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Abstract

The UC Berkeley Random Walk Algorithm WaterMask from CYGNSS (Berkeley-RWAWC) is a new data product designed

to address the challenges of monitoring inundation in regions hindered by dense vegetation and cloud cover as is the case in

most of the Tropics. The Cyclone Global Navigation Satellite System (CYGNSS) constellation provides data with a higher

temporal repeat frequency compared to single-satellite systems, offering the potential for generating moderate spatial resolution

inundation maps with improved temporal resolution while having the capability to penetrate clouds and vegetation. This paper

details the development of a computer vision algorithm for inundation mapping over the entire CYGNSS domain (37.4Â°N
to 37.4Â°S). The unique reliance on CYGNSS data sets our method apart in the field, highlighting CYGNSS’s indication of

water existence. Berkeley-RWAWC provides monthly, near-real-time inundation maps starting in August 2018 and across the

CYGNSS latitude range, with a spatial resolution of 0.01Â° Ã— 0.01Â°. Here we present our workflow and parameterization

strategy, alongside a comparative analysis with established surface water datasets (SWAMPS, WAD2M) in four regions: the

Amazon Basin, the Pantanal, the Sudd, and the Indo-Gangetic Plain. The comparisons reveal Berkeley-RWAWC’s enhanced

capability to detect seasonal variations, demonstrating its usefulness in studying tropical wetland hydrology. We also discuss

potential sources of uncertainty and reasons for variations in inundation retrievals. Berkeley-RWAWC represents a valuable

addition to environmental science, offering new insights into tropical wetland dynamics.
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Key Points:10
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sonal mapping difficult12
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• The product shows greater seasonal and interannual variability than other datasets15

for new insights into Tropical hydrological processes16
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Abstract17

The UC Berkeley Random Walk Algorithm WaterMask from CYGNSS (Berkeley-18

RWAWC) is a new data product designed to address the challenges of monitoring inundation19

in regions hindered by dense vegetation and cloud cover as is the case in most of the Trop-20

ics. The Cyclone Global Navigation Satellite System (CYGNSS) constellation provides data21

with a higher temporal repeat frequency compared to single-satellite systems, offering the22

potential for generating moderate spatial resolution inundation maps with improved tem-23

poral resolution while having the capability to penetrate clouds and vegetation. This paper24

details the development of a computer vision algorithm for inundation mapping over the25

entire CYGNSS domain (37.4°N to 37.4°S). The unique reliance on CYGNSS data sets our26

method apart in the field, highlighting CYGNSS’s indication of water existence. Berkeley-27

RWAWC provides monthly, near-real-time inundation maps starting in August 2018 and28

across the CYGNSS latitude range, with a spatial resolution of 0.01° × 0.01°. Here we29

present our workflow and parameterization strategy, alongside a comparative analysis with30

established surface water datasets (SWAMPS, WAD2M) in four regions: the Amazon Basin,31

the Pantanal, the Sudd, and the Indo-Gangetic Plain. The comparisons reveal Berkeley-32

RWAWC’s enhanced capability to detect seasonal variations, demonstrating its usefulness33

in studying tropical wetland hydrology. We also discuss potential sources of uncertainty34

and reasons for variations in inundation retrievals. Berkeley-RWAWC represents a valuable35

addition to environmental science, offering new insights into tropical wetland dynamics.36

Plain Language Summary37

The UC Berkeley Random Walk Algorithm WaterMask from CYGNSS (Berkeley-38

RWAWC) is a new data product developed to better monitor areas that are hard to observe39

due to thick vegetation and clouds, such as tropical regions. Using data from the Cy-40

clone Global Navigation Satellite System (CYGNSS), an 8-satellite constellation, Berkeley-41

RWAWC has more frequent data collection compared to single-satellite systems. This al-42

lows mapping of flooding or water accumulation with improved accuracy over time, even43

in clouds-prone and overgrown areas. Berkeley-RWAWC spans from 37.4° North to 37.4°44

South and consists of monthly inundation maps at approximately 1 km by 1km resolution45

since August 2018. The method places the greatest emphasis on CYGNSS data indications46

of where is the water, making it different from others. In this paper, we explain how we47

made the maps, and compare them with other datasets in four different areas: the Amazon48

Basin, the Pantanal, the Sudd, and the Indo-Gangetic Plain. Our comparisons show that49

Berkeley-RWAWC is better at showing how water changes with the seasons, which is useful50

for understanding tropical wetland water cycles. Berkeley-RWAWC is publicly available and51

can become an important new resource for studying our planet, especially in the study of52

patterns in tropical wetlands.53

1 Introduction54

1.1 Hydrological Challenges by Climate Change55

In the realm of Earth’s terrestrial hydrology, comprehensively capturing the spatial56

distribution and temporal dynamics of global inland water has been a long-standing scientific57

pursuit (Finlayson & Spiers, 1999; Prigent et al., 2001; Fekete et al., 2002; Lehner & Döll,58

2004; Prigent et al., 2007; Lehner et al., 2008; Wood et al., 2011; Pekel et al., 2016; Jensen59

