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Abstract

Machine learning (ML) is used to build a bulk microphysical parameterization including ice processes. Simulations of the

Lagrangian super-particle model McSnow are used as training data. The machine learning performs a coarse-graining of the

particle-resolved microphysics to multi-category two-moment bulk equations. Besides mass and number, prognostic particle

properties (P3) like melt water, rime mass, and rime volume are predicted by the ML-based bulk model. The ML-based scheme

is tested with simulations of increasing complexity. As a box model, the ML-based bulk scheme can reproduce the simulations

of McSnow quite accurately. In 3d idealized squall line simulations, the ML-based P3-like scheme provides a more realistic

extended stratiform region when compared to the standard two-moment bulk scheme in ICON. In a realistic case study, the

ML-based scheme runs stably, but can not significantly improve the results. This shows that machine learning can be used to

coarse-grain super-particle simulations to a bulk scheme of arbitrary complexity.
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Key Points:5

• Machine learning is successfully applied to build a complex bulk ice microphysics6

scheme by coarse-graining output of a Lagrangian particle microphysics model.7

• The ML-based P3-like microphysics scheme improves the representation of the strat-8

iform region of an idealized squall line compared to a classic two-moment scheme.9

• The ML-based P3-like microphysics scheme runs stable and provides meaningful10

results in three-dimensional real-case simulations.11
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Abstract12

Machine learning (ML) is used to build a bulk microphysical parameterization includ-13

ing ice processes. Simulations of the Lagrangian super-particle model McSnow are used14

as training data. The machine learning performs a coarse-graining of the particle-resolved15

microphysics to multi-category two-moment bulk equations. Besides mass and number,16

prognostic particle properties (P3) like melt water, rime mass, and rime volume are pre-17

dicted by the ML-based bulk model. The ML-based scheme is tested with simulations18

of increasing complexity. As a box model, the ML-based bulk scheme can reproduce the19

simulations of McSnow quite accurately. In 3d idealized squall line simulations, the ML-20

based P3-like scheme provides a more realistic extended stratiform region when compared21

to the standard two-moment bulk scheme in ICON. In a realistic case study, the ML-22

based scheme runs stably, but can not significantly improve the results. This shows that23

machine learning can be used to coarse-grain super-particle simulations to a bulk scheme24

of arbitrary complexity.25

Plain Language Summary26

Numerical weather prediction and climate models need a description of unresolved27

cloud microphysical processes. Such microphysical parameterizations are usually formu-28

lated as systems of equations for bulk variables that describe the time evolution of clouds29

and precipitation. In this study, we use machine learning (ML) techniques to build such30

a parameterization. As input or training data simulations of a very detailed cloud model31

are used. This detailed model provides information not only on the mass and number32

of cloud particles but also other properties like the degree of melting or the mass of liq-33

uid drops frozen on the ice particles called rime mass. The machine learning approach34

can successfully construct the necessary statistical relations that are needed for micro-35

physical parameterization. This parameterization is then tested in simulations of increas-36

ing complexity. The new ML-based scheme provides physically reasonable solutions and37

improves the simulation of a line of thunderstorms38
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1 Introduction39

Developing parameterizations for numerical weather prediction (NWP) and climate40

models can be a tedious and time-consuming task (Jakob, 2010). Speeding up this de-41

velopment cycle is crucial for further progress in understanding and predicting regional42

climate change and improve NWP models to forecast hazardous and extreme weather43

events (Bauer, Stevens, & Hazeleger, 2021).44

Machine learning methods hold the promise for a more rapid model development45

cycle, for example, through a semi-automatic workflow from highly-resolved reference46

simulations to coarse-grained and computationally efficient algorithms. Machine learn-47

ing algorithms as an integral part of NWP and climate models may allow for better per-48

formance optimization and on-the-fly calibration with observations (Bauer, Dueben, et49

al., 2021). Machine learning methods have recently gained much attention in atmospheric50

modeling especially for emulators that help to improve the computational performance51

of the model (Ukkonen et al., 2020; Lagerquist et al., 2021; Chantry et al., 2021; Meyer,52

Grimmond, et al., 2022; Meyer, Hogan, et al., 2022; Ukkonen, 2022).53

Here we take a rather straightforward approach to machine learning in that we use54

supervised learning with fully connected neural nets applied to individual physical pro-55

cess rates. This approach has the advantage that it is conceptually very similar to clas-56

sic parameterizations, i.e., the result is an ODE system for the bulk variables (Seifert57

& Rasp, 2020; Gettelman et al., 2021). It also ensures mass conservation and allows a58

posteriori analysis of the ML representation of individual physical processes. In addi-59

tion, it can be applied at different model time steps and even horizontal resolutions with-60

out having to re-train the ML model. The main disadvantage of this simple approach61

to ML is that it is not as computationally efficient as ML methods could be if applied62

in a more advanced and state-of-the-art framework, e.g., using a UNet++ architecture63

(Lagerquist et al., 2021) or recurrent neural nets (Ukkonen, 2022). Our ML approach64

is quite similar to the use of look-up tables for microphysical process rates. The use of65

look-up tables has a long tradition in cloud microphysical modeling (Walko et al., 1995;66

Feingold et al., 1998). To avoid the term look-up-table they are sometimes even called67

bin-emulating schemes in cloud modeling literature (Khain et al., 2015), which should68

not mask the fact these are still bulk schemes with their intrinsic limitations.69
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Many of the currently available bin and bulk microphysical schemes have problems70

in representing the stratiform region of mesoscale convective systems like squall lines (Morrison71

et al., 2009; Xue et al., 2017). This is often attributed to the fact that they are based72

on a limited number of particle types like snow and graupel, whereas in nature the tran-73

sition from snow to graupel by riming, i.e. by accretion of supercooled cloud droplets,74

is continuous (Mosimann et al., 1994; Seifert et al., 2019). Morrison and Milbrandt (2015,75

MM15 hereafter) suggested to abandon such particle types completely and instead use76

prognostic particle properties (P3) especially the rime mass and the rime volume to rep-77

resent riming. The additional rime volume is important to predict rime density. Instan-78

taneous rime density is a function of temperature and Stokes number (Cober & List, 1993),79

but for a given particle the rime density depends on its history and therefore requires80

an additional prognostic variable. The importance of prognostic rime mass for the sim-81

ulation of deep convection is also discussed in Aligo et al. (2018). In their original P382

scheme, MM15 abandoned the multimodal representation that comes with multiple par-83

ticle classes, but later they presented a version of their scheme with multiple categories84

(Milbrandt & Morrison, 2016), and recently also a version of P3 with a triple-moment85

representation (Milbrandt et al., 2021). In addition, an extended variant of the P3 scheme86

with prognostic melt water on ice particles has been developed (Cholette et al., 2019,87

2020, 2023). Hence, the P3 approach represents the state-of-the-art of bulk microphys-88

ical parameterizations for high-resolution NWP and climate models.89

In the following, we explore whether we can derive or ’learn’ a P3-like scheme from90

Lagrangian super-particle simulations using standard machine learning methods. The91

aim is to build a semi-automatic workflow that generates a bulk microphysical scheme92

based on some a priori choices and simulations of the super-particle model McSnow.93

The paper is organized as follows: In section 2 we introduce the basic assumptions94

of the new ML-based P3-like microphysics scheme. In section 3 the super-particle model95

McSnow and the simulations that serve as training data are described. The actual struc-96

ture of the training data and the training process are discussed in section 4. Section 597

presents a comparison of McSnow and the ML-based bulk model. In section 6 the ML-98

based model is applied to idealized three-dimensional squall line simulations with the ICON99

model. Section 7 presents a realistic case study with ICON and a comparison of the ML-100

based bulk models with a classical two-moment bulk microphysics scheme. The paper101

ends with a Summary and Conclusions.102
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2 A priori choices for the ML-based P3-like microphysics103

To build an ML-based microphysics scheme, we have to make some a priori choices104

regarding the number of hydrometeor categories and the corresponding prognostic bulk105

variables. In contrast to MM15, we think that multimodality is ubiquitous in clouds be-106

cause the various pathways for the formation of precipitation-sized particles lead to the107

co-existence of various modes or particle types. Hence, our scheme has multiple parti-108

cle categories, but they have a clear and physically-based definition in terms of their for-109

mation mechanism. The cloud ice category comprises primary ice particles (monomers)110

which have only grown by depositional growth. Unrimed snow are aggregates of these111

primary crystals. Those two categories have only a two-moment representation with no112

additional properties. Then we have three categories that carry rime mass and rime vol-113

ume: rimed ice, rimed snow, and graupel. Whereas rimed ice and rimed snow are sim-114

ply the rimed monomers and rimed aggregates, the graupel originates from freezing of115

raindrops.116

The latter two categories have a prognostic liquid water mass to explicitly repre-117

sent melting and wet growth. Carrying unrimed ice (snow) and rimed ice (rimed snow)118

separately may sound unnecessary, given that we have prognostic rime mass, but due119

to the patchiness of supercooled liquid water a co-existence of rimed and unrimed par-120

ticles in the same grid volume is not impossible. The hydrometeor categories and the121

corresponding prognostic variables of the ML-based P3-like scheme are summarized in122

Table 2. The scheme has overall 23 prognostic variables: 18 for the ice phase, 4 for the123

liquid phase, and one additional tracer for tracking activated ice nuclei (Köhler & Seifert,124

2015). Note that the bulk classification in McSnow is different from the classes of the125

ML-based P3-like scheme in that the McSnow classification would allow a conversion from126

snow to graupel. In fact, this process is contained in the training data, but for the ML-127

based P3-like bulk scheme described in the current study, we decided not to allow snow-128

to-graupel conversion. Note that the particle classification in McSnow is only a diagnos-129

tic to analyze the simulations and generate training data for a bulk model. The bulk clas-130

sification does not affect the microphysical processes in McSnow, which is by construc-131

tion continuous and class-free.132

With 23 prognostic variables and a high level of complexity, this ML-based scheme133

is not primarily aimed at operational NWP, where computational efficiency is of the essence134
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Table 1. Prognostic variables of the super-particle model McSnow and corresponding bulk

variables of the ML-based P3-like scheme. Here ρi is the material density of ice and χ is the

super-particle multiplicity divided by air volume. The hydrometeor categories are defined in

Table 2.

Prognostic variables of McSnow super-particles

variable symbol note

ice mass mi increases by depositional growth

rime mass mr increases by riming

rime volume Vr changes obey instantaneous rime density

liquid mass m` increases by melting or collection of liquid drops

frozen mass mf increases by freezing of liquid mass

monomer number N number of ice monomers

multiplicity χ number of real particles per super-particle

Prognostic variables of ML-based P3-like bulk scheme for a hydrometeor category k

mass density qk sum of (mi +mr +mf +m`)χ

number density nk sum of χ

rime mass ψk sum of (mr +mf )χ

rime volume φk sum of (Vr +mf/ρi)χ

liquid mass `k sum of m`χ

but in cloud modeling, regional climate research and other applications that may care135

about a good representation of cloud microphysics. The large number of prognostic vari-136

ables make this scheme rather complicated, but quite suitable as a test case and proof-137

of-concept for the ML approach to parameterization development.138

3 Super-particle simulations139

The Lagrangian super-particle model McSnow (Brdar & Seifert, 2018) makes use140

of the Monte-Carlo algorithm of Shima et al. (2009) to simulate the collision and aggre-141

gation processes of hydrometeors. The super-particle approach allows for a direct rep-142

resentation of the evolution of the properties of individual hydrometeors. To do so, Mc-143

Snow carries multiple variables to describe each hydrometeor. These are the hydrom-144

eter state variables ice mass, rime mass, rime volume, number of monomers, frozen mass,145

and liquid mass (see Table 1). The ice mass increases due to depositional growth and146

determines the maximum dimension of the particle with the help of an empirical m-D147

relationship. Hence, in this configuration of McSnow, we do not employ the habit pre-148

–6–
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Table 2. Overview of the ML-based P3-like two-moment bulk microphysics scheme. The de-

gree of riming ξ is here defined as ξ = (mr +mf )/(mi +mr +mf +m`) including the frozen mass

mf .

class variables McSnow classification

unrimed ice qi, ni N = 1 and ξ = 0

unrimed snow qs, ns N > 1 and ξ = 0

rimed ice qri, nri, ψri, φri N = 1 and 0 < ξ ≤ 0.95

rimed snow qrs, nrs, ψrs, φrs, `rs N > 1 and 0 < ξ ≤ 0.95

graupel qg, ng, ψg, φg, `g ξ > 0.95

cloud droplets qc, nc mi +mr +mf = 0 and r < 40 µm

raindrops qr, nr mi +mr +mf = 0 and r ≥ 40 µm

diction of Welss et al. (2023). Rime mass and rime volume increase due to collision with149

supercooled liquid drops. The instantaneous rime density is parameterized following Cober150

and List (1993). The number of monomers increases by aggregation, i.e., collection of151

other ice particles. Finally, melting in McSnow is based on Rasmussen et al. (1984a, 1984b)152

and Rasmussen and Heymsfield (1987b, 1987a). Melting increases the liquid mass m`,153

which is a prognostic variable for each individual super-particle. Freezing of liquid drops154

uses a probabilistic interpretation of the parameterization of Barklie and Gokhale (1959).155

As secondary ice production, only Hallet-Mossop rime splintering is currently considered156

in McSnow (Hallett & Mossop, 1974; Field et al., 2017).157

We assume that all hydrometeors fall with their terminal fall velocity vt. The ter-158

minal fall velocities of all hydrometeors and also the collision efficiency Ec of all possi-159

ble mutual collisions are parameterized using the approach of Böhm (1992a, 1992b, 1992c,160

