size is closer to the size of the site (Safonov663

et al., 2011).664

4.3.2 CaO665

Calcium is the element most likely to be affected by the spinel-garnet transition666

because garnet contains stoichiometric Ca, whereas spinel does not. The principal repos-667

itories for Ca2+ in garnet peridotites are, in order of decreasing affinity, clinopyroxene668

> garnet > orthopyroxene > olivine. Beneath shallow lithosphere, there is a steady de-669

crease in CaO concentration with increasing lithospheric thickness up to ∼ 55 km (Fig-670

ure 9m–n). We attribute this behaviour to the continuous decrease in F , previously de-671

duced from analyses of incompatible element trends: as F decreases, less clinopyroxene672

melts and the resulting melt has a lower Ca concentration. Our interpretation of the in-673

compatible element trends suggests that, beyond the kink, F should remain approximately674

constant or continue to decrease, but at a reduced rate. Therefore, we would expect a675

further decrease in CaO (albeit at a lower rate), rather than the increase that is observed.676

The cause of this increase is unclear, but assuming that F is not changing (as suggested677

by the most incompatible elements), it requires that, with increasing pressure, a Ca-rich678

phase (presumably Ca-rich pyroxene) melts in preference to moderately Ca-poor garnet679
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and orthopyroxene. We note that previous studies, which applied linear regression to the680

data, found no discernible trend between CaO and lithospheric thickness (e.g., Humphreys681

& Niu, 2009), probably because the reversal in trends from decreasing to increasing CaO682

counteract each other.683

4.3.3 Yb and Lu684

Concentrations of Yb and Lu change little with increasing lithospheric thickness,685

showing only a slight, linear decrease (Figure 10). This behaviour occurs even though686

these elements exhibit an order of magnitude difference in compatibility between spinel687

(incompatible) and garnet (compatible; Table 1), from which we might expect to see a688

kink in their trends.689

Within the spinel stability field, the decrease in F with increasing pressure, required690

by the incompatible trace element trends, is offset by increasing D′ due to an increas-691

ing amount of clinopyroxene in the residue at higher pressures (e.g., Green & Ringwood,692

1967). Within the garnet stability field, the constant or slight decrease in F with increas-693

ing lid thickness is initially offset by an increase in D′ as garnet replaces spinel and, sub-694

sequently, as pressure continues to increase, by garnet partially replacing pyroxene ac-695

cording to reaction (14).696

Superimposed on these changes is the migration of low Yb-Lu melt from the gar-697

net zone into the spinel zone, where it partially offsets the potential increase in the con-698

centration of these elements due to their lower D′ in the spinel zone. This behaviour is699

termed the ‘memory effect’, whereby erupted melts preserve a geochemical memory of700

high-pressure melting despite melting continuing to shallower depths (e.g. Elliott et al.,701

1991). The relative proportions of melt from the spinel and garnet zone are also criti-702

cal in determining melt composition: increasing pressure can increase Yb-Lu concentra-703

tions in melts within the spinel zone while simultaneously reduce the melt volume within704

that zone, thus limiting low-pressure melts’ impact on determining the final average Yb-705

Lu concentration and resulting in an decrease of Yb-Lu with increasing lithospheric thick-706

ness. Overall, the combined impact of the competing influences of increasing F , espe-707

cially within the spinel zone, changes in D′ as garnet is replaced by spinel, and the sys-708

tematic decrease in the proportion of melt coming from the spinel zone with increasing709

pressure, can plausibly explain the slight decrease in Yb and Lu concentrations with in-710

creasing lithosphere thickness. Taken together, this result implies that the absence of a711

kink in Yb-Lu trends, which might be expected from the spinel-garnet phase transition,712

is obscured by the memory effect.713

4.4 Shape of REEs714

We next discuss the shape parameters, λi, for REE concentration patterns (O’Neill,715

2016). λ0 is the average of the logarithmic concentration of all REEs except Eu, normalised716

by each element’s concentration in chondrites. Increasing lid thickness reduces the melt717

fraction, thereby elevating the concentration of highly incompatible LREEs (Figure 9)718

while having a limited effect on the concentration of HREEs (Figure 10). It is therefore719

not surprising that λ0 follows trends defined by the highly incompatible elements, with720

a kink at ∼ 55 km (Figures 11a).721

λ1 measures the enrichment of LREEs relative to HREEs and has a bi-linear trend,722

similar to λ0 (Figure 11b). Previous studies described variations in REE trends using723

ratios, such as La/Yb and Sm/Yb, and related observed changes to an increasing abun-724

dance of garnet in the residue as the melting pressure increases (e.g., Ellam, 1992; Humphreys725

& Niu, 2009). However, these studies did not recognise either a kink or the influence of726

changes in F on LREE and, hence, the slope of the REE pattern. As noted in connec-727

tion with λ0, the LREEs initially increase with increasing lithospheric thickness to ∼ 55 km728
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(Section 4.3.1), driven by changes in F , then remain nearly constant, while HREE con-729

centrations change little throughout (Section 4.3.3). Therefore, the combined behaviour730

of LREEs and HREEs accounts for the observed variation in λ1.731

λ2 quantifies the curvature of the REE pattern. As outlined by O’Neill (2016), val-732

ues are positive if amphibole remains in the residue following melting and transitions from733

positive to negative if more garnet remains. OIBs are dry relative to arc magmas, so am-734

phibole is not expected to play a role in their genesis (e.g., O’Neill, 2016). To examine735

the sensitivity of λ2 to melting depth, we consider a two-stage melting model (Supple-736

mentary Table S6), in which partial melting begins in the garnet zone and extends into737

the spinel zone, with mixing permitted between melts from both zones. For melting in738

the garnet zone, λ2 becomes more negative as both F and the amount of garnet in the739

residue increase. For melting in the spinel zone, λ2 is positive when F is low, but decreases740

as F increases. When melts from both zones mix, the effect is cumulative. λ2 is also sen-741

sitive to source composition: melts generated from a primitive mantle source have higher742

λ2 values than those from a depleted mantle source (Supplementary Table S6). These743

insights imply that interpretations of λ2 are complex, although certain inferences can be744

made.745

Figure 11c shows that λ2 linearly decreases with increasing lithospheric thickness.746

At lithospheric thicknesses greater than ∼ 55 km, the majority of λ2 values are nega-747

tive and the trend becomes increasingly negative as the lithosphere thickens. Assuming748

that total F changes little after the kink, as is implied by the trends identified for highly749

incompatible elements, and there is no mixing of melts from the spinel and garnet zones750

(which is plausible given that the lid should act as a barrier to melting above the spinel-751

garnet transition depth), based on the two-stage model outlined above, we infer that the752

amount of garnet in the source increases with pressure at lithospheric thicknesses exceed-753

ing those of the kink, as expected. When lithospheric thickness is less than 55 km, as-754

suming all melts are generated in the spinel zone and there is no mixing with melts from755

the garnet zone, as the lithosphere thickens, F will decrease and λ2 will increase. This756

is inconsistent with the trend that we have identified for λ2 (Figure 11c), which decreases757

across all lithospheric thicknesses. This can be plausibly explained if a larger proportion758

of garnet melts mixed with a smaller proportion of spinel melts as lithospheric thickness759

and pressure increase (decreasing total F – e.g., primitive mantle starting to melt from760

