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Abstract

Surface and satellite observations of atmospheric methane show smooth seasonal behavior in the Southern Hemisphere driven

by loss from the hydroxyl (OH) radical. However, observations in the Northern Hemisphere show a sharp mid-summer increase

that is asymmetric with the Southern Hemisphere and not captured by the default configuration of the GEOS-Chem chemical

transport model. Using an ensemble of 22 OH model estimates and 24 wetland emission inventories in GEOS-Chem, we

show that the magnitude, latitudinal distribution, and seasonality of Northern Hemisphere wetland emissions are critical for

reproducing the observed seasonality of methane in that hemisphere, with the interhemispheric OH ratio playing a lesser

role. Reproducing the observed seasonality requires a wetland emission inventory with ˜80 Tg a-1 poleward of 10°N including

significant emissions in South Asia, and an August peak in boreal emissions persisting into autumn. In our 24-member wetland

emission ensemble, only the LPJ-wsl MERRA-2 inventory has these attributes.
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Key Points: 18 

• Northern Hemisphere atmospheric methane shows a summer increase not replicated by 19 
the GEOS-Chem model with its default sources and sinks 20 

• The summer increase’s timing and magnitude is determined by the magnitude, 21 
seasonality, and spatial distribution of NH wetland emissions 22 

• Inversions of atmospheric methane observations should use a suitable wetland emission 23 
inventory and optimize hemispheric OH concentrations  24 
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Abstract 25 

Surface and satellite observations of atmospheric methane show smooth seasonal behavior in the 26 
Southern Hemisphere driven by loss from the hydroxyl (OH) radical. However, observations in the 27 
Northern Hemisphere show a sharp mid-summer increase that is asymmetric with the Southern 28 
Hemisphere and not captured by the default configuration of the GEOS-Chem chemical transport model. 29 
Using an ensemble of 22 OH model estimates and 24 wetland emission inventories in GEOS-Chem, we 30 
show that the magnitude, latitudinal distribution, and seasonality of Northern Hemisphere wetland 31 
emissions are critical for reproducing the observed seasonality of methane in that hemisphere, with the 32 
interhemispheric OH ratio playing a lesser role. Reproducing the observed seasonality requires a wetland 33 
emission inventory with ~80 Tg a-1 poleward of 10°N including significant emissions in South Asia, and 34 
an August peak in boreal emissions persisting into autumn. In our 24-member wetland emission 35 
ensemble, only the LPJ-wsl MERRA-2 inventory has these attributes. 36 

 37 

Plain Language Summary 38 
 39 
The amount of methane, a powerful greenhouse gas, has been growing in Earth’s atmosphere during the 40 
last decade, and scientists disagree about which methane sources and sinks are responsible for the growth. 41 
One clue into understanding methane’s sources and sinks is their seasonality – their month-to-month 42 
cycles that happen every year. Measurements of atmospheric methane taken at the Earth’s surface and 43 
using satellite instruments show a steep increase each summer in the Northern Hemisphere that is not 44 
replicated when methane is simulated in a global chemical transport model, indicating missing 45 
information about source and sink seasonalities. To investigate, we use that model to simulate 24 46 
representations of methane’s largest source, emissions from wetlands, and 22 representations of its largest 47 
sink, chemical loss by the hydroxyl radical (OH). We find that OH is unlikely to cause the summer 48 
increase and model bias, but the amount, spatial distribution, and seasonal cycles of global wetland 49 
emissions are the strongest drivers. We suggest that these characteristics are linked to the underlying 50 
mechanisms determining wetland area and methane production in wetland models. The results unveil the 51 
role of global wetlands in driving methane’s seasonality and inform research to analyze methane’s long-52 
term trends. 53 
 54 
 55 

1 Introduction 56 

Methane (CH4) is a greenhouse gas with a global warming potential 80 times that of CO2 on a 20-57 
year time scale, and an atmospheric abundance that has been increasing at an accelerated pace in recent 58 
years (IPCC, 2021). Uncertainty in the methane budget makes it difficult to identify drivers of methane’s 59 
recent growth (Kirschke et al., 2013; Saunois et al., 2020; Turner et al., 2017). Inverse analyses using 60 
atmospheric methane observations have been used extensively to quantify methane sources and sinks 61 
(Houweling et al., 2017; Jacob et al., 2016; Palmer et al., 2021), but require prior assumptions regarding 62 
the behavior and seasonality of these sources and sinks. Here, we show that the observed seasonality of 63 
atmospheric methane places basic constraints on the methane budget that should be reflected in the prior 64 
estimates used for inversions.  65 

