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Abstract

The application of deep-learning-based seismic phase pickers for earthquake monitoring has surged in recent years. However,

the efficacy of these models when applied to monitoring volcano seismicity has yet to be evaluated. Here, we first compile a

dataset of seismic waveforms from various volcanoes globally. We then show that the performances of two widely used deep-

learning pickers deteriorate systematically as the earthquakes’ frequency content decreases. Therefore, the performances are

especially poor for long-period earthquakes often associated with fluid/magma movement. Subsequently, we train new models

which perform significantly better, including when tested on volcanic earthquake waveforms from northern California where no

training data are used and tectonic low-frequency earthquakes along the Nankai Trough. Our model/workflow can be applied

to improve monitoring of volcano seismicity globally while our compiled dataset can be used to benchmark future methods for

characterizing volcano seismicity, especially long-period earthquakes which are difficult to monitor.
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Key Points:6

• We compile the first data set of seismic waveforms from various volcanic regions7

globally.8

• We show that existing deep-learning phase pickers’ performances deteriorate with9

decreasing volcanic earthquake frequency content.10
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volcano seismicity, especially long-period earthquakes.12
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Abstract13

The application of deep-learning-based seismic phase pickers for earthquake mon-14

itoring has surged in recent years. However, the efficacy of these models when applied15

to monitoring volcano seismicity has yet to be evaluated. Here, we first compile a dataset16

of seismic waveforms from various volcanoes globally. We then show that the performances17

of two widely used deep-learning pickers deteriorate systematically as the earthquakes’18

frequency content decreases. Therefore, the performances are especially poor for long-19

period earthquakes often associated with fluid/magma movement. Subsequently, we train20

new models which perform significantly better, including when tested on volcanic earth-21

quake waveforms from northern California where no training data are used and tectonic22

low-frequency earthquakes along the Nankai Trough. Our model/workflow can be ap-23

plied to improve monitoring of volcano seismicity globally while our compiled dataset24

can be used to benchmark future methods for characterizing volcano seismicity, espe-25

cially long-period earthquakes which are difficult to monitor.26

Plain Language Summary27

Earthquake activity at volcanic regions is often monitored to indicate volcanic ac-28

tivity. Identifying the time when the energy radiated from an earthquake source arrives29

at a seismometer is essential for locating the earthquake, which can be difficult for vol-30

canic earthquakes because of high noise levels, high event rates, and obscured onsets. Pre-31

vious studies have demonstrated that deep learning, a type of artificial intelligence, can32

excel in picking the arrival times of regular earthquakes. However, the efficacy of these33

models when applied to monitoring volcanic earthquakes has yet to be evaluated. Here,34

we first compile a dataset of earthquakes from various volcanoes globally. We then show35

that existing deep-learning-based models do not work well for these events, especially36

those with predominantly low-frequency energy. We then train two new models which37
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perform better than existing models for volcanic earthquakes. Our model/workflow can38

be applied to improve monitoring of volcanic earthquakes globally.39

1 Introduction40

Detecting and identifying onsets of seismic phases is fundamental to locating seis-41

micity. Manual inspection by experienced analysts is viewed as the gold standard but42

is extremely laborious and time-consuming. This makes it difficult to handle the ever-43

increasing volumes of seismic data and periods with extremely high seismicity rate such44

as during volcanic unrests. On the other hand, early automatic methods, such as the short-45

term average over long-term average method (STA/LTA) (Allen, 1978), suffer from low46

accuracy and require a number of parameters to be tuned carefully. Over the past two47

decades, the matched-filter technique has been shown to be an effective method (Gibbons48

& Ringdal, 2006; Chamberlain et al., 2017) to search for repeating or near-repeating earth-49

quakes based on waveform similarity. However, this method is only capable of detect-50

ing earthquakes in the vicinity of known template events. In recent years, deep-learning-51

based pickers (e.g. Ross et al., 2018; Zhu & Beroza, 2019; Mousavi et al., 2020; Soto &52

Schurr, 2021) have been gaining increasing attention due to their picking accuracy be-53

ing comparable to human analysts (Chai et al., 2020) and high efficiency. Their appli-54

cation has surged in recent years, including for delineating seismicity in fault zones, sub-55

duction zones, oceanic transform faults, and volcanoes (e.g. Tan et al., 2021; Jiang et56

al., 2022; Chen et al., 2022; Gong et al., 2023; Liu et al., 2023; Wilding et al., 2023; Garza-57

Girón et al., 2023). However, it can be difficult to predict deep-learning models’ perfor-58

mance for out-of-distribution data that are not well represented by training data (Wenzel59

et al., 2022; Teney et al., 2022).60

Seismicity which often correlate with magmatic/volcanic processes and sometimes61

represent eruption precursors (White & McCausland, 2019; Acocella et al., 2023) is an62

important monitoring observable at volcanoes. Two types of earthquakes are commonly63
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observed in volcanic regions: volcano-tectonic earthquakes (VTs) and long-period earth-64

quakes (LPs), which are classified mainly based on their waveform frequency content but65

may imply different source processes (e.g. Chouet & Matoza, 2013; Saccorotti & Lok-66

mer, 2021; Matoza & Roman, 2022, and references therein). VTs share common spec-67

tral characteristics with regular tectonic earthquakes and have impulsive onsets. They68

mostly originate from shear fractures in the solid part of an edifice or the underlying crust,69

hence only indirectly indicate magmatic activity. In comparison, most conceptual source70

models of LPs involve fluids, e.g. resonating fluid-filled cracks (Chouet & Matoza, 2013),71

thermal stresses in cooling magmas (Aso & Tsai, 2014), pressurization of exsolved volatiles72

from stalled magmas (Wech et al., 2020), and rapidly growing bubble in ascending mag-73

mas (Melnik et al., 2020). Therefore, LPs are often interpreted as a more direct evidence74

of fluid movement (e.g. Song et al., 2023). However, compared to VTs, LPs are more75

difficult to detect because they are depleted of high frequency content and have emer-76

gent phase onsets (Pitt et al., 2002; Shapiro et al., 2017).77

Some recent studies have applied existing deep-learning phase pickers, which were78

trained using regular tectonic earthquake waveforms, to monitor volcano seismicity (Mittal79

et al., 2022; Bannister et al., 2022; Suarez et al., 2023; Li et al., 2023; Garza-Girón et80

al., 2023; Wilding et al., 2023). However, there is currently no large-scale, systematic eval-81

uation of the efficacy of these existing models for volcano monitoring. For instance, their82

performances for volcanic earthquakes may be impaired by different waveform charac-83

teristics, emergent onsets of long-period events, and high/different background noise in84

volcanic regions (Lapins et al., 2021). While there have been a few models trained with85

seismic data near volcanoes (Lapins et al., 2021; Kim et al., 2023; Armstrong et al., 2023),86

limited data distribution (individual volcano) make these models less generalizable to87

other volcanic regions. In addition, none of these studies explicitly included long-period88

earthquakes in their analyses (Lapins et al., 2021; Kim et al., 2023; Armstrong et al., 2023).89
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In this study, we first compile a data set of seismic waveforms from various volcanic90

regions. We then show that the performances of two widely used deep-learning pickers,91

PhaseNet (Zhu & Beroza, 2019) and EQTransformer (Mousavi et al., 2020), deteriorate92

when applied off-the-shelf to volcanic seismic data, especially for long-period earthquakes.93

We then train new models that achieve significantly better performances for monitor-94

ing volcano seismicity.95

2 Dataset of seismic waveforms from volcanic regions96

We assemble a data set of 156,272 LP waveforms (34,980 events), 156,498 VT wave-97

forms (38,115 events), and 20,000 noise waveforms recorded by seismic stations deployed98

around 34 volcanoes in Alaska (Power et al., 2019), 6 volcanoes in Hawaii (Hawaiian Vol-99

cano Observatory/USGS, 1956), 8 volcanoes in northern California (NCEDC, 2014) and100

88 volcanoes in Japan (National Research Institute for Earth Science and Disaster Re-101

silience, 2019). The geographical distribution of the events is shown in Figure 1. See Ta-102

ble S1 in the supporting information for more details about data set splitting, Figure S1103

for the distribution of recording stations, Figure S2 for the distribution of volcanoes and104

Figures S3-S14 for other properties of the data. All the event waveforms have both man-105

ually picked P and S phase arrivals. Most waveforms contain 3 components (77%) (Fig-106

ure S3) and are from earthquakes located within 50 km of an active volcano (95%) (Fig-107

ure S4). Since there are far more available VTs than LPs, we only include a similar num-108

ber of VT waveforms as the number of available LP waveforms. We remove data with109

large spikes and errors (e.g. events with S pick prior to P pick). For waveforms from Japan,110

we download event waveforms whose length may vary for different events and different111

stations. For waveforms from the US, we download event waveforms starting from 60s112

before the P pick and ending 60s after the S pick. Hence waveforms in our data set have113

different lengths, which will be trimmed in the subsequent processing stages. Compared114

with previous datasets, e.g. STEAD (Mousavi et al., 2019) and INSTANCE (Michelini115

et al., 2021), our data set has a wider distribution of frequency index (Figures S7-S10)116
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Figure 1. Geographical distribution of the earthquakes used in this study. The seismic data

of volcano-tectonic earthquakes (cyan circles) and volcanic long-period earthquakes (red circles)

from Japan (a), Alaska (b) and Hawaii (c) are split into a training set, a validation set and a

test set, while the data from northern California (d) and the tectonic low-frequency earthquakes

