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Abstract
The threat posed by solar flares to human technology underscores the need for reliable
forecasting models to mitigate risks effectively. Our study introduces a novel deep learning
forecasting approach while emphasizing the need for performance evaluation methods tai-
lored to highlight current models’ limitations better. We discuss shortcomings in existing
evaluation metrics such as the True Skill Statistic (TSS) and the Heidke Skill Score (HSS)
and propose the Matthews Correlation Coefficient (MCC) as a consistent alternative to both
of them. We introduce Persistent-Relative-Skill Scores (PRSS), as well as metrics evalua-
tion on the restriction of time windows presenting a change of activity (Activity-Changes
(AC) performances). We found that models reaching state-of-the-art performances with
traditional metrics can be less efficient and explanatory than a simple persistent model and
struggle to forecast change in activity significantly better than random guesses. We intro-
duce the Patch-Distributed-CNNs (P-CNN), which allows for performing full-disk forecasts
while providing event probabilities in solar sub-regions and position predictions. This new
framework offers similar information to Active-Region-based forecasting models while by-
passing the problem of unrecorded and misattributed flares in Active-Region flare catalogues
that are detrimental to machine learning training. As a result, the model also operates inde-
pendently of prior feature extraction and AR detection, thus offering promising operational
utility with minimal external dependencies. We propose a methodology for constructing
balanced and independent Cross-Validation folds to train and evaluate full-disk forecast
models accurately. Models combining SDO/AIA EUV images as inputs show improved per-
formances compared to employing SDO/HMI photospheric magnetograms, with a TSS of
0.74 for the C+ model and 0.62 for the M+ model.

Plain Language Summary
Flare forecasting models deemed as state-of-the-art with standard performance evaluation
methods can be quite ineffective in forecasting changes in activity. They appear to struggle
to compete with persistent models, both from a practical operational point of view (F1-score)
and in their ability to explain the observed event (MCC). We propose Persistent-Relative
metrics and performance evaluation on the subset of time windows presenting a change
of activity to highlight these models’ flaws better and ease comparisons. We also propose
new deep-learning models that do not rely on previously identified Active Regions while
still providing position estimations for the forecasted events and predictions at regional
levels of the solar disk. This new model offers promising operational utility thanks to
minimal external dependencies, and more reliable training by minimizing mislabels during
the training process.
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1 Introduction and Related Work

1.1 Deep learning To forecast flares

Solar flares are one of the most energetic manifestations of the solar activity. They
are bursts of electromagnetic radiations and particles, believed to be caused by magnetic
reconnections converting huge amounts of magnetic energy into heat and kinetic energy.
To characterize the potential danger they represent, flares are commonly classified into
5 classes according to their Soft X-Rays (SXR) (wavelength from 0.1 to 0.8 nanometers)
Maximum Peak Flux (MPF): A-Flares with a MPF < 10−7 W ·m−2, B-Flares for a MPF
∈ [10−7, 10−6[ W ·m−2, C-Flares for a MPF ∈ [10−6, 10−5[ W ·m−2, M-Flares for a MPF
∈ [10−5, 10−4[ W · m−2 and finally X-Flares with a MPF > 10−4 W · m−2. Flares above
the M-class start representing a threat to human health and technologies. For instance,
large X-flares are found to be associated with a 39% increase in ischemic stroke among
the general population (Vencloviene et al. (2021)). This motivates a significant work effort
to predict them successfully. Recently, many approaches have been proposed to forecast
solar flares using deep learning. Huang et al. (2018), Park et al. (2018), Li et al. (2020),
Z. Deng et al. (2021) and Pandey et al. (2023) used Convolutional Neural Network (CNN)
on magnetograms images. Nishizuka et al. (2018) used an Multi-Layer Perceptron (MLP)
on a combination of physical features. Guastavino et al. (2022a) combined CNN with Long
Short-Term Memory (LSTM) to process temporal-stacks (videos) of magnetograms, while
Deshmukh et al. (2022) combined CNN on magnetograms images with a Random Forest
algorithm on some physical features to decrease the false alarm ratio of their model. A
study by Sun et al. (2022) used both CNN on magnetograms and LSTM on a time series of
physical features and ensembled the two approaches for optimal results. The typical goal of
these methods is to forecast the likelihood of the whole Sun or of a particular Active Region
(AR) to produce a flare in a specific time window - most often 24h - which starts from the
data used for the prediction, or eventually a few minutes after. The prediction is usually
binary, indicating whether there will be at least one flare above a given threshold during
the forecasted window. This threshold is often the one of C or M-class flares, while the
X-class is addressed less frequently due to the challenges met by machine learning methods
on extremely imbalanced and scarce data. An advantage of most deep learning approaches
compared to other Machine Learning (ML) works is that they do not rely on previously
identified features. This is often also seen as a drawback referred to as the black-box
problem (Camporeale (2019)) as we have less understanding about the way those models
make a given prediction. This can nevertheless be mitigated through explainability methods.
Yi et al. (2021) used such methods to show that their deep learning model was learning to
extract features highly correlated to known predictive features. However, such models are
not limited to known flare predictive features and could help identify new ones. As these
models do not depend on pre-identified features, they enable the development of more
autonomous systems, potentially simplifying deployment and maintenance in operational
settings. However, most current works focus on forecasting flare directly on pre-identified
AR. Such models still suffer from external dependency and could not forecast a flare in
the case of a mis-detected or un-emerged AR. van der Sande et al. (2022) also showed
that many flares are unrecorded or misattributed at the AR level in standard flare catalogs.
They found up to 8% of misattributed label at the AR level and about 20% of missing
events among those located between ±65 heliographic longitude from disk center and above
the M thresholds between 2010 and 2017 from the standard Goes Flare catalog. While
van der Sande et al. (2022) acknowledge that the Heliophysics Event Knowledgebase (HEK)
correct many of the missing events from the Goes Flare catalogue, several are still attributed
to a wrong AR or simply lack an attribution. This leads to a significant number of ARs
inaccurately labelled as events and no-events, which can significantly impair model training
and evaluation in a challenging context of already imbalanced and scarce data. Park et al.
(2018), Yi et al. (2021), and Pandey et al. (2023) train their model to forecast flares directly
at the whole solar disk level. Such models do not suffer from mislabels due to missing or
misattributed AR. They are also more autonomous than AR-based models. However, they
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do not provide information about the position of the predicted flares. In this work, we
propose the first deep learning model performing flare forecast at the whole disk level from
which it is possible to retrieve the position of the foreseen flares along with sub-regional
predictions without relying on prior identifications of AR. We focus on forecasts within
24-hour time windows and use the whole-disk exhaustive flare catalogue from Plutino et al.
(2023). Throughout this work, models performing binary forecasts above the C-class and
M-class models will be designated as C+ models and M+ models, respectively.

1.2 Models evaluation

Although most of the previous literature focuses on the same problem, it is still hard
to objectively compare the performances of these different works. Barnes et al. (2016) and
Leka et al. (2019) showed that the performances of forecasting methods evaluated during
the traditional training and test phases of existing flare forecasting studies are often over-
optimistic and reflect poorly the performance a model would have in an operational setting.
These gaps between expected and actual performances happen because the data on which a
model is evaluated is typically biased and does not represent well the data that will be met in
an operational context (Cinto et al. (2020)). For instance, Guastavino et al. (2022a) showed
that different subcases of negative (quiet time-windows) could affect the usual metric scores
used to evaluate models differently. Guastavino et al. (2022) also introduced the distinc-
tion between good and bad errors in flare forecasting to better account for the problem’s
dynamical nature. Guastavino et al. (2022b) showed that using metrics weighted to distin-
guish such errors helps in selecting models that reach better operational performance. This
work proposes two new methods to assess flare forecasting models’ performances. These
new performance methods allow us to highlight that models may struggle to outperform a
simple persistent model, with a remarkable inefficiency in forecasting activity changes, while
they might appear as efficient and useful models with conventional evaluation metrics. Fur-
thermore, these new evaluation approaches also appear to partially mitigate the impact of
the evaluation set compositions on the measured performance and ease comparisons among
different models

2 Metrics

2.1 Standard Evaluation Methods

2.1.1 Common metrics

This section introduces the most common evaluation metrics used in flare forecasting
and discusses their shortcomings. Formulas can be found in Appendix A1, and additional
insights on their discussed properties are detailed in Appendix A2

The selection and evaluation of models heavily rely on the metrics employed to gauge
their performance. However, the scientific community lacks consensus regarding a singular,
comprehensive metric for binary classification. Different metrics serve distinct objectives
and address diverse problems. While multiple metrics are often necessary to provide com-
prehensive insights into a model’s qualities, a single metric is essential for model selection
during training and facilitates simpler model comparison. In Space Weather, such as in the
case of flare forecasts, evaluating models is challenging due to the prevalent class imbalance
between positive and negative events.