& Mcdonald, 2019; Prigent et al., 2020). This pursuit is now more critical than ever due to60

climate change, driven by increased greenhouse gas emissions (GHG) (IPCC, 2023), which is61

fundamentally reshaping the global distribution of water (Konapala et al., 2020). The shifts62

are happening now and at an ever-increasing pace (Thiery et al., 2021), causing an upsurge63

in extreme events like floods and droughts across the globe (Betts et al., 2018; Lange et al.,64
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2020), in turn disrupting various natural ecosystems that have long been adapted to the65

ebb and flow of natural variability they experienced (Trenberth et al., 2015).66

While the developed world bears substantial responsibility for the anthropogenic green-67

house gas emissions fueling climate change (Mgbemene et al., 2016; Dong et al., 2019), the68

disproportional impact is most keenly experienced by the tropical regions, where a signif-69

icant portion of the developing world resides (UNESCO, 2020). Developing regions, con-70

strained by limited financial resources and governance capacity for effective adaptation and71

mitigation, are particularly vulnerable to climate-related shocks (Das Gupta, 2014). Under-72

standing the dynamics of water distribution and its variations over time is vital for scientific,73

environmental, and humanistic applications. This knowledge is crucial for population pre-74

paredness in adapting to changing water availability while safeguarding natural ecosystems,75

their services, and the biodiversity they contain.76

1.2 Knowledge Gap on Tropical Wetlands77

Remote sensing techniques have been instrumental in facilitating the observation of78

tropical water, offering an unparalleled global perspective over the course of decades (Alsdorf79

et al., 2007; Palmer et al., 2015; Topp et al., 2020). Various platforms are employed for80

water detection, ranging from optical sensors like Landsat (Masek et al., 2020) to near-81

infrared (NIR) instruments such as MODIS (Justice et al., 2002), and microwave missions82

like SMAP (Entekhabi et al., 2010). Landsat, renowned for its remarkable 30-meter spatial83

resolution, is one of the premier data sources for water body monitoring (Pekel et al.,84

2016). However, despite the extensive scope of remote sensing observations, knowledge85

gaps persist in hydrological monitoring in the tropics, particularly in terms of its seasonal86

and inter-seasonal patterns. Indeed, cloud cover and dense canopies are the two major87

challenges for obtaining valid optical and near-infrared observations. In tropical rainforests,88

the rainy season often entails extended periods of persistent cloud cover, sometimes lasting89

for multiple consecutive months (Martins et al., 2018). Additionally, the presence of dense90

vegetation and canopies, particularly along the fringes of large water bodies and sometimes91

even fully concealing small water bodies entirely, further obscured valid observations.92

As a consequence, most tropical water maps tend to underestimate the actual extent of93

these waterbodies, displaying a bias toward representing dry season conditions, which often94

represent only a fraction of the maximum extent during the peak of the rainy season. This95

raises a pressing concern related to the quantification of the impact of inland waterbodies96

and wetlands in particular within the context of climate change. Wetlands represent Earth’s97

largest natural source of methane emissions, as well-documented (Saunois et al., 2020), yet98

paradoxically, one of the most uncertain, due to limitations in the quality of wetland extent99

data (Parker et al., 2018). Of particular importance are tropical wetlands, as they contribute100

substantially more methane compared to their high-latitude counterparts (Z. Zhang et al.,101

2017). Meanwhile, within tropical regions, up to 80% of the uncertainty in wetland emissions102

of methane (CH4) can be associated with the uncertainties in wetland extent (Bloom et al.,103

2017). Thus, it becomes crucial for accurately characterizing the spatial extent and temporal104

variations in inundation and aquatic habitats (Melack et al., 2022).105

1.3 Filling the Gap with spaceborne GNSS-R Technique106

To overcome these constraints, recent studies have embraced microwave remote sensing107

tools, which provide superior cloud penetration capabilities and are less influenced by dense108

vegetation. Coarse spatial resolution radiometer datasets, with a resolution greater than 25109

kilometers, provide a wealth of temporally rich observations. Notable inundation products110

include GIEMS-2 (Prigent et al., 2020), which provides monthly data, and SWAMPSv3111

(Jensen & Mcdonald, 2019), delivering daily information. On the other hand, high spatial112

resolution synthetic aperture radar (SAR) datasets, with resolutions of less than 100 meters,113

offer detailed observations but limited temporal coverage. For instance, Sentinel-1 SAR114
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currently has a revisit frequency of 6–12 days, and the upcoming NASA-ISRO Synthetic115

Aperture Radar (NISAR) mission is expected to provide a similar revisit frequency (Kellogg116

et al., 2020).117

Thus, existing microwave-based inundation products necessitate trade-offs between118

spatial and temporal resolution. The Global Navigation Satellite System Reflectometry119

(GNSS-R) technology emerged with great potential for filling the gap. GNSS is a collective120

term encompassing satellite constellations that offer global or regional positioning, navi-121

gation, and timing (PNT) services. Presently, these systems include the United States’122

Global Positioning System (GPS), Russian Global’naya Navigatsionnaya Sputnikova Sis-123

tema (GLONASS), the European Galileo system, the Chinese BeiDou System (BDS), the124