(LFEs) (purple circles) from Japan are only used for testing. Yellow triangles mark active volca-

noes with seismic events used in this study.
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which is a measure of the dominant frequency content of an earthquake (Buurman & West,117

2010) (Text S1), suggesting it includes a greater variety of seismic events. To the best118

of our knowledge, this is the first data set of seismic waveforms compiled from various119

volcanic regions globally for machine learning.120

3 Evaluation of existing deep-learning phase pickers121

We use 15,078 LP waveforms and 15,057 VT waveforms from Alaska, Hawaii and122

Japan to evaluate two most widely used models: PhaseNet (Zhu & Beroza, 2019) and123

EQTransformer (Mousavi et al., 2020), which are the best performing architectures in124

a recent benchmark study (Münchmeyer et al., 2022). PhaseNet is a U-net with 1D con-125

volutional layers originally trained on earthquakes from northern California. EQTrans-126

former is a stack of convolutional layers, long short-term memory (LSTM) units, and self-127

attentive layers originally trained on the global data set STEAD (Mousavi et al., 2019).128

We divide the testing waveforms into subsets according to frequency index values to eval-129

uate how the model performance varies with the dominant frequency content. We ran-130

domly extract 30s windows around the manual picks of the testing waveforms. For each131

waveform, the same window is used to test different models. Since EQTransformer op-132

erates on a 60s window, we will only focus on the 30s target window of the output (Münchmeyer133

et al., 2022). We use precision, recall and F1-score to evaluate the results. Precision is134

the fraction of output picks that are actually correct. Recall is the fraction of manual135

picks that are correctly identified by the model. F1 score is the harmonic mean of pre-136

cision and recall (Text S2). Considering that the original EQTransformer and PhaseNet137

were trained under the TensorFlow framework (Abadi et al., 2015) that is different from138

the platform we use (pyTorch) and that they were not trained on the same data set, we139

also include the variants of EQTransformer and PhaseNet trained on the INSTANCE140

data set (Michelini et al., 2021) for comparison, which were trained by Münchmeyer et141

al. (2022) and available in the SeisBench package (Woollam et al., 2022). The model out-142

put is time series of “probability” of P and S. To get predicted picks from the probabil-143
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ity time series output by the models, we first extract segments of probability curves above144

a given threshold and the peak positions of these extracted segments are considered as145

pick times. The model-specific threshold is tuned (Figure S15) on the validation set (Ta-146

ble S1).147

The recalls, precisions and F1 scores of the original models decrease systematically148

with decreasing frequency index (Figure 2). For example, the F1 score of PhaseNet de-149

creases from ∼0.9 to ∼0.5 for P picking and from ∼0.85 to ∼0.25 for S picking as the150

frequency index decreases from ∼0.5 to ∼-1.7. Compared with precision, the recall ex-151

hibits a greater deterioration, which can be as low as 0.4 for P picking and 0.2 for S pick-152

ing, indicating that most LPs in the test set have been overlooked. We observe a sim-153

ilar trend for the models trained on INSTANCE (Münchmeyer et al., 2022). This is un-154

likely to be related to changes in signal-to-noise ratio since we do not observe significant155

systematic changes in signal-to-noise ratio with frequency index (Figure S17). Our re-156

sults suggest that these existing models will likely underreport LPs compared to VTs157

when directly applied to monitoring volcano seismicity (Bannister et al., 2022; Mittal158

et al., 2022; Wilding et al., 2023; Garza-Girón et al., 2023; Suarez et al., 2023; Li et al.,159

2023), which is not ideal since LPs often indicate fluid/magma movements (Chouet &160

Matoza, 2013; Matoza & Roman, 2022). Therefore, we decided it would be valuable to161

train a new phase picker specifically for volcano seismicity.162

4 Training deep-learning phase pickers for volcano seismicity163

Among our data set, 151,431 LP waveforms, 151,657 VT waveforms and 20,000 noise164

waveforms from Alaska, Hawaii and Japan corresponding to 70,352 events are grouped165

into a training set (83.64%), a validation set (5.49%) and a test set (10.87%) (Table S1).166

Here, the earthquake waveforms in the test set are the same as those presented in the167

previous section. An extra test set comprising 4,841 waveforms from 1,094 LP events and168

4,841 waveforms from 1,649 VT events near 8 volcanoes in northern California is used169

–8–
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Figure 2. Performances of various models on subsets of testing waveforms with different fre-

quency index values. The F1 scores here is slightly higher than those in Figure 3a because noise

waveforms, to which frequency index is not applicable, are not included in this test.
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to test how our model generalizes to a region where no training data have been used. In170

addition, 6,224 waveforms of 2,356 tectonic low-frequency earthquakes (LFEs) along the171

Nankai trough in Japan are used as another test set to investigate whether our model172

works for tectonic LFEs associated with shear slip on the subduction zone plate inter-173

face (Obara & Kato, 2016).174

We use our data set to train two new models based on the PhaseNet and EQTrans-175

former architectures implemented in the SeisBench package (Woollam et al., 2022). All176

the waveforms are resampled to 100 Hz. We normalize each component of a waveform177

by removing the mean and dividing it by the maximum value. We perform data augmen-178

tation by randomly modifying the waveforms at each step of training. The modifications179

include randomly shifting waveforms, adding gaps to waveforms, adding Gaussian noise180

and superimposing a training example on the shifted and rescaled version of another train-181

ing example. Each type of augmentation is performed with a given probability. Normal-182

ization is performed before and after data augmentation. The labels for phase arrivals183

are Gaussian functions with peaks aligning with manual picks. At each step of training,184

a batch of waveform examples are randomly selected, normalized, randomly augmented,185

labelled, and input into the Adam optimization algorithm (Kingma & Ba, 2015) to ad-186

just the model weights.187

The validation set is used to tune hyperparameters. We try various learning rates188

0.0001/0.0005/0.001 and batch sizes 512/1024 to obtain a series of models. Each model189

is trained for 400 epochs. Loss function on the validation set is monitored for each epoch190

and the model snapshot at the epoch with the lowest validation loss is used as the final191

model. For each model, we test different decision thresholds and choose the one with the192

highest F1-score as the optimal threshold. Then we evaluate each model on the valida-193

tion set and choose the one with the highest F1-score (Tables S2-3). The preferred learn-194

ing rate and batch size for PhaseNet are 0.0005 and 512, respectively. They are 0.001195

and 1024 for EQTransformer, respectively. We also compare random initialization and196
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initialization from the network weights pre-trained on the INSTANCE data set (Melnik197

et al., 2020; Münchmeyer et al., 2022), and we choose the one with the highest F1-score198

on the validation set (Table S4).199
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Figure 3. F1 scores of different models evaluated on the testing waveforms from (a) the same

regions as the training data, (b) northern California from where no training data are used and (c)

tectonic LFEs in Japan. The precision and recall are given in Figures S24-S25 in the supplement.

We first test our models on subsets with different frequency index values as described200

in the previous section. Our models trained for volcano seismicity show significant per-201

formance improvement for waveforms with low frequency index values compared to ex-202

isting models, with F1 scores for P and S picking of ∼0.9 and ∼0.8, respectively (Fig-203

ure 2). There is also a slight improvement for waveforms with high frequency index. The204

overall performances of various models on the whole test set are shown in Figure 3a, where205

our models show the best performances for both LPs and VTs for both P and S pick-206
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ing. For the LPs, the EQTranformer-based network trained in this study achieves an F1207

score of 0.9 for P picking and 0.86 for S picking, which are 0.39 (P picking) and 0.23 (S208

picking) higher than those of the original EQTransformer. The performance improve-209

ment is smaller for the VTs: the retrained EQTransformer achieves F1 scores 0.16 and210

0.12 higher than the original EQTransformer model for P and S picking respectively. The211

EQTransformer trained on INSTANCE has similar performance to the original EQTrans-212

former except for P picking on the LPs, for which the F1 score of the INSTANCE-based213

EQTransformer is ∼0.2 higher than that of the original EQTransformer but ∼0.2 lower214

than that of our retrained EQTransformer. A similar amount of improvement is obtained215

by the PhaseNet-based network trained on our data set. Furthermore, our models give216

lower picking residuals as indicated by the narrower histograms of residuals (Figure S19-217

S20). The retrained EQTransformer shows only a marginally higher F1 score than the218

retrained PhaseNet, suggesting that the data set plays a more important role than the219

network architecture in differences in model performances.220

Subsequently, we use the test set from northern California to investigate how our221

models generalize to regions where no training data are used (Figure 3b). All the mod-222

els show great performance for VTs, with F1 scores for P picking larger than 0.9 and F1223

scores for S picking larger than 0.87, and our models achieve the highest F1 scores (0.95).224

Notably, the existing pickers perform poorly for LPs, with F1 score ranging from 0.34225

to 0.56. Although all the models experience some performance degradation for LPs com-226

pared with the previous test, our retrained models still perform significantly better than227

the existing models, with F1 scores ranging from 0.70 to 0.74. The performance varia-228

tion with frequency index for this test set (Figure S18) also suggests that our models have229

better generalization abilities when applied to a new region. The poorer performances230

for LPs could be partly explained by the LP waveforms in this test set having lower signal-231

to-noise ratios than VT waveforms (Figures S6 and S18).232
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Finally, we investigate whether our models also work for tectonic LFEs since both233

tectonic LFEs and volcanic LPs appear to have similar frequency content, though they234

are often inferred to reflect different source processes (Aso et al., 2013). Our training set235

does not explicitly include any tectonic LFE. Here we test the models on LFEs along the236

