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Abstract

Velocity distribution functions (VDFs) measured by the Magnetospheric Multiscale (MMS) mission are complex 3D datasets

that can be represented as a superposition of multiple beams (M. V. Goldman et al., 2020). A recent work (Dupuis et al.,

2020) proposed the use of the Gaussian Mixture Model (GMM). Here we investigate the approach by considering first synthetic

distributions made by artificially creating beams of either Maxwellian distributions or kappa distributions with varying power

law index. By varying the inter-beam average difference and the beam standard deviation we evaluate the ability of the GMM

in recognizing correctly the beam. We then apply the method systematically to MMS data in the tail and in the dayside. In

this case, the data need preparation before being processed by the GMM to account for the specifics of the instrument and in

particular the lack of data at low energy and to account for the noise in the counts. The conclusion of the analysis is that the

GMM is capable of detecting the presence of multiple beams when their distinction is significant. The GMM can define reliably

the complexity of a measured dataset in terms of the number of optimal beams provided by information theory criteria. Visual

inspection confirms this automatic definition of complexity.
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Key Points:11

• The Gaussian Mixture Model (GMM) is assessed in its ability to identify multi-12

ple Gaussian and kappa-distributed beams depending on their relative average means13

and standard deviations.14

• The Gaussian Mixture Model (GMM) can be used to define the complexity of a15

velocity distribution function based on the optimal number of beams determined16

by information theory criteria.17

• The Gaussian Mixture Model (GMM) is applied to burst intervals of Magneto-18

spheric Multiscale (MMS) mission for electrons in the dayside and nightside with19

different counts levels and noise to signal ratios.20
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Abstract21

Velocity distribution functions (VDFs) measured by the Magnetospheric Multiscale (MMS)22

mission are complex 3D datasets that can be represented as a superposition of multiple23

beams (M. V. Goldman et al., 2020). A recent work (Dupuis et al., 2020) proposed the24

use of the Gaussian Mixture Model (GMM). Here we investigate the approach by con-25

sidering first synthetic distributions made by artificially creating beams of either Maxwellian26

distributions or kappa distributions with varying power law index. By varying the inter-27

beam average difference and the beam standard deviation we evaluate the ability of the28

GMM in recognizing correctly the beam. We then apply the method systematically to29

MMS data in the tail and in the dayside. In this case, the data need preparation before30

being processed by the GMM to account for the specifics of the instrument and in par-31

ticular the lack of data at low energy and to account for the noise in the counts. The32

conclusion of the analysis is that the GMM is capable of detecting the presence of mul-33

tiple beams when their distinction is significant. The GMM can define reliably the com-34

plexity of a measured data-set in terms of the number of optimal beams provided by in-35

formation theory criteria. Visual inspection confirms this automatic definition of com-36

plexity.37

Plain Language Summary38

This work investigates regions of interest in electrons distribution functions from39

Magnetospheric Multiscale (MMS) mission, using an unsupervised machine learning tech-40

nique called Gaussian Mixture Model (GMM). First we tested the ability of the GMM41

to identify multiple Gaussian and kappa-distributed beams on synthetic distributions,42

and then we analysed real data from MMS. The data is downloaded and preprocessed43

through AIDApy, a Python package for the analysis of spacecraft data from heliospheric44

missions. A Gaussian mixture model search through the particles and identify the pres-45

ence of different subpopulations whithin an overall population. The optimal number of46

subpopulations is determined by a model selection technique, and the presence of cer-47

tain distributions can be utilized to find magnetic reconnection regions.48

1 Introduction49

The study of the Earth’s magnetosphere and its complex system of electromagnetic50

interactions is a key goal in understanding the fundamental physics of space. Magnetic51
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reconnection and plasma turbulence are both closely interrelated fundamental processes52

in the dynamics of the magnetosphere (Biskamp, 2000). Magnetic reconnection is a pro-53

cess during which the magnetic field energy is converted into kinetic energy, thermal en-54

ergy, and particle acceleration energy. Reconnection occurs in small-scale electron dif-55

fusion regions within a current sheet (Lapenta et al., 2016). As the field lines flow into56