 66 
The observed seasonality of atmospheric methane offers important information on the methane 67 

budget (Chandra et al., 2017; Dowd et al., 2023; Kivimäki et al., 2019; Warwick et al., 2016) because 68 
several budget terms have strong seasonal variations, including emissions from wetlands (Delwiche et al., 69 
2021; Ito et al., 2023; Parker et al., 2020; Rocher-Ros et al., 2023), rice cultivation (Zhang et al., 2016a; 70 
Zhang et al., 2020), manure (Chadwick et al., 2011), and fires (Van Der Werf et al., 2017), as well as 71 
losses to oxidation by the hydroxyl radical (OH) (Dlugokencky et al., 1997; Naus et al., 2021) and soil 72 
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uptake (Murguia-Flores et al., 2018; Nazaries et al., 2013). Global chemical transport models used as 73 
forward models in inverse analyses have difficulty reproducing the observed seasonality of atmospheric 74 
methane (Maasakkers et al., 2019; Pickett-Heaps et al., 2011; Warwick et al., 2016). 75 
 76 

Inverse analyses either seek to correct the seasonalities of the methane budget terms or treat them 77 
as parameters, meaning that they are not optimized and are instead considered to be part of the forward 78 
model error. Treating seasonalities as model parameters provides more power for the inversion to 79 
constrain other aspects of the methane budget, but bias in the prior estimate can persist to the inversion 80 
results (Yu et al., 2021). Even when seasonalities are optimized in the inversion, the associated error 81 
covariances between budget terms can complicate the optimization (Bergamaschi et al., 2018; Tsuruta et 82 
al., 2023; Zhang et al., 2021), and  83 
 84 

Here, we use global surface and satellite observations of the seasonality of atmospheric methane, 85 
simulated with the GEOS-Chem chemical transport model, to better understand the roles of different 86 
methane budget terms in driving the seasonality and the implications for inverse analyses. Surface 87 
observations are from the remote sites of the NOAA network (Schuldt et al., 2023) and satellite 88 
observations are from a blended TROPOMI+GOSAT dry air column mole fraction (XCH4) retrieval that 89 
combines the observational density of the TROPOMI instrument with the precision of the GOSAT 90 
instrument (Balasus et al., 2023). GEOS-Chem is widely used as forward model in global and regional 91 
inverse analyses (e.g., Chen et al., 2023; Feng et al., 2023; Worden et al., 2022; Zhang et al., 2022). We 92 
show that GEOS-Chem driven by its default prior budget terms has a large seasonal bias in the northern 93 
hemisphere. We then explore the contribution of individual budget terms to this bias using simulation 94 
ensembles. This leads us to recommend improved choices of prior budget terms for use in inverse 95 
analyses. 96 
 97 
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 98 

Figure 1:  Seasonality of atmospheric methane concentrations in the Northern and Southern 99 
Hemispheres. The 2019 observations from the NOAA remote surface sites 100 
(https://gml.noaa.gov/ccgg/mbl/mbl.html) and from blended TROPOMI+GOSAT satellite retrievals of 101 
the dry air column mole fraction XCH4 (Balasus et al., 2023) are compared to the GEOS-Chem model 102 
driven by its default budget terms (Table 1) and sampled in the same way as the observations. Panels (a) 103 
and (b) show the daily hemispheric averages from the NOAA Marine Boundary Layer (MBL) Reference, 104 
constructed from the mean of each day’s observations across all sites in the hemisphere. Panels (d) and (e) 105 
show valid TROPOMI+GOSAT observations over land, discarding observations above 60°N and below 106 
60°S, which are affected by high uncertainty. To create the curves, satellite retrievals are first binned and 107 
then averaged into GEOS-Chem 2° × 2.5° grid cells each day. Daily, area-weighted zonal means are then 108 
created from the binned data. Curves in (a, b, d, e) show results from two passes of a 30-day moving 109 
average filter, with black curves denoting observations and red dashed curves representing model results. 110 
Grey lines denote interannual variability for 2015 – 2021 NOAA measurements and for May 2018 – 111 
December 2021 TROPOMI+GOSAT retrievals (the TROPOMI record starts in May 2018), with the 112 
annual averages adjusted to match the 2019 mean. Panel (c) shows the model bias (model minus 113 
observations) in surface concentrations compared to NOAA MBL observations in 20° latitude bands, and 114 
panel (f) shows the same compared to TROPOMI+GOSAT XCH4. Data in (c) and (f) is plotted as sine 115 
latitude. Note different y-axes in panels a, b, d, e. 116 