Binary metrics are typically defined as a function of the confusion matrix (CM) (Equa-
tion A1), also referred to as the prediction-observation contingency table. From this matrix
can be derived four basic rates which together summarize the information contained by the
confusion matrix:
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• Class-Accuracy rates:

– True Positive Rate (TPR), also know as Recall (Equation A2)

– True Negative Rate (TNR), also know as Sensitivity (Equation A3)

• Class-Precision rates:

– Positive Predictive Value (PPV), also know as Precision (Equation A5)

– Negative Predictive Value (NPV)(Equation A4)

For alarm systems like Space Weather, the positive class corresponds to an event and
the negative one to a no-event. Consequently, the emphasis typically lies on achieving high
recall (TPR) to detect a maximum of events, along with high precision (PPV) to ensure
confidence in positive predictions. Equivalently to the precision, practitioners alternatively
look at the False Alarm Ratio (FAR) which is the complementary of the former and gives
the rate at which positive predictions give a false alarm.

The F1-score (Equation A6), is the harmonic mean of the recall and the precision. It
offers a consolidated assessment of an alarm system skill. It can be extended to the Fβ-score
to give β-times more importance to the recall relatively to the precision, to consider defined
preferences between positive events detection rate and false alarm ratio.

The True Skill Statistic (TSS) (Equation A7) is among the most used metrics to evaluate
flare forecasting models but suffers from important limitations. Despite being in ideal cases
independent of the class balance, in flare forecasting, the TSS is among the most sensitive
metrics to this bias as well as other ones, both theoretically (Appendix A21) and empirically
(Appendix B). The TSS synthesizes the class-accuracy rates (TPR and TNR) and, therefore,
contains no information about a model’s precision. This makes it arguably unsuitable to
evaluate an alarm system in the case of imbalanced datasets. A very high TSS may hide
impractical models in such imbalanced cases, as described in appendix A22. We may finally
note that the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC),
another common metric, can be expressed in terms of the expected value of the TSS for
different probability decision thresholds. The AUC ROC thereby suffers from the same
limitations as the TSS, mainly an absence of information about class-precisions, which is
detrimental to imbalanced problems.

The Heidke Skill Score (HSS) (Equation A10) is another common metric in flare fore-
casting and is typically used to compare a model to random guessing. It synthesizes (c.f
Appendix A17) both the class-accuracy rates (TPR and TNR) and the class-precision rates
(PPV and NPV) making it more complete than the TSS. However, the weight given to the
class accuracies and the class precisions in the HSS is model-dependant as it relies on the
model’s Negative-Frequency-Bias (NFB) (Appendix A17 & Appendix A23). This makes the
HSS difficult to interpret and unreliable when comparing different models.

The Matthews Correlation Coefficient (MCC) (Equation A11), is currently less com-
mon in Space Weather studies but presents several advantages over the TSS and HSS (c.f.
Appendix A24). It is the binary Pearson correlation coefficient between the predictions and
the observations. As such the MCC directly measures how much of the observed variance
of the target can be explained by the model. The MCC is, therefore, an agnostic measure
of a model’s explanatory power. It also synthesizes the class accuracy and precision rates
by giving even weights to each of the four basic confusion matrix rates (TPR, TNR, PPV,
NPV). It allows us to compare a model to random guessing in a more consistent way than
the HSS and has been several times shown to be one of the most complete and reliable met-
rics to assess a model’s overall quality in classification. From our empirical observations,
the MCC also appeared more resilient to dataset composition changes than the TSS or the
HSS (c.f. Appendix B).

Ultimately, no single metric is enough to give a complete insight into a model’s flaws
and qualities. Still, the F1-Score, or alternatively a Fβ-score, remains pivotal for selecting
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models intended as alarm systems. Meanwhile, the MCC appears as the most informative
and reliable metric to assess the general ability of a model to explain a given problem.

2.1.2 Thresholding

In binary classification, a prevalent approach involves determining the probability
threshold that maximizes a desired metric. Yet, studies have shown that optimal thresholds
are usually dependent on the class-balance of the datasets (Leka et al. (2019)). This intro-
duce an additional bias in the metric evaluation. As a result, in our evaluations, we assess
all metrics using a consistent probability threshold of 0.5.

2.2 Identifying flare forecasting models weakness

The previous metrics do not allow to identify key weaknesses of current flare forecasting
models. Therefore, we introduce complementary evaluation methods to better highlight
important model limitations.

2.2.1 Activity-Change (AC) and No-Change (NC) performances

We define changing time windows as the ones exhibiting an Activity-Change (AC),
i.e. when the window label differs from the previous consecutive non-overlapping window.
Conversely, a constant time window is a window presenting No-Change (NC) of activity
with respect to the previous one.

This distinction is crucial as forecasting flares on constant versus changing time windows
represents two distinct challenges. While the former is more of a classification/recognition
problem, the real challenge of flare forecasting lies in the latter where current models struggle
to perform significantly beyond random classifiers.

This lack of performance on changing time-window is not reflected by usual metrics
like the TSS and HSS that can still reach good values on the whole evaluation set. To
understand this limitation better and what type of model or information could allow to push
that boundary, we propose to complement traditional performance evaluation by evaluating
models’ performances separately on changing and constant time-windows.

The restriction of a metric evaluated on changing time windows will be referred to
here as Activity-Change-metric (AC-metric), and the restriction of a metric evaluated on
constant time windows will be referred to as No-Change-metric (NC-metric).

2.2.2 Persistent Relative Skill Scores

Usual skill scores compare model performances against constant or random guess clas-
sifiers. In the context of flare forecasting, a persistent model — predicting labels based on
the previous time window — can also be seen as a no-skill model. We find in this work
that such a model typically outperforms the other no-skill models and even our best mod-
els (Section 4.1 & Appendix B2). Skill scores relative to the persistent model could thus
better highlight such limitations and the actual utility of flare forecasting models. We also
find that skill scores defined relatively to the persistent model can be less sensitive to the
dataset composition (c.f. Appendix B2), which could make them more suited to compare
flare forecasting models.

For a metric S defined on [Inf, Sup] ⊂ R, we define the Persistent Relative Skill Score
(PRSS) as the difference of a model’s score (Smodel) with a persistent model (S∗), rescaled
in [−1, 1], according to the following equation :
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PRSS =

{
Smodel−S∗

Sup−S∗ if Smodel ≥ S∗

Smodel−S∗

S∗−Inf if Smodel < S∗
(1)

It can be noted that in both cases, respectively, over- and underperforming, the denom-
inator represents the maximum possible overperformance or underperformance with respect
to the persistent score. Consequently, when positive, the PRSS reads as the percentage
of the maximum possible overperformance - respectively underperformance when negative
- achieved by the evaluated model relatively to the persistent model. Finally, the PRSS
is null if and only if Smodel = S∗, it equals 1 when Smodel = Sup, and equals -1 when
Smodel = Inf .

It is noted that these metrics diverge from common binary classification metrics, as
they factor in parameters external to the model confusion matrix by including terms of the
persistent model’s confusion matrix. 1

3 Method

3.1 Data

A dataset was prepared for model training and evaluation, encompassing 56,664 samples
from May 14, 2010, to April 18, 2023, with a temporal cadence of 2 hours. The period from
May 2010 to December 2019 is used for training with Cross-Validation and from January
2020 to April 2023 for test evaluation. The test dataset is temporally separated from the
training and validation datasets, comprising samples from a distinct solar cycle. It meets
the criteria given by Cinto et al. (2020) to satisfy the definition of an operational test set
and allows us to assess operational performance generalisations at the beginning of a new
Solar Cycle.

Each sample is associated with a photospheric line of sight magnetogram from Solar
Dynamic Observatory (SDO)/HMI (Pesnell et al. (2012)) and 193Å, 211Å, 94Å, Extreme
Ultraviolet (EUV) images of the solar Corona from the SDO/Atmospheric Imaging Assem-
bly (AIA) (Lemen et al. (2012)). We selected these 3 EUV wavelengths for their strong
correlation that are well suited to assemble them in an RGB-like image and leverage the full
potential of pre-trained CNNs that are trained and optimised on such images. One of our
objectives is also to compare the performances of photospheric magnetogram-based features
and coronal thermal and morphological features to forecast Solar Flares.