the region, they reconnect at the X-point. The reconnected field has a strong magnetic57

tension, which pulls the reconnected field away from the X-point, expelling the plasma58

coupled to it as bi-directional outflow jets (Li et al., 2021). Plasma turbulence is the re-59

sult of multi-scale nonlinear interactions and instabilities of large-scale fluid motions. Col-60

lisionless space plasmas are often in a turbulent non-equilibrium state, characterized by61

strong fluctuations of field and plasma parameters (Scott, 2021). Turbulence and recon-62

nection research is focused on how magnetic reconnection occurs in a turbulent system63

and how the dynamics of turbulence and reconnection interact (Yokoi & Hoshino, 2011).64

To study this relation, several spacecraft have been sent into space in recent years.65

Cluster mission observed for the first time in-situ magnetic reconnection in turbulent plasma66

(Retinò et al., 2007). NASA’s Magnetospheric Multiscale (MMS) mission has the goal67

of observing at an unprecedented rate traces of magnetic reconnection in Earth’s mag-68

netosphere (Burch et al., 2016). Fast Plasma Investigation (FPI) instrument measures69

incoming particles through a filter which selects certain particle speeds and directions;70

then a 3D picture of the ion plasma is produced every 150 milliseconds, while for elec-71

tron plasma FPI captures a picture every 30 milliseconds. Because of these frame rates,72

MMS measures more than 100 GB of data every day. However, due to limitations of the73

probes, a continuous overwriting of data takes place and a large part of it is lost irre-74

versibly: in fact, approximately 4 GB of data per day are transmitted to Earth.(Baker75

et al., 2016) At first the task of looking at the raw data and selecting the interesting ones76

was done by so-called scientists in the loop, who would observe the data by eye and se-77

lect which ones to store. Nowadays, due to the size of the measurements, this kind of78

filtering is no longer possible nor desirable. An automatized procedure is necessary for79

a preliminary analysis of the data in order to choose which ones to select and send to80

Earth. Nevertheless, researchers are able to understand all type of information and in-81

terpret them critically by simultaneously using a combination of optimization, model learn-82

ing, planning, prediction, and diagnostic analysis. This is challenging for many automated83

systems: as a result, artificial intelligence has become the perfect candidate for this task84
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thanks to the ability to recognize patterns and extract information from data by sim-85

ulating human learning. Following this paradigm shift, the European Commission (EC)’s86

Horizon 2020 project started the Artificial Intelligence Data Analysis (AIDA) project,87

which not only aims to automatize the pre-processing of space data, but also to intro-88

duce modern data assimilation, statistical methods and machine learning (ML) to he-89

liophysics data processing: Aidapy, an high level Python package for the analysis of space-90

craft data from heliospheric missions has been developed as a result.91

A new EC project has now followed up AIDA, the project Automatics in SpAce92

exPloration (ASAP) to study the deployment of ML tools onboard space missions, us-93

ing the type of processors that can resist the hostile environment of space.94

In this work we used Aidapy along with unsupervised ML clustering techniques to95

characterize particle velocity distributions. The goal of the analysis is to differentiate be-96

tween simple and more complex regions within the velocity distribution functions mea-97

sured by MMS: in particular, complex shaped electron distributions, thus represented98

with a greater number of clusters, have been shown to be good indicators for magnetic99

reconnection and turbulence (Shuster et al., 2014; Hoshino et al., 2001). The necessity100

of using unsupervised ML techniques arises from the fact that supervised ML needs huge101

databases of input features and labeled outputs to work correctly: this kind of database102

of distributions would be very problematic and time-consuming for researchers to build.103

Nevertheless, unsupervised learning extracts patterns and information from untagged104

data, thus being much more efficient and suitable for the task (Chollet, 2017). As the105

literature demonstrates, ML gives good results when applied to data from simulations106

(Dupuis et al., 2020): however, such data is less noisy and more smooth than real dis-107

tributions from MMS. A long pre-processing is therefore necessary, where it is critical108

to deal with problems such as optimization and missing data in order to smooth the clus-109

tering.110

In addition to the already mentioned Aidapy, the platform PySPEDAS (Grimes111

et al., 2022) and other packages for data analysis, ML, numerical, and visualization li-112

braries in Python help to facilitate rapid development and deployment of ML algorithms.113

