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Abstract

Magnetic flux ropes are ubiquitous in various space environments, including the solar corona, interplanetary solar wind, and

planetary magnetospheres. When these flux ropes intertwine, magnetic reconnection may occur at the interface, forming

disentangled new ropes. Some of these newly formed ropes contain reversed helicity along their axes, diverging from the

traditional flux rope model. We introduce new observations and interpretations of these newly formed flux ropes from existing

Hall Magnetohydrodynamics model results. We first examine the time-varying local magnetic field direction at the impact

interface to assess the likelihood of reconnection. Then we investigate the electric current system to describe the evolution of

these structures, which potentially accelerate particles and heat the plasma. This study offers novel insights into the dynamics

of space plasmas and suggests a potential solar wind heating source, calling for further synthetic observations.
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 10 

Abstract 11 

Magnetic flux ropes are ubiquitous in various space environments, including the solar 12 

corona, interplanetary solar wind, and planetary magnetospheres. When these flux ropes 13 

intertwine, magnetic reconnection may occur at the interface, forming disentangled new ropes. 14 

Some of these newly formed ropes contain reversed helicity along their axes, diverging from the 15 

traditional flux rope model. We introduce new observations and interpretations of these newly 16 

formed flux ropes from existing Hall Magnetohydrodynamics model results. We first examine 17 

the time-varying local magnetic field direction at the impact interface to assess the likelihood of 18 

reconnection. Then we investigate the electric current system to describe the evolution of these 19 

structures, which potentially accelerate particles and heat the plasma. This study offers novel 20 

insights into the dynamics of space plasmas and suggests a potential solar wind heating source, 21 

calling for further synthetic observations. 22 

 23 

Plain language summary 24 

This research examines a special type of systematically twisted magnetic fields, known as 25 

flux ropes, in the sun's atmosphere, the solar wind, and near planets. This examination brings 26 

new understanding of how these special flux ropes emerge from collisions between flux ropes 27 

are built on earlier model results. These results use a commonly used simulation tool for large-28 

scale plasmas to study the new ropes formed after two flux ropes are pushed toward each other 29 

long enough. In some cases, each of the new ropes may have opposite twists between their two 30 

ends. We then examine how the magnetic field changes across the interface during the evolution. 31 
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Changes in electric currents found in these situations further explain the formation and evolution 32 

of the new rope pairs. This examination helps to better understand the behavior of space 33 

plasma’s heating of the solar wind and its control of space weather. 34 

 35 

Key points: 36 

● We examine the interaction of magnetic flux ropes that consist of opposite helicity along 37 

their axis using numerical simulations. 38 

● We present the evolution of their current system, from which we anticipate a significant 39 

amount of energy release. 40 

● These structures could be present on the solar surface, in solar wind, and magnetospheres. 41 

 42 

1. Introduction 43 

Magnetic flux ropes (MFRs), certain “flux tubes” characterized by systematically twisted 44 

magnetic fields, are pervasive in space plasmas across macroscale and mesoscales (e.g., Hu et al., 45 

2018). Their presence extends beyond coronal mass ejections (CMEs) in the corona 46 

(Gopalswamy, 2004), to interplanetary CMEs (ICMEs) in the inner heliosphere (Howard et al., 47 

2009) and flux transfer events (FTEs) in planetary magnetospheres (e.g. Jia et al., 2010; Lai et al., 48 

2012; Belenkaya et al., 2013). Despite their wide range of plasma and field parameter values in 49 

various environments, many MFRs are thought to originate from magnetic reconnections (e.g., 50 

Russell & Elphic, 1979a; Moore and Labonte, 1980). Once formed, MFRs are stable and 51 

typically display a systematic rotation in their magnetic field vectors, a characteristic readily 52 

identifiable in in-situ magnetic field data (Burlaga et al., 1981). 53 

Magnetic helicity, a measurement of such rotation signatures, quantifies the relationship 54 

between the axial and azimuthal fields in MFRs. In space plasmas, helicity is considered as a 55 

conserved quantity, even amidst dissipation processes like magnetic reconnection. For instance, 56 

the helicity dissipation time in a typical coronal loop exceeds 10
5
 years (Berger and Field, 1984). 57 