1994, 1999, 2004). Using Böhm’s theory provides a continuous and physically consistent161

dependency of the hydrometeor properties, like vt or Ec, and consequently the collision162

kernel K on the hydrometeor state variables. Welss et al. (2023) provide a more detailed163

discussion of Böhm’s theory in the framework of McSnow. Special considerations are nec-164

essary for the sticking efficiency of unrimed and rimed snow and graupel. Usually, the165

sticking efficiency of snow is parameterized as a function of temperature whereas the stick-166

ing efficiency of graupel is most often assumed to be small and constant. In McSnow a167

continuous parameterization as a function of temperature and degree of riming is applied,168

which is specified in Appendix A.169

–7–
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McSnow can be used in a one-dimensional version as in Brdar and Seifert (2018)170

and Bringi et al. (2020) and in two- and three-dimensional simulation as part of the ICON171

model (Siewert & Seifert, 2018). As training data for the machine learning approach, we172

need a broad range of environmental and microphysical parameters. Hence, two- or three-173

dimensional simulations would be far too expensive. Even the one-dimensional model174

is inefficient because it needs several hours of simulation time to spin up a quasi-equilibrium175

state. To overcome these obstacles, we have implemented a simple zero-dimensional box176

model that approximates the quasi-equilibrium state of the one-dimensional McSnow,177

but is computationally cheaper. The zero-dimensional McSnow describes a population178

of hydrometeors initialized as pristine ice of unrimed monomers that fall through a pre-179

described atmosphere. The sedimentation velocity of the box model is equal to the mass-180

weighted terminal fall velocity of all hydrometeors in the box. The atmospheric profile181

is the same as in Brdar and Seifert (2018), their Figure 6. While the box is falling through182

the atmosphere, the hydrometeors grow by depositional growth and mutual binary col-183

lisions. They encounter a layer of supercooled liquid drops and grow by riming. With-184

out the presence of liquid water, ice particles start melting when they reach the 0◦C level.185

As melting in McSnow is formulated by a quasi-equilibrium energy budget, large ice par-186

ticles can reach the wet growth regime in regions of high liquid water content. In the wet187

growth regime, a liquid water layer exists on the ice particles even at temperatures be-188

low 0 ◦C.189

The simulations described in the previous paragraph mimic the microphysical pro-190

cesses in a stratiform cloud including the stratiform regions of convective systems. In con-191

vective updrafts other processes, like freezing of raindrops and riming with raindrops are192

important or even dominant, which are not well represented in those simulations. To sam-193

ple the microphysical processes as they occur in convective clouds, the same atmospheric194

profile is used, but the box model is initialized near the surface with an arbitrarily cho-195

sen upward velocity of 5 m/s. This leads to the formation of raindrops in the parcel, which196

subsequently freeze and start riming. These simulations provide the data for microphys-197

ical processes as they happen within updraft cores of convective systems. When the up-198

draft parcel reaches a height of 0.95htop, the updraft ends, and the parcel enters the reg-199

ular sedimentation mode described above, where it falls with the mass-weighted sedimen-200

tation velocity of the hydrometeors. This is necessary to provide, for example, training201

data for the melting of graupel.202
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Table 3. Parameter hypercube of McSnow simulations for the training data. The random sam-

pling is based on uniform random variables r ∈ [0.1]. The parameters for additive sampling are

ch = 1 km and cr = 5 µm. Not all heights h1 and ∆h2 have been used with all domain tops htop.

Basic McSnow simulations

variable range of values random sampling unit

ice supersaturation Si 0.0, 0.2, 0.5 S∗
i = Si (1 + r) -

height h1 500, 1000 1500 h∗1 = h1 + C r m

height ∆h2 500, 1500, 2000 h∗2 = h1+∆h2 (1+r) m

droplet radius rc 5, 10, 15, 20, 25, 30 r∗c = rc + Cr µm

ice number density Ni 10, 20, 40, 80, 160, 320, 640 N∗
i = Ni(1 + r) dm−3

ice water content Qi 0.1, 0.2, 0.4 Q∗
i = Qi(1 + r) g cm−3

cloud water content Qc 0.1, 0.2, 0.4, 0.8 Q∗
c = Qc(1 + r) g cm−3

domain top htop 5500, 6500, 7500, 8500, 9500 - m

Updraft McSnow simulations

variable range of values random sampling C

ice supersaturation Si 0.0, 0.2 S∗
i = Si (1 + r) -

height h1 500, 1500, 2500 h∗1 = h1 + C r m

height ∆h2 2000, 4000 h∗2 = h1+∆h2 (1+r) m

droplet radius rc 5, 10, 15, 20, 25, 30 r∗c = rc + Cr µm

ice number density Ni 10, 20, 40, 80, 160, 320, 640 N∗
i = Ni(1 + r) dm−3

ice water content Qi 0.1, 0.2, 0.4 Q∗
i = Qi(1 + r) g cm−3

cloud water content Qc 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4 Q∗
c = Qc(1 + r) g cm−3

domain top htop 6000, 7000, 9000 - m

4 Training data and ML results203

To build a bulk microphysics scheme using a standard machine learning workflow,204

we first choose the prognostic variables of the desired scheme. Here we decided on a two-205

moment approach with seven particle categories, and rimed ice, rimed snow and grau-206

pel have additional prognostic variables for rime mass, rime volume, and liquid mass (see207

Table 2). As shown by Seifert and Rasp (2020, SR20 hereafter) the ML approach has208

no advantages for the warm-rain processes that determine the growth of cloud droplets209

and raindrops. Hence, we use existing parameterizations for the warm-rain processes based210

on Seifert and Beheng (2001) and Seifert (2008). Ice nucleation is parameterized using211

semi-empirical approaches and is not modified by machine learning. The ice nucleation212

active site (INAS) density approach of Ullrich et al. (2017) is used for heterogeneous ice213

nucleation, whereas homogeneous ice nucleation follows Kärcher et al. (2006).214

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

This leaves 55 process rates that need to be parameterized by the machine learn-215

ing approach. Those process rates include depositional growth and melting of ice par-216

ticles, and all collisional processes like aggregation among ice particles and riming of ice217

by collection of cloud droplets or raindrops. All those processes depend, on one hand,218

on the physical properties of the hydrometeors (terminal fall velocity, particle size dis-219

tribution) and change, on the other hand, the bulk properties of the ice categories. Ta-220

bles 4-6 summarize all those processes, the input variables (predictors or features) of the221

neural net, and the predicted process rates (output or labels). In addition to the 55 pro-222

cess rates (networks 1-27), the bulk sedimentation velocities are needed to quantify the223

precipitation fluxes of the particle categories (networks 28-32). To compare with obser-224

vations, an estimate of the radar reflectivity is needed that depends primarily on the 2nd225

mass moment. Hence, this also has to be estimated by a neural net (networks 33-37).226

Finally, for a consistent coupling with radiation, we need effective radii for each category227

(networks 38-42). The diagnostic neural nets are necessary because neither McSnow nor228

the ML-based model make any a priori assumptions about particle size distributions. Hence,229

all bulk particle properties have to be learned from the training data.230

All these networks are simple dense fully-connected multilayer perceptrons and the231

size for each network is specified in the Tables. The size has been determined by hyper-232

parameter study and subsequent testing with the 1d and 2d simulations that are described233

in the following sections. The network size is relevant for the computation time needed234

and large neural nets would make the scheme considerably more expensive. This is es-235

pecially important for processes that occur almost everywhere in a cloud, like deposi-236

tional growth, and less so for very special processes that occur rarely like melting of grau-237

pel.238

All 42 neural nets are regression models and directly provide the required physi-239

cal variable (process rate, sedimentation velocity, etc.). This proved to work well in this240

case for all processes except for the self-collection of unrimed snow. Specifically for this241

process, we found that a two-step approach as described by Gettelman et al. (2021) is242

indeed beneficial and improves the performance of the overall scheme. The two-step ap-243

proach uses a classifier network, which first determines whether the process rate is non-244

zero, followed by a regression network that estimates the actual process rate. Network245

no. 43 estimates the probability of self-collection of unrimed snow. Only where this prob-246

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

ability exceeds 0.5 the regression network no. 7 is applied to calculate the correspond-247

ing process rates.248

For all 55 process rates and the additional variables like sedimentation velocities,249

radar reflectivities, and effective radii, training data needs to be calculated from the Mc-250

Snow output. This is straightforward and involves only sums over super-particles. Hence,251

no additional assumptions, choices, or approximations are necessary at this stage. For252

a derivation, we refer to section 3 of SR20, who detail this step for the warm-rain pro-253

cesses.254

To generate a broad range of training samples, McSnow simulations are done for255

various atmospheric and microphysical conditions. Hence, we change the assumptions256

in the atmospheric profiles like domain height, height and thickness of the liquid layer,257

initial ice water content and ice number density of the parcel, the liquid water content258

and mean radius of the cloud droplets in the liquid layer, and the ice supersaturation259

outside of the liquid layer. Details are given in Table 3. This constitutes a multidimen-260

sional gridded hypercube from which we draw random samples. We did not perform a261

Latin hypercube sampling but drew samples in each box, which could be described as262

full hypercube sampling. Overall we have performed more than 20000 McSnow simula-263

tions for this study. The number of training and testing/validation samples for each pro-264

cess is given in Tables 4-6. These are of order 106 training samples for common processes265

like depositional growth, but the number drops down to 105 for many riming processes,266

and some processes that are rare or occur only in thin layers like self-collection of rimed267

ice or ice multiplication have only a few thousand training samples.268

For the training of the individual neural nets Tensorflow 2.1 has been used. We ran-269

domly select 70 % of the data for training, 15 % for testing during the training process,270

and 15 % for validation after the training process. This split of the data is done for each271

process independently. We choose the mean squared error (MSE) as loss function, ReLU272

activation, an initial learning rate of 1e-3, the Adam optimizer, and early stopping (with273

a patience parameter between 5 and 10 depending on the process, and restoration of the274

best weights). All those choices are fairly standard for such simple regression networks275

with Tensorflow, but they seem to work well in our case. The training, validation, and276

testing data are standardized using the mean and standard deviation to ensure that all277

features have zero mean and a standard deviation of one. Hence, we apply the transfor-278
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mation ζ̌ = (ζ − ζ̄)/σζ , where ζ is a feature vector with mean ζ̄ and standard devia-279

tion σζ , and ζ̌ is the standardized value of the feature.280

For most process rates, especially the collision rates, all dependencies are learned281

from the data. For some thermodynamic processes, we decided not to learn linear de-282

pendencies that are well-known. For example, the deposition rate is a linear function of283

the supersaturation Si. We do not have to infer that from data. Hence, this linear de-284

pendency is removed from the training data. This explains why NNs 1-5 have no depen-285

dency on water vapor or supersaturation. Similarly, for melting rates of the internal melt-286

ing, i.e. the melting within one particle category that converts ice or rime mass to liq-287

uid mass, we assume a linear dependency on the temperature deviation from the melt-288

ing point. The latter is an approximation but works better in this case, because the melt-289

ing layers can be thin and are then not sufficiently sampled by the training data.290

For most of the neural nets the mean absolute error (MAE) and mean squared er-291

ror (MSE) become sufficiently small. A value below 0.1 for MAE and below 0.05 for MSE292

is already sufficient given the complexity of the problem and the uncertainty of the as-293

sumptions made in such schemes. For some processes that are complicated but lack train-294

ing data, the errors remain larger. Some processes involving rimed ice show the largest295

uncertainty because rimed ice exists only in rather thin layers which limits the number296

of training samples. At the same time, rimed ice can change its properties quite strongly297

due to the variability in rime density. At least, for the most frequent and most impor-298

tant processes it is possible to have enough training data to achieve a good and robust299

approximation.300

5 Comparison with super-particle reference301

A first and already quite challenging test for the ML-based model is to reproduce302

the training data when the individual process rates are combined into a system of or-303

dinary differential equations (ODEs). This means that the process rates trained inde-304

pendently in the previous section constitute an ODE system and should reproduce the305

bulk variables of the McSnow simulation when used in concert. It is far from trivial that306

this works, because it requires that the process rates are sufficiently well approximated307

in a large part of the phase space. Hence, although we use the training data or very sim-308

ilar simulations for validation, this is a meaningful test for the ML-based model. The309
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four-equation warm-rain model investigated in SR20 partly failed this test, because al-310

though the results of the ML model were reasonable approximations of the reference model,311

they were inferior to a well-established analytic parameterization.312

Figures 1 and 2 present the results of such an ODE test of the ML-based micro-313

physics. Shown are vertical profiles of water content and the number density of the var-314

ious hydrometeor categories. As explained earlier, the vertical profiles are equivalent to315

time series, because the parcel (box model) falls through a prescribed atmospheric pro-316

file. The parcel starts with only unrimed cloud ice as initial condition. Soon unrimed317

snow forms by aggregation and starts to dominate the ice water content at 5000 m height,318

at 3500 m almost all cloud ice has been depleted. The unrimed snow reaches the liquid319

water layer at 3000 m height and almost instantaneously becomes rimed snow. Small amounts320

of unrimed ice and rimed ice exist within the liquid water zone. Unrimed ice can exist321

there as long the particles are smaller than the riming onset of approximately 100 µm.322

At 1500 m the particles reach the 0 ◦C level and the rimed snow melts into raindrops.323