3.1.1 Flare windows labels

For each sample, we compute the time-windows labels from an extension of the Plutino
et al. (2023) catalogue based on GOES’s SXR flux data. To assess the regional predictive
performances of the models on an operational test set, we also retrieve the positions of the
flare catalogue events for flares above the C-class threshold for samples after 2020-01-01.
To estimate the position of flares on the Sun’s corona, we cross-match the flare events with

1 The persistent model’s confusion matrix can be expressed in terms of counts of Negative-to-Negative

time-windows (N2N) which equals the persistent true negatives (TN), Positive-to-Positive time-windows

(P2P) which equals the true positives (TP), Negative-to-Positive time-windows (N2P) which equals the

false negatives (FN), Positive-to-Negative time-windows (P2N) which equals the false positives (FP). In the

case of a dataset including all the temporally consecutive samples of a given period, it can be observed that

the persistent confusion matrix - and therefore the resulting PRSS metrics - simplify and can be expressed

as functions of the number of activity changes (C) and the number of Positives (P) and Negatives (N), since

P2N = N2P = C
2
, P2P = P − C

2
and N2N = N − C

2
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images of the solar corona taken from SDO/AIA in the 171Å wavelength. The flare position
tracking process starts by subtracting a coronal image at the flare’s onset from the one
at the flare’s peak. This allows to isolate the dynamic intensity enhancement compatible
with the given flare. Through the feature tracking algorithm ”Trackpy” (Crocker and Grier
(1996)), we can pinpoint the position of the brightest clusters of pixels and, therefore, the
estimated position of the flare event in the solar corona.

3.1.2 Magnetograms

Line-of-sight magnetograms are retrieved from JSOC from the 45-second series. Origi-
nal images are downsampled to 1024 by 1024 pixels with linear interpolation. The bit-depth
of the pixel values is reduced from 16bit to 8bit. To maintain a good dynamic range without
saturating too much, a log transform2 is first applied symmetrically to the positive and neg-
ative pixel values. Images are then saturated by the 99.9 percentile of the maximum pixel
values over the Cross-Validation period, which corresponds to an original value of 4644G.
We then apply a linear scaling so that original 0G values are centred at a pixel value of 127,
with 0 and 255, respectively, representing the negative and positive saturation values.

3.1.3 EUV images

EUV AIA images are downloaded from the JSOC AIA synoptic dataset, which consists
of level 1.5 AIA images available at a 2-minute cadence. The images are already registered,
meaning they have a normalised arc-sec to pixel scale, one pixel being 2.4 arc-sec, and are
rotated so that solar North is aligned with the y-axis. They are downscaled versions of
original AIA images to a 1024 by 1024 pixel resolution. As for the magnetograms, we re-
duced the bit depth of the pixel values from 16 bits to 8 bits. To do so, the pixel value is
first normalised by exposure-time.We then take into account AIA CCDs degradation over
time and correct for it, using the degradation correction table available from aiapy (Barnes
et al. (2020)). EUV pixel distributions tend to be concentrated in a small range of val-
ues with some extreme values far from the core of the distributions, typically the results
of flares or intense coronal activity. For instance, for the 193Å images, after exposure-time
normalisation and instrument degradation correction, we found an average mean pixel value
of 149DN with an average pixel standard deviation of 210DN while the average maximum
pixel value is 6247DN. While the core of the distribution is essential for retrieving morpho-
logical information on coronal structures, the extreme values might also contain important
potential features associated with upcoming flares. To preserve both while maintaining a
good dynamic range, we apply the same log transform and saturate each wavelength by the
99.9 percentile of their maximum pixel values over the Cross-Validation period. We then
linearly scale the values between 0 and 255.

In this work, we assemble the 193Å, 211Å and 94Å 8-bit images and compress them as
RGB jpegs.

The EUV images are also processed for 1600Å, 304Å and 171Å. The resulting dataset
of 1024x1024 jpeg images of magnetograms and individual wavelength EUV images is made
available at the following link: https://doi.org/10.5281/zenodo.10465437.

3.1.4 Corrupted samples

Once corrected for instrument degradation, we searched for abnormal or corrupted
observations by looking for images with pixel distribution averages outside of 8 standard de-
viations confidence intervals computed over 48 hours running time-window. This allowed us
to identify between 20 and 65 potentially corrupted observations for each channel including

2 Transform function: x 7→ log(1 + x)
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the magnetograms. Among them, a few corresponded to normal observations of extreme
space weather events. The 94Å channel, for instance, has a very low signal-to-noise ratio
outside active regions, and strong flares can punctually shift the pixel distribution average
by a large amount. Besides extreme weather events, most suspicious observations appeared
to correspond to problems that came from the shutter, potential repositioning of the satel-
lite and eclipses, leaving partial to no solar disk observable in those cases. We excluded
these later examples from our models’ training and evaluation but left them available in the
dataset along with the detailed results this outliers study. Partially observable disks could
still be relevant in an operational context where models might still be able to forecast events
coming from the visible part.

3.2 Model

3.2.1 Patch-Distributed CNN (P-CNN)

To forecast flares from full-disk images while still having an estimation of the flaring
probability by regions of the solar disk, we propose to divide the full-disk images into patches
on which we apply the same CNN. This inner-patch-CNN last layer activation is a sigmoid
so that the output of each patch is bounded between 0 and 1 to represent the probability
of flaring for the region corresponding to the patch. The resulting Patch-Distributed-CNN
(P-CNN) aggregate the patches by taking the max of their outputs as the final probability
and forecast at the whole disk level. We impose the inner-patch-CNN to share the same
weights across the different patches to ease the convergence during training as this limits the
model size and complexity. Finally, we leverage the flexibility of this architecture to remove
the poles from the images as flares only emerge near the solar equator. We, therefore, crop
the images at ±614 arc-sec of latitude to obtain images that are half smaller in memory and
allow for faster training. The resulting images have a resolution of 512 by 1024 pixels. In
this work, we use models that received inputs downsampled at a 224 by 448 pixels resolution
and patches of 112 by 112 pixels for a total of 8 patches. A summary of the resulting P-CNN
architecture can be found in Figure 1.

In this study, we use the EfficientNetV2-S architecture (Tan and Le (2021)) for pro-
cessing the patches, with unfrozen weights pre-trained on the ImageNet dataset (J. Deng et
al. (2009)) as initial weights.

3.3 Training and Evaluation

3.3.1 Full-disk Cross-Validation Method

We train and cross-validate our models on the samples within 2010-05 and 2019-12 with
a 5-fold Cross-Validation (CV). We keep an operational3 test set buffered by 27 days from
the training and cross-validation data, ranging from 2020-01 to 2023-04, roughly the rising
phase of Solar Cycle 25.

Temporal Chunking

On AR-based flare forecasts, CV-folds can be built by splitting available samples by
AR numbers. This approach guarantees that samples in the training and validation sets are
independent. Such independence is otherwise hard to ensure due to the important temporal
autocorrelation between samples close in time. To achieve independent CV-folds in the case
of full-disk forecasts, we propose a methodology based on the one proposed by Brown (2022)
for solar wind forecasts. Brown (2022) constructs folds from temporal chunks of 20 days
buffered by periods of 4 days, which are discarded to account for the strong autocorrelation

3 Operational test set as defined by Cinto et al. (2020). All the samples of the test periods are included

and its composition remains unaltered.
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Patch-Distributed CNN (P-CNN)

Figure 1: Architecture of the Patch-Distributed-CNN. The input is segmented into patches,
each processed by a CNN that applies identical weights and outputs sigmoids that represent
the flaring probabilities for the regions corresponding to each patch. The patch probabilities
are max-aggregated to produce the model’s final output representing the flaring probability
at the whole disk level, which is the target directly learned during training. In this work,
the input combines 193Å, 211Å and 94Å EUV SDO/AIA images cropped at ±614 arcsec
downsampled at 224x448 pixels. The patches’ size is set to 112x112 pixels, resulting in 8
patches. An EfficientNet-V2-S is used as the inner-patch-CNN.

–10–



manuscript submitted to JGR: Machine Learning and Computation

of the solar wind speed within such periods. In the case of flares, the characteristics of a
given AR can be significantly similar over a longer period of time. We, therefore, choose
to use a buffer of 27 days, i.e. a full Carrington rotation, to ensure a strong independence
between each chunk. Consequently, we choose chunks of periods of 81 days to maintain an
acceptable ratio of used against discarded data. Concretely one quarter of the available data
is thrown out to ensure high independence of the training and the validations sets. Unlike
Brown (2022) and Pandey et al. (2023) who fill up the folds with the chunks sequentially,
we allocate the chunks to obtain folds with a similar distribution of quiet4, B, C, M and X
class flares. This balancing approach aims to mitigate the dataset composition’s significant
impact on the evaluation metrics. Guastavino et al. (2022a), for instance, demonstrated
that the number of C-class flares among the non-events strongly affects the performance
evaluation in the cases of M+ forecasts.