Thanks to its simple, user-friendly nature, Python has become the most popular language114

to build, train and test neural networks, and a fundamental tool for developing ML so-115

lutions with high iteration velocity.116
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2 GMM Approach to Synthetic and Observational Data117

We motivate the choice of unsupervised techniques in the classification of the ve-118

locity distribution functions. The main difference between supervised and unsupervised119

ML is the usage of labelled train data in supervised learning. The model learns the re-120

lation between the labelled inputs and outputs and applies this knowledge to the unseen121

data. The scientist in the loop would thus identify some features in the data so the al-122

gorithm can train on these chosen features. This however imposes some bias into the learn-123

ing algorithm because the features are based on the existing knowledge of the scientist.124

Unsupervised methods on the other hand impose no such bias and are preferable to ex-125

tract features or clusters from the existing data.126

In addition to the imposed bias of supervised ML; we also prefer unsupervised due127

to the relatively small size of the downloaded VDF datasets.128

2.0.1 The Gaussian Mixture Model129

A Gaussian mixture is defined as function comprised of several Gaussians (usually130

the same amount as clusters in the data). Each of these Gaussians has the usual param-131

eters of mean µ and covariance Σ, defining the centre and width of the Gaussian respec-132

tively (see figure 1). The final parameter is called the mixing probability π, and will de-

Figure 1: Three Gaussians depicted above their respective clusters with means and co-

variances shown.

133

fine how big the Gaussian function will be (Bouguila & Fan, 2020)(Moitra, 2018). The134
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Gaussian density function is given by:135

N (x|µ,Σ) = 1

(2π)D/2|Σ|1/2
exp(−1

2
(x− µ)TΣ−1(x− µ)). (1)

Here the x represents the data points. The mixture model therefore states that all the136

data points are generated from a mixture of such distributions:137

P (x) =

k∑
i=1

PiN (x|µ,Σ), (2)

with k the amount of clusters and Pi is the weight of the respective Gaussian. The pa-138

rameters of the distributions are fitted with the expectation-maximization method (EM),139

which starts of with randomly chosen values for the parameters and, after calculating140

the probability that the data points were generated by these Gaussians, changes them141

iteratively. This process maximizes the likelihood that the data were generated from the142

Gaussians with the chosen parameters.143

The GMM is one of the primary models we will be interested in when studying the144

velocity distributions observed by the MMS mission. The amount and complexity of the145

clustering will be a good indicator of interesting regions in space where magnetic recon-146

nection or other magnetic action might be present.147

2.1 Clustering Statistics148

We need a way to analyse the appropriate amount of clusters k that best describes149

the dataset. One way to evaluate this would be to manually go over certain particle gen-150

erations and pick out the visible clusters. This way a training dataset of ’truth values’151

can be created and used to train a neural network to find the optimal amount of clus-152

ters. Because this is a tedious and largely subjective task, we will prefer to work with153

unsupervised training algorithms, as mentioned before, which do not require a predefined154

cluster assignment. This does not mean that we will not be evaluating the performance155

of the different algorithms visually at all, because this is of course still the best cluster-156

ing tool at our disposal (Pedregosa et al., 2011).157

2.1.1 Bayesian Information Criterion158

The Bayesian Information Criterion or BIC is in simple terms an information cri-159

terion that tries to balance the correctness of the fit of the model and the complexity160

of the model. If the complexity would not be taken into account, we run the risk of over-161
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fitting. On the other hand the correctness of the fit should be seen as a way to counter162

underfitting. The criterion is defined as follows:163

BIC = kln(n)− 2ln(L̂). (3)

The two parts that are balanced are: k, the number of parameters estimated by the model164

and n, the number of data points that express the complexity of the model, while ln(L̂)165

is the maximum log-likelihood that computes the goodness of the fit.166

This criterion is often used to evaluate the number of clusters in Gaussian mixture167

models and is also a build-in in the scikit-learn GMM-module.168

An often used alternative is the Akaike Information Criterion or AIC. This is given169

by:170

AIC = 2k − 2ln(L̂). (4)