Such a conservation principle has encouraged decades of efforts to compare ICME properties 58 

with their associated solar surface regions (Bothmer and Rust, 1997, Ulrich et al., 2018, Pal, 59 

2022). In addition, the generation (Forbes and Priest, 1995; Qiu et al., 2007), distribution (see De 60 

Keyser et al., 2005, Chapter 8.6), and transport (Berger and Field, 1984; Manchester et al., 2017) 61 

of helicity in (I)CMEs have been extensively investigated. When ICMEs pass by Earth, they are 62 
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believed to significantly affect magnetospheric activities, with such impacts largely dependent on 63 

their helicity (e.g., McAllister 2001). 64 

In Earth's magnetosheath, the disentanglement process of colliding MFRs has been observed 65 

in Magnetospheric Multiscale (MMS) data (e.g. Qi et al., 2020), resolving a long-standing issue 66 

concerning the evolution of interlaced MFRs (e.g. Hesse et al., 1990). Back to the interplanetary 67 

space, similar processes are then hypothesized to explain Magnetic Increases with Central 68 

Current Sheets (MICCSs) by Fargette et al., (2021). Subsequently, numerical models have been 69 

developed to simulate MFR collisions, successfully replicating these disentanglement processes 70 

in both the magnetosphere and interplanetary solar wind (Jia et al., 2021; 2023). In some of these 71 

model results, we noticed the formation of a new type of MFRs containing the helicity of 72 

opposite signs along a single rope, namely counter-helical MFRs (CHFRs). This phenomenon is 73 

determined by the initial chirality of these colliding MFR pairs and the local plasma conditions at 74 

the interface. 75 

On the solar surface, the existence of CHFRs can be found in some numerical simulation 76 

results but not thoroughly examined (Linton et al., 2001; Torok et al., 2011). They are also 77 

proposed for some erupting CMEs, as inferred from spacecraft imagery (Thompson, 2013). 78 

Nonetheless, due to their unstable nature and scarcity of concurrent observations to date, 79 

extensive studies of MFRs with differing helicities in the solar wind and magnetospheres have 80 

been limited, except for erosion studies (e.g. Pal et al., 2021), prompting a synthetic investigation. 81 

In section 2, we reexamine prior numerical models and their outcomes to introduce a 82 

particular type of formation of CHFR mechanisms. We detail the magnetic field configurations 83 

during their formation process to evaluate the conditions necessary for their production during 84 

such processes. In section 3, we analyze the evolution of the associated current system and 85 

estimate the energy release of CHFRs. By analyzing various interaction scenarios, our 86 

comprehensive study substantiates the formation and evolution of CHFRs. We also highlight 87 

their significance and advocate for further observational research in the solar wind and 88 

magnetospheres. 89 

 90 

2. Model and results 91 

A pair of interlaced flux ropes (IFRs) within the context of a typical 1 AU solar wind is 92 

adopted as the initial condition in our time-dependent interaction model. The solar wind 93 
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parameters are listed in Table 1. Each MFR is formulated by the force-free cylindrical model 94 

(Lundquist, 1950): 95 

Br’=0, B’ = HB0J1(r’/R0), Bz’= B0J0(r’/R0) when r’  R0 96 

B = 0 when r’ > R0        (1) 97 

Here, r', φ', and z' represent local poloidal coordinates centered at the MFR. Functions J0 and 98 

J1 are the 0th and 1
st
-order Bessel functions, respectively. Constant R0 = 130Mm is the radius of 99 

the MFR, and the constant α = 2.405 is the first 0 point of J0, dropping the axial field to zero at 100 

the MFR surface. These components are then transferred into Bx, By, and Bz in the Cartesian 101 

coordinate of the simulation domain, as shown in Figure 1. The rope axis z' is set parallel to the 102 

z-axis for the left MFR (initial displacement xL0 = 160Mm) and to the y-axis for the right MFR 103 