Japanese Quasi-Zenith Satellite System (QZSS), and the Indian Regional Navigation Satel-125

lite System (IRNSS/NavIC). The basic principle of GNSS-R involves receiving signals trans-126

mitted from these navigation satellites and measuring the changes in the signals’ properties127

as they interact with the Earth’s surface (Gleason et al., 2005).128

Launched in December 2016, the Cyclone Global Navigation Satellite System (CYGNSS)129

is the first space-based GNSS-R constellation system that focuses on tropical cyclones and130

tropical convection. Originally conceived to address the urgent demand for better hurricane131

intensity forecasts, CYGNSS allows for high-resolution wind measurements under extreme132

conditions such as heavy rain and intense winds, and offers a high revisit frequency, as evi-133

denced by statistical distributions indicating a median revisit time of 2.8 hours and a mean134

revisit time of 7.2 hours (C. S. Ruf, 2022). Furthermore, GNSS-R technique, being “receiver135

only”, eliminates the need for a transmitter, substantially lowering sensor power require-136

ments compared to traditional scatterometers (C. S. Ruf et al., 2016), therefore significantly137

reducing the cost of these missions compared to active microwave satellites.138

Beyond its primary mission, CYGNSS data has demonstrated remarkable sensitivity to139

inland water. GPS satellites, operating at 1.575 GHz in the L-band, can penetrate clouds,140

rain, and dense vegetation canopies, while also offering strong signals through coherent141

specular scattering when in contact with calm water surfaces, setting them apart from142

the diffuse scattering in the surroundings (C. S. Ruf et al., 2018). The bi-static radar143

geometry also appears to contribute to CYGNSS’ high sensitivity to inland waters, allowing144

for better sensitivity to small waterways than SAR (Downs et al., 2023). Distinguished145

by rapid data acquisition capabilities, high revisit frequency, cost-effectiveness, extensive146

coverage spanning approximately 38°S to 38°N, and enduring mission longevity, CYGNSS147

data has emerged as a transformative asset in the field of hydrological remote sensing.148

2 Background149

2.1 Existing WaterMasks150

2.1.1 SWAMPS151

The Surface Water Microwave Product Series (SWAMPS) is a coarse-resolution (∼ 25152

km) global inundated area fraction dataset derived from both active and passive microwave153

remote sensing. This dataset incorporates data from sources such as SSM/I, SSMIS, ERS,154

QuikSCAT, and ASCAT (Jensen & Mcdonald, 2019), and exhibits wetlands, rivers, lakes,155

reservoirs, rice paddies, and areas that experience episodic inundation. SWAMPS stands156

out as one of the most extensive microwave remote sensing datasets available for download,157

offering daily data files that cover the period from 2000 to 2020.158

2.1.2 WAD2M159

The Monthly global dataset of Wetland Area and Dynamics for Methane Modeling160

(WAD2M) is a derivative of SWAMPS, incorporating additional active and passive mi-161

crowave remote sensing products (Z. Zhang et al., 2021b). This dataset is specifically162
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designed to capture the spatiotemporal dynamics of both inundated and non-inundated163

vegetated wetlands, removing lakes, ponds, rice paddies, and rivers. WAD2M offers a spa-164

tial resolution of 25km and covers the time frame from 2000 to 2020.165

2.2 CYGNSS166

There is an ever-growing interest in employing CYGNSS data to retrieve geophysical167

variables related to terrestrial hydrology. This burgeoning field has not only prompted168

extensive research but has also led to the development of additional GNSS-R missions by169

governmental agencies and private companies. Research investigations have been conducted170

to assess CYGNSS’s capacity for mapping inland surface water with different approaches171

e.g., (C. Chew et al., 2018; Gerlein-Safdi & Ruf, 2019; Morris et al., 2019; Wan et al., 2019;172

Al-Khaldi et al., 2021; Li et al., 2021; S. Zhang et al., 2021; Chapman et al., 2022; Zeiger173

et al., 2022; Downs et al., 2023). Furthermore, a capacity for detecting near-surface soil174

moisture sensitivity was also recognized e.g., (C. C. Chew & Small, 2018; Kim & Lakshmi,175

2018; Al-Khaldi et al., 2019; Clarizia et al., 2019; Eroglu et al., 2019; Senyurek et al.,176

2020; Yan et al., 2020). Presently, there exist several GNSS-R missions in development,177

undertaken by both governmental agencies (e.g., ESA’s HydroGNSS mission, as detailed178

by (Unwin et al., 2021)) and private companies (e.g., Spire and Muon Space), all with the179

shared goal of retrieving hydrological data.180

2.2.1 Existing Products181

Currently, the only CYGNSS-based, publicly available data product is the UCAR/CU182

CYGNSS inundation product, which is generated at a spatial resolution of 3 × 3 km with183

a temporal resolution of three days, covering CYGNSS’s entire observational range (within184

± 38° latitude) as detailed in the study by (C. Chew et al., 2023). The study introduced a185

retrieval algorithm specifically tailored for mapping fractional inundation, utilizing CYGNSS186

data as the primary input to a parameterized reflectivity model. The product provides a187

wealth of insightful information. Nevertheless, it is worth noting the uncertainties associated188

with this approach are primarily rooted in the parameterization of soil moisture and water189

surface roughness, which tend to result in an underestimation of fractional inundation,190

especially in regions featuring extensive surface water coverage. Ongoing research initiatives191

will emphasize the refinement of these model parameterizations and the optimization of192

spatial interpolation techniques, with a particular focus on enhancing performance during193

extreme events.194

2.2.2 CYGNSS Data195

In this study, we use the Delay Doppler Map (DDM) signal-to-noise ratio (SNR) of196

the level 1, version 3.1 CYGNSS data, which is publicly accessible through the Physical197

