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Abstract

We modeled the thermodynamic evolution of the venusian crust in the presence of an atmosphere and paleo-ocean during

a potential climate transition to its present uninhabitable state. We show that the present-day atmospheric composition of

Venus is reproduced by the interaction between a paleo-ocean and crust during a runaway greenhouse. The evolution of oxygen

fugacity with increasing surface temperatures converges with the present-day value (10-20 bar) at current temperatures (400-

500°C). Other atmospheric species (CO, CH4, H2S, SO2) show varying behavior depending on RedOx, but are consistent with

increasing oxygen fugacity. Low-pressure conditions result in the genesis of unique mineral parageneses, including tremolite and

zeolites, that could survive on Venus over geological timescales and are indicative of stable liquid water in the past if detected

by future missions. Therefore, the resulting venusian mineralogy in our models could be markers of past habitable conditions

that were altered by a significant greenhouse effect.
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Key Points: 10 
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can reproduce the present-day atmosphere of Venus. 12 

 The evolution of various atmospheric gases is consistent with rising surface temperatures. 13 

 Our model’s resulting mineral parageneses may be indicative of past temperate 14 

conditions.  15 
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Abstract 17 

We modeled the thermodynamic evolution of the venusian crust in the presence of an 18 

atmosphere and paleo-ocean during a potential climate transition to its present uninhabitable 19 

state. We show that the present-day atmospheric composition of Venus is reproduced by the 20 

interaction between a paleo-ocean and crust during a runaway greenhouse. The evolution of 21 

oxygen fugacity with increasing surface temperatures converges with the present-day value (10
-

22 
20

 bar) at current temperatures (400-500°C). Other atmospheric species (CO, CH4, H2S, SO2) 23 

show varying behavior depending on RedOx, but are consistent with increasing oxygen fugacity. 24 

Low-pressure conditions result in the genesis of unique mineral parageneses, including tremolite 25 

and zeolites, that could survive on Venus over geological timescales and are indicative of stable 26 

liquid water in the past if detected by future missions. Therefore, the resulting venusian 27 

mineralogy in our models could be markers of past habitable conditions that were altered by a 28 

significant greenhouse effect. 29 

Plain Language Summary 30 

The possibility of habitable conditions with abundant liquid water and cooler temperatures in the 31 

history of Venus remains a long-standing question in the exploration of Earth’s twin sister. 32 

Studying Venus’ transition to its present uninhabitable state is critical to understanding terrestrial 33 

planet evolution and whether these planets can become habitable. However, how this transition 34 

occurred is not well understood, as Venus’ thick atmosphere and recent volcanic activity 35 

obscures the planet’s surface. Here, we use a mathematical model that calculates the chemical 36 

reactions between the venusian crust, atmosphere, and paleo-ocean. Our model demonstrates that 37 

the interaction between Venus’ crust and paleo-ocean can reproduce the present-day atmosphere. 38 

These interactions also produced unique minerals that could be evidence of past temperate 39 

climates and stable liquid water if detected by future missions. We show that present-day Venus 40 

conditions could have resulted from a past habitable climate that experienced increasing 41 

temperatures induced by a potential climate transition.  42 

 43 

Keywords: Venus, Climate Transition, Thermodynamic Modeling, Paleoclimate, Habitability 44 

 45 

1 Introduction 46 

Venus is the hottest planet in our solar system, with surface pressures and temperatures 47 

unsuitable for life. However, early in the Solar System’s history, when the Sun was 30% 48 

dimmer, Venus resided comfortably in the Sun’s habitable zone (Kasting, 1993; Kopparapu et 49 

al., 2013). Venus’ favorable location and the similarities between Earth’s and Venus’ global 50 

compositions have caused many to speculate whether Venus was once habitable. Several models 51 

demonstrated that Venus could have maintained habitable temperatures and pressures for much 52 

of its history (Kasting, 1988; Way & Del Genio, 2020; Krissansen-Totton et al., 2021). Evidence 53 

for stable liquid water from elevated D/H ratios also supported early habitability, implying a 54 

shallow reservoir in the past that was progressively lost to space through hydrogen escape 55 