Nankai trough from Japan. The result is shown in Figure 3c. Our retrained models out-237

perform the original models and the INSTANCE-based models by a large margin for both238

P and S picking, with F1 scores of ∼0.8. We further confirmed that our models also work239

for regular tectonic earthquakes, since they achieve F1 scores of 0.89 and 0.75 for P and240

S picking respectively when tested on the INSTANCE data set (Michelini et al., 2021),241

which is slightly better than the original EQTransformer and PhaseNet but unsurpris-242

ingly inferior to the models trained on the INSTANCE data set (Figure S29).243

5 Discussion244

5.1 Comparison with existing methods245

Deep-learning-based pickers have higher accuracy and require less parameters to246

manually tune than traditional pickers, e.g. STA/LTA (Allen, 1978) and the Baer-Kradolfer247

picker (Baer & Kradolfer, 1987), as demonstrated in previous studies (e.g. Zhu & Beroza,248

2019; Mousavi et al., 2020; Münchmeyer et al., 2022). Also, deep-learning-based pick-249

ers have greater flexibility than template matching as they are not limited by the avail-250

ability of suitable template events. Compared with previous deep-learning models aimed251

at tectonic earthquakes, our models can better pick volcano seismicity and thus can help252

to improve volcano monitoring. Our compiled waveform dataset can also be used to bench-253

mark future methods for monitoring volcanic earthquakes.254

Our study is different from a few recent studies that have also trained models on255

volcanic earthquakes (Lapins et al., 2021; Kim et al., 2023; Armstrong et al., 2023) in256

two aspects. First, the previous studies focused exclusively on one volcano and thus it257

is unclear how well these models can generalize to other volcanoes, while we use data around258
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136 active volcanoes from different regions. Second, LPs were not considered in the pre-259

vious studies despite being an important form of volcano seismicity, while we included260

LP earthquakes for training. We subsequently demonstrated that our models perform261

well for both LPs and VTs, and can be generalized to other volcanoes. However, since262

these studies adopted different data formats, input/output formats, machine-learning frame-263

works and not all of these models are available, it would be hard to make direct com-264

parisons.265

Finally, our study is different from recent studies which focused on tectonic LFEs266

(Thomas et al., 2021; Lin et al., 2023; Münchmeyer et al., 2023) in terms of training data267

and targets. These studies focused on tectonic LFEs which are a manifestation of creep268

or slow fault slips (Behr & Bürgmann, 2021), while our target is to pick volcano seismic-269

ity including both VTs and LPs. The capability of our models to pick tectonic LFEs is270

a side benefit and demonstrates that (1) our models are generalizable to other tectonic271

environments and (2) tectonic LFEs and volcanic LPs have relatively similar waveform272

characteristics.273

5.2 Different ways of performance evaluation274

The presented evaluation results for different models depend on the metrics used275

and how they are calculated, which may vary in different studies. Therefore, it might276

not be appropriate to directly compare the values reported in different papers. For in-277

stance, some studies calculate true positive (TP), false positive (FP), true negative (TN)278

and false negative (FN) based on waveform traces so that any of the four outcomes TP/FP/TN/FN279

is assigned to each testing waveform (e.g. Zhu & Beroza, 2019; Mousavi et al., 2020).280

In this case, a waveform is considered as a true positive as long as there is a predicted281

pick sufficiently close to the manual pick even if there may also be some falsely predicted282

picks for the same waveform. Hence, false predictions may be underreported. In contrast,283

the definition of positive and negative in this paper is based on sampling points, where284

any of TP/FP/TN/FN is assigned to each sampling point of a waveform rather than the285
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whole waveform (Text S2). The different definitions of FP and FN lead to different val-286

ues of recall and precision. We have also calculated the model performances using the287

definition of positive/negative based on waveform traces (Zhu & Beroza, 2019; Mousavi288

et al., 2020), and the results (Figure S26-S27) show similar trends as those presented in289

the previous section (Figure 2-3) except that the absolute values are slightly higher.290

Alternatively, Münchmeyer et al. (2022) decomposed the evaluation into 3 tasks:291

event detection, phase identification and onset time picking. This evaluation workflow292

avoids the ambiguity in the definition of positive/negative for phase picking. However,293

it uses the maximum probability value within the tested window as the prediction re-294

sult, which may be inconsistent with the practical application of a deep-learning picker295

where a trigger algorithm is used to retrieve picks from an output probability curve. Nev-296

ertheless, our models also show better performances than existing models when evalu-297

ated on the 3 tasks following Münchmeyer et al. (2022)’s workflow (Figure S21-S23 and298

Table S5-S6), although existing models also perform well on the task of event detection299

which is easier than phase picking. Therefore, our models show consistently better per-300

formances than existing models regardless of the method of performance evaluation.301

6 Conclusion302

In this study, we first compile a dataset of seismic waveforms from various volcanic303

regions globally, which has a wider distribution of frequency index than previous datasets304

of tectonic earthquakes. We then show that existing deep-learning-based phase pickers305

do not generalize well for volcanic earthquakes, with their performances deteriorating306

as the earthquakes’ frequency content decreases, hence direct applications for monitor-307

ing volcano seismicity is suboptimal with biases. Finally, we train and test new models308

using our data set. The test results show that our models can better pick P and S phases309

of VTs and LPs, and can be generalized to other regions not included in our training data310
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set, including for tectonic LFEs. Therefore, our results can benefit future efforts to im-311

prove monitoring of volcano seismicity.312

Open Research Section313

Our models have been uploaded for peer review, with the archiving at Zenodo cur-314

rently underway. All seismic data used in this study are publicly available. The seismic315

waveforms and catalogs in Japan are from the Japan Meteorological Agency (http://316

www.jma.go.jp) and the National Research Institute for Earth Science and Disaster Re-317

silience (https://www.hinet.bosai.go.jp) (National Research Institute for Earth Sci-318

ence and Disaster Resilience, 2019). The seismic data and catalogs for Hawaii and Alaska319

are from USGS (Hawaiian Volcano Observatory/USGS, 1956; Alaska Volcano Observa-320

tory/USGS, 1988) and Incorporated Research Institutions for Seismology Data Manage-321

ment center (IRIS-DMC, https://ds.iris.edu/ds/nodes/dmc). The seismic data and322

catalogs for northern California are from the Northern California Earthquake Data Cen-323

ter (NCEDC, 2014) (https://ncedc.org). We use the plate boundaries by Bird (2003)324

in Figure 1. The volcano locations are from the Japan Meteorological Agency (https://325

www.data.jma.go.jp/vois/data/tokyo/STOCK/souran eng/menu.htm), Geological Sur-326

vey of Japan (https://gbank.gsj.jp/volcano/Quat Vol/index e.html), Alaska Vol-327

cano Observatory (https://www.avo.alaska.edu/volcano/), Hawaiian Volcano Ob-328

servatory (https://www.usgs.gov/observatories/hvo) and California Volcano Ob-329

servatory (www.usgs.gov/observatories/calvo). We use ObsPy (Krischer et al., 2015)330

and HinetPy (Tian et al., 2022) to facilitate waveform downloading. We use the network331

architectures implemented in the SeisBench package (Woollam et al., 2022). We train332

the networks under the PyTorch framework (Paszke et al., 2019) using the pytorch-lightning333

package (Falcon & The PyTorch Lightning team, 2019).334
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Abstract13

The application of deep-learning-based seismic phase pickers for earthquake mon-14

itoring has surged in recent years. However, the efficacy of these models when applied15

to monitoring volcano seismicity has yet to be evaluated. Here, we first compile a dataset16

of seismic waveforms from various volcanoes globally. We then show that the performances17

of two widely used deep-learning pickers deteriorate systematically as the earthquakes’18

frequency content decreases. Therefore, the performances are especially poor for long-19

period earthquakes often associated with fluid/magma movement. Subsequently, we train20

new models which perform significantly better, including when tested on volcanic earth-21

quake waveforms from northern California where no training data are used and tectonic22

low-frequency earthquakes along the Nankai Trough. Our model/workflow can be ap-23

plied to improve monitoring of volcano seismicity globally while our compiled dataset24

can be used to benchmark future methods for characterizing volcano seismicity, espe-25

cially long-period earthquakes which are difficult to monitor.26

Plain Language Summary27

Earthquake activity at volcanic regions is often monitored to indicate volcanic ac-28

tivity. Identifying the time when the energy radiated from an earthquake source arrives29

at a seismometer is essential for locating the earthquake, which can be difficult for vol-30

canic earthquakes because of high noise levels, high event rates, and obscured onsets. Pre-31

vious studies have demonstrated that deep learning, a type of artificial intelligence, can32

excel in picking the arrival times of regular earthquakes. However, the efficacy of these33

models when applied to monitoring volcanic earthquakes has yet to be evaluated. Here,34

we first compile a dataset of earthquakes from various volcanoes globally. We then show35

that existing deep-learning-based models do not work well for these events, especially36

those with predominantly low-frequency energy. We then train two new models which37
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perform better than existing models for volcanic earthquakes. Our model/workflow can38

be applied to improve monitoring of volcanic earthquakes globally.39

1 Introduction40

Detecting and identifying onsets of seismic phases is fundamental to locating seis-41

micity. Manual inspection by experienced analysts is viewed as the gold standard but42

is extremely laborious and time-consuming. This makes it difficult to handle the ever-43

increasing volumes of seismic data and periods with extremely high seismicity rate such44

as during volcanic unrests. On the other hand, early automatic methods, such as the short-45

term average over long-term average method (STA/LTA) (Allen, 1978), suffer from low46

accuracy and require a number of parameters to be tuned carefully. Over the past two47

decades, the matched-filter technique has been shown to be an effective method (Gibbons48

