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ABSTRACT: This paper compares the ability of deep learning and entropic learning methods to

predict the probability of the Niño3.4 index being above 0.4� (El Niño), below �0.4� (La Niña)

or within both of these thresholds (neutral) at lead times of 3 up to 24 months. In particular,

the performance, interpretability, and training cost of entropic learning methods, represented by

the entropy-optimal Scalable Probabilistic Approximation (eSPA) algorithm, are compared with

deep learning methods, represented by a Long Short-Term Memory (LSTM) classifier, trained

on the same dataset. Using only data derived from observations over the period 1958-2018

and a corresponding surface-forced ocean model, the problem manifests as a canonical small-

data challenge. Relative to the LSTM model, eSPA exhibits substantially better out-of-sample

performance in terms of area under the ROC curve (AUC) for all lead times at ⇠ 0.02% of the

computational cost. Comparisons of AUC with other state-of-the-art deep learning models in the

literature show that eSPA appears to also be more accurate than these models across all three

classes. Composite images are generated for each of the cluster centroids from each trained eSPA

model at each lead time. At shorter lead times, the composite images for the most significant

clusters correspond to patterns representing mature or emerging/declining El Niño or La Niña

states, while at longer lead times they correspond to precursor states consisting of extra-tropical

anomalies. Finally, modifications to the baseline dataset are explored, showing that improvements

can be made in the parsimony of the trained eSPA model without sacrificing predictive power.
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1. Introduction29

a. Background and motivation30

This paper is concerned with predicting variability in the climate system over seasonal to inter-31

annual time scales, specifically the El Niño-Southern Oscillation (ENSO). ENSO is characterised32

by irregularly periodic variations in sea surface temperature (SST) anomalies and trade winds over33

the tropical regions of the Pacific Ocean and is the dominant mode of interannual climate vari-34

ability (Bjerknes 1969; Rasmusson and Carpenter 1982), typically taking between 3 and 7 years35

to transition from one mature phase to the other via the neutral phase (Neelin et al. 1998). ENSO36

variability, particularly the extremes of the positive (El Niño) and negative (La Niña) phases, has37

global impacts on climate, ecosystems and economies, making forecasts of ENSO particularly38

valuable for managing and mitigating these impacts. However, despite decades of research and39

development, forecasts of ENSO events at lead times longer than one year remain difficult to per-40

form with any meaningful accuracy using conventional dynamical (i.e. physics-based) or statistical41

models (Barnston et al. 2012).42

Recently, statistical approaches based on deep learning have shown some promise in producing43

skilful forecasts for lead times up to 18 months or longer (Ham et al. 2019), typically by leveraging44

large datasets such as the Coupled Model Intercomparison Project (CMIP) ensemble of climate45

projections using coupled ocean-atmosphere general circulation models (GCMs) (Taylor et al.46

2012; Eyring et al. 2016). However, the use of historical simulations with unconstrained GCMs for47

learning ENSO variability is problematic given that the models comprising the CMIP ensemble48

exhibit large variations in the ENSO power spectrum, as well as in the causal interactions between49

different oscillatory components of the ENSO time series (Jajcay 2018). This paper presents an50

alternative approach based on recent developments in machine learning methods for small data51

problems (Horenko 2020; Vecchi et al. 2022), thereby circumventing the need to rely on big data52

and associated techniques such as transfer learning in order to produce models with meaningful53

skill at multi-year lead times. These methods, referred to as entropic machine learning, enable the54

sole use of observations or reanalyses that assimilate these observations for predicting the future55

evolution of the climate system. This is of great importance given the relatively short period of56

observations available, particularly for the ocean and its corresponding modes of variability, such57
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as ENSO. For example, since the beginning of the satellite era of ocean observations circa 1980,58

only three extreme El Niño events have occurred along with a handful of smaller amplitude events.59

This is the primary reason why training statistical models on observations alone has proven to be60

difficult.61

b. Review of previous research62

Methodologically, there are two main classes of models used for producing ENSO forecasts;63

dynamical models that simulate the coupled oceanic-atmospheric physics to varying degrees of64

fidelity and statistical models that aim to predict the evolution of one or more of the ENSO65

indices (e.g. the Niño3.4 index, the Southern Oscillation index etc). Barnston et al. (2012)66

provide a detailed assessment of the skill of both classes of models over the period of 2002-67

2011, showing that the dynamical models slightly (but statistically significantly) outperformed68

their statistical counterparts over that period. This was primarily due to the dynamical models69

producing more accurate forecasts when traversing the boreal spring predictability barrier (Jin70

et al. 2008), whereas forecasts whose lead times did not traverse the months of April to June71

were more equally successful among all models. Statistical models were also shown to suffer72

from slippage to a greater degree, which is the tendency for predicted transitions to lag observed73

transitions in the ENSO state due to a bias towards persistence. An up-to-date version of the ENSO74

prediction plume, featuring many of the same models of both classes as presented in the study by75

Barnston et al. (2012), can be found at the International Research Institute for Climate and Society76

(IRI) web page (https://iri.columbia.edu/our-expertise/climate/forecasts/enso/77

current/?enso_tab=enso-sst_table).78

In recent years, there has been a resurgence of interest in the development of statistical forecast79

models for ENSO with the advent of deep learning. One of the earliest and most prominent80

examples is the study by Ham et al. (2019), which utilised transfer learning to train a convolutional81

neural network (CNN), first on historical simulations from the CMIP5 ensemble and then on data82

from the Simple Ocean Data Assimilation (SODA) reanalysis (Giese and Ray 2011). Comparisons83

with the SINTEX-F dynamical forecast system, as well as with various members of the North84

American Multi-Model Ensemble, showed that the forecast skill of the CNN model was superior to85

that of any of the dynamical forecast systems at lead times longer than 6 months. Furthermore, the86
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all-season correlation skill for the Niño3.4 index in the CNN model was above 0.5 for lead times87

of up to 17 months. A subsequent study by Ham et al. (2021) improved on this result by utilising a88

multitask learning framework, where the CNN model was extended to simultaneously predict the89

observed calendar month of the input, thus allowing a single model to be trained for all seasons and90

lead times. This led to an overall increase in skill, in particular for forecasts initiated in the boreal91

spring. Kim et al. (2022) also performed multitask learning for predicting both the Niño3.4 index92

and the observed calendar month, but with a different architecture consisting of three modules. The93

first module employed 3D receptive field blocks (2D + time) with convolution filters and residual94

connections to encode spatio-temporal patterns in the input data, the second module consisted of a95

stateful Long Short-Term Memory (LSTM) network with a spatial attention mechanism to learn the96

temporal order of long-term sequences from the encoding module and predict the Niño3.4 index97

for the next 23 months, while the final module was a classification module with two fully connected98

layers for predicting the observed calendar month of the input. When compared to the Ham et al.99