The difference is immediately clear: it does not involve a logarithmic term in the com-171

plexity measure (BIC penalizes the number of parameters in the model to a greater ex-172

tent). While BIC assumes that the true model is in the candidate set and we simply want173

to find it, AIC only tries to find the model that most adequately describes the dataset174

(Konishi & Kitagawa, 2007).175

2.1.2 Silhouette Coefficient176

The Silhouette Coefficient uses the means intra-cluster distance (a) and the mean177

nearest-cluster distance (b) to calculate a measure of the goodness of the fit. This is a178

simple heuristic given by:179

Silhouette− coefficient =
b− a

max(a, b)
. (5)

As we can tell by the formula, the clustering is better for higher values of the coefficient.180

This means that points in a cluster lie closer to each other than to points from another181

cluster (b larger than a). As this heuristic can not assess the goodness of a fit of only182

one cluster (unlike BIC and AIC that can) we should be careful when applying it to de-183

cide whether there are two or one clusters present in the experimental data. It will how-184

ever still give a good insight in the complexity of the distributions.185

–7–



manuscript submitted to JGR: Machine Learning and Computation

2.1.3 Calinsky-Harabasz Index186

Another often used metric for evaluating clustering algorithms that uses the ratio187

of the sum of between-cluster dispersion and of within-cluster dispersion matrices (Pedregosa188

et al., 2011). This score is also easy to interpret: the higher the index, the more dense189

and well separated the clustering is, and thus the better. This score also fails to eval-190

uate single cluster allocations like the silhouette coefficient.191

3 GMM Applied to Synthetic Distributions192

3.1 Single Gaussian193

Let us first asses the performance of the GMM (from the sklearn library in python)194

on synthetic distributions. To do this we look at the most trivial example, namely a num-195

ber of particles generated from one single Gaussian distribution. To select the optimal196

number of clusters we will always use the BIC-score since it is much faster and more pre-197

cise than the previously mentioned silhouette- and CH-score. This information criterion198

always selects a one-component model and therefore the GMM can always successfully199

reconstruct the mean speed and temperatures of the generated Gaussian distribution.200

3.2 Mixture of Gaussians201

The performance of the GMM on multiple Gaussian clusters is dependant on two202

main factors; the variances of the different clusters and the separation between the clus-203

ters. When generating clusters from distributions with the same variance, it is of course204

optimal to select the ’tied’ covariance type inside the GMM. This means that all com-205

ponents share the same general covariance matrix. When dealing with a more general206

case where particles can be drawn from Gaussian distributions with different variances,207

the ’full’ covariance type will be optimal. To illustrate this, figure 2 shows the BIC-scores208

for 1-10 clusters using both covariance types on a dataset of 4 clusters generated from209

Gaussian distributions with different variances. We can see that the ’full’ covariance type210

leads to the correct prediction of the number of components.211
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Figure 2: BIC-scores for two different covariance types for an instance where the clusters

have different variances.

As expected, the GMM succeeds in identifying the optimal number of components212

when dealing with all-Gaussian clusters. We can also show that the model is capable of213

accurately predicting the means and variances of the clusters. The accuracy of these pre-214

dictions do however go down when dealing with clusters that are not well separated. To215

illustrate this, we will plot the normalized error of the predicted means and variances216

for varying distance between the clusters. Lets look at an instance of 4 clusters.217
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Figure 3: Error on the mean and variance predictions of the GMM on 4 Gaussian clus-

ters for decreasing distance between the respective clusters. The distance on the horizon-

tal axis is the maximum distance between the three velocity components of the means of

different clusters (in units of 106 m/s). On the vertical axis, the error on the total veloc-

ity is displayed, averaged over the 4 clusters.