The ML-based model can reproduce this archetypical behavior very well and the match324

with the original McSnow data is very good. The only small error is that the ML-based325

model is not able to produce sufficient amounts of unrimed and rimed ice in the liquid326

water zone. Note that the dotted lines, which represent the ODE system with the bulk327

process rates that would serve as training data (if this simulation would actually be part328

of the training data, which it is not), match the McSnow output even better and do cap-329

ture the unrimed and rimed ice in the liquid layer. Hence, this information is in prin-330

ciple contained in the training data. The profiles of the number densities are much more331

complicated and show larger differences between McSnow and the ML-based bulk model.332

Nevertheless, the qualitative behavior is captured well by the ML-based model. The num-333

ber densities show that the ML-based model does have some unrimed and rimed ice in334

the liquid water zone, but it is a factor 2-3 too low compared to McSnow. The profiles335

of the number densities also reveal some approximations that we made in the formula-336

tion of the bulk process rates at and below the melting level, and, hence, neither the train-337

ing data (dotted lines) nor the ML-based model (dashed lines) match the reference of338

McSnow (solid lines) perfectly for melting particles and raindrops. Figure 3 shows some339

of the bulk particle properties of rimed snow for the same simulation as Fig. 1. Here the340

rime fraction matches quite well between McSnow and the ML-based bulk scheme, but341

the rime density of rimed snow shows initially a too rapid increase but then it flattens342
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off and does not reach the same values as the reference. Melting happens in a rather thin343

layer of only 500 m, but at least the ML-based model does show a reasonable increase344

in melt fraction of rimed snow and, hence, captures the thickness of the melting layer345

quite well. Overall, the ML-based is able to pass this first test, because it provides a rea-346

sonable evolution of the microphysical variables including the prognostic particle prop-347

erties like rime fraction and melt fraction for this archetypical but highly idealized case.348

6 Squall line simulation with ICON349

To perform idealized squall line simulations with the new ML-based P3-like micro-350

physics, the scheme has been implemented in the ICON model (Zängl et al., 2015). For351

the ML-based scheme, the neural nets need to be evaluated in ICON as part of the model352

physics. To achieve this, the coefficients of all neural nets are stored in NetCDF files,353

which can easily be read into ICON. The evaluation of the neural nets, often called in-354

ference, is done using Fortran code originally developed for an ML-based satellite for-355

ward operator (Scheck, 2021). Other possible coupling strategies for using machine learn-356

ing in ICON are for example discussed in Arnold et al. (2023).357

To improve the efficiency of the implementation, especially on the NEC Aurora vec-358

tor architecture currently in use at DWD, index lists are generated for each process. The359

index lists collect the grid points at which the input variables relevant for that process360

are non-zero, and the neural nets are then only evaluated where a non-zero process rate361

can be expected. This improves the efficiency not only on vector machines because many362

processes are non-zero only in very small parts of the three-dimensional domain, e.g., in363

deep convective updrafts with supercooled liquid water in case of riming processes. With364

this implementation the computational effort is bearable, but the scheme is considerably365

slower than the SB2006 two-moment microphysics. To some extent, because it has more366

prognostic variables (23 compared to 13), but the most expensive part of the ML-based367

scheme is in fact the inference of the neural nets. Some more implementation details are368

given in Appendix B.369

To simulate a 3D idealized squall line the sounding of Weisman and Klemp (1982)370

is used with a linear wind profile from the surface to 2500 height and constant wind speed371

of 10 m/s above similar to Rotunno et al. (1988). The water vapor mixing ratio near the372

surface is 13 g/kg. The ICON simulation applies an R2B13 triangular icosahedral grid373
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corresponding to an equivalent grid spacing of 308 m and a limited-area domain of 1.5374

degree × 6.0 degree in the horizontal. The vertical grid has 128 levels with a domain top375

at 23 km and a damping layer starting at 20 km height. The TKE-based Mellor-Yamada376

level 2.5 boundary layer scheme is applied for vertical diffusion in combination with a377

2D Smagorinsky closure in the horizontal. The Phillips et al. (2008) ice nucleation pa-378

rameterization is used with constant number densities for dust, soot and organics given379

as ndust = 1.6 × 106 m−3, nsoot = 25 × 106 m−3 and norga = 30 × 106 m−3 similar to380

the ’high IN’ setting of Seifert et al. (2012). The CCN activation is parameterized based381

on Segal and Khain (2006) with NCN = 500× 106 m−3. In the following ICON simu-382

lations with the bulk two-moment scheme of Seifert and Beheng (2006, SB hereafter) are383

compared with the new ML-based P3-like bulk microphysics schemes.384

The spatial structure of the squall line can be quantified with help of the radar re-385

flectivity factor (dBZ). Observations often show a bimodal structure with high dBZ val-386

ues in the convective core and a secondary weaker maximum in the trailing stratiform387

regions (see e.g. Figure 3 of Xue et al. (2017)). The separation of these two regions with388

a clear minimum in between, is difficult to capture with atmospheric models as discussed389

by Morrison et al. (2009) and Xue et al. (2017). Figure 4 shows vertical cross-sections390

of the radar reflectivity factor for ICON simulations with the SB scheme and the ML-391

based P3-like scheme. Using the SB scheme results in a relatively narrow squall line, which392

is dominated by the convective core and has no clear separation in convective and strat-393

iform region. This is different for the ML-based P3-like scheme, which supports a more394

extended stratiform region with a more pronounced secondary maximum. Both micro-395

physical schemes provide a reasonable squall line structure, but the ML-based scheme396

can alleviate some of the deficiencies of the SB schemes.397

To achieve this improved spatial structure the ML-based scheme needs to be able398

to predict the evolution of the physical properties of the hydrometeors in the squall line.399

That the ML-based scheme is able to do this, is shown in Figure 5. The bulk rime frac-400

tion shows high values within the convective core where heavy riming occurs, the rime401

fraction decreases continuously within the stratiform region. This is reasonable, because402

little riming should happen outside the convective core, and particles with higher rime403

fraction have higher fall velocity and fall out more quickly. Decomposing the rime frac-404

tion in snow and graupel categories reveals that the rime fraction within the convective405

core is dominated by graupel, which has a rime fraction larger than 0.8. The stratiform406
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region is almost only rimed snow and the rime fraction of rimed snow shows a maximum407

just behind the convective core. From there it decreases continuously because strongly408

rimed particles are removed by sedimentation. A similar structure is seen in rime den-409

sity and the explanation is similar in the sense that riming is happening in the convec-410

tive core and particles with high rime density have higher fall speeds and are removed411

by sedimentation. This suggests that the ML-based P3-like scheme does in fact capture412

the main physical processes and dependencies correctly. A more detailed analysis would413

require validation with in-situ observations or polarimetric radar data, which is beyond414

the scope of the current study.415

Another interesting feature of the ML-based P3-like scheme is the explicit liquid416

mass of the rimed particle categories. For the squall line case, the liquid water fraction417

of rimed snow and graupel is shown in Figure 6. For rimed snow, the melting layer is418

roughly 2 km deep near the convective core and becomes thinner in the stratiform re-419

gions. This is again easily understood due to the larger and more heavily rimed parti-420

cles closer to the convective core. Graupel reaches the ground in the convective core with421

a liquid fraction of 0.5. For graupel, the ML-based model predicts wet graupel up to 6422

km height. This is physically possible because in zones of high supercooled liquid wa-423

ter, the riming rate becomes so large that the latent heat of freezing can no longer be424

dissipated by diffusion. This regime is called wet growth and is usually not represented425

in bulk microphysics schemes. The marginal liquid ratios between 0.1 and 0.01 below426

8 km height are due to pockets of supercooled liquid water that can occur locally. Based427

on the results above, we can conclude that the ML-based P3-like scheme passed this ide-428

alized squall line test and delivers the improvement that can be expected from the P3429

approach.430

7 Mesoscale simulation with ICON431

Machine learning models that are trained on simulation data may work well in ide-432

alized simulations as the squall line of the previous section, but can nevertheless fail when433

applied in a real-world situation. Hence, the next test is an example of an actual numer-434

ical weather prediction case using the ICON-D2 configuration of Deutscher Wetterdi-435

enst (DWD) similar to the operational regional forecast. The operational NWP system436

at DWD consists of a global ICON model, currently at 13 km grid spacing, with a Eu-437

ropean two-way nest at 6.5 km grid spacing (called ICON-EU), and the regional ICON-438
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D2 with approximately 2 km grid spacing over central Europe (Reinert et al., 2023). ICON439

uses an icosahedral unstructured mesh, which for ICON-D2 has 542040 cells on each of440

the 65 model levels, and a vertically stretched grid. For ICON-D2 the vertical grid spac-441

ing in the lowest levels is smaller than 100 m, but near the tropopause, it is approximately442

500 m (Reinert et al., 2023). The domain top is at 22 km height. Operationally ICON-443

D2 still uses a one-moment microphysics, but the pre-operational rapid update cycle (RUC)444

applies the SB two-moment microphysics. The RUC spins off from the one-moment anal-445

ysis at 0 UTC and performs its own analysis with the two-moment scheme using a lo-446

cal ensemble transform Kalman filter (LETKF, Schraff et al. (2016); Vobig et al. (2021)).447

Here we use the RUC analysis from 12 UTC to initialize forecasts for the afternoon of448

19 May 2022. Note that the analysis has only been done with the SB two-moment scheme,449

not with the new ML-based P3-like scheme. The latter is currently not possible, because450

it would require coupling the ML-based scheme with the radar forward operator EMVO-451

RADO (Zeng et al., 2016), which is beyond the scope of the current study. Forecasts are452

performed for 6 hours and compared with the European Opera radar reflectivity com-453

posite. We use a radar reflectivity factor in Rayleigh approximation for both microphysics454

schemes to allow a fair comparison. For the ML-based microphysics scheme the neural455

nets 33-37 provide the second mass moment of the particle size distribution, which is re-456

quired for the radar reflectivity factor in Rayleigh approximation.457

Figure 7 presents the column maximum radar reflectivity for 13:30 UTC. Note that458

the ICON-D2 domain used for these simulations is considerably larger than the area shown459

in the Figure. The Opera composite shows a squall line over the Netherlands and Bel-460

gium approaching Germany. The southern end of the line shows a narrow convective re-461

gion with high reflectivity values, to the north a larger stratiform region is visible. The462

ICON-D2 forecast with the SB two-moment scheme captures the overall structure of the463

convective system, but the convective cores are too weak and the stratiform region is too464

narrow and not as extended as in the observations. These are typical biases of ICON-465

D2 with the SB two-moment scheme, which are quite pronounced in this case. With the466

ML-based P3-like scheme the convective line at the southern end of the convective com-467

plex is even weaker, although higher reflectivity values occur within active convective468

cores. The stratiform region is more extended compared to SB but is more symmetric469

around the convective line and does not resemble the observations better than the sim-470

ulation using SB microphysics. Hence, in contrast to the idealized squall line, the ML-471
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based P3-like scheme does not improve over the SB scheme in this real-case application.472

The improved structure in the idealized squall line simulation is only apparent at the high473

spatial resolution of the 308 m mesh and deteriorates on coarser grids (not shown). In-474

creasing the resolution of the real-case simulation to a sub-km mesh would unfortunately475

be too costly with the ML-based microphysics as it is currently implemented. Hence, the476

result of this case study is undecisive. The ML-based P3-like scheme is stable and pro-477

vides a reasonable representation of the mesoscale convective system, but it can not im-478

prove over the SB two-moment scheme in this case. A simple explanation for this result479

is that the microphysics scheme is not the limiting factor for the forecast quality in this480

case. It is very likely that the model dynamics and especially the boundary layer scheme481

play an important role and contribute to the deficiencies of this ICON forecast.482