(xR0 = 160Mm), causing an impact angle of 90. Comparable to the background interplanetary 104 

magnetic field (IMF), we set the axial field B0 = 13nT. The parameter H=±1 denotes the chirality 105 

of the helical magnetic vectors of each MFR: When H = 1, the MFR is right-handed. 106 

During the evolution, it is anticipated that the plasma flow will drive the two MFRs to 107 

collide, creating an interface at the origin, as depicted in Figure 4 by Jia et al. (2021). For the two 108 

MFRs to successfully disentangle, magnetic reconnection must occur rapidly at this interface. 109 

When variations in other factors are negligible, the rate between the guide field and the 110 

reconnecting field has been found to govern the efficiency of magnetic reconnections using 111 

models and lab experiments (Pritchett & Coroniti, 2004; Lu et al., 2011; Tharp et al., 2012). We 112 

note that the difficulty of verifying this trend with space measurements is reviewed by Genestreti 113 

et al. (2018). 114 

To assess the guide field and thereby the likelihood of MFR reconnection, we examine the 115 

magnetic field across the interface before presenting the self-consistent simulation results. In our 116 

conceptualization, we assume that the two MFRs move with the driving plasma flow and 117 

interpenetrate, without experiencing deceleration or deformation. As they overlap, different parts 118 

of the MFRs reach the interface at various stages: The side with the smallest x-coordinate of the 119 

MFR on the left will arrive early, while the part with the largest x-coordinate in this MFR will 120 

arrive later (red arrows in Figure 1). Under this assumption, we use the local field within the 121 

MFRs to depict the field arrows across the interface. Both the early (before reconnection) and 122 

late (after reconnection) stages of this hypothetical interpenetration are sketched in the same 3-D 123 

projection in Figure 1. 124 
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At the early stage of the hypothetical collision, the magnetic fields in the L-R case (Figure 125 

1a) exhibit a large shear angle, promoting reconnection. In contrast, the magnetic field vectors in 126 

the L-L case (Figure 1b) are nearly parallel, leading to a strong guide field that hinders 127 

reconnection. Conversely, in the later stages of these IFRs, both cases exhibit a significant angle 128 

between field vectors, potentially facilitating reconnection. 129 

 130 

Figure 1. Three-dimensional view of the initial conditions (T=0h) of two distinct simulation 131 

cases. The black and red curves represent magnetic field lines, spiraling around the yellow 132 

cylinders representing the MFRs. Chirality in the MFRs (L-R, L-L) is indicated by the letters 133 

labeled. After this T=0 stage, field arrows are sketched during a hypothetical interpenetration. 134 

Black arrows represent B vectors from the left MFR side (x<0 initially), while red arrows are 135 

from the right MFR (x>0 at T=0). 136 

 137 

Two plasma flows, each with a speed of u = ux=±13 km/s, are driven against each other, 138 

maintained by boundary conditions, as shown by the color contours in Figure 2. A 3-D Hall 139 

MHD version (Toth et al., 2008) of the BATS-R-US code (Toth et al., 2012) is used to simulate 140 

this process. Additional details regarding the L-R case, employing the same solar wind condition, 141 

are provided in a recently submitted paper focusing on enhancements in the interplanetary 142 

magnetic field (Jia et al., 2023). 143 

 144 

Table 1. Selection of parameters in models for two distinct space plasma regimes. 145 
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 Solar wind Magnetosheath 

n (/cc) 5 10 

T (K) 5e5 2e7 

B0 (nT) 12 29 

Domain size Xmax (Mm) 2000 160 

Grid size Dx (Mm) 16 0.3 

MFR radius R0 (Mm) 130 2.5 

Time For L-R case to 

disentangle 

17h 40 min 

 146 

The solar wind IFR model results with the L-R and L-L configurations are illustrated in Fig. 147 