Figure 2 illustrates the CV-folds building process, with the resulting training folds
depicted in blue, the validation folds in green, and the operation test set in orange.

Full-Disk Cross-Validation Method

Figure 2: Temporal chunks of 81 days buffered by periods of 27 days of discarded data allow
to build independent training and validation CV-folds for full-disk flare forecasting. The
balancing algorithm described in section 3.3.1 allows us to allocate the chunks optimally to
build folds of similar compositions. The CV-folds are built on the period ranging from 2010-
05 to 2019-12. A test set, including all the samples from 2020-01 to 2023-04, chronologically
split and 27 days buffered from the CV, allows us to estimate what would have been the
operational performances of the resulting models on the given period.

4 It is noted that we define a quiet time window as a window where the MPF is below the B threshold

–11–



manuscript submitted to JGR: Machine Learning and Computation

Balancing Algorithm

Due to the large chunks’ size and the scarcity of certain classes, it is impossible to
find a chunk allocation resulting in folds with exactly identical composition without us-
ing undersampling. We, therefore, introduce an algorithm designed to achieve optimal
balance, close to even compositions, without resorting to undersampling. To achieve this
pre-undersampling balancing, we first define the balance score bk, defined in equation 2 :

bk =
∑

cls∈{quiet,B,C,M,X}

δcls

∣∣∣∣nk
cls

n∗
cls

− 1

∣∣∣∣, (2)

where δcls is the importance-weight given to the balance of the class cls. Such quantity is
introduced to account for the impossibility of achieving a perfect balance. In particular, this
enables us to prioritize achieving equal representation of the rarest classes before considering
any undersampling, as we aim to prevent further scarcity. nk

cls is the number of time-windows
labeled as cls in the fold k. n∗

cls is the targeted number of sample of class cls for every fold.
It is equal to the ratio of Ncls, the whole number of time-windows labeled as cls within the
dataset, with K, the number of folds to be built :

n∗
cls =

Ncls

K
(3)

In this work we set δcls to 4 for X and quiet labelled time-windows, we set it to 2 for
M labelled time-windows, and we set it to 1 for B and C labelled time-widows. The default
parameters presented here provided generically satisfactory outcomes to build balanced folds
with time windows ranging from 2 to 72 hours. It is noted, however, that only time windows
of 24h are used in this work. To minimise the balance scores (bk)

K
k=1, we iterate through

all the available chunks to identify the chunk i and the fold k for which the decrease in bk
is maximum. This process is then repeated iteratively until all chunks are allocated. The
folds composition resulting from the balancing is shown in Figure 3 for 24h time-windows.
Undersampling can then be used to build training and validation folds optimally aligned
with specific training and validation objectives from these folds of similar compositions. In
this study, we undersample the balanced folds to achieve a target of approximately 13,000
training samples and 2,000 validation samples for each training-validation combination. We
chose such dataset sizes as they are close to the maximum of images we can fit in our
Random Access Memory. A bigger training dataset might allow for slightly better results
at the expense of significantly longer training. Training folds are undersampled in a way
that achieves equal numbers of quiet, B, C and M time windows while retaining all available
X-class samples. This training balance strategy is designed to introduce a maximum variety
of subclasses, thereby encouraging our models to reach optimal performances on different
sub-cases of positive and negative events. We also believe such training balance is well-suited
to train models to minimise dataset composition bias. This might be particularly relevant
in space weather applications when future climatological rates are potentially unknown and
subject to changes. As for the validation folds, we undersample them in such a way as to
replicate the natural climatology of the CV period. Such validation balance ensures that
the performance evaluation from the validation closely mirrors how the model would have
performed during the specified period. Subsequently, this allows us to assess how these
performances generalize when the model is evaluated on the operational test set, eventually
illustrating the impact of different climatology on the evaluation. The resulting training
and validation folds are shown in Figure 4.
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Figure 3: Folds composition resulting from the fold balancing algorithm (Section 3.3.1) for
24h time-windows

3.3.2 Models hyperparameters

The training process is performed with TensorFlow on an Nvidia V100 GPU. The
EfficientNet-V2-S used as inner-patch-CNN is initialised with pre-trained weights. Every
layer but batch-normalisation ones are retrained. We use batches of 16 images and train
for 15 epochs. For each fold, we save the model at the epoch with the best TSS on the
validation set. We then average-ensemble the resulting folds’ models as our final models
when evaluating on the operational test set.

We employ the Adam optimizer (Kingma and Ba (2014)) with a decoupled weight decay
regularisation (Loshchilov and Hutter (2017)). Weight decay regularisation methods consist
in decaying a model’s weights after every batch to provide an L2-regularisation. This helps
to mitigate overfitting and foster generalisation between the training and the validation. We
use a learning rate of 1e− 5 and a weight decay of 1e− 4 for every model.

We use weighted binary-cross entropy as loss functions. Despite being already close
to an even balance, we weighted positive and negative events evenly in the case of the
C+ models. However, for the M+ models, we over-penalize positive misclassifications with
stronger weights to the the positive events with respect to the negative. This is done to help
converge to solutions with higher TSS and higher recall at the expense of a worsening in
the False Alarm Ratio (FAR). We do so to subsequently better highlight some limitations
of the TSS in imbalanced problems. However, for more balanced models achieving optimal
MCC, F1 or HSS, it is noted that such a penalisation strategy might not be recommended.
Among the M+ negative sub-classes, the C-class weight is further reduced, as such events
are known to be harder. This strategy encourages the model to prioritize learning what is
most learnable, potentially making the gradient descent easier. The final weights that we
use in the case of the M+ models are 2 for quiet time windows, 2 for B time windows, 1 for
C time windows, 8 for M time windows, and 8 for X time windows.
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(a) Training

(b) Validation

Figure 4: Final training and validation folds obtained from undersampling of the balanced
folds in Figure 3. Validation folds replicate the climatological rates of the CV-period for
better assessment of the model operational performances on such period. Training folds
provide as much diversity of negative and positive subcases as possible to foster optimal
performances on such subcases. The values next to the bars indicate the exact count of the
classes within each fold.

4 Results

In Section 4.1, we describe the performance metrics pertaining to full-disk observations.
Notably, we highlight the stark contrast between the ostensibly state-of-the-art performance
derived from conventional evaluation methodologies and the crucial limitations of the mod-
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els. Section 4.2 exhibits the regional, or patch-based, performances. Subsequently, a succinct
visual explanation of a prediction by the C+ coronal model is presented in Section 4.3. Fi-
nally, Section 4.4 shows how regional predictions can be retrieved along with precise position
estimations.

4.1 Full-disk-performances

4.1.1 State of the traditional performances against low persistent-relative
performances

Figure 5 and Figure 6 show the distribution of the TSS and HSS respectively for the
C+ and M+ models, across validation and test sets, while the MCC, F1-score and more
metrics are shown in the table 1 for the test set. The strong consistency between validation
and test results indicates the effectiveness of the CV method in ensuring independence
between training and validation sets. We observe that the metrics dispersion and standard
deviations of the different CV-fold models are lower on the test set than the validation set.
This observation suggests that the models from each fold converge to similar solutions, and
indicating that a significant share of the performance variability observed during validation
may be due to dataset biases not addressed by our current fold balancing. Validation results
indicate a TSS of 0.62 for the C+ magnetogram model and 0.69 for the EUV model. The
M+ magnetogram yields a TSS of 0.53 for magnetograms and 0.57 for the EUV model.
For the test set, we construct ensemble models where the output is the average of the
probabilities produced by the individual models from each CV fold. The resulting ensemble
consistently outperforms the operational performance average of the individual folds models
and often surpasses their maximum. Their performances correspond to the stars in Figure
5 and Figure 6.

Figure 5: C+ models performances. The box-plots summarize the performances of the 5
models resulting from each fold. The red points and the values displayed above represent
their averages. The values displayed below the red points represent one standard deviation.
The stars and the values above them represent the performances of the ensemble model
obtained by averaging the predictions of the 5 folds-models on the test set.

–15–



manuscript submitted to JGR: Machine Learning and Computation

(a) TSS

(b) HSS

Figure 6: M+ models performances. The box-plots summarize the performances of the 5
models resulting from each fold. The red points and the values displayed above represent
their averages. The values displayed below the red points represent one standard deviation.
The stars and the values above them represent the performances of the ensemble model
obtained by averaging the predictions of the 5 folds-models on the test set.
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The folds-ensemble C+ models achieve an operational TSS value of 0.68 and 0.74 for
magnetogram and EUV models, respectively. For the folds-ensemble M+ models, the oper-
ational TSS values are 0.59 and 0.62 for the magnetogram and EUV models, respectively.
More detailed operational performances of the final ensemble models are listed in Table 1.