8 Summary and Conclusions483

Machine learning has been applied to build a complex bulk microphysics scheme,484

which predicts not only particle mass and number but detailed physical properties like485

rime mass, rime volume, and liquid mass following the P3 approach of Morrison and Mil-486

brandt (2015). Training data has been generated using idealized simulations with the487

super-particle model McSnow. Hence, the machine learning performs a coarse-graining488

of the detailed McSnow data to a bulk microphysics scheme. The human role in this pro-489

cess is twofold: First, to make an a priori choice of the prognostic equations, i.e. the num-490

ber of particle categories and the prognostic variables for each category. Second, to de-491

sign the McSnow simulations that provide the training data. Based on these two prepara-492

tory steps, the machine learning workflow is almost automatic and does not require much493

human intervention, except for some limited hyperparameter tuning. Standard regres-494

sion neural nets are sufficient for most processes. Only for the self-collection of unrimed495

snow, we found that a two-step classifier-regression approach as recommended by Gettelman496

et al. (2021) is superior to using only a regression neural net. The ML-based P3-like mi-497

crophysics scheme has been implemented in the ICON weather and climate model us-498

ing Fortran code for the inference of fully connected neural nets.499

The ML-based P3-like microphysics scheme has passed three relevant tests: First,500

it can reproduce simulations similar to the training data, which requires that the indi-501

vidual process rates work in concert to reproduce the behavior of McSnow in an ODE502

sense. This is by no means trivial as shown for example by SR20 for warm-rain micro-503
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physics. Second, the ML-based P3-like microphysics provides reasonable results for a 3d504

idealized squall line simulation with ICON. It can in some aspects improve over the SB505

two-moment scheme in that it produces a more realistic-looking extended stratiform re-506

gion with a secondary maximum in radar reflectivity. The ML-based scheme achieves507

this by predicting physically plausible rime mass and rime density of snow and graupel508

and corresponding sedimentation velocities. The ML-based P3-like scheme is even able509

to predict the wet growth regime of graupel within the convective core. Third, the ML-510

based scheme has been applied in a realistic forecast scenario with ICON on a 2 km grid511

to predict the evolution of a mesoscale convective system. In this case, the ML-based512

scheme runs stably over a large spatial domain and provides a reasonable representation513

of the cloud microphysics. Unfortunately, it is not able to improve over the SB two-moment514

scheme in the chosen case. Most likely, the microphysics is simply not the limiting fac-515

tor for the forecast quality of this mesoscale convective system, but instead, other model516

components are relevant as well and would have to be improved.517

In contrast to classic bulk microphysics parameterizations, the ML-based P3-like518

scheme does not explicitly make assumptions regarding particle geometries or particle519

size distributions. All this is learned from the McSnow simulations in a parameter-free520

way. This makes the ML approach flexible, but it requires that additional neural nets521

are trained for diagnostics like radar reflectivity or effective radius. For more complex522

diagnostics like polarimetric radar variables, which are very challenging for conventional523

bulk microphysics schemes, the ML approach could be promising, though.524

The ML approach chosen here has some disadvantages. First, the ML-based scheme525

ended up being computationally expensive. On one hand, simply because we decided to526

build a very complicated scheme with 23 prognostic variables. On the other hand, the527

implementation with individual neural nets for each physical process that have to be eval-528

uated at each grid point and each time step is rather inefficient. It should be possible529

to subsequently build an emulator of the ML-based scheme that would overcome these530

deficiencies. For example, by having fewer neural networks and taking model columns531

as input instead of individual grid points. Even the calculation of process tendencies can532

be questioned and instead, a direct mapping of state variables from one time step to the533

next could be implemented.534
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Second, the training data is based on rather simplistic box model simulations, which535

does not make full use of the super-particle model McSnow. McSnow can in principle536

be applied in 2d or even 3d ICON simulations. Hence, the current ML-based scheme could537

be used as a baseline model and more training data from 2d and 3d McSnow simulations538

could further improve the realism of the microphysical processes and their interaction.539

A third and more general issue of such ML-based schemes is that they do not al-540

low much a posteriori tuning of the model. Any change in the microphysical assump-541

tions like basic particle geometry or sticking or collision efficiencies, for example, would542

have to be done in McSnow. Then the full ML workflow has to be repeated including543

the production of the training data. This makes sensitivity studies to explore model un-544

certainties very time-consuming. In practice, NWP or climate models do require some545

a posteriori tuning to balance different physical processes and their biases. Common tun-546

ing parameters like intercept parameters of the particle size distribution, terminal fall547

velocity, or particle geometries cannot easily be modified in ML-based schemes. Chang-548

ing the bulk sedimentation velocity by a constant factor is possible, but would make the549

scheme inconsistent. This issue could only be overcome if the ML-based model could be550

further trained and improved within the atmospheric model itself. Preferably such an551

online training would be done with actual observations as part of a data assimilation sys-552

tem. First steps toward such an online training capability for ICON are currently be-553

ing implemented at DWD.554
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Figure 1. Vertical profiles of mass densities of the various particle classes of the ML-based

P3-like scheme. Shown is McSnow output (solid), the ODE solution using training data (dotted)

and the ODE solution of the ML-based scheme (dashed). Shown is a simulation with h1 = 1500

m, h2 = 3000 m, rc = 15 µm, Ni = 20 dm−3, Qi = 0.2 g cm−3, Qc = 0.1 g cm−3 and Si = 0.

Figure 2. As Figure 1, but for number densities.

Figure 3. Vertical profiles of particle properties of rimed snow. Shown is McSnow output

(solid), the ODE solution using training data (dotted), and the ODE solution of the ML-based

scheme (dashed).

Figure 4. Vertical cross section of radar reflectivity dBZ for the SB two-moment scheme (left)

and the ML-based P3-like scheme (right). Shown are averages along the y-direction after 300 min

simulation time.

Figure 5. Vertical cross sections of rime fraction (left) and rime density (right), of all hy-

drometeors (top), rimed snow (center) and graupel (bottom) as predicted by the ML-based

P3-like scheme. Shown are averages along the y-direction after 300 min simulation time.

Figure 6. Vertical cross section of the liquid water fraction of rimed snow (left) and graupel

(right) of the ML-based P3-like scheme. Shown are averages along the y-direction after 300 min

simulation time.

Figure 7. Column maximum radar reflectivity for 19 May 2022, 13:30 UTC for a central

European region. Shown is the Opera composite (left), the ICON-D2 simulation using the SB

two-moment microphysics (center) and ICON using the ML-based P3-like two-moment scheme

(right).
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Appendix A Sticking efficiency in McSnow555

There are some observations and laboratory measurements of the sticking efficiency556

of ice crystals as a function of temperature (Hosler & Hallgren, 1960; Mitchell, 1988; Ka-557

jikawa & Heymsfield, 1989; Connolly et al., 2012) but for graupel-graupel collisions or558

partially rimed snowflakes, the authors are not aware of any measurements. Phillips et559

al. (2015) discuss the dependency of the sticking efficiency on the collision kinetic en-560

ergy and, hence, provide a theoretical framework to explain the decrease of the sticking561

efficiency with increasing degree of riming. Due to the lack of data, a consistent physically-562

based parameterization is beyond the scope of this study. Nevertheless, a reasonable and563

continuous description is required to generate meaningful training data for the P3 ap-564

proach. In the current study, we use the degree of riming defined as565

ξ =
mr +mf

mr +mf +mi +m`
=
mr +mf

mtot
(A1)566

with the rime mass mr, the frozen mass mf , the ice (crystal) mass mi, the liquid mass567

m` and the total particle mass mtot.568

The following ad-hoc parameterization for the sticking efficiency Es of two parti-569

cles a and b has been used in the McSnow simulations:570

Es =


Ei, for ξa + ξb < ξ1

Eg, for ξa + ξb > ξ2

Ei
ξa+ξb−ξ2
ξ1−ξ2 + Eg

ξa+ξb−ξ1
ξ2−ξ1

(A2)571

with ξ1 = 0.01 and ξ2 = 0.9. Here Ei is the temperature-dependent piecewise linear572

sticking efficiency of unrimed crystals573

Ei =



0.07, for Tc ≥ 0 ◦C

−0.005 (Tc + 10) + 0.12, for 0 ◦C > Tc ≥ −10 ◦C

−0.040 (Tc + 15) + 0.32, for − 10 ◦C > Tc ≥ −15 ◦C

0.050 (Tc + 20) + 0.14, for − 15 ◦C > Tc ≥ −20 ◦C

0.0025 (Tc + 40) + 0.04, for − 20 ◦C > Tc ≥ −40 ◦C

0.02, for − 40 ◦C > Tc

(A3)574

where Tc is the temperature in degrees Celsius. This formula is largely based on data575

of Connolly et al. (2012) as shown by their Figure 14, but we intentionally decided on576
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the lower range of those measurements. This choice leads to a more pronounced trail-577

ing stratiform region of the idealized squall line.578

Eg = 0.01 (A4)579

is the sticking efficiency of graupel-graupel collisions. This sticking efficiency is only ap-580

plied to ice particles that have no liquid water at the particle surface. For melting par-581

ticles and in the wet growth regime the sticking efficiency is set to one in McSnow. Both,582

Ei and Eg, are often used as tuning parameters in cloud simulations. See, for example,583

the discussion in Karrer et al. (2021) for the sticking efficiency of aggregates.584

Appendix B Some implementation details in ICON585

To be able to run the ML-based P3-like scheme stably in ICON, a few constraints586

are necessary. The values of cloud liquid water content and mean cloud particle radius587

are limited to a range not far beyond the training data. For cloud liquid water this is588

only an upper bound of 20×10−3 kg m−3, which should rarely be reached. The cloud589

droplet radius is forced to be within 5-30 µm when passed to the neural networks. For590

the sedimentation velocities, upper and lower limits are imposed as always in the SB two-591

moment scheme. In addition, it is enforced that the sedimentation velocity of mass is592

larger than that for number. This is done by simply using the larger of the two veloc-593

ities provided by the neural net for mass, whereas the smaller one is used for number.594

For the sink term of cloud droplet or raindrop number by riming the mean mass is as-595

sumed to be constant as the NNs do not yet provide the information about the size of596

the collected liquid drops. All microphysical processes except diffusional growth (depo-597

sition/sublimation) are only calculated if the mass content of the hydrometeor class ex-598

ceeds 1 × 10−9 kg m−3. For self-collection of rimed snow lower limits of 1 × 10−5 kg599

m−3 and 10 m−3 have to be exceeded for mass and number density, respectively. Melt-600

ing is only calculated a long as the liquid fraction is below 0.99, then the remaining mass601

is instantly converted to rain. Conversion of rimed snow to rain by melting only hap-602

pens if the bulk liquid fraction exceeds 0.3. All processes that are only relevant in the603

mixed-phase regime, are only calculated in the temperature range 236 K to 273 K. Ice604

multiplication is restricted to 265.9 K and 270.1 K and limited to 100 m−3 s−1. The ML-605

based P3-like scheme is implemented in ICON as an extension of the SB two-moment606

scheme. The SB two-moment microphysics additionally enforces the particle sizes of each607

hydrometeor class to be within a physically meaningful range.608
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Böhm, J. P. (1992a). A general hydrodynamic theory for mixed-phase microphysics.623

Part I: drag and fall speed of hydrometeors. Atmos. Res., 27 (4), 253-274.624
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Kärcher, B., Hendricks, J., & Lohmann, U. (2006). Physically based parameteri-683

zation of cirrus cloud formation for use in global atmospheric models. J. Geo-684

phys. Res., 111 (D1).685

Karrer, M., Seifert, A., Ori, D., & Kneifel, S. (2021). Improving the representa-686

tion of aggregation in a two-moment microphysical scheme with statistics of687

multi-frequency doppler radar observations. Atmos. Chem. Phys., 21 (22),688

17133–17166.689

Khain, A., Beheng, K., Heymsfield, A., Korolev, A., Krichak, S., Levin, Z., . . . Yano,690

J.-I. (2015). Representation of microphysical processes in cloud-resolving691

models: Spectral (bin) microphysics versus bulk parameterization. Reviews of692

Geophysics, 53 (2), 247–322.693
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Potthast, R. (2016). Kilometre-scale ensemble data assimilation for the cosmo757

model (kenda). Quart. J. Roy. Met. Soc., 142 (696), 1453–1472.758

Segal, Y., & Khain, A. (2006). Dependence of droplet concentration on aerosol759

conditions in different cloud types: Application to droplet concentration pa-760

rameterization of aerosol conditions. J. Geophys. Res., 111 (D15).761

Seifert, A. (2008). On the parameterization of evaporation of raindrops as simulated762

by a one-dimensional rainshaft model. J. Atmos. Sci., 65 (11), 3608–3619.763

Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for simulat-764

ing autoconversion, accretion and selfcollection. Atmos. Res., 59-60 , 265–281.765

Seifert, A., & Beheng, K. D. (2006). A two-moment cloud microphysics param-766

eterization for mixed-phase clouds. Part 1: Model description. Meteorol. At-767

mos. Phys., 92 (1-2), 45–66.768
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Zängl, G., Reinert, D., Ŕıpodas, P., & Baldauf, M. (2015). The ICON (ICOsahe-815

dral Non-hydrostatic) modelling framework of DWD and MPI-M: Description816

of the non-hydrostatic dynamical core. Quart. J. Roy. Met. Soc., 141 (687),817

563–579.818

Zeng, Y., Blahak, U., & Jerger, D. (2016). An efficient modular volume-scanning819

radar forward operator for NWP models: description and coupling to the820

COSMO model. Quart. J. Roy. Met. Soc., 142 (701), 3234–3256.821

Appendix C Open Research822

The training data, the Python notebooks and NCL scripts are provided at Zenodo823

doi:10.5281/zenodo.10408950. The Python notebooks are also publicly accessible at824

https://gitlab.com/axelseifert/iceml. The Zenodo archive does in addition include825

the Fortran modules containing all the newly developed ICON code for the ML-based826

P3-like microphysics scheme. The Lagrangian microphysics model McSnow is part of the827

ICON modeling framework, which is a joint effort of Deutscher Wetterdienst (DWD) and828

the Max Planck Institute for Meteorology (MPI-M). ICON licenses for scientific use are829

available at no cost at https://code.mpimet.mpg.de/projects/iconpublic/. Sub-830

sequently, the access to the McSnow GIT archive can be granted by A.S or C.S.831

Acknowledgments832

The authors thank Jens-Olaf Beismann for help with the implementation and vector-833

ization of the neural nets in ICON and Leonhard Scheck for providing the Fortran code834

for the multilayer perceptron. The study contributes to the project FRAGILE of the SPP835

2115 Fusion of Radar Polarimetry and Numerical Atmospheric Modelling Towards an836

–33–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Improved Understanding of Cloud and Precipitation Processes funded by the Deutsche837

Forschungsgemeinschaft (DFG 492234709).838

–34–



Figures 1-7.









a) SB two-moment b) ML-based P3-like two-moment





a) liquid fraction of rimed snow b) liquid fraction of graupel





manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

An ML-based P3-like multimodal two-moment ice1

microphysics in the ICON model2
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Key Points:5