4 GPa, if F (0.06) = Fgrt(0.01) + Fspl(0.05), λ2 = 7.26; if F (0.04) = Fgrt(0.03) +761

Fspl(0.01), λ2 = 1.86), providing further evidence for the memory effect when melts are762

generated under thin lithosphere (e.g., Elliott et al., 1991).763

4.5 Trend Robustness764

To analyse the robustness of our results to initial OIB processing steps, potential765

bias towards heavily sampled localities, and/or choice of lithospheric thickness model,766

we evaluate Bayes factors for a suite of additional scenarios including: (i) filtered OIB767

data prior to- and post-corrections for fractional crystallisation; (ii) a sub-sample of the768

OIB dataset, where a percentage of samples are randomly removed; (iii) datasets where769

Iceland and Hawaii samples are included/excluded; and (iv) lithospheric thickness ob-770

tained from the basin-specific plate-cooling models versus a model derived from seismic771

tomography. A summary of these results are presented in Figure 13, with further plots772

presented in Supplementary Figures S4–S5.773

4.5.1 Correction for Fractional Crystallisation774

Our reverse-fractionation calculations in Petrolog3 suggest that primitive OIB melts775

commonly undergo 5–25% fractional crystallisation in the magma chamber (Supplemen-776

tary Figure S6). Correcting for fractional crystallisation does alter absolute geochem-777

ical concentrations, but the preference for a linear over constant dependence on litho-778
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Figure 13. (a) Optimal model type for each geochemical parameter under our reference setup

(filtered OIB samples from all localities corrected for fractional crystallisation, with lithospheric

thicknesses from basin-specific plate-cooling models; as in Figure 7). (b) Same as the reference

setup except data are not corrected for fractional crystallisation. (c) Same as the reference setup

except 40 % of the data are randomly removed. (d) Same as the reference setup except Icelandic

and Hawaiian samples were excluded. (e) Same as the reference setup albeit with lithospheric

thickness taken from the model based on seismic tomography.

spheric thickness remains unchanged for all major and minor elements, and REE shape779

parameters (Figure 13b). In most cases, the preference for either linear or bi-linear mod-780

els also remains unchanged, the exception being SiO2, for which the non-corrected data781

shows a preference for a bi-linear model. This behaviour is a direct consequence of im-782

posing the SiO2 > 43 wt.% filtering criteria: for the non-fractionation corrected data,783

this results in a hard cut-off of all data below this value and preferentially increases pre-784

ferred model values in thicker lithosphere, whereas following fractionation correction, the785

kink is smoothed out and SiO2 linearly decreases with increasing lithospheric thickness786

(Supplementary Figures S7 and S8).787
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4.5.2 Data Subsets788

The possibility of bias from specific samples was tested by removing some data to789

see if the observed trends remain - so-called bootstrapping. We randomly removed 20%790

and 40% of all OIB samples while keeping all other variables consistent. In most of these791

tests, the preferred model and the trend for each of the geochemical parameters did not792

change (Figure 13c). Exceptions occurred when the preferred model was close to the edge793

of a threshold before removing some samples. Nonetheless, our overall interpretation re-794

mains valid, and the observed geochemical trends are not strongly affected by sampling795

bias.796

4.5.3 Heavily Sampled Localities797

Hawaii and Iceland are heavily sampled in comparison to other localities in our OIB798

database, yielding high-density data clusters that may potentially introduce bias into the799

results. Nevertheless, we find that excluding these sites does not generally alter evidence800

in favour of the lid effect. For all geochemical parameters, there is still strong preference801

for either a linear or bi-linear model over a constant one. The two exceptions occur for802

Ca and Na, where the evidence with respect a constant model is still greater than 2 but803

less than 20 (Figure 13d).804

With regards to preference for a bi-linear versus linear fit, removal of these local-805

ities has more of an influence on results. For geochemical parameters where all sites are806

optimally fitted by bi-linear models, excluding Iceland and Hawaii can either increase807

or reduce values of log10E2−log10E1, depending on the parameter (Supplementary Fig-808

ure S4a and e). In general, more parameters transition to preferring a bi-linear model809

(e.g., Al2O3, FeOT, Yb, Lu and λ2), with Si maintaining preference for a linear model810

and only Th switching from a bi-linear to linear model. This indicates that evidence in811

favour of bi-linear trends is not attributable to potential sampling bias from Hawaii and812

Iceland.813

Nevertheless, it is interesting to note that excluding Icelandic and Hawaiian sam-814

ples has an impact on the slope of the trend in thick lithosphere (beyond the kink depth815

of ∼ 55 km). For incompatible elements Th, La, TiO2 and P2O5, the slope after the kink816

increases (Supplementary Figure S9), which is also the case for λ0 and λ1 (Supplemen-817

tary Figure S10), albeit still at a lower rate than would be expected from theoretical ar-818

guments for melting at constant potential temperature and composition. For Na2O and819

K2O, it reduces the rate of concentration decrease with increasing lithospheric thickness820

(Supplementary Figure S9). All of these differences can likely be attributed to the con-821

centrations of incompatible elements in Hawiian basalts being lower than those of other822

OIBs on lithosphere of similar thickness. As noted in Section 2.4, Hawaiian basalts are823

dominated by tholeiites, whereas all other OIBs on thick lithosphere have alkali basalt824

affinities. Tholeiites are produced by higher degrees of partial melting (e.g., Yoder Jr &825

Tilley, 1962) and concentrations of incompatible elements are therefore expected to be826

diluted, which is consistent with the Hawaiian plume being hotter and stronger than other827

plumes beneath thick lithosphere (e.g., Hoggard, Parnell-Turner, & White, 2020). Hawai-828

ian OIBs may also originate from a source that is more depleted in highly incompati-829

ble elements if, as suggested by Hofmann and Jochum (1996) and Pietruszka et al. (2013),830

it contains a significant amount of recycled oceanic gabbro. Regardless of the exact na-831

ture of the Hawaiian plume, its distinctive characteristics, coupled with the large num-832

ber of samples available, can influence the slope of geochemical trends in thick lithosphere833

but does not refute evidence for the lid effect.834

–26–



manuscript submitted to Geochemistry, Geophysics, Geosystems

Figure 14. Difference between local lithospheric thickness beneath each island from the seis-

mic model and that predicted by the basin-specific plate models, as a function of lithospheric age

at time of OIB eruption. Localities in the Atlantic, Pacific and Indian Oceans are represented by

green, blue and red circles, respectively.