& Ringdal, 2006; Chamberlain et al., 2017) to search for repeating or near-repeating earth-49

quakes based on waveform similarity. However, this method is only capable of detect-50

ing earthquakes in the vicinity of known template events. In recent years, deep-learning-51

based pickers (e.g. Ross et al., 2018; Zhu & Beroza, 2019; Mousavi et al., 2020; Soto &52

Schurr, 2021) have been gaining increasing attention due to their picking accuracy be-53

ing comparable to human analysts (Chai et al., 2020) and high efficiency. Their appli-54

cation has surged in recent years, including for delineating seismicity in fault zones, sub-55

duction zones, oceanic transform faults, and volcanoes (e.g. Tan et al., 2021; Jiang et56

al., 2022; Chen et al., 2022; Gong et al., 2023; Liu et al., 2023; Wilding et al., 2023; Garza-57

Girón et al., 2023). However, it can be difficult to predict deep-learning models’ perfor-58

mance for out-of-distribution data that are not well represented by training data (Wenzel59

et al., 2022; Teney et al., 2022).60

Seismicity which often correlate with magmatic/volcanic processes and sometimes61

represent eruption precursors (White & McCausland, 2019; Acocella et al., 2023) is an62

important monitoring observable at volcanoes. Two types of earthquakes are commonly63
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observed in volcanic regions: volcano-tectonic earthquakes (VTs) and long-period earth-64

quakes (LPs), which are classified mainly based on their waveform frequency content but65

may imply different source processes (e.g. Chouet & Matoza, 2013; Saccorotti & Lok-66

mer, 2021; Matoza & Roman, 2022, and references therein). VTs share common spec-67

tral characteristics with regular tectonic earthquakes and have impulsive onsets. They68

mostly originate from shear fractures in the solid part of an edifice or the underlying crust,69

hence only indirectly indicate magmatic activity. In comparison, most conceptual source70

models of LPs involve fluids, e.g. resonating fluid-filled cracks (Chouet & Matoza, 2013),71

thermal stresses in cooling magmas (Aso & Tsai, 2014), pressurization of exsolved volatiles72

from stalled magmas (Wech et al., 2020), and rapidly growing bubble in ascending mag-73

mas (Melnik et al., 2020). Therefore, LPs are often interpreted as a more direct evidence74

of fluid movement (e.g. Song et al., 2023). However, compared to VTs, LPs are more75

difficult to detect because they are depleted of high frequency content and have emer-76

gent phase onsets (Pitt et al., 2002; Shapiro et al., 2017).77

Some recent studies have applied existing deep-learning phase pickers, which were78

trained using regular tectonic earthquake waveforms, to monitor volcano seismicity (Mittal79

et al., 2022; Bannister et al., 2022; Suarez et al., 2023; Li et al., 2023; Garza-Girón et80

al., 2023; Wilding et al., 2023). However, there is currently no large-scale, systematic eval-81

uation of the efficacy of these existing models for volcano monitoring. For instance, their82

performances for volcanic earthquakes may be impaired by different waveform charac-83

teristics, emergent onsets of long-period events, and high/different background noise in84

volcanic regions (Lapins et al., 2021). While there have been a few models trained with85

seismic data near volcanoes (Lapins et al., 2021; Kim et al., 2023; Armstrong et al., 2023),86

limited data distribution (individual volcano) make these models less generalizable to87

other volcanic regions. In addition, none of these studies explicitly included long-period88

earthquakes in their analyses (Lapins et al., 2021; Kim et al., 2023; Armstrong et al., 2023).89
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In this study, we first compile a data set of seismic waveforms from various volcanic90

regions. We then show that the performances of two widely used deep-learning pickers,91

PhaseNet (Zhu & Beroza, 2019) and EQTransformer (Mousavi et al., 2020), deteriorate92

when applied off-the-shelf to volcanic seismic data, especially for long-period earthquakes.93

We then train new models that achieve significantly better performances for monitor-94

ing volcano seismicity.95

2 Dataset of seismic waveforms from volcanic regions96

We assemble a data set of 156,272 LP waveforms (34,980 events), 156,498 VT wave-97

forms (38,115 events), and 20,000 noise waveforms recorded by seismic stations deployed98

around 34 volcanoes in Alaska (Power et al., 2019), 6 volcanoes in Hawaii (Hawaiian Vol-99

cano Observatory/USGS, 1956), 8 volcanoes in northern California (NCEDC, 2014) and100

88 volcanoes in Japan (National Research Institute for Earth Science and Disaster Re-101

silience, 2019). The geographical distribution of the events is shown in Figure 1. See Ta-102

ble S1 in the supporting information for more details about data set splitting, Figure S1103

for the distribution of recording stations, Figure S2 for the distribution of volcanoes and104

Figures S3-S14 for other properties of the data. All the event waveforms have both man-105

ually picked P and S phase arrivals. Most waveforms contain 3 components (77%) (Fig-106

ure S3) and are from earthquakes located within 50 km of an active volcano (95%) (Fig-107

ure S4). Since there are far more available VTs than LPs, we only include a similar num-108

ber of VT waveforms as the number of available LP waveforms. We remove data with109

large spikes and errors (e.g. events with S pick prior to P pick). For waveforms from Japan,110

we download event waveforms whose length may vary for different events and different111

stations. For waveforms from the US, we download event waveforms starting from 60s112

before the P pick and ending 60s after the S pick. Hence waveforms in our data set have113

different lengths, which will be trimmed in the subsequent processing stages. Compared114

with previous datasets, e.g. STEAD (Mousavi et al., 2019) and INSTANCE (Michelini115

et al., 2021), our data set has a wider distribution of frequency index (Figures S7-S10)116
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Figure 1. Geographical distribution of the earthquakes used in this study. The seismic data

of volcano-tectonic earthquakes (cyan circles) and volcanic long-period earthquakes (red circles)

from Japan (a), Alaska (b) and Hawaii (c) are split into a training set, a validation set and a

test set, while the data from northern California (d) and the tectonic low-frequency earthquakes

(LFEs) (purple circles) from Japan are only used for testing. Yellow triangles mark active volca-

noes with seismic events used in this study.
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which is a measure of the dominant frequency content of an earthquake (Buurman & West,117

2010) (Text S1), suggesting it includes a greater variety of seismic events. To the best118

of our knowledge, this is the first data set of seismic waveforms compiled from various119

volcanic regions globally for machine learning.120

3 Evaluation of existing deep-learning phase pickers121

We use 15,078 LP waveforms and 15,057 VT waveforms from Alaska, Hawaii and122

Japan to evaluate two most widely used models: PhaseNet (Zhu & Beroza, 2019) and123

EQTransformer (Mousavi et al., 2020), which are the best performing architectures in124

a recent benchmark study (Münchmeyer et al., 2022). PhaseNet is a U-net with 1D con-125

volutional layers originally trained on earthquakes from northern California. EQTrans-126

former is a stack of convolutional layers, long short-term memory (LSTM) units, and self-127

attentive layers originally trained on the global data set STEAD (Mousavi et al., 2019).128

We divide the testing waveforms into subsets according to frequency index values to eval-129

uate how the model performance varies with the dominant frequency content. We ran-130

domly extract 30s windows around the manual picks of the testing waveforms. For each131

waveform, the same window is used to test different models. Since EQTransformer op-132

erates on a 60s window, we will only focus on the 30s target window of the output (Münchmeyer133

et al., 2022). We use precision, recall and F1-score to evaluate the results. Precision is134

the fraction of output picks that are actually correct. Recall is the fraction of manual135

picks that are correctly identified by the model. F1 score is the harmonic mean of pre-136

cision and recall (Text S2). Considering that the original EQTransformer and PhaseNet137

were trained under the TensorFlow framework (Abadi et al., 2015) that is different from138

the platform we use (pyTorch) and that they were not trained on the same data set, we139

also include the variants of EQTransformer and PhaseNet trained on the INSTANCE140

data set (Michelini et al., 2021) for comparison, which were trained by Münchmeyer et141

al. (2022) and available in the SeisBench package (Woollam et al., 2022). The model out-142

put is time series of “probability” of P and S. To get predicted picks from the probabil-143
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ity time series output by the models, we first extract segments of probability curves above144

a given threshold and the peak positions of these extracted segments are considered as145

pick times. The model-specific threshold is tuned (Figure S15) on the validation set (Ta-146

ble S1).147

The recalls, precisions and F1 scores of the original models decrease systematically148

with decreasing frequency index (Figure 2). For example, the F1 score of PhaseNet de-149

creases from ∼0.9 to ∼0.5 for P picking and from ∼0.85 to ∼0.25 for S picking as the150

frequency index decreases from ∼0.5 to ∼-1.7. Compared with precision, the recall ex-151

hibits a greater deterioration, which can be as low as 0.4 for P picking and 0.2 for S pick-152

ing, indicating that most LPs in the test set have been overlooked. We observe a sim-153

ilar trend for the models trained on INSTANCE (Münchmeyer et al., 2022). This is un-154

likely to be related to changes in signal-to-noise ratio since we do not observe significant155

systematic changes in signal-to-noise ratio with frequency index (Figure S17). Our re-156

sults suggest that these existing models will likely underreport LPs compared to VTs157

when directly applied to monitoring volcano seismicity (Bannister et al., 2022; Mittal158

et al., 2022; Wilding et al., 2023; Garza-Girón et al., 2023; Suarez et al., 2023; Li et al.,159