• Machine learning is successfully applied to build a complex bulk ice microphysics6

scheme by coarse-graining output of a Lagrangian particle microphysics model.7

• The ML-based P3-like microphysics scheme improves the representation of the strat-8

iform region of an idealized squall line compared to a classic two-moment scheme.9

• The ML-based P3-like microphysics scheme runs stable and provides meaningful10

results in three-dimensional real-case simulations.11
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Abstract12

Machine learning (ML) is used to build a bulk microphysical parameterization includ-13

ing ice processes. Simulations of the Lagrangian super-particle model McSnow are used14

as training data. The machine learning performs a coarse-graining of the particle-resolved15

microphysics to multi-category two-moment bulk equations. Besides mass and number,16

prognostic particle properties (P3) like melt water, rime mass, and rime volume are pre-17

dicted by the ML-based bulk model. The ML-based scheme is tested with simulations18

of increasing complexity. As a box model, the ML-based bulk scheme can reproduce the19

simulations of McSnow quite accurately. In 3d idealized squall line simulations, the ML-20

based P3-like scheme provides a more realistic extended stratiform region when compared21

to the standard two-moment bulk scheme in ICON. In a realistic case study, the ML-22

based scheme runs stably, but can not significantly improve the results. This shows that23

machine learning can be used to coarse-grain super-particle simulations to a bulk scheme24

of arbitrary complexity.25

Plain Language Summary26

Numerical weather prediction and climate models need a description of unresolved27

cloud microphysical processes. Such microphysical parameterizations are usually formu-28

lated as systems of equations for bulk variables that describe the time evolution of clouds29

and precipitation. In this study, we use machine learning (ML) techniques to build such30

a parameterization. As input or training data simulations of a very detailed cloud model31

are used. This detailed model provides information not only on the mass and number32

of cloud particles but also other properties like the degree of melting or the mass of liq-33

uid drops frozen on the ice particles called rime mass. The machine learning approach34

can successfully construct the necessary statistical relations that are needed for micro-35

physical parameterization. This parameterization is then tested in simulations of increas-36

ing complexity. The new ML-based scheme provides physically reasonable solutions and37

improves the simulation of a line of thunderstorms38
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1 Introduction39

Developing parameterizations for numerical weather prediction (NWP) and climate40

models can be a tedious and time-consuming task (Jakob, 2010). Speeding up this de-41

velopment cycle is crucial for further progress in understanding and predicting regional42

climate change and improve NWP models to forecast hazardous and extreme weather43

events (Bauer, Stevens, & Hazeleger, 2021).44

Machine learning methods hold the promise for a more rapid model development45

cycle, for example, through a semi-automatic workflow from highly-resolved reference46

simulations to coarse-grained and computationally efficient algorithms. Machine learn-47

ing algorithms as an integral part of NWP and climate models may allow for better per-48

formance optimization and on-the-fly calibration with observations (Bauer, Dueben, et49

al., 2021). Machine learning methods have recently gained much attention in atmospheric50

modeling especially for emulators that help to improve the computational performance51

of the model (Ukkonen et al., 2020; Lagerquist et al., 2021; Chantry et al., 2021; Meyer,52

Grimmond, et al., 2022; Meyer, Hogan, et al., 2022; Ukkonen, 2022).53

Here we take a rather straightforward approach to machine learning in that we use54

supervised learning with fully connected neural nets applied to individual physical pro-55

cess rates. This approach has the advantage that it is conceptually very similar to clas-56

sic parameterizations, i.e., the result is an ODE system for the bulk variables (Seifert57

& Rasp, 2020; Gettelman et al., 2021). It also ensures mass conservation and allows a58

posteriori analysis of the ML representation of individual physical processes. In addi-59

tion, it can be applied at different model time steps and even horizontal resolutions with-60

out having to re-train the ML model. The main disadvantage of this simple approach61

to ML is that it is not as computationally efficient as ML methods could be if applied62

in a more advanced and state-of-the-art framework, e.g., using a UNet++ architecture63

(Lagerquist et al., 2021) or recurrent neural nets (Ukkonen, 2022). Our ML approach64

is quite similar to the use of look-up tables for microphysical process rates. The use of65

look-up tables has a long tradition in cloud microphysical modeling (Walko et al., 1995;66

Feingold et al., 1998). To avoid the term look-up-table they are sometimes even called67

bin-emulating schemes in cloud modeling literature (Khain et al., 2015), which should68

not mask the fact these are still bulk schemes with their intrinsic limitations.69
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Many of the currently available bin and bulk microphysical schemes have problems70

in representing the stratiform region of mesoscale convective systems like squall lines (Morrison71

et al., 2009; Xue et al., 2017). This is often attributed to the fact that they are based72

on a limited number of particle types like snow and graupel, whereas in nature the tran-73

sition from snow to graupel by riming, i.e. by accretion of supercooled cloud droplets,74

is continuous (Mosimann et al., 1994; Seifert et al., 2019). Morrison and Milbrandt (2015,75

MM15 hereafter) suggested to abandon such particle types completely and instead use76

prognostic particle properties (P3) especially the rime mass and the rime volume to rep-77

resent riming. The additional rime volume is important to predict rime density. Instan-78

taneous rime density is a function of temperature and Stokes number (Cober & List, 1993),79

but for a given particle the rime density depends on its history and therefore requires80

an additional prognostic variable. The importance of prognostic rime mass for the sim-81

ulation of deep convection is also discussed in Aligo et al. (2018). In their original P382

scheme, MM15 abandoned the multimodal representation that comes with multiple par-83

ticle classes, but later they presented a version of their scheme with multiple categories84

(Milbrandt & Morrison, 2016), and recently also a version of P3 with a triple-moment85

representation (Milbrandt et al., 2021). In addition, an extended variant of the P3 scheme86

with prognostic melt water on ice particles has been developed (Cholette et al., 2019,87

2020, 2023). Hence, the P3 approach represents the state-of-the-art of bulk microphys-88

ical parameterizations for high-resolution NWP and climate models.89

In the following, we explore whether we can derive or ’learn’ a P3-like scheme from90

Lagrangian super-particle simulations using standard machine learning methods. The91

aim is to build a semi-automatic workflow that generates a bulk microphysical scheme92

based on some a priori choices and simulations of the super-particle model McSnow.93

The paper is organized as follows: In section 2 we introduce the basic assumptions94

of the new ML-based P3-like microphysics scheme. In section 3 the super-particle model95

McSnow and the simulations that serve as training data are described. The actual struc-96

ture of the training data and the training process are discussed in section 4. Section 597

presents a comparison of McSnow and the ML-based bulk model. In section 6 the ML-98

based model is applied to idealized three-dimensional squall line simulations with the ICON99

model. Section 7 presents a realistic case study with ICON and a comparison of the ML-100

based bulk models with a classical two-moment bulk microphysics scheme. The paper101

ends with a Summary and Conclusions.102
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2 A priori choices for the ML-based P3-like microphysics103

To build an ML-based microphysics scheme, we have to make some a priori choices104

regarding the number of hydrometeor categories and the corresponding prognostic bulk105

variables. In contrast to MM15, we think that multimodality is ubiquitous in clouds be-106

cause the various pathways for the formation of precipitation-sized particles lead to the107

co-existence of various modes or particle types. Hence, our scheme has multiple parti-108

cle categories, but they have a clear and physically-based definition in terms of their for-109

mation mechanism. The cloud ice category comprises primary ice particles (monomers)110

which have only grown by depositional growth. Unrimed snow are aggregates of these111

primary crystals. Those two categories have only a two-moment representation with no112

additional properties. Then we have three categories that carry rime mass and rime vol-113

ume: rimed ice, rimed snow, and graupel. Whereas rimed ice and rimed snow are sim-114

ply the rimed monomers and rimed aggregates, the graupel originates from freezing of115

raindrops.116

The latter two categories have a prognostic liquid water mass to explicitly repre-117

sent melting and wet growth. Carrying unrimed ice (snow) and rimed ice (rimed snow)118

separately may sound unnecessary, given that we have prognostic rime mass, but due119

to the patchiness of supercooled liquid water a co-existence of rimed and unrimed par-120

ticles in the same grid volume is not impossible. The hydrometeor categories and the121

corresponding prognostic variables of the ML-based P3-like scheme are summarized in122

Table 2. The scheme has overall 23 prognostic variables: 18 for the ice phase, 4 for the123

liquid phase, and one additional tracer for tracking activated ice nuclei (Köhler & Seifert,124

2015). Note that the bulk classification in McSnow is different from the classes of the125

ML-based P3-like scheme in that the McSnow classification would allow a conversion from126

snow to graupel. In fact, this process is contained in the training data, but for the ML-127

based P3-like bulk scheme described in the current study, we decided not to allow snow-128

to-graupel conversion. Note that the particle classification in McSnow is only a diagnos-129

tic to analyze the simulations and generate training data for a bulk model. The bulk clas-130

sification does not affect the microphysical processes in McSnow, which is by construc-131

tion continuous and class-free.132

With 23 prognostic variables and a high level of complexity, this ML-based scheme133

is not primarily aimed at operational NWP, where computational efficiency is of the essence134
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Table 1. Prognostic variables of the super-particle model McSnow and corresponding bulk

variables of the ML-based P3-like scheme. Here ρi is the material density of ice and χ is the

super-particle multiplicity divided by air volume. The hydrometeor categories are defined in

Table 2.

Prognostic variables of McSnow super-particles

variable symbol note

ice mass mi increases by depositional growth

rime mass mr increases by riming

rime volume Vr changes obey instantaneous rime density

liquid mass m` increases by melting or collection of liquid drops

frozen mass mf increases by freezing of liquid mass

monomer number N number of ice monomers

multiplicity χ number of real particles per super-particle

Prognostic variables of ML-based P3-like bulk scheme for a hydrometeor category k

mass density qk sum of (mi +mr +mf +m`)χ

number density nk sum of χ

rime mass ψk sum of (mr +mf )χ

rime volume φk sum of (Vr +mf/ρi)χ

liquid mass `k sum of m`χ

but in cloud modeling, regional climate research and other applications that may care135

about a good representation of cloud microphysics. The large number of prognostic vari-136

ables make this scheme rather complicated, but quite suitable as a test case and proof-137

of-concept for the ML approach to parameterization development.138

3 Super-particle simulations139

The Lagrangian super-particle model McSnow (Brdar & Seifert, 2018) makes use140

of the Monte-Carlo algorithm of Shima et al. (2009) to simulate the collision and aggre-141

gation processes of hydrometeors. The super-particle approach allows for a direct rep-142

resentation of the evolution of the properties of individual hydrometeors. To do so, Mc-143

Snow carries multiple variables to describe each hydrometeor. These are the hydrom-144

eter state variables ice mass, rime mass, rime volume, number of monomers, frozen mass,145

and liquid mass (see Table 1). The ice mass increases due to depositional growth and146

determines the maximum dimension of the particle with the help of an empirical m-D147

relationship. Hence, in this configuration of McSnow, we do not employ the habit pre-148
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Table 2. Overview of the ML-based P3-like two-moment bulk microphysics scheme. The de-

gree of riming ξ is here defined as ξ = (mr +mf )/(mi +mr +mf +m`) including the frozen mass

mf .

class variables McSnow classification

unrimed ice qi, ni N = 1 and ξ = 0

unrimed snow qs, ns N > 1 and ξ = 0

rimed ice qri, nri, ψri, φri N = 1 and 0 < ξ ≤ 0.95

rimed snow qrs, nrs, ψrs, φrs, `rs N > 1 and 0 < ξ ≤ 0.95

graupel qg, ng, ψg, φg, `g ξ > 0.95

cloud droplets qc, nc mi +mr +mf = 0 and r < 40 µm

raindrops qr, nr mi +mr +mf = 0 and r ≥ 40 µm

diction of Welss et al. (2023). Rime mass and rime volume increase due to collision with149

supercooled liquid drops. The instantaneous rime density is parameterized following Cober150

and List (1993). The number of monomers increases by aggregation, i.e., collection of151

other ice particles. Finally, melting in McSnow is based on Rasmussen et al. (1984a, 1984b)152

and Rasmussen and Heymsfield (1987b, 1987a). Melting increases the liquid mass m`,153

which is a prognostic variable for each individual super-particle. Freezing of liquid drops154

uses a probabilistic interpretation of the parameterization of Barklie and Gokhale (1959).155

As secondary ice production, only Hallet-Mossop rime splintering is currently considered156

in McSnow (Hallett & Mossop, 1974; Field et al., 2017).157

We assume that all hydrometeors fall with their terminal fall velocity vt. The ter-158

minal fall velocities of all hydrometeors and also the collision efficiency Ec of all possi-159

ble mutual collisions are parameterized using the approach of Böhm (1992a, 1992b, 1992c,160