2. Panels a and b show the evolution of the L-R case. At T=10h, a pair of new MFRs is forming 148 

when left-handed MFRs are connecting to right-handed MFRs. At T=17 hours shown in Fig. 2b, 149 

the pair of new MFRs are liberated, each having opposite helicity on their two ends, to form a 150 

pair of CHFRs as sketched in panel c. 151 

In contrast, the L-L case shown in panel d remains entangled at 17h, due to the strong guide 152 

field at its early stage. Additional simulations were conducted with varying plasma temperatures 153 

between 5e5 and 1e7 K for this L-L case, but disentanglement did not occur in any of these 154 

scenarios. The outcome of both cases is consistent with our earlier field vector analysis of the 155 

early stage shown in Figure 1. 156 

 157 
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    158 

  159 

Figure 2. Three-dimensional plots comparing the simulation results of L-R (panels a, b) and L-L 160 

(panel d) cases. Panels a and b show the same model result plotted in their Figure 4 by Jia et al. 161 

(2023). The blue curves depict field lines winding around the yellow cylinders that represent the 162 

MFRs. Color contours illustrate the ion speed component ux are located at planes defined by x= 163 

2000, y= 1000, and z= 360 Mm, respectively. The red line in the center denotes the x-axis. 164 

Panel c sketches a counter-helical MFR and compares it with a regular MFR reproduced from 165 

Fig.3 by Russell and Elphic (1979b). 166 

 167 

Utilizing the same code, Jia et al. (2021) simulated a comparable process in the Earth's 168 

magnetosheath, with the corresponding parameters also detailed in Table 1. Disentanglement 169 
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occurred in both the L-R and L-L cases. However, the disentanglement process took over 100 170 

minutes for the L-L case, whereas it only required 40 minutes for the L-R case, also consistent 171 

with our vector analysis. To explore kinetic effects during this process, we subsequently 172 

replicated the L-R case in the magnetosheath using a hybrid code (Wang et al., 2009), yielding 173 

consistent results (not shown here). We advocate for additional simulations employing these 174 

computationally intensive kinetic codes to improve the accuracy of our magnetic reconnection 175 

modeling. 176 

 177 

3. Discussion and conclusions 178 

Along the axis of an MFR, the axial field's polarity remains constant due to the solenoidal 179 

nature of the magnetic field vector B. In our IFR scenario, this principle dictates the linkage in 180 

the new pair of MFRs: A disconnected half of the original MFR must pair with the MFR half that 181 

contains the same axial field. For a L-R case, the –y half must connect to the +z half, instead of 182 

the –z half. Consequently, the segments of opposite helicity are connected. Helicity is also an 183 

indicator of another solenoidal vector: The electric current density vector j (Russell and Elphic, 184 

1979b). For this L-R case, we are thus faced with an apparent dilemma: How do these pairs of 185 

half MFRs carrying opposite j connect, without violating the divergence-free requirement of j 186 

under MHD assumptions? To resolve this, we examine these current systems. 187 

The left panel of Figure 3 shows the initial current system of MFRs in the L-R case, 188 

calculated from the analytical force-free solution (equation 1). The y-component of current is 189 

plotted in color contours on the two plane slices, with the black curves marking jy =0. At x<0 as 190 

an example, the radius of the outer black curve is R0, which coincides with the MFR radius. The 191 

radius of the inner circle is r1 = 1.841R0/α, corresponding to the first peak of the Bessel function 192 

J1(r’). As shown on both planes, jy >0 when r1 < r’ < R0 in a surface region, and jy >0 when 0 < r’ 193 

< r1 in the core region, indicating the reversal of the axial component of the current in this MFR. 194 