(2021) model, the correlation coefficient at 12 months lead time was improved by 5.8% and the100

prediction of the calendar month was improved by 13%. The authors also noted that an overall lack101

of training data is likely a barrier to further performance improvements since conventional data102

augmentation methods such as flipping, rotation and translation cannot be used for spatio-temporal103

climate data.104

Other recent studies using the CMIP5 and/or CMIP6 ensembles to train deep learning methods105

for ENSO prediction include Zhou and Zhang (2023); Gao et al. (2023), which employed a106

Transformer-based architecture with self-attention rather than the convolutional and recurrent107

neural network architectures featured in earlier studies, along with other improvements. Rather108

than directly predict an index, the model used in these studies predicts 2D sea surface wind stress109

and 3D upper-ocean temperature anomaly fields (to 150m depth), using these same fields from the110

previous 12 months as inputs. Forecasts were found to be skilful up to 18 months lead time for the111

Niño3.4 index, however, the authors also noted that biases in the simulation data used for training112

resulted in regions of lower skill, such as the equatorial western Pacific. Transfer learning using113

reanalysis data was not performed in these studies, due to difficulties in applying the technique for114

the high-dimensional inputs being used. Qiao et al. (2023) used a deep residual network with spatial115

attention in each residual block to predict the Niño3.4 index up to 24 months lead time. Inputs116
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to the network were the previous 12 months of SST anomalies as well as first- and second-order117

differences of these anomalies to provide additional temporal features for learning, referred to as118

tendency. Similar performance was obtained to previous studies in terms of correlation skill, with119

improved forecasts of extreme events. Wang et al. (2023) used a convolutional LSTM (ConvLSTM)120

with self-attention to predict the Niño3.4 index, with skilful forecasts obtained out to lead times121

of 20 months. This study utilised a genetic algorithm to filter the CMIP dataset prior to training122

by choosing the optimal combination of CMIP models to use from the entire ensemble. This123

strategy, along with the self-attention module in the ConvLSTM, was responsible for most of the124

performance improvements. Most recently, Wang and Huang (2024) used SST anomalies, as well125

as tendency features similar to Qiao et al. (2023), as inputs to a CNN model trained to predict the126

principal components (PCs) of the first three empirical orthogonal function (EOF) modes of SST127

anomalies in the tropical Pacific. Combining the predicted PCs with their corresponding EOFs128

allowed the authors to examine detailed maps of the precursors used to predict specific events.129

An example of a method that bridges the gap between training on simulation output and training130

on observations is the study by Chen et al. (2021), who proposed a method that uses simulation131

output from an approximate parametric model, in this case the recharge-discharge model of Jin132

(1997) augmented with a random wind burst model, as the prior information while the observational133

data plays the role of the likelihood which corrects the intrinsic model error in the prior data during134

training of a feedforward neural network. The method makes use of two loss functions; the first135

involves the error between the network outputs and the simulation data, while the second involves136

the error between the network outputs and the observational data. The first loss function is used137

at each step of the gradient descent optimisation to propose an update to the network parameters.138

This proposal is then used to evaluate the second loss function and is rejected if it does not produce139

a decrease in this validation loss. The authors applied this method to predicting the Niño3 index140

and obtained skilful forecasts up to 10 months lead time. They also noted the absence of any141

spring predictability barrier, with forecast skill remaining at 10 months when initiated from any142

time between February and August.143

There are also several recent studies worth mentioning here that solely use observational or144

reanalysis data for training various deep learning methods. Taylor and Feng (2022) trained a145

UNet-LSTM, consisting of ConvLSTM modules in an encoder-decoder architecture with skip146

6



connections, to predict monthly mean sea surface temperature and 2m air temperature at lead147

times up to 24 months, using these same fields as inputs. Training data was taken from the ERA5148

reanalysis over the period of 1950–2021. The authors found that while their model was skilful149

in predicting the 2019–2020 El Niño and the 2016–2017 and 2017–2018 La Niñas, it failed to150

predict the peak of the 2015–2016 El Niño, possibly due to the absence of any information about151

the subsurface ocean in their model. Chen et al. (2023) combined a seasonal-trend decomposition152

using locally weighted scatter plot smoothing to the Niño3.4 index, derived from the HadISST153

dataset over the period of 1871-2022, with temporal convolutional networks to perform multi-step154

predictions of each component in the decomposition (trend, seasonal and remainder), which were155

then combined to produce the final forecast for the index. Skilful forecasts were obtained out156

to 14 months lead time, while a similar model using the same decomposition but with LSTM157

modules in place of the temporal convolutional networks was able to achieve skilful forecasts158

out to 12 months. Finally, Patil et al. (2023) used a CNN model with heterogeneous parameters159

for each season, as well as a modified loss function that contained an extra penalty for failing to160

correctly predict extreme events. In contrast to the models used in Ham et al. (2019, 2021), each161

convolutional layer in the model was followed by dropout, regularisation and batch-normalisation162

layers as well as an average pooling layer to reduce the number of model parameters. Training data163

consisted of SST anomalies taken from the Centennial in situ Observation-Based Estimates dataset164

as well as vertically averaged subsurface temperature anomalies (averaged over 0–300m depth)165

taken from SODA, with the NOAA Optimum Interpolation SST and the NCEP Global Ocean166

Data Assimilation System datasets used for validation. Dimension reduction was performed by167

re-gridding the data to 5� ⇥5� resolution. Despite the much smaller training dataset used, skilful168

forecasts were obtained out to 20 months lead time, compared with just 12 months lead time for169

SINTEX-F2 and a fixed parameter CNN model. The authors also evaluated the probabilistic skill170

of their model at 18 and 23 months lead time using the area under the ROC curve (AUC) of true171

vs. false positive predictions of each phase of ENSO. AUCs of 0.75, 0.75 and 0.62 were obtained172

for El Niño, La Niña and neutral phases at 18 months lead time, with AUCs of 0.69, 0.7 and 0.64173

obtained at 23 months lead time respectively.174

Despite the success of deep learning when applied to ENSO prediction, the limitations of climate175

model biases leading to biases in the training data and/or lack of sufficient observations motivate176
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the search for other algorithms that may be able to overcome these limitations. A promising177

alternative class of machine learning methods, developed specifically to avoid overfitting for small178

data problems (i.e. problems where the number of features is of similar size or even greater than the179

number of data instances available for training), has been proposed in Horenko (2020); Vecchi et al.180