4.5.4 Alternative Estimates of Lithospheric Thickness835

As introduced in Section 2.2, a limitation of theoretical cooling models is that they836

cannot capture local deviations in lithospheric thickness away from the average value for837

ocean floor of a given age (e.g., D. R. Davies et al., 2019). By comparing expected val-838

ues with local estimates obtained from seismological constraints, we demonstrate that839

there are systematic differences between the two at the sites of OIBs in our database (Fig-840

ure 14). For ocean islands on lithosphere younger than ∼ 30 Ma, such as at Easter Is-841

land or the Azores, seismically inferred estimates of local lithospheric thickness system-842

atically exceed expectations from plate-cooling models. This offset is likely artificial, be-843

ing a consequence of surface wave tomography having limited resolution at depths shal-844

lower than ∼ 75 km and therefore smearing shallow velocity structure into greater depths845

in regions of thin lithosphere (see Section 2.2). For older lithosphere on the other hand,846

seismically inferred estimates of present-day lithospheric thickness beneath each ocean847

island are consistently thinner than expectations from plate models. In contrast to the848

artifacts in regions of thin lithosphere, this observation is likely real and probably reflects849

destabilisation and thinning of the lithosphere by the underlying mantle plume (e.g., G. F. Davies,850

1994; Dumoulin et al., 2001). As a consequence of these two effects, the majority of litho-851

spheric thickness estimates beneath OIBs from the seismic model fall in the 40–100 km852

range, which is slightly narrower than the associated range of 30–120 km from plate-cooling853

models.854

When switching to estimates of lithospheric thickness inferred from the seismic model,855

we find that all geochemical trends are best fitted by bi-linear models, including those856

that display linear trends when using lithospheric thickness from basin-specific plate mod-857

els (Supplementary Figure S4f). In particular, there is a moderate preference (5 < log10E2−858

log10E1 < 10) for bi-linear models in the cases of Al2O3, FeO and Yb, as well as a slight859

preference (2 < log10E2 − log10E1 < 5) in the cases of SiO2, Lu, and λ2. Neverthe-860

less, constant models still perform poorly (Figure 13e), and our dataset displays robust861

evidence for existence of the lid effect.862
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4.6 Processes Contributing to Observed Geochemical Trends863

In our reference setup, bi-linear trends generally fall into two categories: (i) the highly864

incompatible elements (Th, K, La, P, Ti, Na), in which concentrations are entirely con-865

trolled by melt fraction and therefore indicate that F remains approximately constant866

at lithospheric thicknesses greater than that of the kink; and (ii) for CaO and param-867

eters describing REE patterns (λ0 and λ1), where the depth of the kink is being deter-868

mined by the combined effects of changing melt fraction interacting with the spinel-garnet869

phase transition. For the latter, the role of this phase change is to maintain HREE con-870

centrations with increasing lithospheric thickness, while allowing the concentration of871

the LREE to continue to increase as F reduces.872

It is important to note that the kinks in our bi-linear trends may not, in reality,873

reflect sharp change points, but rather a gradual transition in the trend as a function874

of increasing lithospheric thickness. While our findings show that the kink is generally875

identified at a depth of 50–60 km (Supplementary Figure S3), since these trends are sen-876

sitive to both variations in F and the spinel-garnet phase transition, it is incorrect to877

infer the phase transition depth directly from the kink depth. This point is further em-878

phasised by the fact that we observe garnet signatures in some OIBs that are generated879

beneath thin lithosphere (e.g., through trends of Yb, Lu, λ2), which can be attributed880

to the memory effect of high-pressure melts from the garnet stability field incompletely881

mixing with lower pressure melts from the spinel stability field.882

Our resulting inferences of melt fraction as a function of lithospheric thickness (Fig-883

ure 12a) suggest that, beyond a certain lithospheric thickness, F becomes approximately884

constant. This behaviour is unexpected since, based on the lid effect and theoretical mod-885

els of plate cooling, we would expect lithosphere to continue to thicken and, all other as-886

pects being equal, cause a continuous reduction in F . One potential explanation for this887

behaviour could be progressive thinning of overlying lithosphere by upwelling plume ma-888

terial. Small-scale convection above mantle plumes is known to be more prevalent be-889

neath thicker lithosphere (e.g., Dumoulin et al., 2001; van Hunen et al., 2003; Ballmer890

et al., 2011; Le Voci et al., 2014; D. R. Davies et al., 2016; Duvernay et al., 2021), mak-891

ing it more likely that the base of older lithosphere would become unstable upon plume892

impingement. This argument is supported by our observation in Section 4.5.4 and Fig-893

ure 14 that seismically inferred estimates of lithospheric thickness are consistently thin-894

ner than those predicted by plate-cooling models in older lithosphere. Accordingly, be-895

yond the ∼ 55 km kink depth, lithospheric thickness above mantle plumes is unlikely896

to increase at a rate consistent with cooling model expectations, thereby reducing the897

rate of the expected reduction in melt fraction. A further contributing factor is that, since898

the solidus temperature increases with pressure (Figure 12b), weaker plumes with lower899

excess temperatures may fail to cross the solidus and generate melt beneath thick litho-900

sphere. This effect would be compounded by the fact that weaker plumes generate smaller901

melt volumes that are more likely to get trapped at depth and not erupt onto the seafloor.902

We refer to this behaviour as the ‘temperature effect’ and have investigated two lines of903

independent evidence that might support it.904

First, we have explored potential relationships between lithospheric thickness and905

the potential temperature of OIB sources as estimated from geochemical or geophysi-906

cal arguments (e.g., Putirka, 2008; P. Ball et al., 2021; Bao et al., 2022, Supplementary907

Figure S11). No clear patterns have emerged (although such estimates are known to be908

uncertain; e.g., Herzberg et al., 2007; Bao et al., 2022). Secondly, we have compared litho-909

spheric thickness to recent analyses of plume buoyancy flux from Hoggard, Parnell-Turner,910

and White (2020). Here, we find that magmatic plumes beneath thicker lithosphere gen-911

erally have higher buoyancy fluxes, potentially indicative of higher excess temperatures912

(Figure 15). This observation is consistent with the suggestion that, beyond the kink depth,913

melt fractions are approximately constant due to preferential sampling of progressively914
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Figure 15. Relationship between buoyancy flux of magmatic plumes from Hoggard, Parnell-

Turner, and White (2020) and lithospheric thickness estimated from the basin-specific plate

models (for values greater than the kink depth of ∼ 55 km).

hotter plumes from regions of thicker lithosphere (i.e., the rate of decrease in F is at least915

partially offset by the increase in plume temperature).916

Taken together, local variations in lithospheric thickness away from average expec-917

tations from theoretical cooling models, sampling biases associated with progressively918

hotter plumes in regions of thicker lithosphere, and source region heterogeneities, are all919

plausible contributors to observed incompatible element trends.920

4.7 Limited Evidence for Melt Re-equilibration at Base of Lithosphere921

Both Iceland and Hawaii have a large number of samples and exhibit a wide spread922

of compositions (e.g. Figure 16). Previous studies have attributed these ranges to vari-923

ations in the fertility of the mantle source (e.g., Humphreys & Niu, 2009; Niu et al., 2011;924

Jones et al., 2017). Furthermore, Niu (2021) have also suggested that none of this spread925

can be attributed to differences in the initial melting pressure (i.e. there is no memory926

effect), since OIB melts re-equilibrate with the surrounding mantle during their ascent927

to the surface. Melting in an ascending mantle plume is expected to occur over a depth928

range of several tens of kilometres. If such re-equilibration reactions do occur, however,929

we would expect major element concentrations buffered by olivine and pyroxene to be930

strongly homogenised, while highly incompatible trace elements (e.g., Th, K and La) that931

have D′ < 0.01 in both the garnet and spinel stability fields should retain their origi-932

nal spread.933

Our analyses have found no evidence to support such a process for re-equilibration934

of plume-derived melts: in other words, we find robust evidence for preservation of geo-935

chemical signatures across a range of depths in erupted melt products (i.e., the mem-936

ory effect). OIBs from Hawaii and Iceland, for example, show a negative correlation be-937

tween SiO2 and FeOT (Figure 16a–b), which can be attributed to melts generated at a938

range of different pressures and has previously been suggested to occur in many OIBs939

(e.g., Scarrow & Cox, 1995). In the case of Iceland, most of the data cluster at ∼ 46.5940

wt.% SiO2, but some samples extend towards ∼ 42 wt.% SiO2. The high SiO2 samples941

could relate to melts generated at low pressure, while samples with lower SiO2 are gen-942
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Figure 16. Co-variation of pressure-sensitive geochemical parameters for OIB samples located

at Iceland and Hawaii. (a) FeOT as a function of SiO2 for Icelandic samples, following appli-

cation of filtering and corrections for fractional crystallisation. (b) Same for Hawaiian samples.