As expected, the Gaussian mixture model works excellent for recreating the means218

and variances of a number of Gaussian sampled clusters. It is only at the point where219

the clusters almost completely coincide that the accuracy of the predictions start to de-220

cline rapidly.221

3.3 Single Kappa222

The previous results look rather promising however, as we know the clusters ob-223

servable in the electron VDF will not be completely Gaussian in nature. These clusters224

are characterised by non Maxwellian suprathermal tails. These tails decrease as a power225

law of the velocity (Pierrard & Lazar, 2010). As in most literature about space plasmas,226
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we will fit these distributions by the Kappa distribution (Pierrard & Meyer-Vernet, 2017;227

Maksimovic et al., 1997; Kim et al., 2015). The spectral index of these distributions de-228

termines the slope of the distribution. In the limit where κ → ∞, the distribution sim-229

plifies to a Maxwellian (see fig. 4).230

Figure 4: (Left) The Kappa distribution function for several values of the spectral index.

(Right) Particles randomly generated from a Kappa distribution with κ = 2 (in units of

106 m/s).

It is also important to note that the value of the spectral index must be chosen as231

such that it is not too close to the critical value κc = 1.5. At this value the distribu-232

tion function collapses (Pierrard & Lazar, 2010). Following observations and satellite data,233

kappa distributions with a spectral index 2 < κ < 6 seem to be a good fit (Shohaib234

et al., 2022) and thus satisfies this requirement.235

We will now see if the GMM is still capable of identifying the correct number of236

clusters and their means/variances if these clusters are not sampled from a Gaussian dis-237

tribution, but from a kappa distribution. Let us start with one single kappa distributed238

cluster. In the previous section, when generating Gaussian clusters, we selected κ = 200.239

We now bring down this value until the GMM does no longer makes the right predic-240

tion. Below κ = 6, the GMM predicts a significantly larger amount of clusters due to241

the outliers generated from the kappa distribution. Since we are interested in kappa val-242

ues below this, we need to improve the performance. This can be done by increasing the243

convergence threshold of the EM-algorithm that the GMM uses. This way the algorithm244

goes to fewer iterations and is less likely to overestimate the number of actual clusters.245
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Using this method, we get down to κ = 2.6 before the model starts overfitting the num-246

ber of clusters. This process also inherently speeds up the computation since we need247

fewer iterations. Remarkably, as we will see in the next section, this overfitting does not248

occur when more than one cluster is present and we can get our spectral index as low249

as κ = 2. This way we can correctly predict all distributions that model the velocity250

in space plasmas.251

We conclude that the GMM can correctly reconstruct the mean speeds and tem-252

peratures of a single kappa distributed cluster for κ = 2.6 and up.253

3.4 Mixture of Kappa’s254

Figure 5: Predicted clusters by BIC-score after GMM. Means of clusters are highlighted

in red (graph in units of 106 m/s).

In complete analogy with the mixture of Gaussian clusters, we look at the GMM255

performance when the dataset would consist of a mix of different kappa distributed clus-256

ters. We do however now have an extra parameter to take into account, namely: Do all257

clusters have the same kappa value or not? Contrary to the single-cluster case, the GMM258

model is able to correctly predict the number of components in a multi-cluster dataset,259

even when they are generated by distributions with a spectral index between 2 and 2.6.260

The primary deciding factor of the precision of these predictions will thus once again be261

the separation between the different clusters. We will analyse the results for an instance262
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where all clusters are generated by a full κ = 2 distribution, and another instance where263

the spectral indices can vary randomly between κ = 2 and κ = 6.

Figure 6: Error on the mean and variance predictions of the GMM on 4 Kappa-

distributed clusters (all same κ) for decreasing distance between the respective clusters.

The distance on the horizontal axis is the maximum distance between the three velocity

components of the means of different clusters (in units of 106 m/s). On the vertical axis,

the error on the total velocity is displayed, averaged over the 4 clusters.

264
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Figure 7: Error on the mean and variance predictions of the GMM on 4 Kappa-

distributed clusters (2 < κ < 6) for decreasing distance between the respective clusters.

The distance on the horizontal axis is the maximum distance between the three velocity

components of the means of different clusters (in units of 106 m/s). On the vertical axis,

the error on the total velocity is displayed, averaged over the 4 clusters.