Table 1: Full disk Performances summary on operational test set

Models TSS HSS MCC F1 Recall FAR ϕ χ PR-F1 AC-MCC NC-MCC NC-ϕ

C+ Persistent 0.74 0.74 0.74 0.87 0.87 0.13 0.48 0.13 0 -1 1 0.48

C+ P-CNN EUV 0.74 0.74 0.74 0.86 0.82 0.10 0.48 0.13 -0.01 0.13 0.83 0.48

C+ P-CNN Blos 0.67 0.67 0.68 0.82 0.77 0.11 0.50 0.13 -0.05 0.03 0.77 0.50

M+ Persistent 0.49 0.49 0.49 0.56 0.56 0.44 0.14 0.12 0 -1 1 0.09

M+ P-CNN EUV 0.61 0.42 0.46 0.53 0.82 0.61 0.14 0.12 -0.07 0.09 0.47 0.09

M+ P-CNN Blos 0.58 0.37 0.43 0.50 0.84 0.65 0.14 0.13 -0.12 0.06 0.43 0.09

Full disk performances of the final ensemble models on the test set. ϕ = P
P+N is the positive event ratio,

χ = C
P+N is the activity change rate, with C the number of time-windows with an activity different from the

previous one, and P and N, respectively, the number of positive and negative events. The PR-F1 (cf. Equation
1) is the F1-score persistent-relative performance of the model. The AC-MCC (Section 2.2) assesses the models’
explanatory power on time windows with an activity different from the previous one. The MCC is evaluated
on such windows. Analogously, the NC-MCC is the MCC evaluated on time windows with the same activity as
the previous one.

We put in perspective these state-of-the-art performances by considering the following
points:

1. Superiority of Persistent Models: Persistent models consistently outperform the
deep learning models. The C+ persistent models achieve TSS values of 0.70 and 0.74
for validation and test sets, while the M+ persistent models yield TSS values of 0.46
and 0.49 for validation and test, respectively. Despite the apparent overperformance
of the M+ models in terms of TSS, their lower MCC, HSS, and F1 scores indicate
generally reduced skills compared to the persistent model. Specifically, the models
exhibit less skill than the persistent model compared to the random guesses model
(lower MCC and HSS). They also show reduced explanatory power relative to the
persistent model (lower MCC) and a diminished capacity to precisely differentiate
positive events from negative ones (lower F1). Concretely, the Persistent-Relative-
F1 (PR-F1), which is the PRSS applied to the F1-score, are negatives (c.f. Table
1), suggesting that the models are in practice less useful than persistent models as
an alarm system. In our experiment detailed in Appendix B2, we found that these
deficiencies in persistent relative performances are consistent across strong variations
of the dataset composition that include different positive-event ratios and varying
rates of activity change.

2. Non-objective comparison with other works: As discussed in Section 2.1.1
and Appendix A21, the TSS is highly sensitive to the composition of the dataset.
Consequently, it is challenging to compare the resulting performances in our study
and those from other works. However, it is noteworthy that the HSS exhibits lower
sensitivity to dataset composition and that the HSS performances of the presented
models are comparable to, or better than, those of other known models reported in
the literature.
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3. TSS limitations for Imbalanced Problems: Lacking models’ precision infor-
mation, the TSS inadequately addresses imbalanced problems like M+ forecasting
(Appendix A22). In this work, our M+ models reach a high TSS by increasing the
recall at the expense of a stronger degradation in precision (c.f. Table 1). The models
are objectively not more explanatory than a persistent model and only achieve better
TSS through an overcasting tendency.

4.1.2 Performances Deficiency on activity change

We introduced Activity-Change performances (AC-metrics, cf. 2.2) evaluated solely
on samples whose label differs from the previous consecutive non-overlapping time-window.
This evaluation includes active-time-windows that follow an inactive previous window, as
well as inactive-time-windows succeeding an active one. This evaluation encompasses active-
time-windows where the previous window was inactive, as well as inactive-time-windows
where the previous one was active. The results reveal very low AC-TSS and AC-HSS for the
models (Figure 7), along with a poor AC-MCC (Table 1). These findings indicate a signif-
icant lack of skill to forecast samples exhibiting changes in activity, effectively performing
barely better than random guesses in such cases.

Figure 7: Models operational performances on time windows presenting an activity change
compared to the previous time window. The box-plots summarize the performances of the 5
models resulting from each fold. The red points represent their averages. The stars and the
values above them represent the performances of the ensemble model obtained by averaging
the predictions of the 5 individual models on the test set.
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4.2 Regional-performances

Table 2 summarizes the models’ performances on the operational test set at a regional
- or patch-level, which generally appear lower than those at the full-disk level. These differ-
ences primarily stem from significant variations in dataset composition biases. For instance,
the positive event ratio is divided by 2.5 and 7 for the C+ and M+ models respectively to
reach an extremely imbalanced positive event ratio of 2% in the M+ case. It can further be
noted that, for the persistent models, the True Positives (TP) are equal to the differences
between the number of positives and half of the activity changes. This difference and its
ratio to the number of positives - which equals the recall - are also much less favorable at
the patch level and directly explain the performance gaps between the two levels, both for
persistent and other models, since the AC-performances remain more stable.

Another potential contributing factor to the performance disparity between patches
and full-disk levels involves flares originating from AR spanning 2 patches. Although flares
occurring near patch interstices appear well detected at the whole disk level, they can erro-
neously be attributed to the wrong patch based on how the explainable features are shared
between the patches and the specific region of the AR from which the flare originates. The
evaluation of the regional performances is thus influenced by artefacts and biases inher-
ent to their construction. A deeper evaluation could be proposed by considering position
prediction - presented in section 4.4 - matched against the actual originating AR.

Table 2: Regional Performances summary on operational test set

Models TSS HSS MCC F1 Recall FAR ϕ χ PR-F1 AC-MCC NC-MCC NC-ϕ

C+ Persistent 0.60 0.56 0.59 0.67 0.700 0.33 0.18 0.12 0 -1 1 0.14

C+ P-CNN EUV 0.50 0.57 0.60 0.63 0.54 0.22 0.18 0.12 -0.05 -0.05 0.77 0.14

C+ P-CNN Blos 0.39 0.48 0.55 0.55 0.41 0.19 0.19 0.13 -0.18 -0.04 0.71 0.15

M+ Persistent 0.38 0.37 0.46 0.39 0.39 0.62 0.0é 0.02 0 -1 1 0.01

M+ P-CNN EUV 0.52 0.23 0.36 0.30 0.56 0.80 0.02 0.02 -0.21 0.14 0.33 0.01

M+ P-CNN Blos 0.43 0.22 0.23 0.25 0.48 0.83 0.02 0.03 -0.34 0.02 0.17 0.01

Regional performances of the final ensemble models on the test set. A description of the columns can be found
in table 1

4.3 Explainability

An explainability analysis is conducted of the C+ P-CNN-EUV model’s results on 17-
02-2023 at 10:00am, approximately 9 hours after the largest flare within our operational
test dataset, an X2.3 flare, which started the 17-02-2023 at 18:46:52, and originated from
the southern left limb of the sun. During the subsequent 24 hours, three additional regions
produced C+ flares: the northern right center generated a C7.5 flare, marking the largest
event within the predicted time window; the southern right center produced a C4.8 flare,
and the northern right limb produced a C3.6 flare.

To gain insights into the coronal features learned by our models and to add posi-
tional predictions of the forecasted events, visual explainability methods are applied to
the individual folds model and then averaged to represent the explainability output of the
folds-ensemble model.
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Figure 8: Grad-CAM explanation of the C+ P-CNN-EUV predictions the 17-02-2023 at
10:00am. The ground truth corresponds to the first line of the patch titles. It is the biggest
upcoming flare in the next 24 hours. The model prediction corresponds to the second line
of the patch titles. The Grad-CAM results are plotted only on positive predictions with a
’jet’ color-map where the most intense values are red and the least intense are blue. The red
cross represents the point where the upcoming flare will emanate accounting for rotation
correction.

Figure 9: Guided-Grad-CAM explanation of the C+ P-CNN-EUV predictions the 17-02-
2023 at 10:00am. >(µ + σ)-masks of the guided Grad-CAM results are plotted only on
positive predictions. The masks are plotted with a ’hot’ color-map where the more intense
the values, the more yellow and the brighter.
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To localize the sub-region that contributed most to the patches’ predictions, we use
Grad-Class Activation Maps (CAM) (Selvaraju et al. (2016)), a generalisation of CAM
(Zhou et al. (2015)) to any CNN architecture. Grad-CAM results are shown in Figure 8 and
demonstrate the successful classification of each region. These results reveal that the most
discriminating regions of the patches consistently encompass the positions of the forthcoming
flares. The model, therefore, efficiently extracted and used features of the AR that were
about to flare to make the prediction. This outcome also highlights that Grad-CAM results
can help estimate predicted events’ positions.