 117 

2 Seasonality of atmospheric methane  118 

Figure 1 (a and b) shows the observed seasonal variations of surface methane in the Northern 119 
Hemisphere (NH) and Southern Hemisphere (SH). Observations are methane surface flask samples 120 
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between 2015 and 2021 from the NOAA Marine Boundary Layer (MBL) Reference (NOAA GML, 2023) 121 
accessed via CH4 GLOBALVIEWplus v5.1 ObsPack (Schuldt et al., 2023). The seasonality is highly 122 
consistent from year to year. The SH February-March minimum and August-September maximum can 123 
simply be explained by the OH sink, and are similar to those of methyl chloroform, which is commonly 124 
used as a global OH proxy (Patra et al., 2021). The NH seasonality is more complex, featuring a sharp 125 
July minimum rather than a smooth seasonal cycle in opposite phase to the SH. 126 
 127 

Table 1: Global methane budget1    
Budget term GEOS-Chem default 

(2019) 
Global Carbon Project 

(2017) 
Sources (Tg a-1) 528 747 [602-896] 
Wetlands*  147 2  145 [100-183] 
Other natural sources3  14  222 [143-306] 
Agriculture & waste  240 4  213 [198–232] 
 Enteric fermentation & manure  121  115 [110-121] 
  Enteric fermentation  109  
  Manure management*  12  
 Landfills, wastewater   81 4  68 [64-71] 
 Rice cultivation*  38 4  30 [24-40] 
Fossil fuels  84 5  135 [121-164] 
Other anthropogenic  24 4  
Fires*  19 6  29 [24-38] 
Sinks (Tg a-1) 545 625 [500-798] 
Chemical loss (sink)*  511 7  595 [498-749] 
 Tropospheric OH *  471  
 Stratospheric loss*  37  
 Tropospheric Cl*  3  
Soil uptake (sink)*  34 8  30 [11-49] 
Lifetime against tropospheric OH (years) 11.2  
* Assumed to be seasonally varying in GEOS-Chem.  
1 GEOS-Chem default sources and sinks used as prior estimates in inversions, and bottom-up central estimates and 

ranges from the Global Carbon Project (GCP) (Saunois et al., 2020) 
2 WetCHARTs version 1.3.3 ensemble (Bloom et al., 2017), using the mean of the nine best performing ensemble 

members (Ma et al., 2021) 
3 Termites and other wild animals, water bodies, and geological seeps. The large GCP bottom-up estimate is due 

mostly to lakes and is not supported by top-down estimates (Saunois et al., 2020)  
4 EDGAR v6 (Crippa et al., 2020) superseded by national estimates for the US, Canada, and Mexico (Maasakkers 

et al., 2016; Scarpelli et al., 2020; Scarpelli et al., 2022a) 
5 GFEI v2 (Scarpelli et al., 2022b) based on national totals reported to the United Nations Framework Convention 

on Climate Change (UNFCCC). 
6 GFED version 4 (Van Der Werf et al., 2017) 
7 Chemical losses computed from GEOS-Chem oxidant fields including tropospheric OH from Wecht et al. 

(2014), stratospheric oxidants from Eastham et al. (2014), tropospheric Cl from Wang et al. (2019). GEOS-
Chem has an atmospheric methane lifetime of 11.2 years from oxidation by tropospheric OH, consistent with 
the lifetime of 11.2 ± 1.3 years inferred from methyl chloroform observations (Prather et al., 2012). 

8 MeMo v1.0 global model (Murguia-Flores et al., 2018) 
 128 

Figure 1 also compares the NOAA observations to the methane seasonality simulated by GEOS-129 
Chem for 2019 with its default sources and sinks used as prior estimates in recent inverse analyses. 130 
GEOS-Chem is sampled at the NOAA sites and the hemispheric means are computed with the same 131 
procedure used with the observational data. Table 1 shows the methane sources and sinks used in the 132 
default simulation, and compares with the multi-model bottom-up estimates for 2017 compiled by the 133 
Global Carbon Project (Saunois et al., 2020). The GCP has a larger global source mainly because it 134 
assumes large emissions from lakes, but these are not supported by top-down inversion estimates 135 
(Saunois et al., 2020). We use GEOS-Chem version 14.1.0 (doi.org/10.5281/zenodo.7600404) at 136 
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2° ´ 2.5° horizontal resolution with NASA MERRA-2 assimilated meteorological data. Initial conditions 137 
on December 1, 2018, are from a 34-year GEOS-Chem simulation that uses time-varying gridded NOAA 138 
surface methane observations as its lower boundary condition.We do this to properly initialize the 139 
stratosphere, in which transport time scales are several years (Mooring et al., 2024). To account for 140 
regional emissions-driven methane enhancements not adequately resolved by the surface boundary 141 
condition, we conduct a 1-month spinup for December 2018 and then apply a bias correction to the 3-D 142 
methane mole fractions at the spinup’s last timestep using zonally averaged TROPOMI+GOSAT 143 
observations over land grid cells. The resulting initialization is unbiased with respect to surface and 144 
satellite methane observations in the NH and SH. 145 