Oceanography Distributed Active Archive Center (https://podaac.jpl.nasa.gov/CYGNSS)198

to produce a surface reflectivity (SR) signal based on the methodology in (Gerlein-Safdi &199

Ruf, 2019). The SNR was corrected for receiving and transmitting antenna gains, transmit-200

ted power level, and propagation loss from transmitter to specular point and specular point201

to receiver, assuming coherent scattering as described in (C. Chew et al., 2018):202

SRcoherent = SNR−P t
r −Gr−Gt+20 log10(λ)+20 log10(TxSP+SPRx)+20 log10(4π) (1)203

where P t
r represents the transmitted power (in dBW), Gr and Gt refer to the receiving and204

transmitter antenna gains (in dB), respectively, λ denotes the GPS wavelength, which is205

equal to 0.19 m, the distances between the transmitter and the specular point, and between206

the specular point and the receiver, are denoted by TxSP and SPRx, respectively (both in207

meters). To provide a comparable range of variation in SR data to the initial SNR range,208

we removed the average of the 5% lowest data, which is a method employed in previous209

studies (C. Chew et al., 2018; Gerlein-Safdi & Ruf, 2019; Gerlein-Safdi et al., 2021).210
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The available CYGNSS data at the time of investigation, covering from August 2018211

to September 2023, was processed in this study. It is noteworthy that the time coverage212

of level 1, version 3.1 CYGNSS data begins in August 2018, in contrast to the earlier level213

1, version 2.1 data used in previous studies (Gerlein-Safdi & Ruf, 2019; Gerlein-Safdi et214

al., 2021), which starts from June 2017. Prior to August 1, 2018, the CYGNSS data was215

obtained using the GPS navigation receiver’s automatic gain control (AGC) mode, which216

restricted the strength of direct signals received from GPS satellites to a narrow dynamic217

range before signal processing. The AGC mode was disabled to allow the use of direct signal218

strength to monitor GPS transmit power level and improve calibration (C. Ruf, 2022), and219

resulted in a change in the time span for L1 and higher data products from the Sensor Data220

Record (SDR) version 3.0 onward.221

3 Methodology222

The methodology initially developed by Gerlein-Safdi et al.(Gerlein-Safdi & Ruf, 2019;223

Gerlein-Safdi et al., 2021) for generating watermasks leverages both the spatial and tempo-224

ral information contained in the SR data, and applies the random walker algorithm from225

the Python scikit-image library (https://scikit-image.org/) (van der Walt et al., 2014) to226

segment water and land. This approach does not rely heavily on data aggregation and is227

particularly well-suited for studying hydrological processes that exhibit seasonal variations.228

Here we present an extension of this exploratory work, which involves the establishment229

of a robust parameter and threshold selection system that can be applied regardless of the230

domain, as well as the coupling of surface topography data with the computer vision algo-231

rithm to optimize image segmentation with spatial analysis. By utilizing this methodology,232

we successfully generated a CYGNSS-based monthly watermasks product with a grid size233

of 0.01° × 0.01°(∼1 km×1 km) and covers a latitudinal range from 37.4°N to 37.4°S. This234

product represents a continuous timeline spanning from August 2018 to the present and will235

be updated on a monthly basis.236

3.1 Pre-Labeling237

The random walk approach proposed by Grady in (Grady, 2016) performs multil-238

abel, interactive image segmentation. The method requires a set of pre-labeled pixels (seed239

points), which we refer to as markers throughout this work. The algorithm functions by240

labeling unseeded pixels with the respective label of the seed point that a random walker,241

with a bias to avoid crossing object boundaries (i.e., intensity gradients), is expected to242

reach first when initiated from that pixel. The calculation can be performed analytically243

(Grady, 2016), leading to an efficient and precise image segmentation. In the prior investi-244

gation (Gerlein-Safdi et al., 2021), markers were allocated based on both monthly SR and245

the number of standard deviations(STD) from yearly average, which was found to be ef-246

ficient in studying domains that exhibit high seasonal variations. In order to ensure that247

water bodies with low seasonal variations are also being captured as we are extending the248

study towards the entire CYGNSS domain, we propose a combination of four parameters249

for pre-labeling pixel: SR, STD, SW, and ACC as further explained below.250

3.1.1 SR Map251

For each month, the SR Map is generated by gridding monthly SR values into a252

0.01° × 0.01° grid. Each grid cell contains the entire distribution of CYGNSS overpasses253

that occurred within its bounds. In cases where a grid cell contains more than one SR data,254

the monthly SR pixel is assigned with the average of the SR values. We then use a nearest255

neighbor interpolation method (SciPy, https://scipy.org/) to populate missing data for any256

pixels.257
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3.1.2 STD Map258

The STD Map is produced by assessing the deviation of SR value for each individual259

pixel from its 5-year average, using the yearly average and STD values. The computed260

STD map shows the number of STDs from the yearly average, and as such, a negative261

value signifies drier-than-usual conditions for that month, while a positive value indicates262

wetter-than-usual conditions for the corresponding pixel.263

3.1.3 SW Map264

The static water SW Map is produced by taking the 5th percentile value in the yearly265

SR distribution for each pixel. Static water bodies can be effectively discerned using this266

strategy, as their SR value distribution is typically highly concentrated at elevated levels,267

which are evident as the 5th percentile value. Figure 1 provides an illustrative example of268

the notable contrast between the surface reflectivity distributions for always dry and always269

wet pixels using a violin plot.