Subsequently, we employed Guided Grad-CAM, a technique that combines Guided
Back-propagation (Springenberg et al. (2014)) with Grad-CAM, to visualise the fine-grained
contribution of the discriminative pixels to the model’s predictions. As depicted in Figure
9, these results emphasize the model’s focus on the brightest coronal structures to make its
predictions. This observation aligns with the limitations of the models in predicting changes
in activity. Bright coronal features are the observational signature of intense activity that
correlates with highly energetic regions. This tendency supports the indication that the
model primarily detects whether a region already exhibits intense energy or not, rather
than predicting changes in activity.

Figure 10: Example of the C+ P-CNN-EUV probabilities and positions predictions the
17-02-2023 at 10:00am. The red cross locates the point where the upcoming flare will
emanate from after rotation correction. The blue point is the estimation of the upcoming
flare position, calculated as the center of mass of the patch Grad-CAM results. All regions
are successfully classified (classification threshold = 0.5), and the estimated positions closely
align with the emergence points.

4.4 Regional predictions with positions predictions

We use the mass-center of the Grad-CAM results to estimate the positions of the
upcoming predicted events. This information serves practical operational purposes as it
can then be matched with known AR numbers, thus allowing to identify ARs likely to flare
within a specific time window. The resulting model can potentially forecast events and
identify regions prone to flaring but not yet identified or recorded in AR databases.
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Figure 10 presents an illustrative example of the C+ P-CNN-EUV predictions and
position estimations as of February 17, 2023, at 10:00 am. Notably, the position estimations
accurately correspond to the respective active regions for the 4 detected flares and closely
align with the actual flare emergence points.

5 Discussion

5.1 Patch-distributed CNN: An Efficient Solution for Operational Models

Greater Information Retrieval with P-CNNs

The Patch Distributed CNN (P-CNN) assessed in this study offers simplicity with
comprehensive insights. These models are directly trained on full-disk images and labeled
accordingly, yet they retain the capability to infer event position information and estimate
flare risks for sub-regions across the entire disk.

A potential limitation of P-CNNs arises when dealing with Active Regions spanning
multiple patches. While these cases are often detected comparably well to a single full-
disk model, misattribution to the wrong patch may occur. Nonetheless, this limitation is
significantly mitigated by leveraging the precise position estimation derived from the center
of mass in Grad-CAMs’ results, enabling accurate matching to known Active Regions.

Potential Regularization from P-CNNs

During the training of our most effective models, particularly those utilizing EUV im-
ages as inputs, the P-CNN demonstrated greater ease in tuning and yielded superior results
compared to the use of the corresponding CNN directly on the full disk. The observed per-
formance boost of the P-CNN over the CNN might stem from regularization effects intrinsic
to the P-CNN architecture. Notably, the structural constraint of the P-CNN, confines it to
a local feature space. This confinement limits the feature search to features of scales relative
to the Active Regions, potentially the most pertinent scale for accurate flare forecasts, thus
easing convergence. For problems where a mix of local and large-scale features might be of
interest, a global CNN layer could also be combined with the patches to achieve a sort of
pyramidal feature structure. Another potential regularization aspect lies in the share of the
inner-CNN weight across all patches. For each sample, the inner-CNN weights must indeed
converge on each patch. This cross-patches convergence artificially multiplies the number
of seen instances by the number of patches. Nonetheless, confirming the regularization ad-
vantages provided by the P-CNN would necessitate a more systematic hyper-parameter grid
search to confirm the generalisation of these observations and allow a deeper exploration of
this hypothesis.

5.2 The current models lack of skills

Forecasting flares within 24-hour time-windows, characterized by low activity change
rates, suggests a focus on metrics relative to persistent models, which exhibit better profi-
ciency than other no-skill models. The PR-F1 score, specifically the F1 score of the model
relative to the persistent one, is therefore of particular interest and demonstrates remarkable
stability against dataset composition changes. Moreover, assessments of flare forecasting
metrics should distinguish between time-windows with constant and changing activity, rec-
ognizing that these scenarios represent two distinct problems. The AC-MCC and NC-MCC,
which assess the models’ explanatory power over activity changes and constant activity
time-windows, thus serve as suitable complements to the PR-F1 which assesses the models’
alarm system quality relative to the persistent model. The PR-F1 underscores that models
reaching state-of-the-art performances may still lack useful forecasting abilities compared
to persistent models, whereas the AC-MCC highlight their close to null ability to forecast
change in activity better than random guesses. This might suggest that currently available
features are primarily effective in identifying whether a region is already active or inactive,
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with no significant ability to distinguish between a region flaring yesterday and one flaring
tomorrow. The question remains to identify whether some additional features could help
forecast such changes efficiently. Sun et al. (2022) found an interesting performances im-
provement of 5 to 11% using a time-serie-based model over a point-in-time CNN. It would
therefore be interesting to study the AC-performances of such models to identify a potential
ability to forecast activity-changes. In some tests we tried including the flare history as an
additional feature to a CNN, as well as using LSTM on time-series of features derived from
the SXR-flux, without significant improvement with respect to a standard CNN or the per-
sistent models. This may suggest that the discriminative features found in magnetograms
and coronal EUV images are redundant with the flare history of the previous time-window,
and that the flare activity from time-window to time-window could be accurately modeled
by a Markov Process, which retains no memory beyond one single timestep. We also trained
models using 8-bit uncompressed (encoded as PNG files) images at a resolution of 512x1024
pixels with the same hyperparameters and found no significant differences with the pre-
sented models. This suggests that the small-scale details lost by spatial downsampling and
JPEG compression may not contain significant discriminative power. Augmenting models
with currently available temporal or spatial information may not be sufficient to overcome
their difficulty in forecasting windows displaying changes in activities. Nonetheless, there
are still few studies about potential temporal coronal or chromospheric features to forecast
flares. The possibility of discovering discriminative power in such features to predict activity
changes might, therefore, be an interesting prospect.

Exploring novel approaches that are more aligned with the current features at our dis-
posal could also be of interest. Magnetograms predominantly provide information about the
potentially releasable energy within a specific duration. For example, the R-index (Schrijver
(2009)) indicates the magnetic energy concentration around the Polarity Inversion Line
(PIL)s, where instability is most likely to occur. Therefore, it might be more feasible to
forecast quantities more closely related to the energy emitted by flares during specific time
windows. For instance, labeling time-windows based on the sum of the SXR-fluence - i.e.,
the integrated flux - produced by flares might better characterise the activity occurring
during these periods. This new characterization would also be a reliable proxy of the re-
leased energy and could be more explainable. Assessing the emitted SXR-fluence within a
time-window could also offer valuable insights for astronauts, and empirical estimations for
the Maximum Predicted Flux (MPF) might later be derived from such data.

5.2.1 Activity change definition limit

We finally wish to highlight that our current definition of AC and NC windows has
some limitations. An AR about to flare and emerging from the far side of the Sun, where
it would have already flared in the previous time-window, would physically represent a
NC-windows that is constantly active. However, it could lead to a labeling of the current
time-window as an AC-window, changing from inactive to active, if the visible disk was
previously inactive. A similar case may arise at the patch level when an AR crosses the
boundaries between two patches. Finally, the definition of changing and constant relies on
the arbitrary length of our time-windows. For a 24-hour time window, an AR flaring at 25h
of intervals will represent (AC) time-windows while an AR flaring at 23h of intervals will
represent (NC) time-windows (here constantly active), whereas the difference between the
two cases might not be meaningful physically. Such artefacts could be mitigated by using
temporally weighted metrics as introduced by Guastavino et al. (2022). However, it is worth
noting that the previous limitation mostly contributes positively to the AC-performances.
Indeed, these limitations cause some time-window physically closer to a constant activity
to be labeled as a change of activity. These constant activities, which are more explainable
than true activity changes, therefore slightly boosting the AC performances. Hence, we
might expect that the explanatory power of the extracted features regarding the change in
activity within AR could be even lower than what is assessed with our AC performances.
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6 Conclusion

Our study introduces a novel method to facilitate the construction of balanced and
independent training and validation CV-folds for full-disk flare forecasting with minimal
undersampling. Introducing P-CNNs trained with this method, our models achieve state-
of-the-art performances at full-disk levels on the rising phase of Solar Cycle 25, with a
TSS of 0.74 for C+ forecasts and 0.62 for M+ forecasts using EUV coronal images as
inputs, revealing an interesting performance edge over the magnetograms. The Patch-CNN
architectures offer the advantage of training models on full-disk images using full-disk labels
alone while providing forecasts for sub-regions of the disk and estimations of event positions.
This results in minimal operational external dependencies and the reduction of mislabelling
issues for training and evaluation.