2023), which is not ideal since LPs often indicate fluid/magma movements (Chouet &160

Matoza, 2013; Matoza & Roman, 2022). Therefore, we decided it would be valuable to161

train a new phase picker specifically for volcano seismicity.162

4 Training deep-learning phase pickers for volcano seismicity163

Among our data set, 151,431 LP waveforms, 151,657 VT waveforms and 20,000 noise164

waveforms from Alaska, Hawaii and Japan corresponding to 70,352 events are grouped165

into a training set (83.64%), a validation set (5.49%) and a test set (10.87%) (Table S1).166

Here, the earthquake waveforms in the test set are the same as those presented in the167

previous section. An extra test set comprising 4,841 waveforms from 1,094 LP events and168

4,841 waveforms from 1,649 VT events near 8 volcanoes in northern California is used169
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PhaseNet retrained in this study

Original EQTransformer (Mousavi et al., 2020)
EQTransformer trained on INSTANCE (Mü(chmeyer et al., 2022)
EQTransformer retrained in this study

Precision F1 score

(-1.8, -1.6]
(-1.6, -1.4]
(-1.4, -1.2]
(-1.2, -1.0]
(-1.0, -0.8]
(-0.8, -0.6]
(-0.6, -0.4]
(-0.4, -0.2]
(-0.2, 0.0]
(0.0, 0.2]
(0.2, 0.4]
(0.4, 0.6]

0.2

0.4

0.6

0.8

1.0

S 
pi
ck

in
g

(-1.8, -1.6]
(-1.6, -1.4]
(-1.4, -1.2]
(-1.2, -1.0]
(-1.0, -0.8]
(-0.8, -0.6]
(-0.6, -0.4]
(-0.4, -0.2]
(-0.2, 0.0]
(0.0, 0.2]
(0.2, 0.4]
(0.4, 0.6]

Frequency index

(-1.8, -1.6]
(-1.6, -1.4]
(-1.4, -1.2]
(-1.2, -1.0]
(-1.0, -0.8]
(-0.8, -0.6]
(-0.6, -0.4]
(-0.4, -0.2]
(-0.2, 0.0]
(0.0, 0.2]
(0.2, 0.4]
(0.4, 0.6]

Figure 2. Performances of various models on subsets of testing waveforms with different fre-

quency index values. The F1 scores here is slightly higher than those in Figure 3a because noise

waveforms, to which frequency index is not applicable, are not included in this test.
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to test how our model generalizes to a region where no training data have been used. In170

addition, 6,224 waveforms of 2,356 tectonic low-frequency earthquakes (LFEs) along the171

Nankai trough in Japan are used as another test set to investigate whether our model172

works for tectonic LFEs associated with shear slip on the subduction zone plate inter-173

face (Obara & Kato, 2016).174

We use our data set to train two new models based on the PhaseNet and EQTrans-175

former architectures implemented in the SeisBench package (Woollam et al., 2022). All176

the waveforms are resampled to 100 Hz. We normalize each component of a waveform177

by removing the mean and dividing it by the maximum value. We perform data augmen-178

tation by randomly modifying the waveforms at each step of training. The modifications179

include randomly shifting waveforms, adding gaps to waveforms, adding Gaussian noise180

and superimposing a training example on the shifted and rescaled version of another train-181

ing example. Each type of augmentation is performed with a given probability. Normal-182

ization is performed before and after data augmentation. The labels for phase arrivals183

are Gaussian functions with peaks aligning with manual picks. At each step of training,184

a batch of waveform examples are randomly selected, normalized, randomly augmented,185

labelled, and input into the Adam optimization algorithm (Kingma & Ba, 2015) to ad-186

just the model weights.187

The validation set is used to tune hyperparameters. We try various learning rates188

0.0001/0.0005/0.001 and batch sizes 512/1024 to obtain a series of models. Each model189

is trained for 400 epochs. Loss function on the validation set is monitored for each epoch190

and the model snapshot at the epoch with the lowest validation loss is used as the final191

model. For each model, we test different decision thresholds and choose the one with the192

highest F1-score as the optimal threshold. Then we evaluate each model on the valida-193

tion set and choose the one with the highest F1-score (Tables S2-3). The preferred learn-194

ing rate and batch size for PhaseNet are 0.0005 and 512, respectively. They are 0.001195

and 1024 for EQTransformer, respectively. We also compare random initialization and196
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initialization from the network weights pre-trained on the INSTANCE data set (Melnik197

et al., 2020; Münchmeyer et al., 2022), and we choose the one with the highest F1-score198

on the validation set (Table S4).199
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Figure 3. F1 scores of different models evaluated on the testing waveforms from (a) the same

regions as the training data, (b) northern California from where no training data are used and (c)

tectonic LFEs in Japan. The precision and recall are given in Figures S24-S25 in the supplement.

We first test our models on subsets with different frequency index values as described200

in the previous section. Our models trained for volcano seismicity show significant per-201

formance improvement for waveforms with low frequency index values compared to ex-202

isting models, with F1 scores for P and S picking of ∼0.9 and ∼0.8, respectively (Fig-203

ure 2). There is also a slight improvement for waveforms with high frequency index. The204

overall performances of various models on the whole test set are shown in Figure 3a, where205

our models show the best performances for both LPs and VTs for both P and S pick-206
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ing. For the LPs, the EQTranformer-based network trained in this study achieves an F1207

score of 0.9 for P picking and 0.86 for S picking, which are 0.39 (P picking) and 0.23 (S208

picking) higher than those of the original EQTransformer. The performance improve-209

ment is smaller for the VTs: the retrained EQTransformer achieves F1 scores 0.16 and210

0.12 higher than the original EQTransformer model for P and S picking respectively. The211

EQTransformer trained on INSTANCE has similar performance to the original EQTrans-212

former except for P picking on the LPs, for which the F1 score of the INSTANCE-based213

EQTransformer is ∼0.2 higher than that of the original EQTransformer but ∼0.2 lower214

than that of our retrained EQTransformer. A similar amount of improvement is obtained215

by the PhaseNet-based network trained on our data set. Furthermore, our models give216

lower picking residuals as indicated by the narrower histograms of residuals (Figure S19-217

S20). The retrained EQTransformer shows only a marginally higher F1 score than the218

retrained PhaseNet, suggesting that the data set plays a more important role than the219

network architecture in differences in model performances.220

Subsequently, we use the test set from northern California to investigate how our221

models generalize to regions where no training data are used (Figure 3b). All the mod-222

els show great performance for VTs, with F1 scores for P picking larger than 0.9 and F1223

scores for S picking larger than 0.87, and our models achieve the highest F1 scores (0.95).224

Notably, the existing pickers perform poorly for LPs, with F1 score ranging from 0.34225

to 0.56. Although all the models experience some performance degradation for LPs com-226

pared with the previous test, our retrained models still perform significantly better than227

the existing models, with F1 scores ranging from 0.70 to 0.74. The performance varia-228

tion with frequency index for this test set (Figure S18) also suggests that our models have229

better generalization abilities when applied to a new region. The poorer performances230

for LPs could be partly explained by the LP waveforms in this test set having lower signal-231

to-noise ratios than VT waveforms (Figures S6 and S18).232
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Finally, we investigate whether our models also work for tectonic LFEs since both233

tectonic LFEs and volcanic LPs appear to have similar frequency content, though they234

are often inferred to reflect different source processes (Aso et al., 2013). Our training set235

does not explicitly include any tectonic LFE. Here we test the models on LFEs along the236

Nankai trough from Japan. The result is shown in Figure 3c. Our retrained models out-237

perform the original models and the INSTANCE-based models by a large margin for both238

P and S picking, with F1 scores of ∼0.8. We further confirmed that our models also work239

for regular tectonic earthquakes, since they achieve F1 scores of 0.89 and 0.75 for P and240

S picking respectively when tested on the INSTANCE data set (Michelini et al., 2021),241

which is slightly better than the original EQTransformer and PhaseNet but unsurpris-242

ingly inferior to the models trained on the INSTANCE data set (Figure S29).243

5 Discussion244

5.1 Comparison with existing methods245

Deep-learning-based pickers have higher accuracy and require less parameters to246

manually tune than traditional pickers, e.g. STA/LTA (Allen, 1978) and the Baer-Kradolfer247

picker (Baer & Kradolfer, 1987), as demonstrated in previous studies (e.g. Zhu & Beroza,248

2019; Mousavi et al., 2020; Münchmeyer et al., 2022). Also, deep-learning-based pick-249

ers have greater flexibility than template matching as they are not limited by the avail-250

ability of suitable template events. Compared with previous deep-learning models aimed251

at tectonic earthquakes, our models can better pick volcano seismicity and thus can help252

to improve volcano monitoring. Our compiled waveform dataset can also be used to bench-253

mark future methods for monitoring volcanic earthquakes.254

Our study is different from a few recent studies that have also trained models on255

volcanic earthquakes (Lapins et al., 2021; Kim et al., 2023; Armstrong et al., 2023) in256

two aspects. First, the previous studies focused exclusively on one volcano and thus it257

is unclear how well these models can generalize to other volcanoes, while we use data around258
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136 active volcanoes from different regions. Second, LPs were not considered in the pre-259

vious studies despite being an important form of volcano seismicity, while we included260