 146 
The GEOS-Chem seasonality in the SH is consistent with the NOAA observations (Figure 1b). 147 

There is a gradual departure from the observations that can be attributed to a global bias in the default 148 
bottom-up sources and/or sinks used in GEOS-Chem. Such a bias is expected (Saunois et al., 2020) and 149 
would be corrected in an inversion (Zhang et al., 2021). The lack of seasonal dependence of the bias 150 
indicates that the driver of SH seasonality – mainly loss to OH – is well represented in the model. On the 151 
other hand, the GEOS-Chem seasonality in the NH does not capture the sharp rise starting in July and the 152 
resulting offset persists for the rest of the year (Figure 1a). 153 
 154 

Figure 1 (d and e) shows the seasonality of XCH4 in each hemisphere for the blended 155 
TROPOMI+GOSAT satellite observations (Balasus et al., 2023) and for GEOS-Chem sampled at the 156 
same locations. The seasonality is similar to that in the NOAA data. The satellite data have a smaller 157 
relative seasonal amplitude because of their lower range of latitudes and because of the dominance of the 158 
lower troposphere for the methane sink resulting from the strong temperature dependence of the CH4 + 159 
OH rate constant. The model matches the observed seasonality until July but fails to reproduce the sharp 160 
rise starting that month. 161 

 162 
Figure 1 (c and f) further shows the seasonal and latitudinal dependence of the model bias relative 163 

to the NOAA and TROPOMI+GOSAT observations. The SH shows a weak negative bias slowly growing 164 
with time versus both surface and satellite. The NH bias versus the NOAA data starts with a sharp onset 165 
at 50°N-70°N in August that then spreads within a month to the rest of the hemisphere. No such 166 
latitudinal structure in the bias is found for the TROPOMI+GOSAT data (restricted to south of 60°), 167 
where onset of the bias is in August across the NH.  168 
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3 Drivers of methane seasonality 169 

 170 

Figure 2: Seasonal cycles of major seasonally varying terms in the GEOS-Chem methane budget for 171 
2019. Top row shows monthly zonal sums plotted versus latitude. Horizonal dashed lines at 10°S, 10°N, 172 
35°N, and 60°N delimit the latitude bands used in the analysis, and the vertical dashed line is at August 173 
1st.  The WetCHARTs wetland emissions are the mean of the nine best-performing ensemble members 174 
(Ma et al., 2021). Maps show the distribution of annual emissions from WetCHARTs (mean of the nine 175 
members of the high-performing ensemble) and LPJ-wsl MERRA-2, with annual total emissions for 176 
latitude bands 90°S-10°S, 10°S-10°N, and 10°N-90°N inset. The bottom row shows the corresponding 177 
monthly wetland emissions in the 10°-35°N and 35°-60°N latitude bands. 178 
 179 

Here we aim to understand the drivers of the methane seasonality in the NH and the cause of the 180 
sharp mid-summer rise. Figure 2 shows the seasonal and latitudinal distributions of seasonally varying 181 
budget terms in GEOS-Chem including emissions from wetlands, rice cultivation, and fires, and loss to 182 
tropospheric OH. We focus on OH and wetlands as the dominant seasonally varying terms and use 183 
ensembles of independent estimates of these terms as estimates of uncertainty. We compare the resulting 184 
simulations to the TROPOMI+GOSAT observations, which are of particular value for inversions, 185 
focusing on the 10°-35°N and 35°-60°N latitude bands where discrepancies between model and 186 
observations are most prominent. 187 
 188 
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Loss by OH 189 

Figure 3 compares TROPOMI+GOSAT XCH4 observations to XCH4 calculated by an ensemble 190 
of GEOS-Chem simulations using global 3-D monthly mean OH concentrations archived from 17 191 
different atmospheric chemistry models that contributed to the Atmospheric Chemistry and Climate 192 
Model Intercomparison Project (ACCMIP) (12 models; Naik et al., 2013) and the Chemistry-Climate 193 
Model Initiative (CCMI) Phase-1 (5 models; Hegglin et al., 2015; Orbe et al., 2020). Individual models 194 
are listed in Table S1 and are described in Lamarque et al. (2013) for ACCMIP and Morgenstern et al. 195 
(2017) for CCMI. All OH fields are scaled so that methane’s tropospheric lifetime due to loss to OH 196 
matches the best estimate derived from methyl chloroform observations of 11.2 years (Prather et al., 197 
2012). We do this for each archived OH field by performing a 1-year GEOS-Chem simulation without 198 
scaling OH, calculating the methane lifetime, and then applying a single global scaling factor to adjust 199 
OH concentrations to yield the expected methane lifetime of 11.2 years. This ensures that differences 200 
between the OH fields in our ensemble are due to their seasonality and distribution, and not due to 201 
differences in methane lifetime. In addition, we perform two simulations with the GEOS-Chem default 202 
OH field perturbed ±10%, representing an estimate of the uncertainty for global mean OH (Prather et al., 203 
2012). 204 