From these results we conclude that the performance of the GMM is not really af-265

fected by clusters with a non-equal spectral index. In previous examples we always ran266

the GMM for 1-10 components. If we pick a higher number for the maximum amount267

of components, we risk overfitting some simpler cases with few components by assign-268

ing a really high number of clusters. This also reduces the run time of the program when269

we will run it for more than 100 electron distributions. The model is still capable of rep-270

resenting the complexity of the distribution, which is in essence what we are after. This271

means that instances with over 10 components will almost always be assigned 10 com-272

ponents for the optimal solution, and not some smaller number.273
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3.5 Spectral Clustering274

Another clustering technique that can be considered in the context of electron VDFs275

is spectral clustering. This method performs a dimensionality reduction based on the spec-276

trum of the similarity matrix (Bonaccorso, 2017)(Pedregosa et al., 2011). When spec-277

tral clustering is applied to a Gaussian/Kappa distributed dataset like before, we see that278

the algorithm is indeed able to correctly classify most clusters using the Silhouette Co-279

efficient and Calinsky-Harabasz Index as clustering statistics (BIC and AIC are not avail-280

able for this clustering algorithm). However, using this algorithm comes with a big jump281

in time complexity as well as the added run time that results from the change in clus-282

tering statistics. Nevertheless, spectral clustering could become relevant when using the283

’SpectralClustering’ function of scikit-learn. This function allows the user to use paral-284

lelization, which will split the work across different CPU cores and decrease the execu-285

tion time (Brownlee, 2020). Several efforts were made to to get the time complexity down286

this way to make it comparable to GMM, but this does not yet yield the desired results.287

These attempts included using the cores of our local machines as well as utilizing sev-288

eral cores of the tier-2 Genius cluster of the VSC (Flemish Supercomputer Center). As289

for now, the achieved time complexity is not yet one to rival our GMM results.290

4 Data and Methods291

For the purpose of testing the capability of the GMM to define the complexity of292

a measured dataset, we utilized data from NASA’s MMS Mission. Fast Plasma Inves-293

tigation (FPI) instrument measures incoming particles through a filter which selects cer-294

tain particle speeds and directions; then a 3D picture of the ion plasma is produced ev-295

ery 150 milliseconds, while for electron plasma FPI captures a picture every 30 millisec-296

onds (Pollock et al., 2016). Aidapy, an high level Python package for the analysis of space-297

craft data from heliospheric missions developed by ESA, is used to download data from298

FPI and other on-board instruments.299

Unlike simulation data, when working with real data one has to deal with specifics300

of instruments. In the case of FPI, low energy particle counting is perturbed by the elec-301

trical charge of the probe: this leaves a gap in the center of measured VDFs. Before pro-302

cessing the data with GMM, the Python package Scikit-learn is used to perform linear303

interpolation to fill the gap in the VDFs. Particles are then generated from VDFs for304
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input into the GMM: to avoid noisy distributions with few particles and ones which are305

too demanding in terms of numerical resources, a number of particles of 40,000 is cho-306

sen by authors’ experience. The information criterion chosen to select the number of op-307

timal beams of the mixture is BIC, as it is to be found preferable to AIC in working with308

a large number of real data.309

Data were selected from two distinct intervals in which magnetic reconnection sig-310

natures were found. In the literature, different types of reconnection signatures have been311

identified (M. Goldman et al., 2016) . Several of these signatures have been observed in312

the events analyzed in this work. The first event is from December 8, 2015, when the313

reconnecting dayside magnetopause was crossed by MMS probes. The second one is from314

July 3, 2017 and it was observed in the magnetotail.315

5 GMM applied to MMS data in the dayside magnetopause316

During the event on December 8, MMS spacecraft was at first in the magnetosheath,317

but the magnetopause moved outward causing the spacecraft to move to the magnetopause318

(Burch & Phan, 2016). The crossing of a reconnecting magnetopause is recognized at319

11:20:42-11:20:45 UT, because of the behaviour of several physical quantities: intense320

current density, strong electric field and high speed electron outflows. Four seconds of321

data observations from MMS3 were processed with the GMM technique, from 11:20:41322

to 11:20:45. Every 0.03 s an electron VDF is measured by the spacecraft, for a total of323