LP earthquakes for training. We subsequently demonstrated that our models perform261

well for both LPs and VTs, and can be generalized to other volcanoes. However, since262

these studies adopted different data formats, input/output formats, machine-learning frame-263

works and not all of these models are available, it would be hard to make direct com-264

parisons.265

Finally, our study is different from recent studies which focused on tectonic LFEs266

(Thomas et al., 2021; Lin et al., 2023; Münchmeyer et al., 2023) in terms of training data267

and targets. These studies focused on tectonic LFEs which are a manifestation of creep268

or slow fault slips (Behr & Bürgmann, 2021), while our target is to pick volcano seismic-269

ity including both VTs and LPs. The capability of our models to pick tectonic LFEs is270

a side benefit and demonstrates that (1) our models are generalizable to other tectonic271

environments and (2) tectonic LFEs and volcanic LPs have relatively similar waveform272

characteristics.273

5.2 Different ways of performance evaluation274

The presented evaluation results for different models depend on the metrics used275

and how they are calculated, which may vary in different studies. Therefore, it might276

not be appropriate to directly compare the values reported in different papers. For in-277

stance, some studies calculate true positive (TP), false positive (FP), true negative (TN)278

and false negative (FN) based on waveform traces so that any of the four outcomes TP/FP/TN/FN279

is assigned to each testing waveform (e.g. Zhu & Beroza, 2019; Mousavi et al., 2020).280

In this case, a waveform is considered as a true positive as long as there is a predicted281

pick sufficiently close to the manual pick even if there may also be some falsely predicted282

picks for the same waveform. Hence, false predictions may be underreported. In contrast,283

the definition of positive and negative in this paper is based on sampling points, where284

any of TP/FP/TN/FN is assigned to each sampling point of a waveform rather than the285
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whole waveform (Text S2). The different definitions of FP and FN lead to different val-286

ues of recall and precision. We have also calculated the model performances using the287

definition of positive/negative based on waveform traces (Zhu & Beroza, 2019; Mousavi288

et al., 2020), and the results (Figure S26-S27) show similar trends as those presented in289

the previous section (Figure 2-3) except that the absolute values are slightly higher.290

Alternatively, Münchmeyer et al. (2022) decomposed the evaluation into 3 tasks:291

event detection, phase identification and onset time picking. This evaluation workflow292

avoids the ambiguity in the definition of positive/negative for phase picking. However,293

it uses the maximum probability value within the tested window as the prediction re-294

sult, which may be inconsistent with the practical application of a deep-learning picker295

where a trigger algorithm is used to retrieve picks from an output probability curve. Nev-296

ertheless, our models also show better performances than existing models when evalu-297

ated on the 3 tasks following Münchmeyer et al. (2022)’s workflow (Figure S21-S23 and298

Table S5-S6), although existing models also perform well on the task of event detection299

which is easier than phase picking. Therefore, our models show consistently better per-300

formances than existing models regardless of the method of performance evaluation.301

6 Conclusion302

In this study, we first compile a dataset of seismic waveforms from various volcanic303

regions globally, which has a wider distribution of frequency index than previous datasets304

of tectonic earthquakes. We then show that existing deep-learning-based phase pickers305

do not generalize well for volcanic earthquakes, with their performances deteriorating306

as the earthquakes’ frequency content decreases, hence direct applications for monitor-307

ing volcano seismicity is suboptimal with biases. Finally, we train and test new models308

using our data set. The test results show that our models can better pick P and S phases309

of VTs and LPs, and can be generalized to other regions not included in our training data310
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set, including for tectonic LFEs. Therefore, our results can benefit future efforts to im-311

prove monitoring of volcano seismicity.312

Open Research Section313

Our models have been uploaded for peer review, with the archiving at Zenodo cur-314

rently underway. All seismic data used in this study are publicly available. The seismic315

waveforms and catalogs in Japan are from the Japan Meteorological Agency (http://316

www.jma.go.jp) and the National Research Institute for Earth Science and Disaster Re-317

silience (https://www.hinet.bosai.go.jp) (National Research Institute for Earth Sci-318

ence and Disaster Resilience, 2019). The seismic data and catalogs for Hawaii and Alaska319

are from USGS (Hawaiian Volcano Observatory/USGS, 1956; Alaska Volcano Observa-320

tory/USGS, 1988) and Incorporated Research Institutions for Seismology Data Manage-321

ment center (IRIS-DMC, https://ds.iris.edu/ds/nodes/dmc). The seismic data and322

catalogs for northern California are from the Northern California Earthquake Data Cen-323

ter (NCEDC, 2014) (https://ncedc.org). We use the plate boundaries by Bird (2003)324

in Figure 1. The volcano locations are from the Japan Meteorological Agency (https://325

www.data.jma.go.jp/vois/data/tokyo/STOCK/souran eng/menu.htm), Geological Sur-326

vey of Japan (https://gbank.gsj.jp/volcano/Quat Vol/index e.html), Alaska Vol-327

cano Observatory (https://www.avo.alaska.edu/volcano/), Hawaiian Volcano Ob-328

servatory (https://www.usgs.gov/observatories/hvo) and California Volcano Ob-329

servatory (www.usgs.gov/observatories/calvo). We use ObsPy (Krischer et al., 2015)330

and HinetPy (Tian et al., 2022) to facilitate waveform downloading. We use the network331

architectures implemented in the SeisBench package (Woollam et al., 2022). We train332

the networks under the PyTorch framework (Paszke et al., 2019) using the pytorch-lightning333

package (Falcon & The PyTorch Lightning team, 2019).334
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Introduction

Figures S1-S14 and Table S1 show the properties of the data used in this study. Tables

S2-S4 and Figures S15-S16 show the process of hyperparameter tuning. Figure S17 shows

the distribution of signal to noise ratio for different subsets of the test data from Alaska,

Japan and Hawaii. Figure S18 shows the model performance versus frequency index for

the testing waveforms from northern California. Figure S19 and S20 show the histograms

of picking residuals for VTs and LPs, respectively. Tables S6-S5 and Figures S21-S23

show the evaluation results for the 3 tasks defined in (Münchmeyer et al., 2022). Figures

S24 and S25 show the recalls and precisions of different models, respectively. Figures S26
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and S27 show the F1 scores calculated using the definition of positive and negative based

on waveform traces (Zhu & Beroza, 2019; Mousavi et al., 2020). Figures S28 and S29

show the performances of different models on the INSTANCE data set (Michelini et al.,

2021).

Text S1. Frequency index

Frequency index (FI) is a metric used to quantify the dominant frequency content of

an earthquake from seismic waveforms (Buurman & West, 2010),

FI = log10
Aupper

Alower

, (1)

where Ālower and Āupper are the mean spectral amplitudes in a predefined high-frequency

band and a low-frequency band, respectively. Following Song, Tan, and Roman (2023),

we choose 1-5 Hz and 10-15 Hz as the low and high frequency bands, respectively. Time

windows starting 1s prior to and ending 6s after P arrivals are extracted to calculate

FIs. If there are multiple components at a station, the average of FI values of available

components is used as the FI value for this station. The frequency index of a seismic

event is defined as the average of FIs at all stations that have recorded this event (Matoza

et al., 2014).

Text S2. Performance metrics

Since phase picking is not a binary classification task, we need to redefine positive and

negative to calculate precision, recall and F1-score. There are discrepancies in performance

reporting among different researchers. Some studies consider a waveform trace as a true

positive as long as there is a predicted pick sufficiently close to the labeled pick on this

waveform (Zhu & Beroza, 2019; Mousavi et al., 2020). However, false predictions may be
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underestimated when the model predicts incorrect picks at the same time, leading to a

higher reported precision.

Here, we base the definition of positives and negatives on sampling points (points sam-

pled from a continuous analog signal) instead of entire waveform traces. The model

output is time series of “probability” of P and S. To get predicted picks from the prob-

ability time output by the models, we first extract segments of probability curves above

a given decision threshold and the peak positions of these extracted segments are con-

sidered as predicted pick times. If a predicted pick occurs within a threshold around

a true pick, it is counted as a true positive prediction (TP). Following (Mousavi et al.,

2020), the threshold is chosen as 0.5s. Note that this threshold for distinguishing true

picks from false picks is different from the probability threshold which is used to extract

picks from a “probability” time series output by the model. In the case where there are

multiple predicted picks near the true pick, they are counted as only one true positive.

If there are no predictions within 0.5s around a true pick, it is counted as a false neg-

ative (FN). If there are no true picks around a predicted pick, it is counted as a false

positive (FP). Precision is the fraction of predicted picks that are actually correct, cal-

culated as TP/(TP + FP). Recall is the fraction of testing manual picks that have been

correctly identified by the model, calculated as TP/(TP+FN). F1 score is calculated as

2× (Precision+Recall)/(Precision+Recall), which is the harmonic mean of the precision

and recall. Those samples that are not labeled as true phase arrivals and also not picked

by the model are considered as true negatives (TN). For example, considering a 30s wave-

form with a sampling rate of 100Hz which contains 3001 samples, if there is one manual
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P pick and the model gives 10 predicted picks one of which is close to the manual P pick,

there are 1 TP, 9 FPs and 2991 TNs. Considering that true negatives are not involved

in precision and recall and they heavily outnumber TP, FP and FN, we do not count the

number of true negatives when calculating precision, recall and F1 score.