(2022); Horenko et al. (2023). This study will focus specifically on applying the entropy-optimal181

Scalable Probabilistic Approximation (eSPA) classifier first presented in Horenko (2020) and then182

further improved in Vecchi et al. (2022). In addition to the various algorithmic improvements183

presented in Vecchi et al. (2022), as well as favourable comparisons with other ML methods on184

synthetic data, this study was also the first to apply eSPA to ENSO prediction by formulating the185

problem as a classification task. Specifically, eSPA was employed to predict whether the Niño3.4186

index was above or below the threshold value of 0.4� (used to define the presence of an El Niño187

event) at a lead time of 24 months. The training data consisted of the observed index as well as188

the first 100 PCs from an EOF analysis of global SST anomalies, along with the first 100 PCs189

from an EOF analysis of the vertical derivative of meridionally averaged water temperature at the190

equator to a depth of 500m, taken from a resimulated ocean model dataset (O’Kane et al. 2014).191

Substantially better performance was obtained compared to a benchmark LSTM model trained on192

the same data, with eSPA predicting instances on the test set with 87% accuracy (and an AUC193

of 0.82) compared to only 61% accuracy for the LSTM model (AUC of 0.49). In a subsequent194

study, Horenko et al. (2023) formulated the Sparse Probabilistic Approximation for Regression195

Task Analysis (SPARTAn) algorithm in order to directly predict the Niño3.4 index and compared196

it with various other methods, including an LSTM model. Substantially lower MSE values were197

obtained by SPARTAn than the other methods out to lead times of 15 months, however forecast198

skill (as measured by the pattern correlation for the test set) was not presented. Based on these199

findings, the current paper aims to perform a much more detailed study to assess the abilities of200

eSPA for predicting ENSO variability, including the various measures of interpretability that are201

enabled by the formulation of the algorithm. A follow-up paper will also perform a similar analysis202

for SPARTAn.203
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c. Outline of paper204

The remainder of this paper is organised as follows. Section 2 describes the eSPA algorithm205

in detail, along with the dataset used for training. Section 3 presents out-of-sample predictions206

for lead times of 3, 6, 12, 18 and 24 months, using both eSPA and a benchmark LSTM method.207

Section 4 explores various modifications to the baseline results presented in Section 3, showing208

how further improvements can be made to both the performance and parsimony of eSPA for the209

ENSO prediction task. Finally, Section 5 contains conclusions and a discussion of directions for210

future work.211

2. Methodology and dataset preparation212

The data-driven predictions made throughout this paper make use of the recently proposed eSPA+213

algorithm (Vecchi et al. 2022), with an LSTM classifier used as a benchmark trained on the same214

dataset. Here, prediction of the El Niño-Southern Oscillation is formulated as a classification task,215

following the example presented in Vecchi et al. (2022). However, unlike Vecchi et al. (2022)216

the dataset is extended to contain multiple classes; the Niño3.4 index is coarse-grained to take a217

value of 1 if it exceeds +0.4�, -1 if it exceeds �0.4� and 0 otherwise (labelled as classes 3, 2 and 1218

respectively). This is a more challenging prediction task than the binary classification formulation219

used in Vecchi et al. (2022), but one which enables the prediction of both El Niño and La Niña220

events. For lead times ranging from 3 months to 24 months, a classifier is trained to predict the221

labelled data based on a set of features derived from a resimulated ocean dataset over the period of222

1958 to 2018.223

The training data consists of a feature matrix - 2 R⇡⇥) and a label matrix ⇧ 2 R"⇥) , where ⇡224

is the number of features, ) is the number of data instances and " is the number of labels. ⇧<,C225

represents the probability that -:,C belongs to class < 2 [1,"] \Z, taken here to be a hard label226

(i.e. each instance can only belong to a single class with probability 1). This classification task227

represents an example of supervised machine learning in the small data regime, since the number228

of features ⇡ is of similar size to the number of data instances ) available for training (given that229

the ocean data is provided in monthly intervals). The recently proposed eSPA classifier has been230

shown to avoid overfitting in this regime (Horenko 2020; Vecchi et al. 2022). eSPA simultaneously231
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performs clustering, feature selection and classification and, as will be demonstrated in this paper,232

is physically interpretable.233

a. The eSPA+ algorithm234

The entropy-optimal Scalable Probabilistic Approximation algorithm is based on the Scalable235

Probabilistic Approximation (SPA) algorithm introduced by Gerber et al. (2020) for unsupervised236

learning problems. SPA aims to find an optimal discretisation of the feature matrix - by introducing237

a segmentation matrix ( 2 R⇡⇥ , with (:,: being the centroid of cluster : 2 [1, ] \Z, along with238

an affiliation matrix � 2 R ⇥) , where �: ,C is the probability that -:,C is in cluster : . -̂ = (� is239

referred to as the reconstruction of - , and the optimal discretisation is sought by minimising the240

following regularised functional,241

LSPA =
1
⇡)

⇡’
3=1

)’
C=1

�
-3,C � {(�}3,C

�2
+ Y(

⇡’
3=1

 ’
:1=1

 ’
:2=1

�
(3,:1 � (3,:2

�2
, (1)

subject to the constraints �: ,C 2 [0,1] and
Õ
 

:=1�: ,C = 18C. The second term of the LSPA functional,242

whose relative importance is regulated by the hyperparameter Y( � 0, is a regularisation term that243

is included so as to minimise the distance between each of the cluster centroids, thus filtering out244

those dimensions that do not significantly impact the discretisation error (given by the first term).245

The  clusters, also called discretisation boxes, are piece-wise linear and disjoint and are chosen in246

such a way that they provide a tessellation of the feature space. In Gerber et al. (2020) it was proven247

that the optimal segmentation is strictly piece-wise linear, a result which holds for both a discrete248

segmentation (�: ,C 2 {0,1}8: , C) and a fuzzy segmentation (�: ,C 2 [0,1]8: , C), meaning that each249

instance can belong to multiple boxes with different probabilities. Furthermore, the constrained250

minimisation of equation 1 can also be achieved with a computational cost that scales linearly with251

⇡ and ) (Gerber et al. 2020).252

The extension of SPA to supervised learning problems was introduced in Horenko (2020). The253

entropy-optimal SPA (eSPA) algorithm replaces the regularisation term in the LSPA functional with254

an entropy-based filtering of the feature space and introduces an additional term representing the255

classification error on the labelled data (measured using the Kullback-Leibler divergence between256

the true class probabilities and the predicted class probabilities). The regularised loss functional257
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that is minimised in eSPA is given by258

LeSPA =
1
)

⇡’
3=1

,3

)’
C=1

�
-3,C � {(�}3,C

�2
+ Y⇢

⇡’
3=1

,3 log(,3)�
Y⇠

)

"’
<=1

)’
C=1

⇧<,C log

 
 ’
:=1

⇤<,:�: ,C

!
.