 205 
Figure 3 shows that all OH models yield the same methane seasonality in the NH. All models 206 

capture the observed methane seasonality in the first half of the year and none capture the mid-summer 207 
rise, which would require a sharp decrease in OH not simulated by any of the models. However, there is 208 
evidence that lower model NH/SH OH interhemispheric ratios can lead to a better comparison against 209 
observations. The model NH/SH OH ratios range from 1.07 to 1.40 (Table S1 and Figure S1; 1.07 for the 210 
GEOS-Chem default), while methyl chloroform observations imply a ratio of 0.97 ± 0.12 (Patra et al., 211 
2014). We investigate this possibility by applying hemispheric scale factors to the GEOS-Chem OH fields 212 
to achieve annual mean NH/SH ratios of 0.97 and 0.85 in two separate simulations. This is accomplished 213 
by adjusting NH OH concentrations to get the desired annual mean NH/SH ratio, and then performing a 214 
GEOS-Chem simulation to calculate a global scaling factor which is applied to yield a tropospheric 215 
methane lifetime to OH of 11.2 years, as before. Figure 3 shows that lower OH concentrations in the NH 216 
allow for an increase of NH methane in mid-summer, leading to a better match at 10° - 35°N. However, at 217 
35°-60°N the increase starts earlier than the observations, and the underestimate of observations later in 218 
the summer is merely delayed. In addition, bias in the SH gets worse with higher OH in that hemisphere 219 
(Figure S2). Figure 3 also shows that decreasing global OH by 10% produces a better match to end-of-220 
year observations in our simulations, but the seasonal cycle amplitude is severely under estimated. 221 
Adjusting OH within its ±10% uncertainty does not improve simulations of methane’s seasonality. 222 
 223 
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 224 
Figure 3: Seasonality of dry air column mole fraction of methane (XCH4) for ensembles of OH and 225 
wetland simulations, compared to TROPOMI+GOSAT observations (black curves) for the 10°N-35°N 226 
and 35°N-60°N latitude bands. Panels (a) and (b) show results for the OH ensemble with colored curves 227 
representing results from different model simulations, and panels (c) and (d) show results for the wetland 228 
emissions ensemble. All OH concentrations except for the dotted lines (± 10%) have been normalized to 229 
yield a methane lifetime of 11.2 years against oxidation by tropospheric OH. Brown curves in panels (a) 230 
and (b) show GEOS-Chem with its default OH which has a NH/SH ratio of 1.07, simulations with global 231 
mean OH adjusted ±10%, and additional simulations with the NH/SH ratio adjusted to 0.97 and 0.85. 232 
Dashed and dotted curves in panels (c) and (d) show XCH4 simulated with selected wetland ensemble 233 
members including WetCHARTs-2913, WetCHARTs-3914, LPJ-wsl MERRA-2, and LPJ-wsl CRU. 234 

Emissions from wetlands 235 

We conducted an ensemble of 24 simulations with different monthly wetland emission 236 
inventories. In addition to the base run, the ensemble includes (1) four inventories from the Lund–237 
Potsdam–Jena Wald Schnee und Landschaft (LPJ-wsl) dynamic global vegetation model (Zhang et al., 238 
2016b) driven with assimilated meteorological data from either MERRA-2, CRU, ERA5, or ERA5 with 239 
MSWEP precipitation; (2) 18 inventories from the full WetCHARTs v1.3.3 ensemble (Bloom et al., 240 
2017), including the nine highest-performing (HP) WetCHARTs members identified in Ma et al. (2021); 241 
and (3) the UpCH4 v1.0 inventory applying machine learning to generalize flux tower observations 242 
(McNicol et al., 2023). The inventory in our base run is the mean of the HP WetCHARTs members. Table 243 
S2 gives the annual wetland emissions for each member and the peak month for boreal emissions north of 244 
35°N. 245 
 246 

Figure S2 shows methane in the Southern Hemisphere and the tropics for the wetland emissions 247 
ensemble. The simulations all exhibit similar seasonality to the GEOS-Chem default. In the tropics 248 
(10°S – 10°N), LPJ-wsl MERRA-2 performs best among all flux estimates, while LPJ-wsl CRU and 249 
several members of the WetCHARTs extended ensemble are notably high-biased throughout the year.  250 
 251 