(c–d) Same for λ1 values as a function of SiO2.

erated by smaller degrees of melting at higher pressure. There is also a cluster of sam-943

ples at the high SiO2 end of the Hawaiian array, albeit at 48.5 wt.% SiO2, with the data944

more evenly spread across the array. As with Iceland, we suggest that the low-SiO2, high-945

FeOT basalts at Hawaii are produced by melts separating from the mantle at depth (i.e.946

far below the lithospheric lid) and that they have subsequently erupted without under-947

going re-equilibration during their ascent.948

Importantly, whilst variations in FeOT at a given SiO2 can potentially be explained949

by mantle source heterogeneity, the correlation between SiO2 and λ1 provides convinc-950

ing support for melting across a range of pressures without complete homogenisation and951

mixing (Figure 16c–d). Melt re-equilibration would be expected to bound major element952

concentrations within a limited range, but have little impact on incompatible trace el-953

ement concentrations. Accordingly, following re-equilibration, limited correlation would954

be expected between major and trace elements, which is not borne out by our observa-955

tions.956

5 Conclusions957

Our study yields insights into the role of lithospheric thickness variations in influ-958

encing the geochemical characteristics of OIBs. Our results support existence of the lid959

effect, in which lithospheric thickness limits the lowest melting pressure of upwelling man-960

tle plumes and has an important influence on OIB geochemistry. Our statistical anal-961

–30–



manuscript submitted to Geochemistry, Geophysics, Geosystems

yses suggest that REE patterns, and major and trace element concentrations, are influ-962

enced by lithospheric thickness, with some geochemical parameters best fitted by linear963

trends and others by bi-linear trends with a kink at thicknesses of 50–60 km. Although964

other factors such as source heterogeneity, melts separating from the mantle at various965

depths below the lid, and bias from heavily sampled localities are excepted to influence966

OIB geochemical trends, the observed trends remain overall consistent with expectations967

from the lid effect.968

Such trends can be explained by a combination of pressure-driven changes in melt969

fraction and mineral assemblage, especially the spinel-garnet transition. The behavior970

of highly incompatible elements suggests that the melt fraction decreases rapidly with971

increasing lithospheric thickness until thicknesses reach ∼ 55 km, but subsequently de-972

creases at a significantly lower rate with increasing thicknesses. This behaviour is incon-973

sistent with theoretical expectations based solely on the lid effect and suggests that: (i)974

plumes impinging beneath thicker lithosphere may be more effective at thinning the over-975

lying lid, thereby modulating changes in melt fraction; and (ii) only melts from plumes976

with higher potential temperatures can penetrate thick lithosphere and reach the seafloor,977

consistent with solidus temperatures increasing with pressure and evidence that mag-978

matic plumes under thicker lithosphere have higher buoyancy fluxes.979

The depth of the spinel-garnet transition zone cannot be directly identified from980

the trends observed herein. Nonetheless, the signature of this phase transition is evident981

in observed trends for Yb, Lu, and λ2. These trends require that a signature of melt pro-982

duced within the garnet zone is carried by many OIBs originating beneath thin litho-983

sphere, indicative of a memory effect within plume-derived melts. This interpretation984

is further supported by geochemical trends from different samples generated in the same985

plume: it is therefore likely that some OIB melts, generated at varying pressures, can986

ascend to the surface separately without re-equilibrating at the base of the lithosphere.987

Taken together, our results have implications for magma generation, migration and988

mixing beneath OIBs, which will be vital for connecting these intricate processes to the989

larger-scale dynamics of upwelling mantle plumes. Our study provides quantitative con-990

straints on the relationship between modern OIB geochemistry and lithospheric thick-991

ness, which will underpin future efforts to invert the geochemical composition of volcanic992

lavas for the temperature and pressure of their mantle source (e.g., Klöcking et al., 2020;993

P. W. Ball et al., 2021), including those preserved from earlier periods of Earth’s his-994

tory, revealing changes in lithospheric thickness through space and time. Such point-wise995

constraints are also required by a new class of data-driven geodynamical simulation that996

aim to recover the spatial and temporal evolution of the mantle and its impact at the997

surface (e.g., Ghelichkhan et al., 2023; Bunge et al., 2023).998
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Figure S1. The world average and each oceanic basin’s lithospheric thickness as a func-

tion of time for the best-fitting RHCGW20 plate model and half-space model (Richards

et al., 2020). The halfspace model is coloured red, whereas the plate model is coloured

green. The 1125 oC, 1175 oC, and 1225 oC contours are represented by the dotted, solid,

and dashed lines, respectively.
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Table S1. Locations of OIB samples selected from Atlantic and Indian Ocean for this

study. In brackets is the name of the island chain/group to which each island belongs.

The age of the lithosphere at present day and the misfit are obtained from Seton et al.

(2020). The minimun and maximun eruption ages are obtained from multiple papers.

Island Longitude Latitude Ocean
Lithospheric Age at

Present Day (Myr)

Present-day Age

Misfit (Myr)

Eruption Age

Max (Myr)

Eruption Age

Min (Myr)