(2)

subject to the constraints �: ,C 2 [0,1],
Õ
 

:=1�: ,C = 18C,,3 2 [0,1],
Õ
⇡

3=1,3 = 1, ⇤<,: 2 [0,1] and259 Õ
"

<=1⇤<,: = 18: . Compared to SPA, the average discretisation error over all features 3 = 1, . . . ,⇡260

is now weighted by a vector, 2 R⇡ , where,3 represents the probability that feature 3 contributes261

to the discretisation error. The first regularisation term, controlled by the hyperparameter Y⇢ � 0,262

maximises the entropy of , to give the least biased estimate (subject to all other constraints),263

in accordance with the principle of maximum entropy (Jaynes 1957a,b). In the limit Y⇢ ! 1,264

, converges to the uniform distribution with ,3 = 1/⇡ and the previous SPA discretisation is265

obtained. The second regularisation term, controlled by the hyperparameter Y⇠ � 0, minimises the266

classification error that is obtained when representing the relationship between discretisation boxes267

and labels as a Bayesian network. This relationship is expressed via the law of total probability as268

⇧̂ = ⇤�, with the matrix ⇤ 2 R"⇥ containing the conditional probabilities ⇤<,: that -:,C belongs269

to class <, conditional on being in cluster : . The second regularisation term is then the cross-270

entropy loss between the true class probabilities ⇧ and the predicted class probabilities ⇧̂ since271

minimising this is equivalent to minimising the Kullback-Leibler divergence in the case where the272

true probabilities are constant. Note that setting Y⇠ = 0 results in a solution of the unsupervised273

discretisation and feature selection problems only.274

Theorem 1 in Horenko (2020) summarises the monotonicity of convergence to, and regularity of,275

the optimal solution, as well as the computational complexity of the iterative numerical algorithm276

used to minimise the loss functional. For each iteration, the eSPA algorithm consists of four277

consecutive substeps, each obtained by solving a convex optimisation problem with three of the278

four unknowns fixed and each of which monotonically decreases the value of the loss functional279

given by equation 2. In its original formulation, the algorithm does not scale linearly with ⇡ and )280

since the substep pertaining to the calculation of the probability vector, relied on an interior point281

method with complexity O(⇡ log(⇡) + ) [" +⇡]), regardless of whether the affiliation matrix �282

is discrete or fuzzy. In Vecchi et al. (2022), an improved algorithm eSPA+ was proposed involving283

a reordering of the optimisation substeps along with the derivation of closed-form solutions to284
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each of the substeps for the case of a discrete segmentation (i.e. �: ,C 2 {0,1}8: , C). In this case, by285

deploying Jensen’s inequality (Jensen 1906), the eSPA+ loss functional can be rewritten as286

LeSPA+ =
1
)

⇡’
3=1

,3

)’
C=1

�: ,C
�
-3,C � (3,:

�2
+ Y⇢

⇡’
3=1

,3 log(,3)�
Y⇠

)

"’
<=1

)’
C=1

⇧<,C
 ’
:=1

�: ,C log(⇤<,: ),

(3)

subject to the same constraints as equation 2. Note that although the closed-form solution for287

the , substep does not depend on whether the segmentation is discrete or fuzzy, closed-form288

solutions for the �, ( and ⇤ substeps may only be obtained for a discrete segmentation (see289

Horenko (2020); Vecchi et al. (2022) for further details). Furthermore, due to Jensen’s inequality,290

the LeSPA+ loss functional is an upper bound on the LeSPA loss functional. Therefore, even if the291

optimal � that minimises LeSPA is fuzzy, minimisation of LeSPA+ will still provide an approximate292

solution. Multiple random restarts are used to help avoid getting trapped in a local minimum that293

does not provide good generalisation to unseen data. An additional improvement to the algorithm,294

presented here for the first time, involves discarding any empty boxes : after the calculation of295

each � substep. This improves the speed of the algorithm and decreases the number of iterations296

required for convergence since such boxes will always remain empty if they are empty initially297

due to the random initial choice of , , ( and ⇤. For brevity, the eSPA+ algorithm will simply be298

referred to as eSPA throughout the remainder of this paper.299

b. Long Short-Term Memory Classifier300

For comparison with eSPA, a Long Short-Term Memory classifier is trained to provide a bench-301

mark representative of state-of-the-art deep learning methods for the same dataset, i.e. the same302

features as eSPA (described below) are used for prediction along with the same quantile transfor-303

mation pre-processing step. Following Vecchi et al. (2022), the LSTM model architecture consists304

of ⇡ sequence input layers, a choice of 2, 4, 8, 16, 32, 64, 128 or 256 hidden units in the LSTM305

layer (determined using a grid search) and 3 hidden units in the final fully connected layer (one for306

each class), which uses the softmax activation function. The model is trained using the ADAM307

optimisation algorithm for 100,000 epochs with an initial learning rate of [ = 0.001, a learning rate308

schedule that decreases [ by 5% every 1000 epochs and the cross-entropy loss. Regularisation of309
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the model is performed using ;2 weight decay with a choice of the regularisation constant _ equal310

to 0, 1⇥10�6, 1⇥10�5, 1⇥10�4, 1⇥10�3, or 1⇥10�2 (also determined using a grid search).311

c. Description of the dataset312

The features used for prediction are the first 100 PCs from an EOF analysis of global SST313

anomalies, along with the first 100 PCs from an EOF analysis of the vertical derivative of water314

temperature (dT/dz) at the equator, averaged over latitudes of ±5�, as a proxy for thermocline315

variability. A pre-processing step of mapping the data to a uniform distribution with values316

between 0 and 1 using a quantile transformation is applied to all of the features.317

The EOF analysis is performed for the ACCESS-OM2 resimulated ocean model dataset (Kiss318

et al. 2020), which uses JRA55-do interannual forcing over a period of 1958-2018. This is an319

updated version of the ACCESS-O model that was used in the previous studies on ENSO prediction320

using eSPA (Vecchi et al. 2022) and SPARTAn (Horenko et al. 2023). For comparison, both models321

have a nominal grid resolution of 1� ⇥ 1�, with refinement to 1/3� for latitudes between ±10�, a322

tripolar Arctic north of 65�N and a Mercator (cosine dependent) implementation for the Southern323