Münchmeyer et al. (2022) evaluated the performance of a model in terms of 3 tasks: (1)

event detection, (2) phase identification and (3) onset time picking. For event detection,

they used 1 minus noise probability as the score for detection. If the peak detection

score for a waveform is above a given threshold, the waveform is considered as a positive

detection. ROC (receiver operating characteristic curve) and its AUC (area under the

curve) value are used to evaluate the detection performance. In phase identification,

they used the ratio of the maximum value of P probability to the maximum value of

S probability as the decision score. The Matthews correlation coefficient was used to

evaluate the phase identification. The fraction of outliers, root mean square error and

mean absolute error were used to evaluate onset time picking. To generate a proper

testing set for phase identification and onset time picking, they randomly selected a 10s

window around P or S arrivals for each testing waveform, and make sure only one phase

is located in the selected window. However, this way of evaluation use the maximum

probability value within the tested window as the prediction result, which is different

from practical applications of a deep-learning picker where a trigger algorithm is used to

retrieve picks from an output probability curve.
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Table S1. The number of waveform traces in our dataset, including volcano-tectonic earth-

quakes (VTs), long-period earthquakes (LPs) and noise. The number of corresponding events

is given in brackets. Since different waveforms may originate from the same source, the sum of

events in the training, validation and testing sets does not necessarily equal the total events.

Note that splitting waveforms from the same event to different data sets does not result in data

leakage, because waveforms recorded at different stations have been influenced by different path

effects and different background noise, thus representing unique examples. The 4,841 LP wave-

forms and 4,841 VT waveforms in northern California as well as the 6,224 LFE waveforms in

Japan that are used as extra test sets are not shown in this table.

Total traces Training set Validation set Test set

Whole dataset 323,088 (70,352) 270,224 (68,996) 17,744 (13,346) 35,120 (23,700)
Earthquake 303,088 (70,352) 257,763 (68,996) 15,190 (13,346) 30,135 (23,700)
Noise 20,000 (0) 12,461 (0) 2,554 (0) 4,985 (0)
LP earthquakes 151,431 (33,886) 128,802 (33,364) 7,551 (6,609) 15,078 (11,798)
VT earthquakes 151,657 (36,466) 128,961 (35,632) 7,639 (6,737) 15,057 (11,902)
Alaska LPs 51,942 (15,701) 44,263 (15,511) 2,544 (2,370) 5,135 (4,497)
Alaska VTs 50,899 (15,519) 43,198 (15,151) 2,598 (2,377) 5,103 (4,354)
Hawaii LPs 16,906 (2,351) 14,404 (2,323) 811 (666) 1,691 (1,132)
Hawaii VTs 16,814 (2,766) 14,346 (2,702) 806 (653) 1,662 (1,119)
Japan LPs 82,583 (15,834) 70,135 (15,530) 4,196 (3,573) 8,252 (6,169)
Japan VTs 83,944 (18,181) 71,417 (17,779) 4,235 (3,707) 8,292 (6,429)

January 21, 2024, 2:01pm



X - 8 ZHONG & TAN: PHASE PICKING FOR VOLCANIC EARTHQUAKES

Table S2. Performance metrics on the validation set for 12 PhaseNet networks trained with

different hyperparameters: learning rate, batch size and σlabel which is the standard deviation of

the Gaussian function used for labeling training data. The networks were randomly initialized.

Each model is trained up to 400 epochs, and the epoch at which the loss on the validation

set is the lowest is saved as the final result. MAE is the mean absolute error of picks. The

picking residuals outside the interval (−1, 1)s are considered as outliers and not involved in

the calculation of MAE. The row with the higest F1 score is highlighted in bold face. For each

network, we have tried various decision thresholds and choose the one with the highest F1-score

as the optimal threshold. Figure S16 presents the threshold tuning for preferred models.

Network
Hyperparameters Decision threshold F1 score MAE (s)

Batch size Learning rate σlabel P picking S picking P picking S picking P picking S picking

PhaseNet 1024 0.0010 20 0.31 0.34 0.9169 0.8842 0.0767 0.1148

PhaseNet 1024 0.0010 10 0.29 0.23 0.9110 0.8762 0.0750 0.1186

PhaseNet 1024 0.0005 20 0.32 0.31 0.9158 0.8844 0.0779 0.1162

PhaseNet 1024 0.0005 10 0.29 0.25 0.9124 0.8787 0.0762 0.1162

PhaseNet 1024 0.0001 20 0.32 0.31 0.9090 0.8773 0.0810 0.1182

PhaseNet 1024 0.0001 10 0.30 0.25 0.9005 0.8643 0.0766 0.1200

PhaseNet 512 0.0010 20 0.31 0.31 0.9157 0.8843 0.0778 0.1173

PhaseNet 512 0.0010 10 0.29 0.24 0.9115 0.8756 0.0745 0.1187

PhaseNet 512 0.0005 20 0.39 0.34 0.9181 0.8866 0.0755 0.1146

PhaseNet 512 0.0005 10 0.28 0.24 0.9134 0.8782 0.0758 0.1184

PhaseNet 512 0.0001 20 0.37 0.34 0.9106 0.8805 0.0788 0.1171

PhaseNet 512 0.0001 10 0.27 0.24 0.9001 0.8644 0.0809 0.1230
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Table S3. Performance metrics on the validation set for 12 EQTransformer networks trained

with different hyperparameters: learning rate, batch size and σlabel which is the standard deviation

of the Gaussian function used for labeling training data. The networks were randomly initialized.

Each model is trained up to 400 epochs, and the epoch at which the loss on the validation set is the

lowest is saved as the final result. MAE is the mean absolute error of picks. The picking residuals

outside the interval (−1, 1)s are considered as outliers and not involved in the calculation of

MAE. The row with the highest F1 score is highlighted in bold face. For each network, we have

tried various decision thresholds and choose the one with the highest F1-score as the optimal

threshold. Figure S16 presents the threshold tuning for preferred models.

Network
Hyperparameters Decision threshold F1 score MAE (s)

Batch size Learning rate σlabel P picking S picking P picking S picking P picking S picking

EQTransformer 1024 0.0010 20 0.22 0.25 0.9245 0.8919 0.0877 0.1242

EQTransformer 1024 0.0010 10 0.15 0.16 0.9212 0.8878 0.0856 0.1182

EQTransformer 1024 0.0005 20 0.23 0.24 0.9216 0.8905 0.0911 0.1271

EQTransformer 1024 0.0005 10 0.16 0.15 0.9176 0.8861 0.0860 0.1241

EQTransformer 1024 0.0001 20 0.23 0.27 0.9149 0.8842 0.0956 0.1307

EQTransformer 1024 0.0001 10 0.15 0.16 0.9148 0.8814 0.0924 0.1283

EQTransformer 512 0.0010 20 0.19 0.27 0.9232 0.8887 0.0887 0.1238

EQTransformer 512 0.0010 10 0.17 0.13 0.9213 0.8869 0.0855 0.1230

EQTransformer 512 0.0005 20 0.22 0.23 0.9216 0.8916 0.0895 0.1243

EQTransformer 512 0.0005 10 0.13 0.15 0.9191 0.8855 0.0868 0.1215

EQTransformer 512 0.0001 20 0.20 0.18 0.9166 0.8817 0.0957 0.1350

EQTransformer 512 0.0001 10 0.15 0.14 0.9133 0.8798 0.0900 0.1264
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Table S4. Performance metrics of the models trained with random initial weights and those

first initialized with pre-trained weights. The performance is evaluated on the validation set. For

pre-training, we use the network weights pre-trained on INSTANCE dataset (Münchmeyer et al.,

2022) as the starting point before training. The hyperparameters batch size, learning rate and

σlabel are the same as the preferred ones highlighted in bold face in Table S2-S3.

Network
Initialized with weights

pre-trained on

Decision threshold F1 score MAE (s)

P picking S picking P picking S picking P picking S picking

EQTransformer None 0.22 0.25 0.9245 0.8919 0.0877 0.1242

EQTransformer INSTANCE 0.22 0.22 0.9250 0.8916 0.0876 0.1256

PhaseNet None 0.39 0.34 0.9181 0.8866 0.0755 0.1146

PhaseNet INSTANCE 0.39 0.34 0.9175 0.8833 0.0750 0.1165

Table S5. AUC scores for the event detection task defined by (Münchmeyer et al., 2022,

section 2.1.1), which is much simpler than picking. If the peak of the output probability curve

for a test example is larger than the threshold, it is considered as a positive prediction.

Model LP test set VT test set

EQTransformer retrained in this study 0.9993 0.9994

PhaseNet retrained in this study 0.9992 0.9994

Original EQTransformer(Mousavi et al., 2020) 0.9776 0.9839

Original PhaseNet (Zhu & Beroza, 2019) 0.9932 0.9937

EQTransformer trained on INSTANCE (Münchmeyer et al., 2022) 0.9934 0.9907

PhaseNet trained on INSTANCE (Münchmeyer et al., 2022) 0.9695 0.9784
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Table S6. Matthews correlation coefficients for the phase discrimination task (Münchmeyer

et al., 2022).