Reference

Ascension −14.3559 −7.9467 Atlantic 5.07 0.98 1.7 1.3 1, 2

Boa Vista (Cape Verde) −22.8078 16.0950 Atlantic 140.78 0.67 15 4.5 3

Brava (Cape Verde) −24.7024 14.8444 Atlantic 7.99 0.75 2 0 4

Corvo (Azores) −31.1080 39.7023 Atlantic 10.00 0.23 1.5 1 5

Deserta −16.5290 32.5594 Atlantic 140.99 0.24 3.6 1.7 6

Faial (Azores) −28.6965 38.5913 Atlantic 13.52 2.00 0.85 0.03 7

Fogo (Cape Verde) −24.3817 14.9133 Atlantic 128.52 0.63 3 0 4

Fuerteventura (Canary) −14.0537 28.3587 Atlantic 188.36 3.77 20.6 12.5 8

Gough −9.9353 −40.3189 Atlantic 29.70 0.37 1 0 9, 10

Gran Canaria (Canary) −15.5474 27.9202 Atlantic 176.60 2.75 14.5 9.5 8

Inaccessible −12.6733 −37.3004 Atlantic 20.25 0.27 6 1 11

Jan Mayen −8.2920 71.0318 Atlantic 9.85 2.40 7 7 12

La Gomera (Canary) −17.2194 28.1033 Atlantic 160.82 1.07 12 2.6 8

La Palma (Canary) −17.9058 28.7134 Atlantic 154.05 0.42 2 0.1 8

Lanzarote (Canary) −13.5900 29.0469 Atlantic 188.61 3.87 15.5 0 8

Maio (Cape Verde) −23.1680 15.2003 Atlantic 137.97 0.21 16 6 4

Pico (Azores) −28.3228 38.4580 Atlantic 16.05 2.40 0.3 0 5

Sal (Cape Verde) −22.9297 16.7266 Atlantic 140.09 0.81 15 1.1 4

Santiago (Cape Verde) −23.6205 15.0853 Atlantic 135.06 0.31 4.6 0.7 4

Sao Jorge (Azores) −28.0303 38.6410 Atlantic 16.72 1.95 1.3 0.2 13

Sao Miguel (Azores) −25.4970 37.7804 Atlantic 38.03 1.74 4 0.95 14, 15

St. Helena −5.7089 −15.9650 Atlantic 40.47 1.04 9 7 16

Terceira (Azores) −27.2206 38.7216 Atlantic 19.35 1.45 0.38 0.04 17

Tenerife (Canary) −16.8330 28.29 Atlantic 163.66 1.33 12 7.5 8

Tristan da Cunha −12.2777 −37.1052 Atlantic 21.66 0.27 0.21 0 9

Comoros 43.3333 −11.6455 Indian 141.23 3.14 3.65 0.01 18

Heard 73.5042 −53.0818 Indian 112.66 3.47 21 18 19

Ile aux Cochons (Crozet) 50.2315 −46.0988 Indian 72.99 0.58 0.4 0.2 20

Ile de l’Est (Crozet) 52.2197 −46.4359 Indian 70.06 0.41 8.75 2.9 20

Ile de la Possession (Crozet) 51.7378 −46.4269 Indian 70.48 0.37 5 0.5 20

Ile des Pingouins (Crozet) 50.4088 −46.4187 Indian 71.77 0.51 1.1 1.1 20, 21

Kerguelen 69.3545 −49.3948 Indian 64.84 2.67 34 0.1 20

Mauritius (Mascarene) 57.5522 −20.3484 Indian 66.13 4.05 7.8 1.9 22

Renuion (Mascarene) 55.5364 −21.1151 Indian 69.82 1.64 2.2 2 23

Rodrigues (Mascarene) 63.4272 −19.7245 Indian 13.23 0.39 1.5 1.5 24
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Table S2. As in Table. S1 but for islands on Pacific Ocean.

Island Longitude Latitude Ocean
Lithospheric Age at

Present Day (Myr)

Present-day Age

Misfit (Myr)

Eruption Age

Max (Myr)

Eruption Age

Min (Myr)

Reference

Aitutaki (Cook-Austral) −159.7853 −18.858 Pacific 107.18 3.10 8.4 1 25, 26

Alexander Selkirk (Juan Fernandez) −80.787 −33.761 Pacific 29.07 0.33 2.58 0.89 27

Bara Bora (Society) −151.7415 −16.5004 Pacific 80.46 1.00 3.39 3.12 25

Darwin (Galapagos) −92.0041 1.6787 Pacific 2.66 0.24 2 0.4 28

Easter −109.3497 −27.1127 Pacific 6.33 1.78 0.78 0.11 29

Eiao (Marquesas) −140.6690 −7.9790 Pacific 54.28 0.18 5.6 5.4 25, 31

Espanole (Galapagos) −89.6722 −1.3758 Pacific 14.83 0.46 3.5 3 28

Fangataufa (Pitcairn) −138.7427 −22.2353 Pacific 35.39 1.18 10.62 9.64 25

Fatu Hiva (Marquesas) −138.6489 −10.4905 Pacific 50.14 0.48 1.39 1.3 25, 30

Fernandina (Galapagos) −91.4821 −0.4124 Pacific 12.50 0.15 0.06 0.032 28

Floreana (Galapagos) −90.4313 −1.3083 Pacific 14.64 0.28 2.3 1.5 28

Gambier (Pitcairn) −134.9743 −23.1097 Pacific 29.48 0.37 5.63 5.16 25

Hawaii Main Island −155.6659 19.5429 Pacific 92.92 1.96 1 0 25

Hiva Oa (Marquesas) −139.0211 −9.7547 Pacific 50.67 0.25 2.48 1.58 25, 30

Huahine (Society) −150.9889 −16.7883 Pacific 77.33 0.81 2.58 2.01 25

Isabela (Galapagos) −91.1353 −0.8292 Pacific 13.51 0.15 0.8 0.5 28

Kahoolawe (Hawaii) −156.5961 20.5552 Pacific 94.17 1.28 1.42 0.99 32

Kauai (Hawaii) −159.5261 22.0964 Pacific 89.17 2.28 5.8 4.3 33

Lanai (Hawaii) −156.9273 20.8166 Pacific 94.62 1.27 1.6 1.55 34

Macquarie 158.8556 −54.6208 Pacific 20.02 0.00 11.5 9.7 35

Mangaia (Cook-Austral) −157.9166 −21.9352 Pacific 100.70 1.62 18.9 16.6 25, 26

Marchena (Galapagos) −90.4691 0.3184 Pacific 9.71 0.66 0.8 0.6 28

Maui (Hawaii) −156.3319 20.7984 Pacific 93.61 1.09 1.3 1.15 36

Maupiti (Society) −152.2620 −16.4382 Pacific 82.88 1.03 4.49 3.94 25

Mehetia (Society) −148.0669 −17.8775 Pacific 66.30 0.37 0.55 0.2 25

Molokai (Hawaii) −157.0226 21.1444 Pacific 91.36 1.47 1.8 1.3 25

Nihoa (Hawaii) −161.9218 23.0605 Pacific 92.20 3.64 7.5 6.9 25

Niihau (Hawaii) −160.1575 21.8921 Pacific 90.37 2.92 5.6 5.4 33

Nuku Hiva (Marquesas) −140.1421 −8.8605 Pacific 53.39 0.20 4.22 3.7 25, 30

Oahu (Hawaii) −158.0001 21.4389 Pacific 89.16 1.45 3.6 2.8 25

Pinta (Galapagos) −90.7628 0.5920 Pacific 7.94 0.43 0.8 0.7 28

Pitcairn −128.3242 −24.3768 Pacific 20.02 1.45 0.93 0.45 25

Raivavae (Cook-Austral) −147.6609 −23.8650 Pacific 62.28 2.46 7 4.8 25, 26

Rapa (Cook-Austral) −144.3313 −27.5811 Pacific 54.75 0.31 4.6 4 25, 26

Rarotonga (Cook-Austral) −159.7763 −21.2292 Pacific 102.65 2.95 1.8 1.2 25, 26

Rimatara (Cook-Austral) −152.7500 −22.6690 Pacific 84.87 1.39 2.6 1 25, 26

Robinson Crusoe (Juan Fernandez) −78.8580 −33.6377 Pacific 30.47 1.13 4.39 4.07 27