Hemisphere, ranging from 1/4� at 78�S to 1� at 30�S. In the vertical direction, ACCESS-O has324

50 levels covering 0–6000 meters with a grid spacing ranging from 10 meters in the upper layers325

(0–200 meters) to 333 meters for the abyssal ocean, whereas ACCESS-OM2 has 50 levels with326

2.3m spacing at the surface, increasing smoothly to 219.6m spacing at the maximum depth of327

5363.5m. Note that although there is no assimilation of subsurface ocean data (due to a lack of328

high-quality data prior to the ARGO era circa 2004), the model’s representation of the subsurface329

ocean is still expected to be constrained by the forcing (and therefore by observations) in the upper330

portions of the ocean in the tropics, as was observed for the earlier ACCESS-O model (O’Kane331

et al. 2014).332

A reference period of 1958-2012 (i.e. the first 90% of the dataset used for training) is used to333

calculate the monthly climatological means required for calculating the SST anomalies. The first334

10 EOFs and PCs for SST and dT/dz are given in the supplementary material. Composite images335

of SST and dT/dz, generated by averaging over all instances for which the model Niño3.4 index336

was > 0.4�, < �0.4� and [�0.4�,0.4�] to produce a canonical El Niño, La Niña and neutral phase337

composite respectively, are shown in the supplementary material.338
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The targets for prediction (labels) are generated by considering the probability of the Niño3.4339

index exceeding 0.4�C (El Niño) or �0.4�C (La Niña) in = months time. The Niño3.4 index340

is produced using observed SST anomalies from the Hadley Centre Sea Ice and Sea Surface341

Temperature (HadISST) dataset (Rayner et al. 2003), with the same common reference period of342

1958-2012 used to calculate the monthly climatological means. This is another point of difference343

with the previous results presented in Vecchi et al. (2022), which used a Niño3.4 index generated344

from the ACCESS-O model rather than observations. A comparison with the Niño3.4 index345

calculated from the ACCESS-OM2 model is shown in the supplementary material, along with a346

plot of the 0-month ahead labels.347

The baseline dataset, presented in section 3, consists of features generated through principal348

component analysis (PCA) of the ACCESS-OM2 model output along with labels generated from349

the HadISST observational product as described above. In section 4, various sensitivity studies350

are conducted whereby either the features or labels are modified to see what effect this has on the351

clustering and predictions made by eSPA. In section 4a Singular Spectrum Analysis (SSA) with352

embedding dimensions of 3 and 6 months is used to generate the features rather than PCA. In353

section 4b two modifications to the labels are considered; (i) a doubling of the threshold to ±0.8�C354

and (ii) filtering out events that do not persist for at least 5 months. Finally, in section 4c the355

sensitivity to the amount of training data is explored by reducing the dataset in 10% increments356

until only 50% of the original training data remains. The data is removed from the beginning of357

the dataset so that the start date when only 50% of the original data remains is January 1988.358

d. Performance metrics359

For each lead time, classifier performance is assessed through the (macro-averaged) area under360

the ROC curve (AUC), the mean accuracy of predictions (ACC) and the expected calibration error361

(ECE), defined as362

ECE =
#’
==1

|⌫= |

)

|acc(⌫=)� conf (⌫=) |, (4)
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where the predicted probabilities are divided into # evenly spaced bins ⌫= of size |⌫= | and acc(⌫=)363

and conf (⌫=) are the accuracy and confidence for each bin, defined as364

acc(⌫=) =
1

|⌫= |

’
82⌫=

( Ĥ8 = H8), conf (⌫=) =
1

|⌫= |

’
82⌫=

max(⇧̂:,8), (5)

with Ĥ8 and H8 represent the predicted and true label for instance 8 and is an indicator function365

that evaluates to 1 if true and 0 otherwise. Similar to AUC, for multi-class problems an ECE is366

computed for each class in a one vs. the rest approach and a macro-averaged ECE is produced as367

the final metric.368

Additional measures specific to eSPA that are considered are the number of features ⇡̃ with369

probability (given by the , vector) greater than the maximum entropy limit of 1/⇡, as well as370

the number of clusters  ̃ that are well-supported by the data, meaning they can be associated with371

a significant ?-value. For this latter measure, the (two-tailed) ?-value is calculated by forming a372

contingency table between �: ,: and ⇧<,: and using Fisher’s exact test to calculate the probability373

of observing this particular arrangement of the data under the null hypothesis that either value374

of the label < (i.e. 0 or 1) is likely to be present in the instances assigned to cluster : . The375

?-value that is returned for each cluster is the one corresponding to the label with the highest376

conditional probability (given by argmax(⇤:,: )) and the standard rejection threshold of 0.05 is used377

to determine significance. Both ⇡̃ and  ̃ (as well as the ratios ⇡̃/⇡ and  ̃/ and the total number378

of clusters  ) are considered to be informative as they are measures of parsimony which can be379

used for model selection, all else being equal. Another useful measure to consider is the number of380

switches between clusters, denoted here by ⇠, as this is informative of how persistent the clusters381

are in time.382

3. Baseline ACCESS-OM2 results383

In this section, the out-of-sample performance of eSPA is assessed through a simple forecasting384

task; the first 90% of the dataset is used to train a model, which is then used to make predictions for385

the final 10% of the dataset. The features used for prediction are those obtained through PCA of the386

ACCESS-OM2 dataset. Model selection is performed through a grid search over hyperparameters,387

where for each hyperparameter combination K-fold cross-validation is used, with 10 folds used and388
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a) b) c)

F��. 1: Performance vs. lead time for the baseline dataset.

no permutation of the data prior to splitting. This increases variance in the predictions relative to389

other cross-validation strategies, such as repeated random subsampling, but reduces bias and helps390

to avoid overfitting by favouring models with fewer clusters. Only the first 9 folds (i.e. the training391

set) are used for the grid search, with the final fold reserved as the test set. The hyperparameters392

corresponding to the highest mean AUC from the grid search are then used to train the final model393

on the training set and make predictions for the test set.394

a. Performance395

Figure 1 shows plots of AUC, ACC and ECE vs. lead time for both eSPA and the benchmark396

LSTM method using the baseline dataset. At all lead times, the test set AUC is at least 0.8 for eSPA397

with a general trend of higher AUCs at shorter lead times. The mean accuracy of eSPA for each398

lead time is between 63% and 76% while the expected calibration error is between 0.18 and 0.24,399

with no noticeable trend observed with lead time. Note the AUC is the preferred metric over mean400

accuracy for scoring model performance on this problem due to both the imbalance of classes and401

the greater importance placed on correctly predicting departures from the neutral class. Indeed,402

based on the class priors, a model that just predicts the neutral class for all instances would score403

around 40% in terms of mean accuracy.404

In comparison with eSPA, the LSTM model has a lower AUC and ACC at all lead times. For405

lead times of 3 to 9 months the LSTM mode performance is comparable to eSPA in terms of ACC406

and is better in terms of ECE, however for longer lead times the performance rapidly degrades and407

the gap between the two models increases.408
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(a) 3 months lead time (c) 9 months lead time(b) 6 months lead time

(d) 12 months lead time (e) 18 months lead time (f) 24 months lead time

F��. 2: eSPA test set predictions for the baseline dataset. Red circles indicate El Niño events, blue
circles indicate La Niña events and white circles indicate neutral events. The Niño3.4 index (grey
lines) and corresponding labels (black lines) for the target date are also shown.