Figure 3 (c and d) shows NH methane simulated with the wetland ensemble. The spread of 252 
seasonality is much larger than for the ensemble of OH models, reflecting differences in the latitude-253 
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dependent timing and magnitude of wetland emissions. We find that the LPJ-wsl MERRA-2 is uniquely 254 
successful in reproducing the observed seasonality in the two latitude bands. LPJ-wsl CRU simulates 255 
10°N – 35°N seasonality well but underestimates observations north of 35°. UpCH4 is biased low 256 
throughout the NH and does not replicate observed seasonality at 35°-60°N. WetCHARTs members 2913 257 
and 3914, symbolized with dashed lines in Figure 3, perform best among the WetCHARTs ensemble 258 
members. However, both exhibit a large spring high bias at 35°-60°N, and WetCHARTs-2913 results in a 259 
subsequent underestimate compared to observations.  260 
 261 

Several features in the magnitude and timing of emissions from LPJ-wsl MERRA-2 distinguish it 262 
from the other estimates. First, it has larger NH emissions than any of the other inventories, with 80 Tg 263 
north of 10°N and over half of those emissions occurring north of 35°N. Second, larger regional 264 
emissions from South Asia compared to the other inventories, particularly in July – October, contribute to 265 
better seasonality at 10°-35°N. Third, LPJ-wsl’s boreal emissions have a delayed emissions onset, an 266 
August peak (versus a July peak in WetCHARTs and UpCH4), and larger emissions through the boreal 267 
autumn.   268 
 269 

The inventories differ in their meteorological inputs and the degree to which they represent 270 
physical processes controlling emissions. LPJ-wsl’s delayed summer peak and sustained autumn boreal 271 
emissions, in line with observed high-latitude wetland dynamics (Bao et al., 2021; Warwick et al., 2016) 272 
and global wetland methane flux observations (Chang et al., 2021), are due to its permafrost module 273 
(Zhang et al., 2016b) which allows the use of soil temperature for estimating heterotrophic respiration. In 274 
contrast, WetCHARTs’ methanogenesis and heterotrophic respiration parameterizations (Bloom et al., 275 
2016) rely on air temperature. Soil temperature seasonal changes lag air temperature changes, allowing 276 
LPJ-wsl to better represent freeze-thaw and permafrost dynamics (Wania et al., 2009), which in turn 277 
control the timing and magnitude of boreal wetland emissions through changes in soil moisture and 278 
temperature (Olefeldt et al., 2013; Treat et al., 2018). In addition, LPJ-wsl explicitly simulates snow-279 
cover, which may suppress spring boreal wetland emissions (Pickett-Heaps et al., 2011). Although 280 
emissions from rice and wetlands are difficult to distinguish in South Asia (Peters et al., 2017), LPJ-wsl 281 
MERRA-2’s higher emissions may stem from better representation of wetland area through its inundation 282 
model and rice cultivation masking (Portmann et al., 2010). WetCHARTs, using GLWD as its wetland 283 
map, may underestimate wetland extent in the region. Among LPJ-wsl members, NH emissions driven by 284 
MERRA-2 meteorology are larger than those driven by CRU, ERA5, or ERA5-MSWEP because of 285 
differences in precipitation and temperature (Zhang et al., 2018).  286 
 287 

Other potential drivers of methane seasonality 288 

 289 
Rice emissions are concentrated in the 10°-35°N latitude band of South Asia, and EDGAR v6 290 

emissions used in GEOS-Chem by default peak in July (Figure 2). Inversions of GOSAT and TROPOMI 291 
satellite data indicate that peak emissions should be shifted to later in the season  (Palmer et al., 2021;  Yu 292 
et al., 2023). We tested shifting EDGARv6 rice emissions seasonality to July-October and increasing their 293 
magnitude, as shown in Figure S3, but the effects are limited by the relatively small magnitude of rice 294 
emissions. Increasing this magnitude further would not be consistent with the range of Global Carbon 295 
Project estimates (Table 1). In addition, Figure 1 shows no indication that the NH bias is initiated at rice-296 
growing latitudes. 297 