We further illustrate this current system in 3-D with color-coded streamlines. This current 195 

reversal is further illustrated by the two colors assigned to the streamlines of j, differentiating the 196 

surface current from the core current. In the case of the right-handed MFR at x>0, the core 197 

current has the same sign as the poloidal field By (white lines), while the surface j has the 198 

opposite sign (cyan line). This r’-sign relationship inverts when H= 1, in the left-handed MFR 199 

at x>0. On the other hand, we note that although the surface current is clustered in a thin layer to 200 
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compensate for all the core current, their directions still satisfy the j = cB nature of a force-free 201 

field: j(R0) = j (not shown), where c is a scalar. 202 

Such a surface-core current system occurs because the total current flux in a force-free MFR 203 

equals zero (Solov’ev & Kirichek, 2021), a characteristic also derivable from our Eq. 1. 204 

Consequently, when a counter-helical flux rope (CHFR) forms, these currents can close at any 205 

cross-section by connecting the two oppositely flowing currents to conserve the total current flux. 206 

This is illustrated by the two self-winding curves in the right panel of Figure 3, which shows the 207 

later stage of the disentanglement process. In the left-handed segment, the surface current (white) 208 

flows in the axial B direction and then connects to the core current that flows backward (cyan). 209 

In summary, this j=0 dilemma is resolved by the self-closure of surface and core currents in 210 

such originally force-free structures. 211 

 212 

   213 

Figure 3. Three-dimensional plots of the L-R case result, with the red lines marking the x-axis. 214 

The initial condition is shown in the left panel, with the color contour of the electric current 215 

density jy component on the y=0, and z=0 planes. The current jy =0 along the black lines, with 216 

kinks indicating changes in grid resolution. A gray plane is positioned at x= 320 Mm. The 217 

colored curves are current streamlines in 3-D: When the polarity of j is the same as the magnetic 218 

field (j B >0), it’s colored in cyan, and white for opposite polarity (j B <0). The right panel 219 
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displays the same result at T=17h as shown in Figure 2b. However, electric current lines are 220 

plotted here instead of magnetic field lines. 221 

 222 

In the middle of such a new CHFR, the magnetic field is predominantly poloidal, rendering 223 

the axial current negligible, and this region is no longer force-free. Thus, CHFRs are not stable 224 

and will dissipate. Starting from the center and propagating to both ends, the current system will 225 

rearrange. Correspondingly, the azimuthal magnetic field will gradually align towards the axial 226 

field. Ideally, the opposite helicity will annihilate, and a CHFR becomes a magnetic flux tube 227 

without any twist in its field. This annihilation will release all the energy of the azimuthal 228 

component of the magnetic field, which is about 1/6 of the total magnetic energy, as can be 229 

integrated from equation 1. Although this release occurs over an extended period, this amount of 230 

energy discharged from the entire MFR is orders of magnitude larger than that produced during 231 

the reconnection at the impact interface. This energy may contribute to particle acceleration or 232 

plasma heating and thus heats the solar wind. In the tranquil solar wind where plasma dynamics 233 

are minimal, the propagation speed of this alignment, estimated using the Alfvén speed, is 234 

typically below 0.1 times the solar wind speed. Consequently, a CHFR that passes through a 235 

detector within one hour, with its poloidal length scale exceeding its cross-section scale (large 236 

aspect ratio), could sustain for over 10 hours, offering sufficient opportunity for observation. 237 

In our simulations of both the solar wind and magnetosheath environments, we assumed a 238 