Figure 2 shows the eSPA predictions on the test set for each lead time. The LHS H-axis for409

each plot shows the probability obtained from argmax
⇣
⇧̂:,C

⌘
; in the case where this corresponds to410

an El Niño event (red circles) the probability is plotted positive upwards and for a La Niña (blue411

circles) it is plotted positive downwards. For neutral events (white circles), the second-highest412

probability is plotted using the same convention. The RHS H-axis shows the Niño3.4 index on the413

target date, calculated from HadISST observations. At all lead times, eSPA successfully predicts414

most of the high amplitude 2015/16 El Niño, the subsequent low amplitude La Niña events in 2016415

and 2017/18 and the 2018/19 El Niño. By comparing to the Niño3.4 index at each target date, it is416

apparent that the value of the predicted probabilities of El Niño / La Niña are at least marginally417

correlated with the amplitude of an event. It is also encouraging to note that there are also only a418

handful of misclassified instances where an El Niño is classified as a La Niña and vice versa; in419

most cases the misclassifications are between the neutral state and El Niño or neutral and La Niña.420
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(a) 3 months lead time (c) 9 months lead time(b) 6 months lead time

(d) 12 months lead time (e) 18 months lead time (f) 24 months lead time

F��. 3: LSTM test set predictions for the baseline dataset. Red circles indicate El Niño events, blue
circles indicate La Niña events and white circles indicate neutral events. The Niño3.4 index (grey
lines) and corresponding labels (black lines) for the target date are also shown.

b. Comparisons with benchmark421

Figure 3 shows the equivalent LSTM predictions on the test set for each lead time. Note that422

unlike eSPA, the grid search over LSTM hyperparameters (in this case the number of hidden units423

and the ;2 regularisation constant) is performed using the AUC directly on the test set to score each424

candidate model. Therefore, the results shown here should be considered an optimistic estimate425

of the out-of-sample performance of LSTM on this dataset. The number of hidden units and426

regularisation constant in the final model are (32,0.1), (8,0.1), (16,0.1), (2,0.01), (2,0.01) and427

(8,0.1) for each lead time respectively. The corresponding number of parameters in each model428

is 29987 for 32 hidden units, 13971 for 16 hidden units, 6731 for 8 hidden units and 1637 for 2429

hidden units.430

As a general trend, at shorter lead times the model struggles to correctly predict the neutral431

phase, while at longer lead times the model struggles to predict phases other than neutral. Also,432

unlike eSPA, there is little variation in the probability assigned to each class, i.e. all predictions of433

El Niño have approximately the same probability of occurring and similarly for predictions of the434
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La Niña and neutral classes. In terms of computational cost, training the final LSTM model for435

100000 epochs on a single CPU core took on average 135 seconds for models with 2 hidden units,436

340 seconds for models with 8 hidden units, 420 seconds for models with 16 hidden units and 900437

seconds for models with 32 hidden units. By comparison, training 10000 eSPA models (i.e. 10000438

random restarts) on the same dataset took 300 seconds on average. In other words, an eSPA model439

can be completely trained (i.e. converged to a local minimum) for every 30–220 epochs of training440

the most competitive LSTM model on the same dataset. Both the LSTM model and eSPA were441

implemented entirely in the Julia programming language and were executed on a single core of an442

AMD EPYC 7543 32-core processor running at 2.8 GHz (3.7 GHz turbo) with 256 MB cache.443

As mentioned in the introduction, Patil et al. (2023) reported the AUCs obtained by their state-444

of-the-art CNN model at lead times of 18 and 23 months. These values were 0.75, 0.75 and 0.62445

for the El Niño, La Niña and neutral classes respectively at 18 months lead time and 0.69, 0.7446

and 0.64 at 23 months lead time. For comparison, the macro-averaged AUCs obtained by eSPA447

and shown in figure 1 are 0.80 and 0.82 for 18 and 24 months lead time respectively. Prior to448

macro-averaging (i.e. weighting by the class priors), the AUC for each class is 0.84, 0.76 and 0.76449

for the El Niño, La Niña and neutral classes respectively at 18 months lead time and 0.85, 0.85 and450

0.75 at 24 months lead time. Therefore, eSPA obtains better performance than the model of Patil451

et al. (2023) for all three classes individually at both of these lead times.452

c. Interpretability453

One of the big advantages of eSPA is the ability to rigorously examine and interpret the model454

structure and results, as will be demonstrated in this section. Figure 4 shows plots of the, vector455

of probabilities, which may be interpreted as a measure of feature importance, for each lead time.456

It can easily be observed that there is a strong sparsification of the feature space, with only the457

leading PCs of SST and d)/dI making up most of the contribution to the discretisation error.458

Furthermore, the number of important features, given by ⇡̃, increases with increasing lead time, a459

reflection of the fact that there is a greater diversity in the patterns used to predict events as lead460

time increases. Importantly, the leading d)/dI PCs are deemed to be important for prediction at461

all lead times and are allocated a similar weight to the leading SST PCs.462
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(a) 3 months lead time (c) 9 months lead time(b) 6 months lead time

(d) 12 months lead time (e) 18 months lead time (f) 24 months lead time

F��. 4: Feature importance plots for the baseline dataset. The number of features with probability
greater than 1/⇡ is given in the title of each plot.