(a) (b)

Figure 1: An illustration of long-term dry and wet pixels. (a) Long-term dry areas (in
orange) and wet areas (in blue) are shown on the static water (SW) map, which consists of
the 5th percentile value in the yearly SR distribution for each pixel. (b) The yearly SR value
distribution for the two pixels respectively. Their 5th percentile values (SW) are marked
with dash lines.

270

3.1.4 ACC Map271

The ACC Map uses flow accumulation, which is a geospatial product that is obtained272

by processing a digital elevation model (DEM). The calculation involves assigning a value to273

each pixel that corresponds to the number of upstream pixels that flow into it. This value274

is referred to as the accumulated grid cell count. We adopted the HydroSHEDS ACC map275

from (Lehner et al., 2008) and the map was re-scaled to ensure its alignment with the grid276

settings in this study.277

3.1.5 Marker Selection278

The set of parameters governing the marker allocation process and their respective279

physical implications are explained in Table 1. If a pixel falls into any category, it will be280

assigned as a land/water marker. Utilizing part of the Amazon Basin in May 2021 as a rep-281
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resentative case, Figure 2 elucidates the process of segmentation. The input image, assigned282

markers, and the resulting segmentation are showcased in Figure 2(a). Additionally, Figure283

2(b) provides insights into each individual parameter, displaying their density distributions284

and exemplifying both upper and lower boundaries.285

Table 1: Combining Parameters for Establishing Markers

No. Parameters Lower Bound Indication Upper Bound Indication

1 SR ∩ STD Dry ∩ Drier than Usual Wet ∩ Wetter than Usual

2 SR ∩ SW Dry ∩ Always Dry Wet ∩ Always Wet

3 SR ∩ ACC Dry ∩ Drain If Water Exists Wet ∩ Sink If Water Exists

4 STD ∩ SW Drier than Usual ∩ Always Dry Wetter than Usual ∩ Always Wet

3.2 Random Walk with Spatial Analysis286

Finally, within the framework of the random walk algorithm, we introduce a new vari-287

able termed the “Flow Accumulation Index” (F ). It serves to interconnect spatial analysis288

with the random walk concept. Comprehensive insights into the algorithm’s fundamental289

components are illustrated in (Grady, 2016), regarding graph weight generation, equation290

establishment for problem-solving, and implementation details. In summary, a graph is291

defined as G = (V,E), where V represents vertices and E represents edges. In a weighted292

graph, each edge is assigned a value (weight), denoted as wij , and the vertex degree di is293

given by di =
∑

wij for all incident edges eij . To interpret wij as a bias for a random walker294

choice, it’s necessary to set wij > 0. Additionally, an assumption is made for the graph to295

be connected and undirected (i.e., wij = wji). The weighting function for calculating edge296

weight was given by (Grady, 2016):297

wij = exp
[
−β (gi − gj)

2
]

(2)

where gi denotes the image intensity at pixel i, and β is the only free parameter in this
algorithm. As pointed out in (Grady, 2016), the weight function (2) has the potential to
be adapted for use with consideration of features present within an image, such as texture
information, filter coefficients, etc. For this study, we modified the weighting function by
adding the Flow Accumulation Index (F ): the updated weighting function then becomes:

wij = exp
[
−β (giFi − gjFj)

2
]

(3)

where F is a re-weighted index based on the flow accumulation (ACC). The result provides298

adjustments to the segmentation results, where individual pools are linked if that is what the299

topography favors, and vice versa as Figure 3(a) shows. Figure 3(b) provides corresponding300

references to the Digital Elevation Model (DEM) map and Accumulated Flow Accumulation301

(ACC) map.302

3.3 Mitigate False Positives and False Negatives303

To improve the precision of the algorithm as it is scaled up to a broader spatial domain,304

we have meticulously addressed instances of both false negatives and false positives within305

the workflow. This strategic approach ensures a more accurate and reliable application of306

the algorithm across diverse scenarios.307

To enhance dataset integrity, we implemented a filtering step to remove any pixel308

exhibiting anomalously high or low SR values compared to adjacent months. This process309

effectively addresses outliers when assigning markers.310
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Monthly 
Parameters

Static 
Parameters

Map Density Histogram Upper Bound Lower Bound 

SR

STD

SW

ACC

MarkersInput Image Binary Segmentation(a)

(b)

Figure 2: Illustration of the image segmentation process. (a) Left: Input image subjected
to segmentation, known as the Monthly STD Map. Center: Allocated markers. Right: Re-
sulting segmentation. (b) Individual parameters featuring their density distribution, along
with instances of upper and lower bounds.