However, our discussion underscores the challenge of using conventional metrics in flare
forecasting, as they are significantly sensitive to various elements of dataset compositions
and do not allow us to identify important model limitations. Notably, classical metrics
may hinder objective model comparisons across different works and optimal model selection
during training for operational purposes.

To address these issues, we introduce Persistent-Relative-Skill-Scores along with eval-
uation restrictions to time-windows exhibiting changes of activities (AC-performances) and
those without changes of activity (NC-performances). These metrics are well-suited to the
specific challenges of flare forecasting and can help improve model comparisons.

The PR-F1 and AC-MCC reveal a lack of forecasting skills when comparing our models
to persistent ones or random models for time-windows with changes in activity. Both the
PR-F1 and MCC exhibit greater stability and reliability than the commonly used HSS,
which is more reliable and informative than the TSS in imbalanced cases.
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Appendix A Metrics complements

A1 Formulas

A11 Confusion Matrix

Evaluation metrics for binary classification are defined as a function of the confusion
matrix CM:

CM =

(
TP FN
FP TN

)
(A1)

where True Positive (TP) and True Negative (TN) denote the number of positive and
negative events correctly classified, while False Positive (FP) and False Negative (FN) are
the number of misclassified ones.

A12 Basic Confusion Matrix

The following rates summarize the information contained in the confusion matrix :

• Class-Accuracy rates

Recall = True Positive Rate (TPR) =
TP

TP + FN
(A2)

Sensitivity = True Negative Rate (TNR) =
TN

TN + FP
(A3)

• Class-Precision rates:

Negative Predictive Value (NPV) =
TN

TN + FN
(A4)

Precision = Positive Predicitve Value (PPV) =
TP

TP + FP
(A5)

Equivalently to the precision, practitioners alternatively look at the FAR which is the
complementary of the former and gives the rate at which positive predictions give a
false alarm.

A13 F1-Score

The F1-score, defined in equation A6, is the harmonic mean of the precision and the
recall.

F1 = 2 ∗ precision ∗ recall
precision+ recall

=
2TP

2TP + FP + FN
(A6)

It offers a consolidated assessment of an alarm system skill when the emphasis lies on
achieving high recall (TPR) to detect maximum events, along with high precision (PPV) to
ensure confidence in positive predictions.

A14 True Skill Statistic (TSS) / Informdness

The True Skill Statistic (TSS) was introduced to evaluate weather forecasts by Hanssen
and Kuipers (1965). In other fields, it is also known as the (bookmaker) informedness,
Peirce’s index or Younden’s J index. It can be dated back to 1884 (Peirce (1884)). It is
equal to the difference between the true positive rate and the false positive rate but also
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to the balanced accuracy re-scaled between -1 and 1, i.e. the average of the class-accuracy
rates (TPR and TNR) normalized in [-1,1]:

TSS =
TP

TP + FN
− FP

FP + TN
= TPR+ TNR− 1 (A7)

Random and constant models produce a TSS of 0.

A15 Markdness (MK)

The markedness is the precision equivalent of the TSS; it is the average of the class-
precision rates (PPV and NPV) normalized in [-1,1].

MK = PPV +NPV − 1 (A8)

A16 Negative Frequency Bias (NFB)

NFB =
TN + FN

TN + FP
=

Predicted Neagtives

Observed Negatives
(A9)

A17 Heidke Skill Score (HSS) / Cohen’s Kappa index

The HSS, defined in equation A10, was introduced to evaluate weather forecasts by
Heidke (1926). In other fields, it can be known as Cohen’s Kappa index. It is commonly used
in flare forecasting to compare a model skill relatively to a random guess model (Camporeale
(2019)).

HSS = 2 ∗ TP ∗ TN − FN ∗ FP

P (TN + FN) +N(TP + FP )
(A10)

The HSS varies between -1 and 1, with 1 denoting the performance of a perfect classi-
fier and 0 indicating the one of random guesses. It can then be noted that the HSS is the
harmonic mean between TSS

NFB and MK ∗NFB (see Delgado and Tibau (2019) for mathe-
matical proof). The HSS is, therefore, a weighted harmonic average between the TSS and
the MK, with a model-dependent importance given to each.

A18 Matthews Correlation Coefficient (MCC)

The MCC was introduced by Matthews (1975) to address class imbalances in perfor-
mance evaluation. It is the Pearson correlation coefficient between binary predictions and
labels :

MCC =
TP ∗ TN − FN ∗ FP√

P (TN + FN) ∗N ∗ (TP + FP )
(A11)

The MCC ranges between -1 and 1. Similar to the TSS and HSS, both random and
constant models produce an MCC score of 0. The MCC is the geometric average between the
TSS and the Markdness (c.f. Delgado and Tibau (2019) and Chicco, Tötsch, and Jurman
(2021)). It thus summarizes the four basic confusion matrix rates with equal weights given
to each.
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A2 Metrics’ Notable Properties

A21 The TSS sensitivity to the dataset composition

Bloomfield et al. (2012) proposed the TSS for flare forecasting as, in simplified cases, it is
found to be insensitive to the class-balance. This has been argued to make it a suitable metric
for comparing models among different datasets with varying class balances (Bloomfield et
al. (2012), Chicco, Tötsch, and Jurman (2021)). However, in the case of flare forecasting, we
prove that usual models will have a TSS that is strongly sensitive to the positive events ratio.
Indeed, the mathematical independence between the TSS and the class balance only holds
for models that perform equally in every possible case of negative and positive events. For
flare forecasting models, the weak performances on samples exhibiting changes in activity
result in a direct non-linear dependency of the TSS to the positive event ratio and, thereby,
the class balance.

Let us consider the limit case of a model that perfectly identifies time-windows without
activity change but consistently fails when activity change occur. Such a model can be
known as a persistent model. On a given time period, if evaluated on every time-window,
the persistent model’s number of FP will be equal to the number of FN which will be equal
to half the number of activity change C

2 . The number of TP will be P − C
2 , and the number

of TN will be N − C
2 , where P and N are respectively the number of positive and negative

events. If we denote ϕ = P
P+N the positive event ratio, and χ = C

P+N the activity change
rate, the TSS and the HSS from equation A7 and A10 simplify in :

TSSpersistent = HSSpersistent = 1− 1

2

χ

ϕ(1− ϕ)
(A12)

We may additionally note that as C is at maximum equal to twice the minimum between
P and N. Therefore, the equation A12 is defined only when :

χ ≤

{
2ϕ if ϕ ≤ 0.5

2(1− ϕ) if ϕ ≥ 0.5
with ϕ ∈ [0, 1] (A13)

Figure A1 shows the plot of a persistent model’s TSS and HSS according to equations
A12 and A13. The TSS and HSS linearly increase with the decrease of the activity change
rate χ which is typically low in flare forecasting. The performance is non-linearly dependent
on the positive event ratio ϕ with a stronger sensitivity in most imbalanced cases. For a
variation of ϕ from 6 to 12%, the TSS increases from -0.06 to 0.44 with a standard activity
change rate of 0.12. The model is therefore deemed unskilled in the first case, whereas it
can be estimated as mildly proficient in the second case, only because of a doubling of the
positive event ratio.

In practice flare forecasting models can be expected to have a similar TSS and HSS
sensitivity to ϕ and χ as they have good performances on time windows with the same
activity as the previous one, whereas they struggle on time windows with changing activity
with respect to the previous one.