Ross 166.9603 −77.5247 Pacific 48.00 0.00 4 0.3 37

Rurutu (Cook-Austral) −151.3385 −22.4801 Pacific 83.76 1.57 12 8.4 25, 26

San Cristobal (Galapagos) −89.4364 −0.8675 Pacific 13.12 1.04 4 2.4 28

Santa Cruz (Galapagos) −90.3372 −0.6394 Pacific 12.96 0.23 1.1 0.03 28

Savaii (Samoan) −172.4319 −13.6598 Pacific 114.15 2.78 5 3 25

Tahiti (Society) −149.426 −17.6509 Pacific 71.47 0.49 1.23 0.48 25

Tubuai (Cook-Austral) −149.4500 −23.3788 Pacific 77.91 2.02 10.4 8.6 25, 26

Tutuila (Samoan) −170.7325 −14.3258 Pacific 113.82 3.74 1.4 1 25, 38

Ua Huka (Marquesas) −139.5484 −8.9078 Pacific 51.62 0.20 2.78 2.75 25, 30

Ua Pou (Marquesas) −140.0804 −9.4043 Pacific 53.59 0.18 2.95 2.95 25

Upolu (Samoan) −171.7349 −13.9134 Pacific 114.09 3.16 2.7 1.5 25, 38
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Table S3. References for oceanic island ages from Table. S1 and S2.

Number Reference

1 Caplan-Auerbach, Duennebier, and Ito (2000)

2 Harris, Bell, and Atkins (1983)

3 Dyhr and Holm (2010)

4 Holm et al. (2008)

5 França et al. (2006)

6 Schwarz, Klügel, and Wohlgemuth-Ueberwasser (2004)

7 Hildenbrand et al. (2012)

8 Carracedo et al. (1998)

9 O’Connor and le Roex (1992)

10 O’Connor and Jokat (2015)

11 Cliff, Baker, and Mateer (1991)

12 Haase, Devey, Mertz, Stoffers, and Garbe-Schönberg (1996)

13 Millet, Doucelance, Baker, and Schiano (2009)

14 Abdel-Monem, Fernandez, and Boone (1975)

15 Johnson et al. (1998)

16 Chaffey, Cliff, and Wilson (1989)

17 Calvert, Moore, McGeehin, and da Silva (2006)

18 Hajash and Armstrong (1972)

19 Weis et al. (2002)

20 Recq, Goslin, Charvis, and Operto (1998)

21 Camps, Henry, Prevot, and Faynot (2001)

22 R. A. Duncan (2002)

23 Paul, White, and Blichert-Toft (2005)

24 Upton, Wadsworth, and Newman (1967)

25 Clouard and Bonneville (2005)

26 R. A. Duncan and McDougall (1976)

27 Stuessy, Foland, Sutter, Sanders, and Silva O (1984)

28 Geist, Snell, Snell, Goddard, and Kurz (2014)

29 Vezzoli and Acocella (2009)

30 R. A. Duncan and McDougall (1974)

31 Caroff et al. (1995)

32 Fodor, Frey, Bauer, and Clague (1992)

33 Cousens and Clague (2015)

34 Leonhardt, McWilliams, Heider, and Soffel (2009)

35 R. Duncan and Varne (1988)

36 Clague et al. (1989)

37 Esser, Kyle, and McIntosh (2004)

38 Natland and Turner (1985)
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Table S4. Mean lithospheric thickness estimates at the time of eruption for off-axis

oceanic islands in the Atlantic and Indian Ocean.

Island Ocean
Global

Plate Model

Basin-based

Plate Model

Seismology
Seismolgy

Corrected

Ascension Atlantic 25.92 26.05 55.98 54.18

Boa Vista (Cape Verde) Atlantic 105.52 118.29 82.96 75.01

Brava (Cape Verde) Atlantic 34.32 34.2 86.21 84.79

Corvo (Azores) Atlantic 37.79 37.85 50.96 49.29

Deserta Atlantic 105.86 119.75 92.85 89.46

Faial (Azores) Atlantic 45.03 44.89 50.37 49.79

Fogo (Cape Verde) Atlantic 104.97 117.68 87.31 85.46

Fuerteventura (Canary) Atlantic 112.94 123.32 93.49 81.21

Gough Atlantic 64.56 64.59 80.94 80.27

Gran Canaria (Canary) Atlantic 109.93 122.58 90.67 81.53

Inaccessible Atlantic 50.21 50.11 47.36 42.11

Jan Mayen Atlantic 23.23 23.14 57.15 48.36

La Gomera (Canary) Atlantic 106.73 121.62 86.04 80.17

La Palma (Canary) Atlantic 106.71 121.59 85.26 83.92

Lanzarote (Canary) Atlantic 116.49 124.12 93.56 87.12

Maio (Cape Verde) Atlantic 105.16 117.83 86.29 77.55

Pico (Azores) Atlantic 49.12 48.94 53.35 53.16

Sal (Cape Verde) Atlantic 105.48 118.76 80.76 74

Santiago (Cape Verde) Atlantic 105.57 118.56 85.45 83

Sao Jorge (Azores) Atlantic 49.16 49.01 51.65 50.67

Sao Miguel (Azores) Atlantic 70.77 70.98 68.28 65.87

St. Helena Atlantic 67.92 67.82 81.68 75.1

Terceira (Azores) Atlantic 53.3 53.12 57.57 57.32

Tenerife (Canary) Atlantic 106.79 121.78 87.38 79.77

Tristan da Cunha Atlantic 56.26 56.22 48.22 48.08

Comoros Indian 106.04 97.25 87.73 85.61

Heard Indian 100.51 94.1 99.31 85.4

Ile aux Cochons (Crozet) Indian 94.78 90.24 67.32 67.02

Ile de l’Est (Crozet) Indian 91.01 87.62 72.1 66.64

Ile de la Possession (Crozet) Indian 92.73 89.11 70.6 68.05

Ile des Pingouins (Crozet) Indian 93.65 90.02 67.32 66.25

Kerguelen Indian 80.93 79.26 71.7 52.45

Mauritius (Mascarene) Indian 89.54 86.81 76.76 72.57

Renuion (Mascarene) Indian 92.69 88.88 84.59 82.57

Rodrigues (Mascarene) Indian 42.77 42.89 59.93 58.26
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Table S5. Mean lithospheric thickness estimates at the time of eruption for off-axis

oceanic islands in the Pacific Ocean.