(Donahue & Russell, 1997; De Bergh et al., 2006).  56 

Studies of the planet’s surface composition, interactions with the atmosphere, and 57 

geophysical processes in the interior have revealed about the surface mineralogy. Although 58 
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surface mineralogy has never been directly analyzed, in situ X-ray fluorescence and gamma-ray 59 

spectroscopy from Venera landers have acquired the elemental compositions of some locations 60 

(Surkov et al., 1984), from which modal abundances were derived. Previous thermodynamic 61 

models and theoretical calculations have shown that some hydrous minerals might remain stable 62 

under Venus’s current surface conditions (Zolotov et al., 1997; Semprich et al., 2020). However, 63 

little research has been done to examine the effect of a runaway greenhouse on the composition 64 

of the various surface reservoirs (atmosphere, crust, and hydrosphere). This work presents the 65 

results of a global thermodynamic model of Venus’ geochemical evolution during a major 66 

climate transition from temperate (terrestrial-like pressure and temperature) to present-day 67 

Venusian (average P, T = 95 bar, 460ºC).  68 

2 Methods: Geochemical Modeling 69 

To model the geochemical evolution of Venus, we use the Geochemist’s Workbench 17® 70 

software, specifically the React module, to simulate the equilibrium parageneses between various 71 

crust models, a primitive ocean, and the atmosphere as a function of temperature. We used three 72 

different models of crust: a tholeiitic basalt based on Venera 13’s in situ measurements of the 73 

surface (Surkov et al., 1984), and two models of ancient terrains, the so-called tesserae: a 74 

granodiorite and an anorthosite, based on emissivity observations (Gilmore et al., 2015). We 75 

used standard terrestrial seawater as an ocean composition (Alanezi & Hilal, 2007). For the 76 

atmosphere, we used two CO2 surface pressures: 1 bar to represent an ancient terrestrial 77 

“habitable” Venus and 100 bar to replicate current surface conditions. RedOx potential is not 78 

fixed in the model as there is no constraint on oxygen fugacity (fO2) in the atmosphere of Venus. 79 

Instead, we consider global crust-ocean interaction that would buffer the atmosphere and the 80 

resulting fO2 evolution. Initial oxidizing conditions are set to pE = 13.05 based on the iron 81 

RedOx couple (Fe
2+

/Fe
3+

, e.g. Chevrier & Morrison, 2020) that is prevalent on the surface of 82 

Venus. We then simulated the evolution of equilibrium parageneses as a function of temperature 83 

between 25 and 300
o
C (the highest temperature achievable by the thermodynamic database). For 84 

more information on the model’s parameters and how to run it, see the Supporting Information 85 

and refer to White (2024).  86 

3 Results 87 

Overall, the alteration of our three models of primary crust results in globally similar 88 

mineral parageneses and a variety of phases as a function of temperature (Fig. 1). Table S1 in the 89 

Supporting Information section provides an exhaustive list of the minerals present in the results, 90 

along with their composition. Quartz is the most abundant phase at high pressure, while quartz, 91 

dolomite, mesolite, calcite, and corundum (in order of increasing temperature) are the dominant 92 

phases at low pressure. However, quartz is the dominant phase in both pressure models of 93 

granodiorite. At low pCO2, we observe roughly three regions for mineral assemblages as a 94 

function of temperature: below 100°C, between 100 and 200°C, and above 200°C. At higher 95 

pCO2, we only observe two regions, with a transition around 150°C. Low temperatures (< 96 

100
o
C) show similar assemblages at both low and high pressures, composed of quartz, 97 

carbonates, phyllosilicates, and diaspore. At low pressure, the intermediate temperature (100-98 