133 VDFs analyzed within the interval. For each VDF the BIC information criterion as-324

signes a score based on how accurate the fit is. The fit is then repeated with a different325

number of clusters. The maximum number of possible clusters is an input for the GMM:326

from the authors’experience, 10 is a reasonable compromise between result accuracy and327

computation time.328

The bottom plot of figure 8 shows the normalized results of the GMM analysis on329

the VDFs. High values of the score (white lines) shows a difficulty in the fit of the dis-330

tribution function, which may be associated with a complex VDF. In fact, the informa-331

tion criterion tends to assign smaller scores to the best fits, which correspond to more332

Maxwellian VDFs. As the plot shows, during the reconnecting magnetopause crossing333

(between 11:20:43 and 11:20:44), the VDFs tend to become more complex. For a visual334

verification, three VDFs taken at different times are shown in figures 9, 10 and 11. The335
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Figure 8: Data from 8 December 2015. Vectors are expressed in Geocentric Solar Ecliptic

System (GSE), with X-axis pointing from the Earth towards the suns, its Y-axis chosen

to be in the ecliptic plane pointing towards dusk and Z-axis parallel to the ecliptic pole.

GSE components of magnetic and electric field are shown. Electric and magnetic field are

shown in panels (A) and (B), along with electron bulk velocity (C) and density (D). Panel

(E) shows the GMM results. Vertical dashed lines represent the times when VDFs are

measured.

first one is taken at 11:20:42:08, when the crossing of the reconnecting region had not336

yet happened and the BIC score is near its minimum. The second and third one, which337

appear visually complex and show strong asintropy, are taken after the reconnection event,338

where the BIC score indicates a worst fit. This capability of the GMM to automatically339

recognize regions where VDFs present non-Maxwellian features is of crucial importance340

for the detection of reconnection regions within the plasma.341

Figure 12 illustrates the Gaussians parameters found by the GMM applied to one342

of the distributions measured before the reconnection. The number of components pro-343

vided as input to the algorithm is three. The ellipses evidence the mean and the vari-344
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ance of each Gaussian of the mixture, and the weight represents the probability that a345

random particle belongs to one of the three components.346
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Figure 9: Three cuts of the VDF taken at 11:20:42:08, before the reconnection event. VB

is parallel to the magnetic field, VV is in the direction of the bulk velocity, VBxV is in

the direction of B×V and VVperpB is the bulk velocity projected onto the plane normal

to B.
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Figure 10: Three cuts of the VDF taken at 11:20:42:08, before the reconnection event.

VB is parallel to the magnetic field, VV is in the direction of the bulk velocity, VBxV

is in the direction of B×V and VVperpB is the bulk velocity projected onto the plane

normal to B.
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Figure 11: Three cuts of the VDF taken at 11:20:42:08, before the reconnection event.

VB is parallel to the magnetic field, VV is in the direction of the bulk velocity, VBxV

is in the direction of B×V and VVperpB is the bulk velocity projected onto the plane

normal to B.
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Figure 12: VDF cut from the dayside magnetopause taken at 11:20:44.18, before the re-

connection. VB is parallel to the magnetic field and VBxV is in the direction of B×V.

The black ellipses show the different Gaussians of the mixtures based on their mean and

variance. The transparency of the ellipses is determined by the weight of each Gaussian.
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6 GMM applied to MMS data in the magnetotail347

During the event of 3 July 2017 MMS3 spacecraft was in the magnetotail, and ob-348

served another reconnection event (Burch et al., 2019). Again, four seconds of data were349

analyzed, from from 05:26:48 to 05:26:52. Reconnection X-line is observed near 05:25:50:72.350

Figure 13: Data from 3 July 2017. Vectors are expressed in Geocentric Solar Ecliptic

System (GSE), with X-axis pointing from the Earth towards the suns, its Y-axis chosen

to be in the ecliptic plane pointing towards dusk and Z-axis parallel to the ecliptic pole.