In addition, the Unsharp Mask (USM) technique, explained in (Gonzalez & Woods,311

2018), is employed to increase contrast along object edges in the image, effectively identifies312

pixels whose values significantly differ from their neighboring pixels, meanwhile it does not313

explicitly detect edges. The method serves as a critical reference tool in marker assignment,314

particularly in ensuring the quality of markers in areas and in periods that are characterized315

by high moisture backgrounds. It significantly improves the accuracy of marker placement316

by highlighting subtle contrasts and details in moisture-rich environments.317

Moreover, dry and flat regions, such as flat deserts, pose challenges as potential false318

positives due to their high SR values (Carreno-Luengo et al., 2019; Hodges et al., 2023). We319

flagged out the dry and flat regions when assigning markers through cross-referencing the320

World Terrestrial Ecosystem (WTE) 2020 database (Sayre, 2022) in conjunction with a slope321
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(a)

(b)

Figure 3: (a) Illustration of the adjustments made to improve segmentation results, where
individual pools are connected or separated based on topographical features. (b) Corre-
sponding Digital Elevation Model (DEM) map and Accumulated Flow Accumulation (ACC)
map.

map derived from the HydroSHEDS DEM (Lehner et al., 2008). Specifically, pixels were322

systematically excluded from the water marker category if they satisfied the upper bound323

criteria 2-4 in Table 1, while concurrently being classified in WTE as Plains or Tablelands324

in the Landform Class, Dry or Desert in the Moisture Class, and Settlement, Shrubland, or325

Sparsely or Non-vegetated in the Landcover Class and additionally exhibiting a slope of less326

than 0.05o in the DEM data.327

Further, the presence of wind-induced surface roughness in large open water areas can328

lead to low SR values, resulting in portions of large open water domains being unaccounted329

for by the algorithm. This phenomenon is exemplified by Lake Victoria in Africa. To330

mitigate these uncertainties and effectively address the missing data in large water bodies,331

we apply a layer of data that identifies regions where water occurrence exceeds 95% based332

on the Global Surface Water Explorer(GSWE)(Pekel et al., 2016).333

Lastly, regions surpassing the DDM height limit of 4100 meters are recognized to have334

insufficient data availability. Pixels exceeding this altitude threshold are marked as null,335

reducing the likelihood of overlooking significant water bodies and therefore avoiding false336

negatives in high-altitude areas.337

This workflow addresses various geographical and environmental factors and aids in338

refining the algorithm with diverse landscapes.339
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3.4 Tilling340

The CYGNSS domain is partitioned into tiles of size 10° × 10°, and the algorithm341

is applied to each tile. More details regarding the tiling are described in the supporting342

information (Figure S1). Notably, the algorithm exhibited robustness in that the parameters343

were established based on the distribution within each tile, and the markers could be assigned344

without impacting the resulting water mask. Besides, the dynamic threshold is a crucial345

component of the algorithm because it ensures consistent performance across various regions346

and different time frames. In different geographical areas, vegetation can undergo significant347

changes, making it essential for the algorithm to adapt and maintain its accuracy. By348

adjusting its thresholds dynamically, the algorithm can effectively address these variations349

and deliver reliable results regardless of the specific location or time period it is applied to.350

Figure 4 shows how the Amazon region becomes segmented into four tiles and serves as a351

demonstration of the algorithm’s robustness, as the markers are not assigned uniformly, yet352

the resulting water mask remains unaffected by the tile boundaries.

Figure 4: Illustration of the CYGNSS algorithm’s robustness in tiling. Far-left: SR Map.
Center-left: STD Map. Center-right: non-uniform marker assignments aligned with the
tiles. Far-right: the resulting water mask, which remains unaffected by non-uniform marker
assignments.

353

4 Results354

Figure 5 presents May 2023 as an example of the watermask. Many large wetland and355

river basins are easily identifiable, even when zoomed out, including the Amazon Basin, the356

Pantanal, the Congo Basin, the Sudd, or the Yangtze River. Note the greyed areas over the357

Himalayas and the Andes, indicating areas of elevation higher than 4100 m over which the358

algorithm was not applied (see Section 3.3). An animation of the full timeseries from August359

2018 to September 2023 is available as supplementary information (Movie S1, available360

online). Strong seasonality shows across the world, with various regions experiencing wet361

and dry seasons at various points in the year.362

4.1 Comparison with SWAMPS and WAD2M363

In Figure 6, we showcase regional comparisons that utilize the inundated area fraction364

(fw) observed using the Berkeley-RWAWC, SWAMP, and WAD2M data sources between365

August 2018, when Berkeley-RWAWC product begins, and December 2020, after which date366

WAD2M and SWAMPS are not available. Berkeley-RWAWC, originally gridded at a spa-367

tial resolution of 0.01° (approximately 1 kilometer at the equator), has been downscaled368

into a resolution of 0.25° for direct comparison. We selected four geographically diverse369

regions - namely the Amazon Basin, the Pantanal, the Sudd, and the Indo-Gangetic Plain370

- each representing distinct ecological and geographical contexts. Figure 6 indicates that371

the CYGNSS product exhibits a remarkable capacity to elucidate pronounced seasonal vari-372
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Figure 5: The Berkeley-RWAWC water extent map for May 2023. Inland water is shown
in black, dry land in white, and grey areas depict either oceans or areas of high elevation
where not enough data is available to produce accurate maps (e.g. the Himalayas and the
Andes).

ations in surface water dynamics compared to the other two datasets. Furthermore, we373

present the monthly maps for the year 2020 for these four distinct geographical regions as374

captured by the three datasets, accessible in Supporting Information Figure S2.375

Figure 6: Regional comparisons of the timeseries of the inundated area fraction (fw) ob-
served for Berkeley-RWAWC (red), SWAMP (blue), and WAD2M (black) products between
August 2018 and December 2020 over the Amazon Basin (upper left), the Sudd wetland
(upper right), the Pantanal wetland (lower left), and the Indo-Gangetic Plain (lower right).