90 impact angle between the MFRs. This angle affects the relative field orientation across the 239 

interaction interface. Utilizing the same vector sketch approach as demonstrated in Figure 1, we 240 

find that both L-L and L-R configurations can lead to disentanglement across a range of impact 241 

angles, thereby supporting the production of CHFRs from IFRs. 242 

Similarly, Linton et al. (2001) investigated MFR interactions in the low corona with a MHD 243 

code. They propelled uniformly twisted MFRs (Gold & Hoyle, 1960) in a solenoidal velocity 244 

field, achieving a disentanglement process that they call “slingshot”. We note that their product 245 

is an R-L CHFR (see their Figure 10). However, their parameters are normalized to magnetic 246 

field B0 and MFR radius R0, precluding a direct comparison with our Table 1. CHFRs can be 247 

found in their model results for impact angles between 90 and 270. These results were later 248 

confirmed with a zero- MHD simulation (Torok et al., 2011), to explain an indicated CHFR 249 

involved in an eruption on the solar surface (Chandra et al., 2010). On the other hand, most 250 
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studies on the interaction between MFRs focus on those whose axes are parallel to each other 251 

(e.g. Lau and Finn, 1996; Hansen et al., 2004, Zhao et al., 2015) to find multi-point interactions, 252 

where CHFRs are not evident. 253 

MFRs with asymmetric helicity within their cross-sections have been suggested in the 254 

context of CMEs undergoing erosion via magnetic reconnection (Dasso et al., 2006; Pal et al., 255 

2021). Additionally, MFRs with varying helicities along their axes, although unstable, have been 256 

proposed based on particle time-of-flight data in ICMEs (Cane et al., 1997; Owens et al., 2016). 257 

A recent multi-spacecraft observation, despite certain uncertainties, found opposite helicity from 258 

different parts of an ICME (Rodríguez-García et al., 2022). We recommend further examination 259 

of such cases because CHFR is a plausible, likely, and important phenomenon. Such 260 

investigations would expand our knowledge of MFRs in space plasmas. 261 

The curvature and activities in the magnetosheath make MFRs complex and transient (e.g. 262 

Chen et al., 2017; Guo et al., 2021). Still, it’s possible for one or a few spacecraft to cross the 263 

same curved MFR at different locations. When a spacecraft detects two shortly separated MFRs 264 

with identical plasma content but measures opposite chirality, it may be seeing a newly formed 265 

CHFR, providing another chance to observe CHFRs. 266 

IFRs, a prerequisite condition for CHFRs generated in this study, are commonly observed in 267 

the inner heliosphere (Qi et al., 2020; Fargette et al., 2021). Additionally, the mixing of MFRs 268 

with opposite helicities, another condition for such CHFRs to form, is also available for small-269 

scale MFRs in the solar wind (Zhao et al., 2021). However, identifying variable helicity along an 270 

MFR is challenging, given the determination of helicity from a single spacecraft measurement is 271 

notoriously challenging (Hu, 2017). Additionally, the concept of multiple MFRs winding around 272 

each other (Hu et al., 2004; Hwang et al., 2021, Figure 1e), MFRs with opposite helicity within 273 

their cross sections (Florido-Llinas et al., 2020), and MFR distortion (Nieves-Chinchilla et al, 274 

2023) has been proposed, further acknowledging the complexity of MFRs in observation data. 275 

Nevertheless, with the increasing number of probes in the inner heliosphere, CHFRs may be 276 

observable through coherent observations from multiple spacecraft. Alternative methods of 277 

identification are also possible, like solar images (e.g. Zhang et al., 2012) and hints from in situ 278 

plasma data. 279 

In addition to IFRs, direct emergence from the solar surface to generate CHFRs has been 280 

proposed when analyzing vector magnetograms (Vemareddy, 2021). Are there other processes to 281 
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form CHFRs in the solar wind? How often are they generated? More investigation is needed to 282 

answer such questions. 283 

In summary, CHFRs have been identified in previous research, but their discussion has not 284 

been exhaustive. Focusing on a specific generation mechanism, we show the details of such 285 

structures to affirm their existence and highlight their significance. Additional theoretical and 286 

observational efforts are necessary across various regions of the inner heliosphere to comprehend 287 

the stability, evolution, and propagation of CHFRs. This study is significant for advancing our 288 

knowledge in solar wind heating and space weather, given the energy CHFRs release and the 289 

north-south magnetic flux they carry. 290 
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