1994, 1999, 2004). Using Böhm’s theory provides a continuous and physically consistent161

dependency of the hydrometeor properties, like vt or Ec, and consequently the collision162

kernel K on the hydrometeor state variables. Welss et al. (2023) provide a more detailed163

discussion of Böhm’s theory in the framework of McSnow. Special considerations are nec-164

essary for the sticking efficiency of unrimed and rimed snow and graupel. Usually, the165

sticking efficiency of snow is parameterized as a function of temperature whereas the stick-166

ing efficiency of graupel is most often assumed to be small and constant. In McSnow a167

continuous parameterization as a function of temperature and degree of riming is applied,168

which is specified in Appendix A.169
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McSnow can be used in a one-dimensional version as in Brdar and Seifert (2018)170

and Bringi et al. (2020) and in two- and three-dimensional simulation as part of the ICON171

model (Siewert & Seifert, 2018). As training data for the machine learning approach, we172

need a broad range of environmental and microphysical parameters. Hence, two- or three-173

dimensional simulations would be far too expensive. Even the one-dimensional model174

is inefficient because it needs several hours of simulation time to spin up a quasi-equilibrium175

state. To overcome these obstacles, we have implemented a simple zero-dimensional box176

model that approximates the quasi-equilibrium state of the one-dimensional McSnow,177

but is computationally cheaper. The zero-dimensional McSnow describes a population178

of hydrometeors initialized as pristine ice of unrimed monomers that fall through a pre-179

described atmosphere. The sedimentation velocity of the box model is equal to the mass-180

weighted terminal fall velocity of all hydrometeors in the box. The atmospheric profile181

is the same as in Brdar and Seifert (2018), their Figure 6. While the box is falling through182

the atmosphere, the hydrometeors grow by depositional growth and mutual binary col-183

lisions. They encounter a layer of supercooled liquid drops and grow by riming. With-184

out the presence of liquid water, ice particles start melting when they reach the 0◦C level.185

As melting in McSnow is formulated by a quasi-equilibrium energy budget, large ice par-186

ticles can reach the wet growth regime in regions of high liquid water content. In the wet187

growth regime, a liquid water layer exists on the ice particles even at temperatures be-188

low 0 ◦C.189

The simulations described in the previous paragraph mimic the microphysical pro-190

cesses in a stratiform cloud including the stratiform regions of convective systems. In con-191

vective updrafts other processes, like freezing of raindrops and riming with raindrops are192

important or even dominant, which are not well represented in those simulations. To sam-193

ple the microphysical processes as they occur in convective clouds, the same atmospheric194

profile is used, but the box model is initialized near the surface with an arbitrarily cho-195

sen upward velocity of 5 m/s. This leads to the formation of raindrops in the parcel, which196

subsequently freeze and start riming. These simulations provide the data for microphys-197

ical processes as they happen within updraft cores of convective systems. When the up-198

draft parcel reaches a height of 0.95htop, the updraft ends, and the parcel enters the reg-199

ular sedimentation mode described above, where it falls with the mass-weighted sedimen-200

tation velocity of the hydrometeors. This is necessary to provide, for example, training201

data for the melting of graupel.202
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Table 3. Parameter hypercube of McSnow simulations for the training data. The random sam-

pling is based on uniform random variables r ∈ [0.1]. The parameters for additive sampling are

ch = 1 km and cr = 5 µm. Not all heights h1 and ∆h2 have been used with all domain tops htop.

Basic McSnow simulations

variable range of values random sampling unit

ice supersaturation Si 0.0, 0.2, 0.5 S∗
i = Si (1 + r) -

height h1 500, 1000 1500 h∗1 = h1 + C r m

height ∆h2 500, 1500, 2000 h∗2 = h1+∆h2 (1+r) m

droplet radius rc 5, 10, 15, 20, 25, 30 r∗c = rc + Cr µm

ice number density Ni 10, 20, 40, 80, 160, 320, 640 N∗
i = Ni(1 + r) dm−3

ice water content Qi 0.1, 0.2, 0.4 Q∗
i = Qi(1 + r) g cm−3

cloud water content Qc 0.1, 0.2, 0.4, 0.8 Q∗
c = Qc(1 + r) g cm−3

domain top htop 5500, 6500, 7500, 8500, 9500 - m

Updraft McSnow simulations

variable range of values random sampling C

ice supersaturation Si 0.0, 0.2 S∗
i = Si (1 + r) -

height h1 500, 1500, 2500 h∗1 = h1 + C r m

height ∆h2 2000, 4000 h∗2 = h1+∆h2 (1+r) m

droplet radius rc 5, 10, 15, 20, 25, 30 r∗c = rc + Cr µm

ice number density Ni 10, 20, 40, 80, 160, 320, 640 N∗
i = Ni(1 + r) dm−3

ice water content Qi 0.1, 0.2, 0.4 Q∗
i = Qi(1 + r) g cm−3

cloud water content Qc 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4 Q∗
c = Qc(1 + r) g cm−3

domain top htop 6000, 7000, 9000 - m

4 Training data and ML results203

To build a bulk microphysics scheme using a standard machine learning workflow,204

we first choose the prognostic variables of the desired scheme. Here we decided on a two-205

moment approach with seven particle categories, and rimed ice, rimed snow and grau-206

pel have additional prognostic variables for rime mass, rime volume, and liquid mass (see207

Table 2). As shown by Seifert and Rasp (2020, SR20 hereafter) the ML approach has208

no advantages for the warm-rain processes that determine the growth of cloud droplets209

and raindrops. Hence, we use existing parameterizations for the warm-rain processes based210

on Seifert and Beheng (2001) and Seifert (2008). Ice nucleation is parameterized using211

semi-empirical approaches and is not modified by machine learning. The ice nucleation212

active site (INAS) density approach of Ullrich et al. (2017) is used for heterogeneous ice213

nucleation, whereas homogeneous ice nucleation follows Kärcher et al. (2006).214
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This leaves 55 process rates that need to be parameterized by the machine learn-215

ing approach. Those process rates include depositional growth and melting of ice par-216

ticles, and all collisional processes like aggregation among ice particles and riming of ice217

by collection of cloud droplets or raindrops. All those processes depend, on one hand,218

on the physical properties of the hydrometeors (terminal fall velocity, particle size dis-219

tribution) and change, on the other hand, the bulk properties of the ice categories. Ta-220

bles 4-6 summarize all those processes, the input variables (predictors or features) of the221

neural net, and the predicted process rates (output or labels). In addition to the 55 pro-222

cess rates (networks 1-27), the bulk sedimentation velocities are needed to quantify the223

precipitation fluxes of the particle categories (networks 28-32). To compare with obser-224

vations, an estimate of the radar reflectivity is needed that depends primarily on the 2nd225

mass moment. Hence, this also has to be estimated by a neural net (networks 33-37).226

Finally, for a consistent coupling with radiation, we need effective radii for each category227

(networks 38-42). The diagnostic neural nets are necessary because neither McSnow nor228

the ML-based model make any a priori assumptions about particle size distributions. Hence,229

all bulk particle properties have to be learned from the training data.230

All these networks are simple dense fully-connected multilayer perceptrons and the231

size for each network is specified in the Tables. The size has been determined by hyper-232

parameter study and subsequent testing with the 1d and 2d simulations that are described233

in the following sections. The network size is relevant for the computation time needed234

and large neural nets would make the scheme considerably more expensive. This is es-235

pecially important for processes that occur almost everywhere in a cloud, like deposi-236

tional growth, and less so for very special processes that occur rarely like melting of grau-237

pel.238

All 42 neural nets are regression models and directly provide the required physi-239

cal variable (process rate, sedimentation velocity, etc.). This proved to work well in this240

case for all processes except for the self-collection of unrimed snow. Specifically for this241

process, we found that a two-step approach as described by Gettelman et al. (2021) is242

indeed beneficial and improves the performance of the overall scheme. The two-step ap-243

proach uses a classifier network, which first determines whether the process rate is non-244

zero, followed by a regression network that estimates the actual process rate. Network245

no. 43 estimates the probability of self-collection of unrimed snow. Only where this prob-246
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ability exceeds 0.5 the regression network no. 7 is applied to calculate the correspond-247

ing process rates.248

For all 55 process rates and the additional variables like sedimentation velocities,249

radar reflectivities, and effective radii, training data needs to be calculated from the Mc-250

Snow output. This is straightforward and involves only sums over super-particles. Hence,251

no additional assumptions, choices, or approximations are necessary at this stage. For252

a derivation, we refer to section 3 of SR20, who detail this step for the warm-rain pro-253

cesses.254

To generate a broad range of training samples, McSnow simulations are done for255

various atmospheric and microphysical conditions. Hence, we change the assumptions256

in the atmospheric profiles like domain height, height and thickness of the liquid layer,257

initial ice water content and ice number density of the parcel, the liquid water content258

and mean radius of the cloud droplets in the liquid layer, and the ice supersaturation259

outside of the liquid layer. Details are given in Table 3. This constitutes a multidimen-260

sional gridded hypercube from which we draw random samples. We did not perform a261

Latin hypercube sampling but drew samples in each box, which could be described as262

full hypercube sampling. Overall we have performed more than 20000 McSnow simula-263

tions for this study. The number of training and testing/validation samples for each pro-264

cess is given in Tables 4-6. These are of order 106 training samples for common processes265

like depositional growth, but the number drops down to 105 for many riming processes,266

and some processes that are rare or occur only in thin layers like self-collection of rimed267

ice or ice multiplication have only a few thousand training samples.268

For the training of the individual neural nets Tensorflow 2.1 has been used. We ran-269

domly select 70 % of the data for training, 15 % for testing during the training process,270

and 15 % for validation after the training process. This split of the data is done for each271

process independently. We choose the mean squared error (MSE) as loss function, ReLU272

activation, an initial learning rate of 1e-3, the Adam optimizer, and early stopping (with273

a patience parameter between 5 and 10 depending on the process, and restoration of the274

best weights). All those choices are fairly standard for such simple regression networks275

with Tensorflow, but they seem to work well in our case. The training, validation, and276

testing data are standardized using the mean and standard deviation to ensure that all277

features have zero mean and a standard deviation of one. Hence, we apply the transfor-278
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mation ζ̌ = (ζ − ζ̄)/σζ , where ζ is a feature vector with mean ζ̄ and standard devia-279

tion σζ , and ζ̌ is the standardized value of the feature.280

For most process rates, especially the collision rates, all dependencies are learned281

from the data. For some thermodynamic processes, we decided not to learn linear de-282

pendencies that are well-known. For example, the deposition rate is a linear function of283

the supersaturation Si. We do not have to infer that from data. Hence, this linear de-284

pendency is removed from the training data. This explains why NNs 1-5 have no depen-285

dency on water vapor or supersaturation. Similarly, for melting rates of the internal melt-286

ing, i.e. the melting within one particle category that converts ice or rime mass to liq-287

uid mass, we assume a linear dependency on the temperature deviation from the melt-288

ing point. The latter is an approximation but works better in this case, because the melt-289

ing layers can be thin and are then not sufficiently sampled by the training data.290

For most of the neural nets the mean absolute error (MAE) and mean squared er-291

ror (MSE) become sufficiently small. A value below 0.1 for MAE and below 0.05 for MSE292

is already sufficient given the complexity of the problem and the uncertainty of the as-293

sumptions made in such schemes. For some processes that are complicated but lack train-294

ing data, the errors remain larger. Some processes involving rimed ice show the largest295

uncertainty because rimed ice exists only in rather thin layers which limits the number296

of training samples. At the same time, rimed ice can change its properties quite strongly297

due to the variability in rime density. At least, for the most frequent and most impor-298

tant processes it is possible to have enough training data to achieve a good and robust299

approximation.300

5 Comparison with super-particle reference301

A first and already quite challenging test for the ML-based model is to reproduce302

the training data when the individual process rates are combined into a system of or-303

dinary differential equations (ODEs). This means that the process rates trained inde-304

pendently in the previous section constitute an ODE system and should reproduce the305

bulk variables of the McSnow simulation when used in concert. It is far from trivial that306

this works, because it requires that the process rates are sufficiently well approximated307

in a large part of the phase space. Hence, although we use the training data or very sim-308

ilar simulations for validation, this is a meaningful test for the ML-based model. The309
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four-equation warm-rain model investigated in SR20 partly failed this test, because al-310

though the results of the ML model were reasonable approximations of the reference model,311

they were inferior to a well-established analytic parameterization.312

Figures 1 and 2 present the results of such an ODE test of the ML-based micro-313

physics. Shown are vertical profiles of water content and the number density of the var-314

ious hydrometeor categories. As explained earlier, the vertical profiles are equivalent to315

time series, because the parcel (box model) falls through a prescribed atmospheric pro-316

file. The parcel starts with only unrimed cloud ice as initial condition. Soon unrimed317

snow forms by aggregation and starts to dominate the ice water content at 5000 m height,318

at 3500 m almost all cloud ice has been depleted. The unrimed snow reaches the liquid319

water layer at 3000 m height and almost instantaneously becomes rimed snow. Small amounts320

of unrimed ice and rimed ice exist within the liquid water zone. Unrimed ice can exist321

there as long the particles are smaller than the riming onset of approximately 100 µm.322

At 1500 m the particles reach the 0 ◦C level and the rimed snow melts into raindrops.323

The ML-based model can reproduce this archetypical behavior very well and the match324

with the original McSnow data is very good. The only small error is that the ML-based325

model is not able to produce sufficient amounts of unrimed and rimed ice in the liquid326

water zone. Note that the dotted lines, which represent the ODE system with the bulk327

process rates that would serve as training data (if this simulation would actually be part328

of the training data, which it is not), match the McSnow output even better and do cap-329

ture the unrimed and rimed ice in the liquid layer. Hence, this information is in prin-330

ciple contained in the training data. The profiles of the number densities are much more331

complicated and show larger differences between McSnow and the ML-based bulk model.332

Nevertheless, the qualitative behavior is captured well by the ML-based model. The num-333

ber densities show that the ML-based model does have some unrimed and rimed ice in334

the liquid water zone, but it is a factor 2-3 too low compared to McSnow. The profiles335

of the number densities also reveal some approximations that we made in the formula-336

tion of the bulk process rates at and below the melting level, and, hence, neither the train-337

ing data (dotted lines) nor the ML-based model (dashed lines) match the reference of338