Boreal wildfires are a NH source of atmospheric methane with a seasonal peak in late summer to 298 
fall (Liu et al., 2020; Nelson et al., 2021; Turetsky et al., 2004), but the source is relatively small 299 
(Figure 2). Carbon monoxide (CO) observations at the NOAA sites show interannual variability 300 
associated with high fire years but we cannot detect correlated interannual variability for methane in the 301 
NOAA data. 302 
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The soil sink for methane has a seasonality largely controlled by temperature, and the northern 303 
mid-latitudes exhibit the largest seasonal variations with peak uptake in summer (Curry, 2007; Murguia-304 
Flores et al., 2018; Priemé & Christensen, 1997). Soil uptake in the NH north of 10°N is estimated at 19 305 
Tg per year (Murguia-Flores et al., 2018), which is too small to significantly affect the methane 306 
seasonality. Emissions from landfills may vary seasonally and these variations need to be better 307 
understood, but the amplitude would likely be insufficient to account for the methane seasonality and they 308 
are often assumed aseasonal in global and regional inventories (e.g. Crippa et al., 2020; Maasakkers et al., 309 
2023). Emissions due to building energy consumption peak in NH winter but are relatively small at an 310 
estimated 12 Tg a-1 (Crippa et al., 2020). Emissions from manure management are also relatively small 311 
(Table 1) and depend on temperature in a way that is well understood (Chadwick et al., 2011). GEOS-312 
Chem model transport errors at the 2° ´ 2.5° resolution used here show no indication of systematic bias 313 
(Stanevich et al., 2020). Biases in non-seasonal sources can affect the magnitude of the seasonal bias but 314 
not significantly its phase. 315 
 316 

3 Conclusions 317 

Surface and satellite observations of atmospheric methane show a sharp mid-summer increase in 318 
the Northern Hemisphere (NH) that is not reproduced by the GEOS-Chem chemical transport model 319 
driven by its default representations of sources and sinks. Such a bias could affect global inverse analyses 320 
of atmospheric observations using these sources and sinks as prior estimates. Using an ensemble of model 321 
simulations, we find that the seasonality and latitudinal distribution of NH wetland emissions are the most 322 
likely causes of the seasonal methane bias. In contrast, the seasonality of the OH sink is consistent across 323 
models. Other seasonal terms in the methane budget are not sufficiently large to have significant effect on 324 
the bias. Of the 24 wetland emission inventories considered in our ensemble, we find that the LPJ-wsl 325 
with MERRA-2 meteorology is the only one that reproduces the observed NH seasonality of atmospheric 326 
methane in different latitude bands. This is because of two attributes: (1) a large emission of 80 Tg a-1 327 
from NH wetlands north of 10°N, including a significant contribution at 10°-35°N from South Asia, and 328 
(2) the timing of boreal emissions with a delayed spring start, an August peak, and persistance into 329 
autumn, reflecting the use of soil temperature to estimate heterotrophic respiration and the representation 330 
of freeze-thaw dynamics and snow cover. These insights can inform studies of past and future 331 
atmospheres. Prior wetland emission estimates used for inverse modeling should reflect the two attributes 332 
named above. Optimization of OH concentrations as part of these inversions should separate the two 333 
hemispheres, with appropriate error correlations (Penn et al., 2023). 334 
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The ACCMIP OH distributions can be downloaded from 348 
http://catalogue.ceda.ac.uk/uuid/ded523bf23d59910e5d73f1703a2d540 (Shindell et al., 2011). The 349 
CCMI-1 OH distributions can be downloaded from 350 
https://catalogue.ceda.ac.uk/uuid/9cc6b94df0f4469d8066d69b5df879d5 (Hegglin et al., 2015). The 351 
blended TROPOMI+GOSAT methane satellite data can be downloaded from 352 
https://dataverse.harvard.edu/dataverse/blended-tropomi-gosat-methane (Balasus, 2023). The NOAA 353 
surface observations can be downloaded from https://gml.noaa.gov/ccgg/data/ch4.html (Schuldt et al., 354 
2023). The GEOS-Chem code used in this study is archived at https://zenodo.org/records/7600404 355 
(Yantosca et al., 2023). 356 
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Table S1:OH simulation ensemble members.  
Project Model Experiment [OH]GM 

Air mass weighted 
105 molecules cm-3 

NH/SH 

- GEOS-Chem default  10.0 1.07 
- GEOS-Chem (NH/SH best estimate)  10.0 0.97 
- GEOS-Chem (NH/SH low estimate)  10.0 0.85 
- GEOS-Chem (+10%)  11.0 1.07 
- GEOS-Chem (-10%)  9.0 1.07 
ACCMIP CESM-CAM-superfast acchist 8.6 1.40 
ACCMIP CICERO-OsloCTM2 acchist 8.3 1.35 
ACCMIP CMAM acchist 8.9 1.17 
ACCMIP EMAC acchist 9.5 1.09 
ACCMIP GEOSCCM acchist 9.9 1.14 
ACCMIP GFDL-AM3 acchist 9.4 1.17 
ACCMIP GISS-E2-R acchist 8.6 1.20 
ACCMIP MIROC-CHEM acchist 9.1 1.26 
ACCMIP MOCAGE acchist 8.6 1.21 
ACCMIP NCAR-CAM3.5 acchist 8.9 1.32 
ACCMIP STOC-HadAM3 acchist 8.2 1.30 
ACCMIP UM-CAM acchist 9.3 1.34 
CCMI CHASER-MIROC-ESM REF-C1SD 9.1 1.19 
CCMI CMAM REF-C1SD 9.1 1.16 
CCMI EMAC-L47MA REF-C1SD 9.9 1.18 
CCMI EMAC-L90MA REF-C1SD 9.6 1.20 
CCMI MOCAGE REF-C1SD 8.2 1.23 