In addition to the, vector, the cluster affiliation matrix � can be shown to provide useful insight463

as well. Figure 5 shows occupation plots for the training set, i.e. the number of instances in464

the training set that are assigned to each cluster. These are sorted by their respective ?-value465

to be in order of most to least significant. Furthermore, by evaluating the highest conditional466

probability (given by argmax(⇤:,: )) for each cluster : , the clusters predicting El Niño, La Niña and467

neutral classes may be distinguished. Of crucial importance is the fact that, for each lead time, the468

majority of least significant clusters are those associated with the neutral class. This demonstrates469

that during the grid search for optimal hyperparameters  , Y⇢ and Y⇠ the higher than expected470

value for  that is chosen is done so as not to pollute the most predictive El Niño and La Niña471

clusters with neutral instances. It can also be observed that the number of significant clusters  ̃ is472

approximately constant with lead time. The number of El Niño clusters is 6, 10, 9, 10, 10 and 10473

for each lead time respectively, while the number of La Niña clusters is 8, 12, 17, 16, 9 and 14.474

Another important insight gained by inspecting the � matrix is to plot the cluster affiliation475

sequence in time, as shown in figure 6 for the training set and figure 7 for the test set at each lead476

time (the remaining lead times for the training set can be viewed in the supplementary material).477
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(a) 3 months

(d) 12 months

(b) 6 months

(e) 18 months

(c) 9 months

(f) 24 months

F��. 5: Training set cluster occupation plots for the baseline dataset. El Niño clusters are coloured
red, La Niña clusters are coloured blue and neutral clusters are coloured grey, while the dashed
black line demarcates clusters whose ?-value is less than 0.05.

As for the occupation plots, the clusters are sorted from most to least significant ?-value. From478

these plots, the sequence of cluster affiliations occurring =-months prior to an El Niño or La Niña479

event is able to be determined and can elucidate important insights into how well the model is480

capturing known ENSO dynamics. Such sequences are also helpful for determining whether a481

given cluster typically appears earlier or later in the historical period (due to non-stationarity in the482

feature space) as well as earlier or later in the prediction of a particular event in = months time.483
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(a) 3 months

(b) 6 months

(c) 12 months

F��. 6: Training set cluster affiliation plots for the baseline dataset. The red, blue and white
background shading indicates an El Niño, La Niña or neutral event occurring on that target date,
while the number of switches between clusters is given in the title of each plot.
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a)3 months b) 6 months c) 9 months

d) 12 months e) 18 months f) 24 months

F��. 7: Test set cluster affiliation plots for the baseline dataset. The red, blue and white background
shading indicates an El Niño, La Niña or neutral event occurring on that target date, while the
number of switches between clusters is given in the title of each plot.

On the test set the affiliation sequences are useful for determining whether a particular prediction484

is being made from a highly significant cluster or one that occurred less frequently, or was assigned485

to a mix of events, over the training set. In general, predictions on the test set that are incorrect486

are being made from less significant clusters. This provides another way of assessing confidence487

in the predictions aside from just looking at the conditional probabilities for that cluster contained488

in the ⇤ matrix.489

To further help in understanding a given affiliation sequence, composite images of SST and d)/dI490

may be generated from the centroids of each cluster, given by the matrix (, as these correspond to491

a particular value for each PC (after rescaling) that can then be combined with its corresponding492

EOF to generate a spatial plot of SST or d)/dI, similar to the methodology used in Wang and493

Huang (2024). For the sake of brevity, only a few key sequences and their corresponding composite494

images will be illustrated in detail here; a full set of composites for each lead time is made available495

in the supplementary material. At shorter lead times the composite images for the most significant496

clusters correspond to patterns representing mature or emerging/declining El Niño or La Niña states497
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a)Cluster 19 SST composite

d) Cluster 19 dT/dz composite

b) Cluster 2 SST composite

e) Cluster 4 dT/dz composite

c) Cluster 4 SST composite

f) Cluster 2 dT/dz composite

Composites for the 1982/83 eastern Pacific El Nino at 3 months lead time

Composites for the 2004/05 central Pacific El Nino at 3 months lead time

g) Cluster 18 SST composite h) Cluster 9 SST composite i) Cluster 3 SST composite

j) Cluster 18 dT/dz composite k) Cluster 9 dT/dz composite l) Cluster 3 dT/dz composite

F��. 8: SST and d)/dI composites at 3 months lead time.

(as well as intermediate neutral states), while at longer lead times they correspond to precursor498

states consisting of extra-tropical anomalies.499
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Figure 8a-8f shows the SST and d)/dI composites for clusters corresponding to an eastern500

Pacific El Niño at 3 months lead time, in this case the 1982/83 El Niño event. Prior to the event,501

cluster 19 is active which exhibits a slightly warm SST anomaly in the central and eastern Pacific502

and a neutral thermocline position. As the event begins to develop cluster 2 becomes active and the503

characteristic ’tongue’ of warm SST anomaly is present in the eastern Pacific and to a lesser extent504

the central Pacific. Relative to cluster 19 the thermocline has also begun to shoal. Finally, once505

the event is well underway cluster 4 becomes active which is representative of a fully developed506

(eastern Pacific) El Niño with a large warm SST anomaly in the eastern and central Pacific and a507

fully shoaled thermocline. Given the short lead time of 3 months, this is effectively a persistence508

forecast; if the Niño3.4 index is well above the threshold of 0.4�C then it is very likely to still be509

above that threshold in 3 months time.510

Figure 8g-8l shows a similar set of composites to figure 8a-8f but for a central Pacific El Niño511

at 3 months lead time, in this case the 2004/05 El Niño event. Similar to above, the system starts512

in cluster 18 which is a neutral cluster with a slightly warm SST anomaly in the central-western513

Pacific and a relatively steep thermocline profile. Towards the onset of the event cluster 9 becomes514

active, which features a warm SST anomaly in the central Pacific and a shoaled thermocline. After515

onset cluster 3 becomes active. This cluster is similar to cluster 4 shown in figure 8a-8f but with a516

weaker SST anomaly off the coast of South America. Relative to cluster 4, the peak SST anomaly517

is also located further westward along the equator.518

Figure 9a-9f shows the SST and d)/dI composites for clusters corresponding to a La Niña at 6519

months lead time, in this case the 1988/89 La Niña event. Initially, cluster 33 is active. This cluster520

has a large warm SST anomaly in the central and eastern Pacific and a shoaled thermocline, since521

a weak El Niño preceded the 88/89 La Niña in the previous year. More generally, at 6 months522

lead time there are numerous clusters representing a mature/decaying ENSO phase that predict the523

opposite phase to occur in 6 months time. This is representative of the observed cases where an El524

Niño can immediately follow a La Niña and vice versa. Following cluster 33, cluster 1 becomes525

active which represents a neutral ENSO phase. There are still patches of anomalously warm SST526

however they do not cross the equator. Furthermore, the thermocline has begun to steepen and527

a cold SST anomaly is beginning to develop off the coast of South America indicating increased528
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a)Cluster 33 SST composite b) Cluster 1 SST composite c) Cluster 4 SST composite

d) Cluster 33 dT/dz composite e) Cluster 1 SST composite f) Cluster 4 SST composite