Island Ocean
Global

Plate Model

Basin-based

Plate Model

Seismology
Seismolgy

Corrected

Aitutaki (Cook-Austral) Pacific 102.41 100.17 84.37 80.46

Alexander Selkirk (Juan Fernandez) Pacific 62.68 62.54 63.91 62.1

Bara Bora (Society) Pacific 96.4 95.13 73.34 70.41

Darwin (Galapagos) Pacific 18.26 18.17 42.86 40.91

Easter Pacific 31.98 32.06 44.91 44.24

Eiao (Marquesas) Pacific 81.8 81.55 79.35 74.71

Espanole (Galapagos) Pacific 42.67 42.5 46.28 41.28

Fangataufa (Pitcairn) Pacific 60.39 60.5 80.94 72.44

Fatu Hiva (Marquesas) Pacific 81.59 81.48 68 66.7

Fernandina (Galapagos) Pacific 43.92 43.99 44.67 44.6

Floreana (Galapagos) Pacific 44.46 44.48 46.72 43.91

Gambier (Pitcairn) Pacific 59.28 59.4 85.15 80.74

Hawaii Main Island Pacific 100.51 98.53 81.38 80.69

Hiva Oa (Marquesas) Pacific 81.53 81.3 70.38 68.49

Huahine (Society) Pacific 95.52 94.36 73.77 71.71

Isabela (Galapagos) Pacific 44.56 44.52 45.56 44.59

Kahoolawe (Hawaii) Pacific 100.47 98.7 73.91 72.81

Kauai (Hawaii) Pacific 98.63 96.96 81.5 77.31

Lanai (Hawaii) Pacific 100.71 98.81 73.91 72.49

Macquarie Pacific 38.85 38.95 76.44 66.89

Mangaia (Cook-Austral) Pacific 98.23 96.53 83.35 68.31

Marchena (Galapagos) Pacific 38.22 38.29 43.46 42.36

Maui (Hawaii) Pacific 100.26 98.59 73.93 72.82

Maupiti (Society) Pacific 96.85 95.54 74.45 70.69

Mehetia (Society) Pacific 91.91 90.99 75.94 75.55

Molokai (Hawaii) Pacific 99.95 98.17 74.25 72.86

Nihoa (Hawaii) Pacific 98.54 97.11 81.62 75.69

Niihau (Hawaii) Pacific 98.66 97.26 84.98 80.48

Nuku Hiva (Marquesas) Pacific 82.41 82 74.98 71.47

Oahu (Hawaii) Pacific 98.9 97.34 80.66 77.94

Pinta (Galapagos) Pacific 34.75 34.71 43.19 42

Pitcairn Pacific 53.36 53.62 54.35 53.5

Raivavae (Cook-Austral) Pacific 86.64 86.27 73.62 68.23

Rapa (Cook-Austral) Pacific 82.81 82.59 68.14 63.91

Rarotonga (Cook-Austral) Pacific 102.13 100.09 84.42 82.83

Rimatara (Cook-Austral) Pacific 98.3 96.74 71.62 69.96

Robinson Crusoe (Juan Fernandez) Pacific 61.59 61.59 64.11 59.64

Ross Pacific 79.49 79.24 59.08 56.62

Rurutu (Cook-Austral) Pacific 94.89 94.09 72.2 62.33

San Cristobal (Galapagos) Pacific 39.81 39.9 44.73 39.61

Santa Cruz (Galapagos) Pacific 43.86 43.88 45.38 44.52

Savaii (Samoan) Pacific 103.4 101.19 71.48 67.74

Tahiti (Society) Pacific 93.77 92.91 74.35 73.56

Tubuai (Cook-Austral) Pacific 92.91 92.17 73.24 64.29

Tutuila (Samoan) Pacific 103.73 101.52 81.67 80.46

Ua Huka (Marquesas) Pacific 81.83 81.6 73.76 71.28

Ua Pou (Marquesas) Pacific 82.92 82.84 74.4 71.77

Upolu (Samoan) Pacific 103.61 101.32 73.65 71.77
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Figure S2. Magma density v.s. MgO content, calculated from Petrolog3 (Danyushevsky

& Plechov, 2011), from fractionation at 1 and 3 kbar, respectively. The fractional crystalli-

sation model is taken from Ariskin et al. (1993). Olivine crystallises first, then othropy-

roxene and plagioclase. Clinopyroxene forms at last. The primary magma composition is

taken from Clague et al. (1991).
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Figure S3. Preferred kink depths for geochemical parameters that are optimally fitted

by bi-linear models. Circles with errors = mean and uncertainty range, where the error

is equal to two standard deviations of likely kink depths. (a) Results for lithospheric

thickness estimates obtained from basin-specific plate models; orange dashed line = av-

erage kink depth; red dashed lines = near-solidus spinel-garnet transition depths from

experimental petrology (Robinson & Wood, 1998; Klemme & O’Neill, 2000; Tomlinson &

Holland, 2021); blue shading = bi-linear trends dominated by melt-fraction effects; green

shading = bi-linear trends affected by a combination of melt fraction and spinel-garnet

transition depth. (b) Same for lithospheric thicknesses estimated from seismic tomogra-

phy.
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Figure S4. (a-d) log10E1 − log10E0 and (e-f) log10E2 − log10E1 values for major, trace

elements and λs in OIBs, using all data (red) as well as datasets with Iceland samples

removed (orange), Hawaii samples removed (green), and both sample sets removed (blue).

Data in panels (a, b, e, f) are raw OIB compositions and data in panel (c, d, g, h) are

fractionation corrected. Lithospheric thickness is estimated using the basin-based plate

model (left column) and seismic data (right column). The key threshold value of 2 is

represented by dashed horizontal lines, meaning that if the evidence difference of two

models is larger than 2, the first model is statistically more favourable. For illustrative

purposes, evidence values exceeding 20 are capped. When including all data, using basin-

specific plate models and applying fractionation correction, parameters shaded in grey

are best fitted by bi-linear models, and parameters without shading are best fitted by

bi-linear models. March 28, 2024, 5:21am
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Figure S5. As in Figure S4 but lithospheric thickness is estimated using the global

plate model (left column) and seismic data corrected for re-thickening (right column).
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Figure S6. The predicted fraction of olivine that has crystallised from the primitive

magma to form the observed OIB compositions. Calculation is performed in Petrolog3

(Danyushevsky & Plechov, 2011).
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Figure S7. Statistical evidence evaluation results for SiO2 data, including all sample

clusters, using the basin-based plate model, and corrected for the impact of fractional

crystallisation. Fitting results are obtained using: (a) a constant model; (b) a linear

model; and (c) a bi-linear model. The mean curve is represented by the yellow line, with

probability density indicated via blue shading. Panel (d) shows a histogram of the depth

of the breakpoint in the bi-linear model, with the yellow vertical line indicating the mean

value.
March 28, 2024, 5:21am
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Figure S8. As in Figure S7 but for non-fractionation corrected SiO2 dataset.
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Figure S9. Statistical evidence evaluation results for incompatible elements, but

excluding Icelandic and Hawaii samples. Data and panel contents same as for Figure 9 in

the main text.
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Figure S10. Statistical evidence evaluation results for incompatible elements, but

excluding Icelandic and Hawaii samples. Data and panel contents same as for Figure 9 in

the main text.
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Figure S11. The relationship between lithospheric thickness and the potential temper-

ature of OIB sources estimated from geochemical constraints of (a) Putirka (2008), (b)

Bao et al. (2022) and (c) Ball et al. (2021). Localities in the Atlantic, Pacific and Indian

Oceans are represented by green, blue and red circles, respectively.
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Table S6. λ2 values for a two-phase melting model at different Fgrt, Fspl and starting

melting pressure. REE concentrations in primitive mantle are fromMcKenzie and O’Nions

(1995), and REE concentrations in depleted mantle are from Workman and Hart (2005).

Python scripts are available online, as indicated in the Open Research Section.