It is interesting to note that WAD2M, which is supposed to be an improved version376

of the SWAMPS product, shows a higher extent than SWAMPS in three of the four loca-377

tions, the Indo-Gangetic Plain being the exception. The Berkeley-RWAWC results for the378

Amazon and the Indo-Gangetic Plain exhibit similar seasonal patterns when compared to379

SWAMP and WAD2M datasets. However, it is noteworthy that the mean average within380

the CYGNSS dataset is significantly higher than that observed in the other two datasets.381

For the Sudd, Berkeley-RWAWC data presents more pronounced and dramatic seasonal382

variations compared to SWAMP and WAD2M datasets. In addition, we see an offset in the383

seasonality of the three products, with SWAMP and the WAD2M peaking in late spring for384

just three months (e.g. April, May, and June of 2019) and staying stable otherwise, whereas385

Berkeley-RWAWC shows instead a pronounced seasonal pattern and reaches its maximal386
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extent in late summer, with peaking evident in September and October. In the case of387

the Pantanal region, the Berkeley-RWAWC maps reveal a distinct high water extent peak388

in May 2019, a feature absent in the SWAMP and WAD2M datasets. Figure 7 shows the389

inundation fraction in the Berkeley-RWAWC product over the Sudd and the Pantanal for an390

extended time window going until 2023 September. Broader trends emerge then: over the391

5 years of data, the Sudd shows a regular seasonal range but exhibits a strong inter-annual392

upward trend. The Pantanal on the other hand shows a large interannual variability, with393

2019 and 2023 showing large inundation extent, whereas 2020, 2021, and 2022 show much394

smaller peak wet season extent. No long-term trend is appearing in the Pantanal.395

Figure 7: Regional comparisons of the inundated area fraction (fw) observed for Berkeley-
RWAWC (red), SWAMP (blue), and WAD2M (black) over the Sudd (left) and the Pantanal
(right). Here, Berkeley RWAWC is shown until September 2023. WAD2M and SWAMPS
end in December 2020 after which date the two datasets are not available.

5 Discussion396

The new Berkeley-RWAWC product is a unique tool to understand the spatio-temporal397

dynamics of inland waterbodies in the Tropics and sub-Tropics. Being updated in near-398

real time, the product will allow for rapid estimation of seasonal patterns as they emerge.399

The product exhibits a much higher seasonal variability than WAD2M and SWAMPS, two400

products regularly used to capture inland waterbodies (Xi et al., 2023; Liu & Zhuang, 2023;401

Deng et al., 2022; Skeie et al., 2023; Z. Zhang et al., 2023). This heightened sensitivity402

to seasonal variability carries profound implications across an array of scientific disciplines.403

The capacity to discern more changes in surface water dynamics opens up a plethora of404

opportunities for the scientific community to advance our understanding of critical ecological405

processes and environmental management.406

The product’s advanced monitoring capabilities offer a valuable tool in the fight against407

climate change, helping to identify and manage one of the key sources of greenhouse gas408

emissions. Wetlands are known to be substantial sources of methane, a potent greenhouse409

gas, and understanding their dynamics is crucial for climate change mitigation efforts. By410

providing detailed insights into the timing and duration of wetland inundation, the prod-411

uct enables researchers to pinpoint when and where methane emissions are most likely to412

occur. This information is essential for developing targeted strategies to better understand413

and predict methane release from wetlands in a changing climate. Additionally, the prod-414

uct’s ability to track changes in wetland conditions over time allows for the assessment of415

how different environmental factors, including human interventions, affect methane emission416

rates. This could be particularly beneficial in identifying areas where methane emissions are417

increasing and require urgent attention. The Berkeley-RWAWC product has already been418

leveraged for this purpose in multiple studies (Gerlein-Safdi et al., 2021; Lin et al., 2023),419

with more ongoing efforts leveraging the product currently in the work. For example, the420

implications of the increasing trend in inundation observed over the Sudd by the Berkeley-421
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RWAWC might help explain the large, ever-growing methane emission signal being detected422

by methane monitoring satellites over the area (Frankenberg et al., 2011; Hu et al., 2018;423

Lunt et al., 2019).424

Another pivotal application lies in unraveling the intricate interplay between fire regimes425

and wetland refilling patterns (Martin, 2016; Williams-Jara et al., 2022; Kominoski et al.,426

2022). The product can provide crucial insights into the timing and duration of inundation427

events, enabling researchers to assess how wetland refill rates may influence fire frequency,428

intensity, and ecological resilience, or the other way around. This knowledge is indispens-429

able for fire management strategies and the conservation of vulnerable wetland ecosystems.430