The activity change rate χ and the positive event ratio ϕ thus emerge as fundamental
dataset biases in flare forecasting. Our experiment in Appendix B, show that empirically
the sensitivity of the models’ metrics to these biases is actually stronger than the one of the
persistent models. In particular, the TSS seems to exhibit heightened sensitivity to dataset
biases compared to the HSS. This is likely due to the positive influence of overcasting on
TSS, as well as additional models’ flaws, such as the low accuracy on C-class negative events
in M+ forecasts. These factors further complexify the sensitivity of the models’ performance
to various dataset biases.
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(a) The TSS & HSS dependency to ϕ and χ for persistent models

(b) The TSS & HSS non-linear dependency to ϕ for fixed χ on persistent models

Figure A1: Figure (a) displays the plot of a persistent model’s TSS and HSS as a function
of ϕ and χ. Figure (b) displays the variations of the TSS and HSS with ϕ for two different
constant χ. ϕ = P

P+N is the positive event ratio. χ = C
P+N is the activity change rate
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A22 TSS’s incomplete information for operational model purposes

The TSS is inadequately informative in highly imbalanced scenarios, where a good TSS
might obscure strong over- or undercasting tendencies, as highlighted by Leka et al. (2019).
While a high TSS ensures accurate classification for most positive and negative events, it
does not always translate into a practical model intended for an alarm system if the eval-
uation is made on an imbalanced set. In cases of substantial imbalance, a high TSS can
be reached with a precision close to 0, resulting in a false alarm ratio close to 1, rendering
the model unfit for an alert system. To illustrate, let us compare the two following models
using the same synthetic dataset with a positive event ratio of 0.001:

Model 1
TP = 99, FN = 1, FP = 5 000 and TN = 94 900, then,
TSS = 0.94, recall = 0.99, precision = 0.02, f1 = 0.04.
A case similar to this one might arise with X+ flare binary classifiers. A comparative ex-
ample can be found with the X+ flares binary classifier of Huang et al. (2018) achieving a
TSS of 0.714 for a False Alarm Ratio of 0.98.

Model 2
TP = 90, FN = 10, FP = 50 and TN = 94 851, then,
TSS = 0.90, recall = 0.90 precision = 0.64, f1 = 0.75.
This model, while having a lower TSS, maintains a reasonably good recall with significantly
higher precision, making it arguably preferable over model 1 for operational purposes.

The TSS contains no information about a model’s precision and is, therefore, not a well-
suited indicator to select a model for an alarm system in imbalanced cases. Without pref-
erences defined between recall and precision, the F1 score proves more informative in dis-
criminating between a useful or impractical model in operation. Specific recall and precision
preferences can also be considered using the Fβ score, which extends the F1 score by giving
β times more importance to the recall than the precision.

A23 HSS interpretations

The HSS is a weighted harmonic average between the TSS and the MK, with model-
dependent importance given to each. The HSS thus synthesizes information both about
a model’s accuracy and its precision in the different classes, making it arguably a more
suitable metric for assessing a model’s suitability as an alarm system than the TSS. However,
the model-dependent weight importance between the Markedness and the TSS makes it
complex to interpret and compare models. The harmonic mean mathematically gives more
importance to smaller values. Consequently, for a model tending to undercast the negative
class, i.e. NFB smaller than 1, the contribution of the Markedness to the HSS is increased.
For a model tending to overcast the negative class, i.e. NFB larger than 1, the importance
of the TSS contribution to the HSS is conversely increased.

A24 MCC advantages over other metrics

While the MCC is still uncommon in Space Weather, it is argued, for general cases, to be
a more informative and reliable metric compared to the accuracy and the F1 score (Chicco
and Jurman (2020)), the TSS (Chicco, Tötsch, and Jurman (2021)), the HSS (Delgado
and Tibau (2019),Chicco, Warrens, and Jurman (2021)). The MCC is also to be favored
over other metrics such as the ROC AUC (Chicco and Jurman (2023)) and the Brier Score
(Chicco, Warrens, and Jurman (2021)), two other metrics of interest in flare forecasts. Em-
pirically, we showed (c.f. Appendix B) the MCC scores to be more resilient to dataset
composition changes compared to the HSS, which, in turn, is more stable than the TSS.
Consequently, the MCC might be preferable for both model selection and comparison across
different datasets. It is often a better choice compared to the HSS, as it shares similar infor-

–29–



manuscript submitted to JGR: Machine Learning and Computation

mation but demonstrates higher stability in extreme cases and is a consistent synthesis of
models’ class accuracies and precisions. The MCC also allows to measure models explana-
tory power agnostically of users preferences. Despite the MCC’s comprehensive assessment
of a model’s overall quality, the F1-score remains relevant due to its straightforward inter-
pretability for operational alarm system applications. The choice of one metric among the
others should ultimately be decided by the importance given to each class and their accu-
racy and precision. (Chicco, Tötsch, & Jurman, 2021) summarizes that F1 might still be
preferred over the MCC when the accurate and confident classification of positive elements
holds greater importance than for negative ones. The TSS, on the other end, is still relevant
on balanced problem, or on imbalanced problem if no importance is given to the models
precision.

Appendix B Empirical Variability Of Standard Metrics to the Evalua-
tion Set Composition

B1 Standard Metrics

Metrics can be linked with the positive event ratio and the activity change rate in a non-
linear way. For instance, the recall and the F1-score of a persistent model is proportional
to their ratio : F1persistant = 1− χ

2ϕ . In appendix A21 and Figure A1 we exposed the more
complex relationship of the TSS and HSS of a persistent model with these ratios. Similar bias
sensitivity should be expected for every model with significant skills deficiency on activity
changes. To observe empirically the impact of the two ratios on the metrics evaluated on
our models, we display the model’s performance variation for different combinations of those
ratios in Figure B1. The sub-test samples with varying compositions are obtained by varying
the start of the test set from 2020-01-01 to 2023-01-01 while maintaining 2023-04-18 as the
end date.

All the metrics appear strongly sensitive to the dataset composition. The TSS appears
to be the most affected, especially in the imbalanced case of the M+ models, while the
F1-score and the MCC are the most stable ones.5

B2 Persistent relative skill scores

Using the same dataset composition variations as presented in the previous section
(Appendix Appendix B) the variability of the persistent-relative-skill-scores are displayed
in Figure B2.

The persistent relative skill scores appear to vary less than their standard metric equiva-
lent. The most resilient ones appear to be the PR-F1 followed by the PR-MCC. The PR-F1
in particular appears remarkably stable except with the C+ model in the most extreme
class-imbalances, where it becomes slightly positive.

With the exception of the PR-TSS, the persistent relative skill scores indicate a consis-
tent lack of performance in the M+ case, and null to slightly positive for the C+ model. This
suggests that despite the strong impact of the dataset biases on the performance evaluation,
models reaching state-of-the-art performances could be expected to consistently struggle to
outperform persistent models over varying subsets of the Solar Cycle.

5 It is worth noting that the F1-score is defined on the range [0, 1], while the Matthews correlation

coefficient (MCC) is defined on the range [-1, 1]. This implies that a unit change in the F1-score corresponds

to a double change in magnitude compared to the MCC relative to their respective definition intervals.
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(a) C+ PCNN EUV

(b) M+ PCNN EUV

Figure B1: EUV models operational performances against variations of the positive event
ratio and the activity change rate. The sub-test-sets with varying compositions are obtained
by sliding the start of the test set from 2020-01-01 to 2023-01-01. The left Y-axis represent
the metrics score. The X-axis are the varying positive event ratios. The right Y-axis
represents the activity change rates which are plotted as a black dashed line.
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(a) C+ PCNN EUV

(b) M+ PCNN EUV

Figure B2: EUV models operational persistent-relative-performances against variations of
the positive event ratio and the activity change rate. The axis and sub-test-sets are the
same as in Figure B1
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Appendix C List of Acronyms

AR Active Region

CAM Class Activation Maps

CNN Convolutional Neural Network

EUV Extreme Ultraviolet

FAR False Alarm Ratio

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multi-Layer Perceptron

PIL Polarity Inversion Line

SDO Solar Dynamic Observatory

TSS True Skill Statistic

PRSS Persistent Relative Skill Score

PR-F1 Persistent-Relative-F1

HSS Heidke Skill Score

MCC Matthews Correlation Coefficient

P-CNN Patch-Distributed-CNN

TPR True Positive Rate

TNR True Negative Rate

PPV Positive Predictive Value

NPV Negative Predictive Value

TP True Positive

TN True Negative

FP False Positive

FN False Negative

AIA Atmospheric Imaging Assembly

SXR Soft X-Rays

MPF Maximum Peak Flux

CV Cross-Validation

NFB Negative-Frequency-Bias
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Appendix D Open Research

The data prepared for this study offers a compact and Machine-learning-ready dataset
that can be used for other applications and is made publicly available: https://doi

.org/10.5281/zenodo.10465437 It is derived from the AIA-Synoptic dataset http://

jsoc.stanford.edu/data/aia/synoptic/ and JSOC’s level 1.5 45 seconds series HMI LOS
magnetograms. The time-window labels are derived from an extension of the Plutino’s flare
event catalogue (Plutino et al. (2023)): https://doi.org/10.5281/zenodo.10560188

The code - based on TensorFlow (Abadi et al. (2015)) - developed to analyse and train
the models of this work are also publicly available and notebooks are provided to replicate the
results presented in this study: https://github.com/gfrancisco20/flare limits pcnn
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