McSnow (solid lines) perfectly for melting particles and raindrops. Figure 3 shows some339

of the bulk particle properties of rimed snow for the same simulation as Fig. 1. Here the340

rime fraction matches quite well between McSnow and the ML-based bulk scheme, but341

the rime density of rimed snow shows initially a too rapid increase but then it flattens342
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off and does not reach the same values as the reference. Melting happens in a rather thin343

layer of only 500 m, but at least the ML-based model does show a reasonable increase344

in melt fraction of rimed snow and, hence, captures the thickness of the melting layer345

quite well. Overall, the ML-based is able to pass this first test, because it provides a rea-346

sonable evolution of the microphysical variables including the prognostic particle prop-347

erties like rime fraction and melt fraction for this archetypical but highly idealized case.348

6 Squall line simulation with ICON349

To perform idealized squall line simulations with the new ML-based P3-like micro-350

physics, the scheme has been implemented in the ICON model (Zängl et al., 2015). For351

the ML-based scheme, the neural nets need to be evaluated in ICON as part of the model352

physics. To achieve this, the coefficients of all neural nets are stored in NetCDF files,353

which can easily be read into ICON. The evaluation of the neural nets, often called in-354

ference, is done using Fortran code originally developed for an ML-based satellite for-355

ward operator (Scheck, 2021). Other possible coupling strategies for using machine learn-356

ing in ICON are for example discussed in Arnold et al. (2023).357

To improve the efficiency of the implementation, especially on the NEC Aurora vec-358

tor architecture currently in use at DWD, index lists are generated for each process. The359

index lists collect the grid points at which the input variables relevant for that process360

are non-zero, and the neural nets are then only evaluated where a non-zero process rate361

can be expected. This improves the efficiency not only on vector machines because many362

processes are non-zero only in very small parts of the three-dimensional domain, e.g., in363

deep convective updrafts with supercooled liquid water in case of riming processes. With364

this implementation the computational effort is bearable, but the scheme is considerably365

slower than the SB2006 two-moment microphysics. To some extent, because it has more366

prognostic variables (23 compared to 13), but the most expensive part of the ML-based367

scheme is in fact the inference of the neural nets. Some more implementation details are368

given in Appendix B.369

To simulate a 3D idealized squall line the sounding of Weisman and Klemp (1982)370

is used with a linear wind profile from the surface to 2500 height and constant wind speed371

of 10 m/s above similar to Rotunno et al. (1988). The water vapor mixing ratio near the372

surface is 13 g/kg. The ICON simulation applies an R2B13 triangular icosahedral grid373
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corresponding to an equivalent grid spacing of 308 m and a limited-area domain of 1.5374

degree × 6.0 degree in the horizontal. The vertical grid has 128 levels with a domain top375

at 23 km and a damping layer starting at 20 km height. The TKE-based Mellor-Yamada376

level 2.5 boundary layer scheme is applied for vertical diffusion in combination with a377

2D Smagorinsky closure in the horizontal. The Phillips et al. (2008) ice nucleation pa-378

rameterization is used with constant number densities for dust, soot and organics given379

as ndust = 1.6 × 106 m−3, nsoot = 25 × 106 m−3 and norga = 30 × 106 m−3 similar to380

the ’high IN’ setting of Seifert et al. (2012). The CCN activation is parameterized based381

on Segal and Khain (2006) with NCN = 500× 106 m−3. In the following ICON simu-382

lations with the bulk two-moment scheme of Seifert and Beheng (2006, SB hereafter) are383

compared with the new ML-based P3-like bulk microphysics schemes.384

The spatial structure of the squall line can be quantified with help of the radar re-385

flectivity factor (dBZ). Observations often show a bimodal structure with high dBZ val-386

ues in the convective core and a secondary weaker maximum in the trailing stratiform387

regions (see e.g. Figure 3 of Xue et al. (2017)). The separation of these two regions with388

a clear minimum in between, is difficult to capture with atmospheric models as discussed389

by Morrison et al. (2009) and Xue et al. (2017). Figure 4 shows vertical cross-sections390

of the radar reflectivity factor for ICON simulations with the SB scheme and the ML-391

based P3-like scheme. Using the SB scheme results in a relatively narrow squall line, which392

is dominated by the convective core and has no clear separation in convective and strat-393

iform region. This is different for the ML-based P3-like scheme, which supports a more394

extended stratiform region with a more pronounced secondary maximum. Both micro-395

physical schemes provide a reasonable squall line structure, but the ML-based scheme396

can alleviate some of the deficiencies of the SB schemes.397

To achieve this improved spatial structure the ML-based scheme needs to be able398

to predict the evolution of the physical properties of the hydrometeors in the squall line.399

That the ML-based scheme is able to do this, is shown in Figure 5. The bulk rime frac-400

tion shows high values within the convective core where heavy riming occurs, the rime401

fraction decreases continuously within the stratiform region. This is reasonable, because402

little riming should happen outside the convective core, and particles with higher rime403

fraction have higher fall velocity and fall out more quickly. Decomposing the rime frac-404

tion in snow and graupel categories reveals that the rime fraction within the convective405

core is dominated by graupel, which has a rime fraction larger than 0.8. The stratiform406

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

region is almost only rimed snow and the rime fraction of rimed snow shows a maximum407

just behind the convective core. From there it decreases continuously because strongly408

rimed particles are removed by sedimentation. A similar structure is seen in rime den-409

sity and the explanation is similar in the sense that riming is happening in the convec-410

tive core and particles with high rime density have higher fall speeds and are removed411

by sedimentation. This suggests that the ML-based P3-like scheme does in fact capture412

the main physical processes and dependencies correctly. A more detailed analysis would413

require validation with in-situ observations or polarimetric radar data, which is beyond414

the scope of the current study.415

Another interesting feature of the ML-based P3-like scheme is the explicit liquid416

mass of the rimed particle categories. For the squall line case, the liquid water fraction417

of rimed snow and graupel is shown in Figure 6. For rimed snow, the melting layer is418

roughly 2 km deep near the convective core and becomes thinner in the stratiform re-419

gions. This is again easily understood due to the larger and more heavily rimed parti-420

cles closer to the convective core. Graupel reaches the ground in the convective core with421

a liquid fraction of 0.5. For graupel, the ML-based model predicts wet graupel up to 6422

km height. This is physically possible because in zones of high supercooled liquid wa-423

ter, the riming rate becomes so large that the latent heat of freezing can no longer be424

dissipated by diffusion. This regime is called wet growth and is usually not represented425

in bulk microphysics schemes. The marginal liquid ratios between 0.1 and 0.01 below426

8 km height are due to pockets of supercooled liquid water that can occur locally. Based427

on the results above, we can conclude that the ML-based P3-like scheme passed this ide-428

alized squall line test and delivers the improvement that can be expected from the P3429

approach.430

7 Mesoscale simulation with ICON431

Machine learning models that are trained on simulation data may work well in ide-432

alized simulations as the squall line of the previous section, but can nevertheless fail when433

applied in a real-world situation. Hence, the next test is an example of an actual numer-434

ical weather prediction case using the ICON-D2 configuration of Deutscher Wetterdi-435

enst (DWD) similar to the operational regional forecast. The operational NWP system436

at DWD consists of a global ICON model, currently at 13 km grid spacing, with a Eu-437

ropean two-way nest at 6.5 km grid spacing (called ICON-EU), and the regional ICON-438
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D2 with approximately 2 km grid spacing over central Europe (Reinert et al., 2023). ICON439

uses an icosahedral unstructured mesh, which for ICON-D2 has 542040 cells on each of440

the 65 model levels, and a vertically stretched grid. For ICON-D2 the vertical grid spac-441

ing in the lowest levels is smaller than 100 m, but near the tropopause, it is approximately442

500 m (Reinert et al., 2023). The domain top is at 22 km height. Operationally ICON-443

D2 still uses a one-moment microphysics, but the pre-operational rapid update cycle (RUC)444

applies the SB two-moment microphysics. The RUC spins off from the one-moment anal-445

ysis at 0 UTC and performs its own analysis with the two-moment scheme using a lo-446

cal ensemble transform Kalman filter (LETKF, Schraff et al. (2016); Vobig et al. (2021)).447

Here we use the RUC analysis from 12 UTC to initialize forecasts for the afternoon of448

19 May 2022. Note that the analysis has only been done with the SB two-moment scheme,449

not with the new ML-based P3-like scheme. The latter is currently not possible, because450

it would require coupling the ML-based scheme with the radar forward operator EMVO-451

RADO (Zeng et al., 2016), which is beyond the scope of the current study. Forecasts are452

performed for 6 hours and compared with the European Opera radar reflectivity com-453

posite. We use a radar reflectivity factor in Rayleigh approximation for both microphysics454

schemes to allow a fair comparison. For the ML-based microphysics scheme the neural455

nets 33-37 provide the second mass moment of the particle size distribution, which is re-456

quired for the radar reflectivity factor in Rayleigh approximation.457

Figure 7 presents the column maximum radar reflectivity for 13:30 UTC. Note that458

the ICON-D2 domain used for these simulations is considerably larger than the area shown459

in the Figure. The Opera composite shows a squall line over the Netherlands and Bel-460

gium approaching Germany. The southern end of the line shows a narrow convective re-461

gion with high reflectivity values, to the north a larger stratiform region is visible. The462

ICON-D2 forecast with the SB two-moment scheme captures the overall structure of the463

convective system, but the convective cores are too weak and the stratiform region is too464

narrow and not as extended as in the observations. These are typical biases of ICON-465

D2 with the SB two-moment scheme, which are quite pronounced in this case. With the466

ML-based P3-like scheme the convective line at the southern end of the convective com-467

plex is even weaker, although higher reflectivity values occur within active convective468

cores. The stratiform region is more extended compared to SB but is more symmetric469

around the convective line and does not resemble the observations better than the sim-470

ulation using SB microphysics. Hence, in contrast to the idealized squall line, the ML-471
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based P3-like scheme does not improve over the SB scheme in this real-case application.472

The improved structure in the idealized squall line simulation is only apparent at the high473

spatial resolution of the 308 m mesh and deteriorates on coarser grids (not shown). In-474

creasing the resolution of the real-case simulation to a sub-km mesh would unfortunately475

be too costly with the ML-based microphysics as it is currently implemented. Hence, the476

result of this case study is undecisive. The ML-based P3-like scheme is stable and pro-477

vides a reasonable representation of the mesoscale convective system, but it can not im-478

prove over the SB two-moment scheme in this case. A simple explanation for this result479

is that the microphysics scheme is not the limiting factor for the forecast quality in this480

case. It is very likely that the model dynamics and especially the boundary layer scheme481

play an important role and contribute to the deficiencies of this ICON forecast.482

8 Summary and Conclusions483

Machine learning has been applied to build a complex bulk microphysics scheme,484

which predicts not only particle mass and number but detailed physical properties like485

rime mass, rime volume, and liquid mass following the P3 approach of Morrison and Mil-486

brandt (2015). Training data has been generated using idealized simulations with the487

super-particle model McSnow. Hence, the machine learning performs a coarse-graining488

of the detailed McSnow data to a bulk microphysics scheme. The human role in this pro-489

cess is twofold: First, to make an a priori choice of the prognostic equations, i.e. the num-490

ber of particle categories and the prognostic variables for each category. Second, to de-491

sign the McSnow simulations that provide the training data. Based on these two prepara-492

tory steps, the machine learning workflow is almost automatic and does not require much493

human intervention, except for some limited hyperparameter tuning. Standard regres-494

sion neural nets are sufficient for most processes. Only for the self-collection of unrimed495

snow, we found that a two-step classifier-regression approach as recommended by Gettelman496

et al. (2021) is superior to using only a regression neural net. The ML-based P3-like mi-497

crophysics scheme has been implemented in the ICON weather and climate model us-498

ing Fortran code for the inference of fully connected neural nets.499

The ML-based P3-like microphysics scheme has passed three relevant tests: First,500

it can reproduce simulations similar to the training data, which requires that the indi-501

vidual process rates work in concert to reproduce the behavior of McSnow in an ODE502

sense. This is by no means trivial as shown for example by SR20 for warm-rain micro-503
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physics. Second, the ML-based P3-like microphysics provides reasonable results for a 3d504

idealized squall line simulation with ICON. It can in some aspects improve over the SB505

two-moment scheme in that it produces a more realistic-looking extended stratiform re-506

gion with a secondary maximum in radar reflectivity. The ML-based scheme achieves507

this by predicting physically plausible rime mass and rime density of snow and graupel508

and corresponding sedimentation velocities. The ML-based P3-like scheme is even able509

to predict the wet growth regime of graupel within the convective core. Third, the ML-510

based scheme has been applied in a realistic forecast scenario with ICON on a 2 km grid511

to predict the evolution of a mesoscale convective system. In this case, the ML-based512

scheme runs stably over a large spatial domain and provides a reasonable representation513

of the cloud microphysics. Unfortunately, it is not able to improve over the SB two-moment514

scheme in the chosen case. Most likely, the microphysics is simply not the limiting fac-515

tor for the forecast quality of this mesoscale convective system, but instead, other model516

components are relevant as well and would have to be improved.517

In contrast to classic bulk microphysics parameterizations, the ML-based P3-like518

scheme does not explicitly make assumptions regarding particle geometries or particle519

size distributions. All this is learned from the McSnow simulations in a parameter-free520

way. This makes the ML approach flexible, but it requires that additional neural nets521

are trained for diagnostics like radar reflectivity or effective radius. For more complex522

diagnostics like polarimetric radar variables, which are very challenging for conventional523

bulk microphysics schemes, the ML approach could be promising, though.524

The ML approach chosen here has some disadvantages. First, the ML-based scheme525

ended up being computationally expensive. On one hand, simply because we decided to526

build a very complicated scheme with 23 prognostic variables. On the other hand, the527

implementation with individual neural nets for each physical process that have to be eval-528

uated at each grid point and each time step is rather inefficient. It should be possible529

to subsequently build an emulator of the ML-based scheme that would overcome these530

deficiencies. For example, by having fewer neural networks and taking model columns531

as input instead of individual grid points. Even the calculation of process tendencies can532

be questioned and instead, a direct mapping of state variables from one time step to the533

next could be implemented.534
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Second, the training data is based on rather simplistic box model simulations, which535

does not make full use of the super-particle model McSnow. McSnow can in principle536

be applied in 2d or even 3d ICON simulations. Hence, the current ML-based scheme could537

be used as a baseline model and more training data from 2d and 3d McSnow simulations538

could further improve the realism of the microphysical processes and their interaction.539