Fgrt

Fspl
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

3 GPa Primitive Depleted

0.00 – 27.34 22.00 17.40 13.49 10.22 7.52 5.29 3.46 1.98 – 16.36 11.02 6.42 2.51 -0.76 -3.47 -5.70 -7.52 -9.00

0.01 14.09 16.84 14.27 11.29 8.55 6.18 4.20 2.55 1.20 0.10 3.10 5.86 3.29 0.31 -2.43 -4.80 -6.79 -8.43 -9.78 -10.88

0.02 9.54 10.43 8.76 6.69 4.74 3.03 1.59 0.39 -0.59 -1.38 -1.45 -0.55 -2.23 -4.29 -6.24 -7.95 -9.39 -10.59 -11.57 -12.37

0.03 5.78 5.90 4.68 3.22 1.83 0.60 -0.43 -1.29 -1.98 -2.54 -5.20 -5.08 -6.30 -7.76 -9.16 -10.38 -11.42 -12.27 -12.97 -13.52

0.04 2.80 2.59 1.67 0.62 -0.37 -1.24 -1.97 -2.57 -3.04 -3.41 -8.18 -8.39 -9.31 -10.36 -11.36 -12.22 -12.95 -13.55 -14.02 -14.39

0.05 0.54 0.19 -0.52 -1.28 -1.99 -2.59 -3.10 -3.50 -3.80 -4.02 -10.45 -10.79 -11.50 -12.27 -12.97 -13.58 -14.08 -14.48 -14.78 -15.01

0.06 -1.07 -1.47 -2.04 -2.61 -3.11 -3.53 -3.87 -4.13 -4.31 -4.42 -12.05 -12.46 -13.02 -13.59 -14.09 -14.52 -14.85 -15.11 -15.29 -15.40

0.07 -2.09 -2.52 -3.00 -3.44 -3.81 -4.11 -4.33 -4.49 -4.58 -4.62 -13.07 -13.51 -13.98 -14.42 -14.79 -15.09 -15.32 -15.47 -15.56 -15.60

0.08 -2.56 -3.04 -3.47 -3.84 -4.14 -4.36 -4.52 -4.61 -4.64 -4.63 -13.55 -14.02 -14.45 -14.82 -15.12 -15.34 -15.50 -15.59 -15.63 -15.61

0.09 -2.54 -3.06 -3.50 -3.85 -4.12 -4.31 -4.43 -4.49 -4.50 -4.47 -13.52 -14.04 -14.48 -14.83 -15.10 -15.29 -15.41 -15.48 -15.49 -15.45

4 GPa

0.00 – 27.86 22.70 18.21 14.37 11.13 8.42 6.17 4.31 2.78 – 16.87 11.72 7.23 3.39 0.15 -2.56 -4.81 -6.67 -8.20

0.01 -2.20 17.22 15.33 12.43 9.68 7.26 5.21 3.50 2.08 0.91 -13.18 6.24 4.34 1.45 -1.30 -3.72 -5.77 -7.48 -8.90 -10.07

0.02 -7.50 8.64 8.90 7.36 5.57 3.89 2.42 1.18 0.14 -0.72 -18.48 -2.34 -2.08 -3.62 -5.42 -7.09 -8.56 -9.80 -10.84 -11.70

0.03 -12.08 1.86 3.49 3.01 2.02 0.98 0.01 -0.83 -1.54 -2.13 -23.06 -9.12 -7.49 -7.97 -8.96 -10.01 -10.97 -11.82 -12.52 -13.11

0.04 -15.97 -3.57 -1.03 -0.68 -1.01 -1.53 -2.07 -2.57 -3.00 -3.35 -26.95 -14.55 -12.01 -11.66 -11.99 -12.51 -13.05 -13.55 -13.98 -14.33

0.05 -19.24 -7.95 -4.79 -3.80 -3.59 -3.68 -3.86 -4.07 -4.25 -4.39 -30.22 -18.94 -15.77 -14.79 -14.57 -14.66 -14.84 -15.05 -15.23 -15.38

0.06 -21.95 -11.52 -7.92 -6.44 -5.79 -5.51 -5.40 -5.35 -5.33 -5.29 -32.93 -22.50 -18.91 -17.42 -16.77 -16.50 -16.38 -16.34 -16.31 -16.28

0.07 -24.19 -14.43 -10.54 -8.66 -7.66 -7.08 -6.72 -6.46 -6.25 -6.06 -35.17 -25.41 -21.52 -19.65 -18.65 -18.07 -17.70 -17.44 -17.23 -17.04

0.08 -26.02 -16.81 -12.71 -10.54 -9.26 -8.42 -7.84 -7.39 -7.03 -6.70 -37.00 -27.79 -23.70 -21.52 -20.24 -19.41 -18.82 -18.38 -18.01 -17.68

0.09 -27.50 -18.76 -14.53 -12.12 -10.60 -9.56 -8.79 -8.19 -7.68 -7.24 -38.49 -29.75 -25.51 -23.11 -21.59 -20.54 -19.77 -19.17 -18.66 -18.22

5 GPa

0.00 – 28.37 23.43 19.09 15.34 12.13 9.43 7.15 5.25 3.67 – 17.39 12.44 8.10 4.35 1.15 -1.56 -3.83 -5.73 -7.31

0.01 -3.11 19.25 17.01 13.95 11.08 8.57 6.43 4.62 3.12 1.86 -14.09 8.26 6.02 2.97 0.10 -2.41 -4.55 -6.36 -7.87 -9.12

0.02 -8.25 11.13 11.06 9.24 7.23 5.38 3.76 2.38 1.22 0.26 -19.24 0.14 0.07 -1.75 -3.75 -5.60 -7.22 -8.60 -9.76 -10.72

0.03 -12.78 4.41 5.84 5.07 3.83 2.56 1.41 0.41 -0.44 -1.15 -23.77 -6.57 -5.14 -5.91 -7.16 -8.42 -9.57 -10.57 -11.42 -12.13

0.04 -16.72 -1.13 1.36 1.44 0.85 0.09 -0.65 -1.32 -1.90 -2.38 -27.70 -12.11 -9.62 -9.55 -10.14 -10.89 -11.64 -12.31 -12.88 -13.37

0.05 -20.10 -5.72 -2.47 -1.71 -1.75 -2.07 -2.46 -2.84 -3.18 -3.46 -31.08 -16.71 -13.45 -12.69 -12.73 -13.05 -13.44 -13.82 -14.16 -14.45

0.06 -22.98 -9.55 -5.74 -4.42 -4.00 -3.95 -4.04 -4.17 -4.30 -4.40 -33.96 -20.53 -16.72 -15.40 -14.99 -14.93 -15.02 -15.15 -15.28 -15.39

0.07 -25.42 -12.74 -8.52 -6.76 -5.96 -5.59 -5.41 -5.32 -5.27 -5.22 -36.40 -23.73 -19.51 -17.74 -16.94 -16.57 -16.39 -16.31 -16.25 -16.20

0.08 -27.47 -15.43 -10.90 -8.77 -7.65 -7.01 -6.61 -6.33 -6.11 -5.92 -38.46 -26.41 -21.88 -19.76 -18.64 -17.99 -17.59 -17.31 -17.09 -16.90

0.09 -29.20 -17.68 -12.93 -10.51 -9.12 -8.24 -7.64 -7.19 -6.83 -6.51 -40.19 -28.66 -23.91 -21.49 -20.10 -19.22 -18.62 -18.17 -17.81 -17.50
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