Furthermore, the enhanced ability to monitor seasonal variations in wetlands has direct431

implications for wetland conservation efforts. For example, the high inundation wet season432

in 2018/2019 followed by low water years in 2019/2020 observed in the Pantanal might433

be associated with the catastrophic fire event that engulfed the Pantanal wetlands in both434

2019 and 2020 (Leal Filho et al., 2021). The aftermath of this extensive fire outbreak raises435

concerns regarding the long-term ecological consequences, as initial indications suggest that436

the Pantanal’s unique biodiversity hotspot may face challenges in fully recovering from the437

unprecedented scale of these fires (Marques et al., 2021; Correa et al., 2022).438

Additionally, inland waterbodies serve as vital habitats for diverse flora and fauna,439

playing an essential role in maintaining biodiversity (Zedler & Kercher, 2005). With this440

product, researchers can gain a new perspective on wetland dynamics, allowing for a more441

comprehensive evaluation of conservation strategies. This data can inform the identification442

of critical wetland areas, guide habitat restoration initiatives, and facilitate sustainable443

land use planning to safeguard these invaluable ecosystems. For example, in the realm444

of biodiversity conservation, this product offers an advantage in tracking the movements445

of wildlife that traverse multiple wetlands throughout the year. Many species, such as446

migration birds and amphibians, rely on wetlands as stopover points during their journeys447

(Somveille et al., 2013; Runge et al., 2015). By providing a clearer view of wetland dynamics,448

the product aids in understanding the availability and accessibility of suitable habitats for449

these nomadic species. Researchers can use this information to devise effective conservation450

strategies that ensure the continuity of vital habitats, contributing to the preservation of451

biodiversity on a global scale.452

Finally, this new product, with its high sensitivity to seasonal variations in inland wa-453

terbodies, not only wetlands but also rivers, might be a great tool to test theories related454

to river networks, their formations, and their sequential activation (Rinaldo et al., 2014;455

Bertassello et al., 2022; Durighetto et al., 2023). The tools being developed to better under-456

stand river networks are of crucial importance to understanding the hydrological response457

of river basins to extreme hydrological events, but data to appropriately test these theories458

have so far been very limited, both spatially and temporally.459

In sum, the product’s capacity to illuminate seasonal variability in surface water dy-460

namics holds transformative potential for a myriad of scientific applications. From fire461

ecology and wetland conservation to biodiversity preservation and to methane emission, the462

data generated by the product enriches our ability to comprehend and address complex463

environmental challenges, fostering a more informed and proactive approach to safeguard-464

ing our planet’s ecosystems and natural resources. While the product exhibits enhanced465

performance in capturing seasonal variations, it is crucial to acknowledge its inherent na-466

ture as a binary water mask. With a resolution of 0.01° in both latitude and longitude,467

each pixel stands as a definitive sentinel, representing either a watery domain or dry land468

within a compact ∼1km by 1km frame. This singular feature underscores the need for users469

to embrace the binary essence of our data product, acknowledging its precision level and470

distinctiveness when harnessing it for diverse applications.471
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6 Conclusions472

This article presented the Berkeley-RWAWC inundation product, addressing a criti-473

cal research gap in global inland water dynamics. Historically, challenges like cloud cover,474

dense vegetation, and limited remote sensing revisit frequency hindered the characterization475

of seasonal inundation in tropical regions. Our study presents a significant advancement by476

adapting a computer vision algorithm for CYGNSS-based inundation mapping. Applied477

since August 2018, it enables monthly mapping at a 0.01° spatial resolution (∼ 1km). We478

detail our workflow and parameterization strategy. This methodology distinguishes itself479

by exclusively relying on static products combined with CYGNSS data for product devel-480

opment. This deliberate choice provides our results with a robust indication of CYGNSS481

data’s unique contributions, setting our dataset apart from others in the field. Compar-482

ative analysis with SWAMPS and WAD2M in the Amazon, the Pantanal, the Sudd, and483

the Indo-Gangetic plain reveals higher seasonal variations in Berkeley-RWAWC. We dis-484

cuss Berkeley-RWAWC’s applications, emphasizing its role in advancing tropical hydrology.485

To enhance access, we introduce a data portal for the scientific community. This paper486

contributes to remote sensing and hydrology knowledge, improving insights into tropical487

wetland dynamics and their global hydrological significance.488

7 Data Availability489

The monthly netCDF files for the Berkeley-RWAWC product over the entire CYGNSS490

domain are available via Globus at the following URL: https://shorturl.at/bdr46. The491

data is also available for visualization on the NASA VEDA dashboard: http://tinyurl492

.com/mt3m78zy. The WAD2M data is available for download as a netCDF file from Zenodo493

(doi: 10.5281/zenodo.3998453) (Z. Zhang et al., 2021a). The SWAMPS v3.2 dataset is down-494

loadable from the Alaska Satellite Facility DAAC at the following url: https://asf.alaska495

.edu/data-sets/derived-data-sets/wetlands-measures/wetlands-measures-product496

-downloads/#swamps. The CYGNSS data, L1 v3.1 used in this study is available from the497

PO.DAAC (https://podaac.jpl.nasa.gov/dataset/CYGNSS L1 V3.1) (CYGNSS, 2021).498
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