200°C) paragenesis is quite complex but is essentially composed of zeolite (mesolite), 99 

phyllosilicates (smectites and micas), and feldspar. At high temperatures, noticeable 100 

mineralogical differences are observed between the low- and high-pressure simulations. Some 101 
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phases are common to both pressures, such as corundum, microcline, and saponite-Na. However, 102 

several high-temperature silicates only appear at low pressure, including tremolite, diopside, 103 

tephroite, and andradite. 104 

 105 

Figure 1: Evolution of mineral assemblages as a function of temperature for tholeiitic basalt 106 

(Surkov et al., 1984), granodiorite tessera (Hu et al., 2014), and gabbroic anorthosite tessera 107 

(Mukherjee et al., 2005) under initial oxidizing conditions (pE = 13.05). Lines denote a specific 108 

mineral’s evolution that result from the interaction of the crust with the paleo-ocean and 109 

atmosphere. Dashed and dotted lines differentiate minerals with similar chemical formulas. 110 
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Mineral groups and sub-groups are divided by similar color shades: Nesosilicates, Pyroxenoids = 111 

red; Zeolites = orange; Carbonates = yellow; Smectites = green; Micas, Talc, Amphiboles = 112 

Blue; Aluminum and Silica Oxides = purple, Feldspars = pink; Sulfates, Phosphates = Brown. 113 

Sulfides, Native Elements = gray; Iron Oxides = black. 114 

Regarding iron-bearing minerals, low-temperature, and low-pressure conditions show 115 

siderite and various nontronites. At high temperatures, nontronite typically destabilizes into iron 116 

oxide magnetite and, finally, into andradite garnet. At high pressure, nontronite destabilizes into 117 

iron oxides hematite, then magnetite. At low pressure, the iron sulfide pyrite is stable at most 118 

temperatures, but at high pressure, it only appears at high temperatures.  119 

4 Discussion 120 

In addition to the mineralogical transformation of the crust, the atmospheric composition 121 

also undergoes significant changes with increasing temperature. The most important parameter 122 

controlling atmospheric composition is the fugacity of oxygen (fO2), which was calculated by 123 

our model as a function of temperature. Each model’s fO2 significantly increases with 124 

temperature from 10
-60

 bar at 25ºC to 10
-30

 bar at 300ºC (Fig. 2). There is also no significant 125 

variation of fO2 between the three models we tested (Fig. 2). fO2 values typically spread over 126 

five orders of magnitude, which is relatively small compared to the 30 orders of magnitude 127 

change of fO2 over the entire modelled temperature range. Carbon species buffer the atmospheric 128 

fO2 of Venus since CO2 constitutes 96% of the atmosphere (Oyama et al., 1980). Sulfur species 129 

could only contribute to a small fraction of the atmospheric fO2. Therefore, the fO2 is probably 130 

the least susceptible to fluctuations, as shown by the limited variability of our fO2 modelled data 131 

(Fig. 2). Although our simulations do not extend beyond 300°C, the resulting fO2 likely follows 132 

a steady trend because the mineral parageneses remain unchanged at higher temperatures (being 133 

dominated by anhydrous silicates or oxides similar to what would be present in a rock 134 

crystallized at high temperature). In those conditions, the fO2 values depend on temperature 135 

rather than redox equilibria. At temperatures above 300°C, the paleo-ocean was most likely 136 

completely vaporized into the atmosphere. The water would be in a supercritical state but 137 

continue to react with the surface; thus, oxidation would continue, and fO2 would keep rising 138 

(Zheng et al., 2020). Therefore, the fugacity data for each model were extrapolated via simple 139 

exponential fit up to the present-day value of fO2 ~ 10
-20 

(Fegley et al., 1997). All the resulting 140 

equilibrium temperatures are comprised between 400 and 500°C, which is very close to Venus’ 141 

main surface temperature of 465°C. The 1 bar basalt, 100 bar granodiorite, and 1 bar anorthosite 142 

models show the most accurate predictions.  143 
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 144 