Model LP test set VT test set

EQTransformer retrained in this study 0.9621 0.9787

PhaseNet retrained in this study 0.9570 0.9764

Original EQTransformer (Mousavi et al., 2020) 0.7899 0.9086

Original PhaseNet (Zhu & Beroza, 2019) 0.7333 0.9354

EQTransformer trained on INSTANCE (Münchmeyer et al., 2022) 0.7717 0.9422

PhaseNet trained on INSTANCE (Münchmeyer et al., 2022) 0.8330 0.9463
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Figure S1. The geographical distribution of seismic stations (red triangles) with waveforms

included in our data set, including the data set in Table S1, the northern California test set and

the test set of Japan tectonic LPs.
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Figure S2. The geographical distribution of the active volcanoes with seismic events included

in our data set (red triangles). The active volcanoes in Japan without seismic events use (or-

ange triangles), quaternary volcanoes in Japan (green triangles) and uninstumented volcanoes in

Alaska (blue triangles) are also shown.

January 21, 2024, 2:01pm



X - 14 ZHONG & TAN: PHASE PICKING FOR VOLCANIC EARTHQUAKES

1 components

22.842%

2 components
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Figure S3. The proportion of seismograms with different numbers of components in Table

S1. For one-component or two-component records, we fill in zeros for the remaining components

before training.
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The numbers in the top right corner indicate the fractions of events that are more than 50 km

away from the neareat volcano.
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Figure S5. The distribution of signal-to-noise ratios (SNR) of the waveform traces in Table

S1. Each column shows SNRs of waveforms from different regions for the same component, while

each row represents SNRs of waveforms from the same region but for different components. The

numbers in the top right corner indicate the fraction of samples outside the range of the x-axis.

SNR is calculated as SNR = 20 log10
|S|95
|N |95 , where |S|95 is the 95 percentile of absolute amplitudes

in a 5s window right after the S arrival and |N |95 is that in a 5s window before the P arrival.
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Figure S6. The distribution of signal-to-noise ratios (SNR) of the waveform traces in the

northern California test set and the test set of Japan tectonic LFEs.
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Figure S7. The distribution of single-station frequency index (FI) values of the earthquake

waveforms in Table S1. The numbers in the top right corner indicate the fraction of samples

outside the range of the plotted x-axis.
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Figure S8. The distribution of event-based frequency index (FI) values of the earthquakes in

Table S1, which are calculated by averaging FI values over all recording stations. The numbers

in the top right corner indicate the fraction of samples outside the range of the plotted x-axis.
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Figure S9. The distribution of frequency index (FI) values for the northern California test set

(a, c) and the test set of Japan tectonic LFEs (b, d). The top row (a, b) and the bottom row (c,

d) show the single-station FI and the event-based FI, respectively. The numbers in the top right

corner indicate the fraction of samples outside the range of the plotted x-axis.
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Figure S11. The distribution of epicentral distances (the first column) and back azimuths (the

second column) of LP and VT waveforms from Alaska (a, b), Hawaii (c, d), Japan (e, f), northern

California (g, h) and tectonic LFE waveforms from Japan (i, j). We adopt the logarithmic scale

in the first column to make the number of traces with large epicentral distances visible. The

fraction of traces recorded at an epicentral distance greater than 100 km is shown in the top

right corner of each panel in the first colum.
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Figure S12. The distribution of source depths of the VTs and LPs in our data set from Alaska

(a), Hawaii (b), Japan (c) northern California (d) as well as tectonic LFEs near the Nankai

trough from Japan (e). The fraction of events deeper than 60 km is shown in the top right corner

of each panel.
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Figure S13. The proportion of different magnitude types. Ml is the local magnitude. Md is the

duration magnitude. Mh is nonstandard magnitudes used by USGS (https://www.usgs.gov/

programs/earthquake-hazards/magnitude-types). MV , Mv and MD are magnitudes used by

JMA (Japan Meteorological Agency), where MV is the velocity magnitude, Mv is similar to MV

but for only 2 or 3 stations, MD is the displacement magnitude (https://www.data.jma.go.jp/

svd/eqev/data/bulletin/catalog/notes e.html).
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Figure S15. Threshold tuning for the original PhaseNet (Zhu & Beroza, 2019), EQTransformer

(Mousavi et al., 2020) and their variants trained on the INSTANCE data set (Münchmeyer et al.,

2022) The performance is evaluated on the validation set in Table S1. The left and right columns

show the performance metrics for P picking and S picking, respectively. The first (a, b) and

second (c, d) rows show the performance metrics of the original EQTransformer network trained

on STEAD (Mousavi et al., 2019, 2020) and the EQTransformer network trained on INSTANCE

(Michelini et al., 2021; Münchmeyer et al., 2022), respectively. The third (e, f) and fourth (g,

h) rows show the performance metrics of the original PhaseNet network trained on California

earthquakes (Zhu & Beroza, 2019) and the PhaseNet network trained on INSTANCE (Michelini

et al., 2021; Münchmeyer et al., 2022), respectively. The gray lines and the numbers show the

optimal thresholds found at the highest F1 scores.
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Figure S16. Threshold tuning for EQTransformer and PhaseNet networks trained for vol-

cano seismicity in this study (Table S4). The performance is evaluated on the validation set

(development set). The left and right columns show the precision, recall and F1 score for P

picking and S picking, respectively. The first (a, b) and second (c, d) rows show the performance

metrics of the EQTransformer networks trained with randomly initialized weights and initial

weights pre-trained on INSTANCE , respectively. The third (e, f) and fourth (g, h) rows show

the performance metrics of the PhaseNet networks trained with randomly initialized weights and

initial weights pre-trained on INSTANCE, respectively. The gray lines and the numbers show

the optimal thresholds found at the highest F1 scores.
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Figure S17. (a) The numbers of waveform traces in the test set for different frequency

index bins. We only use the subsets with more than 100 traces for testing, i.e. those above the

horizontal black line. (b) The distribution of signal to noise ratio for each subset. The vertical

lines show the SNR ranges. The gray area is the estimated probability density for the SNR

distribution.
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Figure S19. Histogram of residuals between the manual picks in the VT test set and the

picks predicted by the EQTransformer-based networks (a) and the PhaseNet-based networks (b).

The numbers in the upper right corner show the fraction of residual outside the (-1, 1)s interval

(OUT), the mean absolute error (MAD), the median absolute deviation (MAD) and the root

mean square error (RMSE). The MAE, RMSE and MAD are calculated only for the residuals

within (-1 ,1)s to avoid strong influence of outliers.
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Figure S20. Similar to Figure S19 but for the LP test set.
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Figure S21. Receiver operating characteristics (ROC) for event detection. The first row

shows the ROC curves for the EQTransformer-based networks while the second row is for the

PhaseNet-based networks. If the output probability curve for a test example is larger than the

decision threshold, it is considered as a positive prediction. The test data are from Alaska, Hawaii

and Japan. The LP test set and VT test set (Table S1) are evaluated separately.
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Figure S22. Residuals of phase picks for the VT test set calculated using Münchmeyer et

al. (2022)’s evaluation workflow. The difference from Figure S19 is due to the different ways

in pre-processing and post-processing. In Münchmeyer et al. (2022)’s workflow, 10s windows

containing only P or only S are randomly generated, where the peak position of the output phase

probability is taken as the model pick. See (Münchmeyer et al., 2022, Data and Method) for

more details. In our evaluation workflow a 30s window containing the P manual pick is randomly

generated, which may or may not contains the S pick. We run a trigger algorithm on the output

probability curves and find the peaks between trigger on and off times, which may produce more

than one model pick for a waveform trace even though there is only one ground truth.
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Figure S23. Similar to Figure S22 but for the LP test set. The difference from Figure S20

is due to the different ways of pre-processing and post-processing as explained in the caption of

Figure S22.
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Figure S24. Recalls of different models evaluated on the test waveforms from (a) the same

regions as the training data, (b) northern California from where no training data are used and

(c) tectonic LP earthquakes in Japan which are generally condiered different from volcanic long-

period earthquakes in terms of source processes.
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Figure S25. Precisions of different models evaluated on the test waveforms from (a) the

same regions as the training data, (b) northern California from where no training data are used

and (c) tectonic LP earthquakes in Japan which are generally condiered different from volcanic

long-period earthquakes in terms of source processes.
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Figure S26. F1 scores of different models calculated using the definition of FP/TN/FN/TN

based on waveform traces rather than sampling points. Each row shows the performance for test

data from different regions: (a) the same regions as the training data, (b) northern California

from where no training data are used, (c) tectonic LP earthquakes in Japan which are generally

condiered different from volcanic long-period earthquakes in terms of source processes. The

precision and recall are given in Figure S30-S31 in the supplement.
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Figure S27. Model performance on subsets of testing waveforms with different frequency index

values. Different from Figure 3 in the main paper, the performance in this figure is calculated

using the definition of FP/TN/FN/TN based on waveform traces rather than sampling points.
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Figure S28. Model performance on the validation set of the INSTANCE data set for the

EQTransformer retrained in this study (a-b), PhaseNet retrained in this study (c-d), origi-

nal EQTransformer (e-f), original PhaseNet (g-h), EQTransformer trained on INSTANCE (i-j),

PhaseNet trained on INSTANCE (k-l). The optimal decision thresholds (vertical gray lines) are

selected to maximize the F1 score on the validation set.
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Figure S29. Evaluation of different models on the test set of the INSTANCE data set. The

optimal decision thresholds are selected to maximize the F1 score on the validation set of the

INSTANCE data set (Figure S28).
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