Experiments for ACCMIP are described in Lamarque et al. (2013) and experiments for CCMI are described in Orbe 
et al. (2020). All models are weighted by the same GEOS-Chem atmosphere.  



Table S2: Annual wetland emissions in latitude bands and month of boreal peak. 
Wetland inventory Global 

total [Tg] 
-90 to 
-10 [Tg] 

-10 to 10 
[Tg] 

10 to 35 
[Tg] 

35 to 90 
[Tg] 

Boreal peak 
month 

WetCHARTs HP-mean 140 14 82 11 33 July 
LPJ-wsl CRU 204 30 115 33 26 August 
LPJ-wsl ERA5 158 22 73 21 43 August 
LPJ-wsl ERA5-MSWEP 156 20 73 21 41 August 
LPJ-wsl MERRA-2 192 27 84 31 48 August 
UpCH4 150 47 31 41 31 July 
WetCHARTs 1913 (HP) 128 10 58 10 49 July 
WetCHARTs 1914 (HP) 125 12 67 8 38 July 
WetCHARTs 1923 (HP) 126 13 76 13 25 July 
WetCHARTs 1924 (HP) 124 13 84 10 18 July 
WetCHARTs 1933 (HP) 126 14 81 14 17 July 
WetCHARTs 1934 (HP) 125 14 88 10 12 July 
WetCHARTs 2913 (HP) 170 13 78 14 66 July 
WetCHARTs 2914 (HP) 167 16 90 10 50 July 
WetCHARTs 2923 169 17 101 18 33 July 
WetCHARTs 2924 (HP) 166 18 112 13 24 July 
WetCHARTs 2933 169 18 108 19 23 July 
WetCHARTs 2934 166 18 118 14 16 July 
WetCHARTs 3913 213 16 97 17 82 July 
WetCHARTs 3914 208 20 112 13 63 July 
WetCHARTs 3923 211 21 126 22 42 July 
WetCHARTs 3924 207 22 140 16 30 July 
WetCHARTs 3933 211 23 135 24 29 July 
WetCHARTs 3934 208 23 147 17 20 July 

WetCHARTs inventories including “HP” are part of the high-performing ensemble identified by Ma et al. (2021) 
and are used to create the high-performing mean inventory. Latitude totals may not sum exactly to global total due to 
rounding.  
 

  



 
Figure S1: Modeled and observed of dry air column mole fraction of methane (XCH4), zonally averaged 
in the latitude bands 10°N-35°N and 35°N-60°N. Black, bold curves represent observations from 
TROPOMI+GOSAT. Panels (a) and (b) show results for the OH ensemble with each curve representing 
results from a different GEOS-Chem simulation using OH from a different model colored by NH/SH 
ratio. 
  



 
Figure S2: Seasonality of methane for ensembles of OH and wetland simulations, compared to 
TROPOMI+GOSAT observations at 60°S-10°S and 10°S-10°N. Panels (a) and (b) show results for the 
OH ensemble with each curve representing results from a different model, and panels (c) and (d) show 
results for the wetland emissions ensemble. All OH models have been normalized to yield a methane 
lifetime of 11.2 years against oxidation by tropospheric OH. Red lines in panels (a) and (b) show GEOS-
Chem with its default OH, which has a NH/SH ratio of 1.07, and additional simulations with the NH/SH 
ratio adjusted to 0.97 and 0.85. Dashed and dotted lines in panels (c) and (d) show XCH4 simulated with 
selected wetland ensemble members including WetCHARTs-2913, LPJ-wsl MERRA-2, and LPJ-wsl 
CRU. 
 
 
 
 
 
  



 
Figure S3: Rice emissions adjustment applied to GEOS-Chem prior emissions, which are EDGARv6. 
Adjustments are applied only within the red box on the right panel, encompassing India and Southeast 
Asia. Adjustments increase annual global rice emissions by 4 Tg for the orange line and 2 Tg for the 
green line.  
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