A third and more general issue of such ML-based schemes is that they do not al-540

low much a posteriori tuning of the model. Any change in the microphysical assump-541

tions like basic particle geometry or sticking or collision efficiencies, for example, would542

have to be done in McSnow. Then the full ML workflow has to be repeated including543

the production of the training data. This makes sensitivity studies to explore model un-544

certainties very time-consuming. In practice, NWP or climate models do require some545

a posteriori tuning to balance different physical processes and their biases. Common tun-546

ing parameters like intercept parameters of the particle size distribution, terminal fall547

velocity, or particle geometries cannot easily be modified in ML-based schemes. Chang-548

ing the bulk sedimentation velocity by a constant factor is possible, but would make the549

scheme inconsistent. This issue could only be overcome if the ML-based model could be550

further trained and improved within the atmospheric model itself. Preferably such an551

online training would be done with actual observations as part of a data assimilation sys-552

tem. First steps toward such an online training capability for ICON are currently be-553

ing implemented at DWD.554
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Figure 1. Vertical profiles of mass densities of the various particle classes of the ML-based

P3-like scheme. Shown is McSnow output (solid), the ODE solution using training data (dotted)

and the ODE solution of the ML-based scheme (dashed). Shown is a simulation with h1 = 1500

m, h2 = 3000 m, rc = 15 µm, Ni = 20 dm−3, Qi = 0.2 g cm−3, Qc = 0.1 g cm−3 and Si = 0.

Figure 2. As Figure 1, but for number densities.

Figure 3. Vertical profiles of particle properties of rimed snow. Shown is McSnow output

(solid), the ODE solution using training data (dotted), and the ODE solution of the ML-based

scheme (dashed).

Figure 4. Vertical cross section of radar reflectivity dBZ for the SB two-moment scheme (left)

and the ML-based P3-like scheme (right). Shown are averages along the y-direction after 300 min

simulation time.

Figure 5. Vertical cross sections of rime fraction (left) and rime density (right), of all hy-

drometeors (top), rimed snow (center) and graupel (bottom) as predicted by the ML-based

P3-like scheme. Shown are averages along the y-direction after 300 min simulation time.

Figure 6. Vertical cross section of the liquid water fraction of rimed snow (left) and graupel

(right) of the ML-based P3-like scheme. Shown are averages along the y-direction after 300 min

simulation time.

Figure 7. Column maximum radar reflectivity for 19 May 2022, 13:30 UTC for a central

European region. Shown is the Opera composite (left), the ICON-D2 simulation using the SB

two-moment microphysics (center) and ICON using the ML-based P3-like two-moment scheme

(right).
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Appendix A Sticking efficiency in McSnow555

There are some observations and laboratory measurements of the sticking efficiency556

of ice crystals as a function of temperature (Hosler & Hallgren, 1960; Mitchell, 1988; Ka-557

jikawa & Heymsfield, 1989; Connolly et al., 2012) but for graupel-graupel collisions or558

partially rimed snowflakes, the authors are not aware of any measurements. Phillips et559

al. (2015) discuss the dependency of the sticking efficiency on the collision kinetic en-560

ergy and, hence, provide a theoretical framework to explain the decrease of the sticking561

efficiency with increasing degree of riming. Due to the lack of data, a consistent physically-562

based parameterization is beyond the scope of this study. Nevertheless, a reasonable and563

continuous description is required to generate meaningful training data for the P3 ap-564

proach. In the current study, we use the degree of riming defined as565

ξ =
mr +mf

mr +mf +mi +m`
=
mr +mf

mtot
(A1)566

with the rime mass mr, the frozen mass mf , the ice (crystal) mass mi, the liquid mass567

m` and the total particle mass mtot.568

The following ad-hoc parameterization for the sticking efficiency Es of two parti-569

cles a and b has been used in the McSnow simulations:570

Es =


Ei, for ξa + ξb < ξ1

Eg, for ξa + ξb > ξ2

Ei
ξa+ξb−ξ2
ξ1−ξ2 + Eg

ξa+ξb−ξ1
ξ2−ξ1

(A2)571

with ξ1 = 0.01 and ξ2 = 0.9. Here Ei is the temperature-dependent piecewise linear572

sticking efficiency of unrimed crystals573

Ei =



0.07, for Tc ≥ 0 ◦C

−0.005 (Tc + 10) + 0.12, for 0 ◦C > Tc ≥ −10 ◦C

−0.040 (Tc + 15) + 0.32, for − 10 ◦C > Tc ≥ −15 ◦C

0.050 (Tc + 20) + 0.14, for − 15 ◦C > Tc ≥ −20 ◦C

0.0025 (Tc + 40) + 0.04, for − 20 ◦C > Tc ≥ −40 ◦C

0.02, for − 40 ◦C > Tc

(A3)574

where Tc is the temperature in degrees Celsius. This formula is largely based on data575

of Connolly et al. (2012) as shown by their Figure 14, but we intentionally decided on576
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the lower range of those measurements. This choice leads to a more pronounced trail-577

ing stratiform region of the idealized squall line.578

Eg = 0.01 (A4)579

is the sticking efficiency of graupel-graupel collisions. This sticking efficiency is only ap-580

plied to ice particles that have no liquid water at the particle surface. For melting par-581

ticles and in the wet growth regime the sticking efficiency is set to one in McSnow. Both,582

Ei and Eg, are often used as tuning parameters in cloud simulations. See, for example,583

the discussion in Karrer et al. (2021) for the sticking efficiency of aggregates.584

Appendix B Some implementation details in ICON585

To be able to run the ML-based P3-like scheme stably in ICON, a few constraints586

are necessary. The values of cloud liquid water content and mean cloud particle radius587

are limited to a range not far beyond the training data. For cloud liquid water this is588

only an upper bound of 20×10−3 kg m−3, which should rarely be reached. The cloud589

droplet radius is forced to be within 5-30 µm when passed to the neural networks. For590

the sedimentation velocities, upper and lower limits are imposed as always in the SB two-591

moment scheme. In addition, it is enforced that the sedimentation velocity of mass is592

larger than that for number. This is done by simply using the larger of the two veloc-593

ities provided by the neural net for mass, whereas the smaller one is used for number.594

For the sink term of cloud droplet or raindrop number by riming the mean mass is as-595

sumed to be constant as the NNs do not yet provide the information about the size of596

the collected liquid drops. All microphysical processes except diffusional growth (depo-597

sition/sublimation) are only calculated if the mass content of the hydrometeor class ex-598

ceeds 1 × 10−9 kg m−3. For self-collection of rimed snow lower limits of 1 × 10−5 kg599

m−3 and 10 m−3 have to be exceeded for mass and number density, respectively. Melt-600

ing is only calculated a long as the liquid fraction is below 0.99, then the remaining mass601

is instantly converted to rain. Conversion of rimed snow to rain by melting only hap-602

pens if the bulk liquid fraction exceeds 0.3. All processes that are only relevant in the603

mixed-phase regime, are only calculated in the temperature range 236 K to 273 K. Ice604

multiplication is restricted to 265.9 K and 270.1 K and limited to 100 m−3 s−1. The ML-605

based P3-like scheme is implemented in ICON as an extension of the SB two-moment606

scheme. The SB two-moment microphysics additionally enforces the particle sizes of each607

hydrometeor class to be within a physically meaningful range.608
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Köhler, C. G., & Seifert, A. (2015). Identifying sensitivities for cirrus modelling694

using a two-moment two-mode bulk microphysics scheme. Tellus B: Chemical695

and Physical Meteorology , 67 (1), 24494.696

Lagerquist, R., Turner, D., Ebert-Uphoff, I., Stewart, J., & Hagerty, V. (2021). Us-697

ing deep learning to emulate and accelerate a radiative transfer model. J. At-698

mos. Ocean. Tech., 38 (10), 1673–1696.699

Meyer, D., Grimmond, S., Dueben, P., Hogan, R., & van Reeuwijk, M. (2022).700

Machine learning emulation of urban land surface processes. J. Adv. in Mod-701

eling Earth Systems, 14 (3), e2021MS002744. doi: https://doi.org/10.1029/702

2021MS002744703

Meyer, D., Hogan, R. J., Dueben, P. D., & Mason, S. L. (2022). Machine learning704

emulation of 3d cloud radiative effects. Journal of Advances in Modeling Earth705

Systems, 14 (3), e2021MS002550. doi: https://doi.org/10.1029/2021MS002550706

Milbrandt, J. A., & Morrison, H. (2016). Parameterization of cloud microphysics707

–29–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

based on the prediction of bulk ice particle properties. Part III: Introduction of708

multiple free categories. J. Atmos. Sci., 73 (3), 975–995.709

Milbrandt, J. A., Morrison, H., Dawson II, D. T., & Paukert, M. (2021). A triple-710

moment representation of ice in the predicted particle properties (P3) micro-711

physics scheme. J. Atmos. Sci., 78 (2), 439–458.712

Mitchell, D. L. (1988). Evolution of snow-size spectra in cyclonic storms. Part I:713

Snow growth by vapor deposition and aggregation. J. Atmos. Sci., 45 (22),714

3431–3451.715

Morrison, H., & Milbrandt, J. A. (2015). Parameterization of cloud microphysics716

based on the prediction of bulk ice particle properties. Part I: Scheme descrip-717

tion and idealized tests. J. Atmos. Sci., 72 (1), 287–311.718

Morrison, H., Thompson, G., & Tatarskii, V. (2009). Impact of cloud microphysics719

on the development of trailing stratiform precipitation in a simulated squall720

line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137 (3),721

991 - 1007. doi: 10.1175/2008MWR2556.1722

Mosimann, L., Weingartner, E., & Waldvogel, A. (1994). An analysis of accreted723

drop sizes and mass on rimed snow crystals. J. Atmos. Sci., 51 (11), 1548 -724

1558. doi: 10.1175/1520-0469(1994)051〈1548:AAOADS〉2.0.CO;2725

Phillips, V. T., DeMott, P. J., & Andronache, C. (2008). An empirical parameteri-726

zation of heterogeneous ice nucleation for multiple chemical species of aerosol.727

J. Atmos. Sci., 65 (9), 2757–2783.728

Phillips, V. T., Formenton, M., Bansemer, A., Kudzotsa, I., & Lienert, B. (2015). A729

parameterization of sticking efficiency for collisions of snow and graupel with730

ice crystals: Theory and comparison with observations. J. Atmos. Sci., 72 (12),731

4885–4902.732

Rasmussen, R. M., & Heymsfield, A. J. (1987a). Melting and shedding of graupel733

and hail. Part II: Sensitivity study. J. Atmos. Sci., 44 (19), 2764–2782.734

Rasmussen, R. M., & Heymsfield, A. J. (1987b). Melting and shedding of graupel735

and hail. Part I: Model physics. J. Atmos. Sci., 44 (19), 2754–2763.736

Rasmussen, R. M., Levizzani, V., & Pruppacher, H. (1984a). A wind tunnel and737

theoretical study of the melting behavior of atmospheric ice particles. II: A738

theoretical study for frozen drops of radius < 500 µm. J. Atmos. Sci., 41 (3),739

374–380.740

–30–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Rasmussen, R. M., Levizzani, V., & Pruppacher, H. (1984b). A wind tunnel and741

theoretical study on the melting behavior of atmospheric ice particles: III.742

Experiment and theory for spherical ice particles of radius > 500 µm. J. At-743

mos. Sci., 41 (3), 381–388.744

Reinert, D., Prill, F., Frank, H., Denhard, M., Baldauf, M., Schraff, C., . . .745

Zängl, G. (2023). DWD database reference for the global and regional746

ICON and ICON-EPS forecasting system (Technical Report and Database747

Description, Version 2.2.2). Deutscher Wetterdienst. Retrieved from748

https://www.dwd.de/SharedDocs/downloads/DE/modelldokumentationen/749

nwv/icon/icon dbbeschr aktuell.html750

Rotunno, R., Klemp, J. B., & Weisman, M. L. (1988). A theory for strong, long-751

lived squall lines. J. Atmos. Sci., 45 (3), 463–485.752

Scheck, L. (2021). A neural network based forward operator for visible satellite753

images and its adjoint. Journal of Quantitative Spectroscopy and Radiative754

Transfer , 274 , 107841.755

Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan, K., Periáñez, A., &756
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available at no cost at https://code.mpimet.mpg.de/projects/iconpublic/. Sub-830
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