GSE components of magnetic and electric field are shown. Electric and magnetic field are

shown in panels (A) and (B), along with electron bulk velocity (C) and density (D). Panel

(E) shows the GMM results. Vertical dashed lines represent the times when VDFs are

measured.

As shown in figure 13, until 05:25:49:50 VDFs appear Maxwellian. More complex351

VDFs are recognized for nearly a second, until they return simpler. The simplification352

of the VDFs occurs after the time when reconnection is observed, near 05:25:50:72. The353

GMM again succeeds in detecting the reconnection region through the clustering result.354

Three VDFs are shown in figures 14, 15 and 16 for visual verification. As expected from355

GMM results, the two VDFs with smaller BIC scores show Maxwellian features, while356
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the VDF from 5:26:50:15, before the reconnection event, appears strongly complex with357

large peaks in the VB direction. The algorithm was again able to automatically recog-358

nize the most complex distributions within the time interval with great accuracy.359
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Figure 14: Three cuts of the VDF taken at 11:20:42:08, before the reconnection event.

VB is parallel to the magnetic field, VV is in the direction of the bulk velocity, VBxV

is in the direction of B×V and VVperpB is the bulk velocity projected onto the plane

normal to B.
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Figure 15: Three cuts of the VDF taken at 11:20:42:08, before the reconnection event.

VB is parallel to the magnetic field, VV is in the direction of the bulk velocity, VBxV

is in the direction of B×V and VVperpB is the bulk velocity projected onto the plane

normal to B.
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Figure 16: Three cuts of the VDF taken at 11:20:42:08, before the reconnection event.

VB is parallel to the magnetic field, VV is in the direction of the bulk velocity, VBxV

is in the direction of B×V and VVperpB is the bulk velocity projected onto the plane

normal to B.
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7 Conclusions360

In this paper we have investigated the effectiveness of the Gaussian mixture model361

in 1) recognizing the complexity of the distributions (i.e. the number of components) and362

2) recreating the means (mean velocity) and variances (temperatures) of the clusters in363

electron VDF’s.364

The tests that were run on synthetic distributions proved the ability of the algo-365

rithm to accurately predict the complexity of kappa distributed clusters (with the max-366

imum number of components set tot 10 as to prevent overfitting) as well as reconstruct-367

ing the means and variances of these clusters. From the numerical results, it is obvious368

that the GMM algorithm still performs the better on the Gaussian distributed clusters369

as expected. Nevertheless, for clusters whose means are well separated (i.e. more than370

107 m/s apart), the results for the kappa distributed particles are comparable to the Gaus-371

sians. We also remark that it is not important if the clusters have the same spectral in-372

dex (κ = 2), or if the spectral index is different for each cluster (2 < κ < 6).373

With regard to the analysis of real data, we applied GMM to MMS data in order374

to automatically identify magnetic reconnection sites through the complexity of the ve-375

locity distribution functions.376

For the analysis, we selected time intervals from articles where magnetic reconnec-377

tion events were identified from observations of particular variations in electric and mag-378

netic fields, current density, and particles behavior. After preprocessing the data, which379

includes filling in the gap in the VDFs at low energies, we analyzed the particles gen-380

erated by distribution with the GMM. We utilized the Bayesian Information Criterion381

to choose the best fitting amount of clusters within the distributions. The model has shown382

that it is able to capture the variation in complexity of the functions, arriving through383

this to automatically locate reconnection sites with good accuracy. In addition to this,384

a visual test showed that the BIC scores can accurately indicate the most complex dis-385

tributions that show strong non-Maxwellian features.386

In recent years the task of looking at the raw data from the spacecrafts and select-387

ing the interesting ones was done by eye by scientists. Due to limitations of the probes,388

a continuous overwriting of data takes place and a large part of it is lost. Future goals389

include further improving the unsupervised ML techniques so that them can be used to390

analyze the data and collect the most interesting ones without having to lose a lot of im-391
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portant information. Just as with synthetic data, we favor GMM with Bayesian infor-392

mation criterion thanks to its efficiency and accuracy.393
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Retinò, A., Sundkvist, D., Vaivads, A., Mozer, F., André, M., & Owen, C. J. (2007,495
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