Figure 2: Oxygen fugacity (fO2) of the system. The plot combines results from each crustal 145 

model under oxidizing conditions at high and low pressure, which are denoted by different 146 

colored lines. Colors are grouped by crustal model. The 100 bar anorthosite and basalt models 147 

produce very similar gas fugacities, as a result, their lines are identical. The black line is the 148 

predicted fO2 at current Venus temperatures calculated from CO observations by Pioneer and 149 

Venera spacecraft (Fegley et al., 1997), but we plot it at all temperatures. Dotted lines denote the 150 

extrapolation of each model.  151 

 152 

We also determined the evolution of various important gas fugacities in the atmosphere 153 

of Venus: methane CH4, carbon monoxide CO, hydrogen sulfide H2S and sulfur dioxide SO2 154 

(Fig. 3). All four species’ fugacities increase with temperature but not necessarily monotonously. 155 

Nonetheless, as a test of our fO2 extrapolation, we also extrapolated the gas fugacities based on 156 

the data in the range 100-300ºC to their present-day measured value. The fugacity of reduced 157 

species (CH4 and H2S) tends to increase faster with temperature compared to oxidized species 158 

(SO2 and CO). Reduced species show low equilibrium temperatures at present-day atmospheric 159 

fugacities, e.g., 100-300ºC for CH4 and 150-200ºC for H2S. Therefore, these low values indicate 160 

that these species are currently undersaturated compared to equilibrium fugacity values. On the 161 

other hand, oxidized species (CO, SO2) show higher equilibrium temperatures between 300 and 162 

450ºC for CO and between 400 and 600ºC for SO2, in both cases quite close to the mean 163 

Venusian surface temperatures. Moreover, the fugacity of reduced species is strongly affected by 164 
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the pressure of CO2, where both CH4 and H2S have fugacities at 1 bar of CO2 that are 1015 165 

orders of magnitude above the values at 100 bar, but only for temperatures below 100ºC. The 166 

fugacity values for both pressures converge with increasing temperature. The fugacity values of 167 

CH4 converges to the present atmospheric concentration of 980 ppm (Donahue & Hoffman, 168 

1993) typically from 250-300°C. The 1 bar granodiorite converges at 660°C (Fig. 3A), although 169 

the low pCO2 CH4 fugacities seem to plateau and reach a maximum value above 100ºC. In all 170 

low-pressure models, CO fugacity values increase sharply below 100ºC but then exhibits a 171 

decrease in fO2 increase rate above (Fig. 3B). The 1 bar models converge with the present-day 172 

concentration of 28 ppm at 350-450ºC, which is closer to Venus’ current surface temperatures 173 

compared to the 100 bar model predictions which converge around 300ºC (Hoffman et al., 174 

1980a). H2S is interesting as it shows no variation of fugacity with the nature of the crust but 175 

extreme differences with CO2 pressure (Fig. 3C). Akin to CH4, H2S fugacity values at pCO2 = 100 176 

bar are 10 to 15 orders of magnitude lower than their 1 bar counterpart, but all values converge 177 

to the present day H2S atmospheric abundance of 3 ppm (Hoffman et al., 1980b) at temperatures 178 

around 200°C. Finally, the evolution of SO2’s fugacity differs depending on the nature of the 179 

crust (Fig. 3D). Basalt and anorthosite’s SO2 fugacity peaks from 200-300°C while granodiorite 180 

consistently increases. The 1 bar models show significant fluctuations at 100°C and 300°C, while 181 

the 100 bar models and granodiorite model show a rapid and monotonous increase. These 182 

fluctuations result in a higher variability in the final equilibrium temperatures, which are 183 

nonetheless in the range 400-600°C for an average SO2 surface concentrations of 25 ppm 184 

(Bézard et al., 1993).  185 
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 186 

Figure 3: Fugacity of CH4 (A), CO (B), H2S (C), and SO2 (D) under different partial pressures of 187 

CO2 for each crust model (all models have initial oxidizing conditions). Plots use the same color 188 

key as Figure 2. Some trendlines are omitted if the model converges with modern-day 189 

observations. Black lines are the predicted present-day values based on spectroscopic 190 

observations, and have only been observed at present Venus temperatures (~465
o
C) but we show 191 

them across a wide temperature range (Donahue & Hodges, 1993; Hoffman et al., 1980a; 192 

Hoffman et al., 1980b; Bézard et al., 1993).  193 

 194 

The difference in behavior between reduced and oxidized species and the respective low 195 

versus high temperatures reached at equilibrium with present-day atmospheric abundances are 196 

essentially due to oxygen fugacity. Our extrapolations do not consider the effect of increasing 197 

fO2 on the abundance of reduced gas. It is highly likely that the fugacity of these gases would not 198 

significantly increase at high fO2, as shown by the significant drop in rate for the fugacity of H2S 199 

above 50ºC for low pressure or 200ºC for high pressure. The same observation can be made for 200 

CH4 which plateaus at temperatures around 100ºC in low pCO2 simulations. Thus, CH4’s and 201 

H2S’s fugacity slopes become significantly shallower at high temperatures and could result in 202 
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higher equilibrium temperatures compared to our extrapolations, although if those species are 203 

indeed significantly undersaturated, this could also indicate an active source for those reduced 204 

gas species such as volcanism (Herrick and Hensley, 2023).  205 

Our model focuses on equilibria in the presence of liquid water. However, other 206 

mechanisms could affect the concentrations of compounds in the atmosphere. Photochemistry in 207 

the upper cloud layer (60-70 km) oxidizes SO2 into H2SO4 (Yung & Demore, 1982; 208 

Krasnopolsky, 2007), creating a continuous sink for SO2. In fact, the entire sulfur cycle could 209 

modify the atmospheric abundances resulting from surface alteration. Other sinks for sulfur and 210 

carbon species could be related to reactions with surface minerals. For example, the abundance 211 

of sulfur compounds could be affected by the formation of sulfides (pyrite in our model; Kohler, 212 

2016) or sulfates (anhydrite; Zolotov, 2007). On the other hand, recent observations of active 213 

volcanism on Venus could provide sources for these gases (Filiberto et al., 2020; Herrick & 214 

Hensley, 2023). Those processes would systematically affect the equilibrium fugacities.  215 

5 Conclusions 216 

In the absence of any in situ identification of secondary phases, the mineralogical results 217 

presented in this study remain hypothetical. However, considering the strong arguments made by 218 

the atmospheric components and the oxygen fugacity, we can conclude that some specific phases 219 

that could survive geological timescales on the Venusian surface could be indicators of past 220 

environments. Most hydrated phases that precipitate at low temperatures would most likely not 221 

survive. However, phases like tremolite, a water-carrying amphibole, have been shown to remain 222 

stable in the current Venusian surface conditions but are characteristic of high temperatures and 223 

low CO2 pressure. Mesolite (a zeolite) is a consistent tracer of intermediate temperatures and low 224 

CO2 pressures. The detection of these phases by future spacecraft or landers/rovers would 225 

indicate a past environment with stable liquid water, lower pressures, and lower temperatures. 226 

This model does not reach current Venus’s temperatures; consequently, some minerals (e.g., 227 

hydroxides) may destabilize in modern Venus conditions. However, our model predictions of gas 228 

and especially oxygen fugacities reproduced present-day observations and models. Therefore, we 229 

show that the current Venusian surface environment results from past habitable conditions that 230 

were altered by a significant greenhouse effect that increased temperatures and pressures. 231 

Modeling the atmospheric and mineralogical parageneses resulting from this transition helps 232 

constrain past conditions on the Venusian surface and identify signs of habitability on terrestrial 233 

planets and exoplanets.  234 
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