Composites for the 1988/89 La Nina event at 6 months lead time

Composites for the 1982/83 eastern Pacific El Nino at 9 months lead time

g) Cluster 20 SST composite h) Cluster 22 SST composite i) Cluster 36 SST composite

j) Cluster 20 dT/dz composite k) Cluster 22 dT/dz composite l) Cluster 36 dT/dz composite

F��. 9: SST and d)/dI composites at 6 (top) and 9 (bottom) months lead time.

upwelling. Finally, the system moves to cluster 4 which shows the development of a cold SST529

anomaly along the equator and increased steepening of the thermocline.530
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Moving to longer lead times, 9g-9l and 10 show composites for the same events shown in figures531

8a-8f and 8g-8l but for lead times of 9 months and 12 months respectively. At 9 months lead532

time, the first cluster indicating the onset of the 1982/83 El Niño, cluster 20, has both SST and533

d)/dI composites that are representative of a neutral phase of ENSO. The system then moves to534

cluster 22, which features a weak cold SST anomaly in the eastern Pacific along the equator, a weak535

warm SST anomaly in the central-eastern Pacific north of the equator and a steeper thermocline536

than cluster 20. Note that the system switches between these two clusters multiple times before537

moving to cluster 36, which shows the development of a warm SST anomaly along the equator and538

a shoaling thermocline.539

For 12 months lead time prior to the 2004/05 El Niño the system is initially in cluster 23, which540

features a neutral thermocline, a patch of anomalously cold SST off the coast of South America at541

the equator, a smaller patch of anomalously warm SST further westward along the equator as well as542

multiple patches of anomalously warm and cold SSTs at the mid-latitudes. The next cluster is cluster543

1, which has a slightly flatter thermocline than cluster 23 as well as a similar patch of anomalously544

cold SST in the eastern Pacific along the equator, but which is surrounded by equivalently warm545

SST anomalies in the mid-latitudes and western Pacific. From cluster 1 the system then moves to546

cluster 2, which has a steeper thermocline profile but also shows the development of anomalously547

warm SSTs in the equatorial Pacific at the dateline and which extend northeastward towards the548

coast of North America. Warm SST anomalies are also present in the mid-latitudes east of the549

dateline. Interestingly, the spatial pattern for the cluster 2 SST composite closely resembles the550

pattern obtained from the information flow-based causality analysis performed for El Niño Modoki551

(i.e. a central Pacific El Niño) by Liang et al. (2021).552

Note that for many of the improvements to the baseline case described in section 4 below,553

the clustering is considerably more parsimonious and with improvements in the out-of-sample554

predictions, i.e. clusters are fewer and more persistent without sacrificing predictive ability. The555

interested reader is therefore encouraged to view the supplementary material, which contains a556

complete set of cluster composites for all of the cases presented in section 4 along with the baseline557

case.558

To give an idea of the similarity between clusters a pattern correlation is computed between559

the SST composites of each cluster, restricted to the Pacific Ocean between ±60� latitude and560
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a)Cluster 23 SST composite

d) Cluster 22 dT/dz composite

b) Cluster 1 SST composite

e) Cluster 1 dT/dz composite

c) Cluster 2 SST composite

f) Cluster 2 dT/dz composite

F��. 10: Composites for the 2004/05 central Pacific El Niño at 12 months lead time.

a) El Nino pattern correlations b) La Nina pattern correlations

F��. 11: Pattern correlations for 3 months lead time.

120�-300� longitude. The resulting correlation coefficients are shown in figures 11 and 12 for561

3 and 6 months lead time respectively. Similar plots for the remaining lead times are given in562

the supplementary material. Comparing between lead times, it is clear that there is an increased563

diversity in the precursor patterns with the highest predictive skill for El Niño and La Niña events564

28



a) El Nino pattern correlations b) La Nina pattern correlations

F��. 12: Pattern correlations for 6 months lead time.

as lead time increases. This can be summarised by calculating an average pattern correlation565

coefficient for each lead time of 3, 6, 9, 12, 18 & 24 months, which for the El Niño clusters is566

0.554, 0.163, -0.061, -0.020, 0.240 and 0.184 respectively and for the La Niña clusters is 0.191,567

0.029, 0.038, 0.082, -0.071 and 0.044. From the high pattern correlations depicted in figures 11568

and 12, it is readily apparent that the number of eSPA cluster affiliations at short lead times might569

be further reduced, however, as lead times increase lower pattern correlations are indicative of the570

increased diversity of precursors across individual ENSO events.571

d. Seasonality of predictions572

It is well established that both dynamical and statistical ENSO forecasting systems exhibit a573

boreal spring predictability barrier arising due to the climatological auto-correlation in tropical574

Pacific SSTs, in which short lead time forecast skill is at a minimum during the boreal summer,575

extending to later seasons for longer lead times (Barnston et al. 2012). A similar prediction barrier576

is also observed in many modern deep learning prediction systems such as the CNN model of Ham577

et al. (2019). It is therefore interesting to examine the variability in skill of eSPA with each target578

season to see if both the model and/or problem formulation as a classification task help to reduce579

this barrier.580
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a) Seasonality of AUC on test dataset b) Seasonality of AUC on entire dataset

F��. 13: Seasonality of eSPA predictions on the baseline dataset.

Figure 13 shows the AUC of the predictions for each target season and lead time, both on the581

test set as well as the overall dataset. Due to the limited size of the test set, there are only 18 or 19582

instances for each 3-month season and for some seasons there is only one or even no instances of a583

particular class. For this reason, it is difficult to draw any strong conclusions as the small sample584

sizes introduce a lot of additional variability. To circumvent this issue and increase the sample585

sizes the same plot is generated for the entire dataset. Despite the model seeing 90% of this data586

during training, there is sufficient regularisation in eSPA to avoid overfitting and therefore the AUC587

values on the entire dataset are quite similar to those on the test set; they are 0.82, 0.79, 0.79, 0.79,588

0.75 and 0.78 for each lead time respectively. Examining Figure 13b, it can be seen that there is589

a decrease in skill as measured by AUC for the boreal summer at 3 and 6 months lead time. At 9590

months lead time there is a smaller decrease in skill, but the minimum in skill still occurs later in591

the year (JAS). At 12 months lead time there is a greater decrease in skill again, with the minimum592

occurring during JJA, while at 18 months lead time the trend is similar to that at 9 months with less593

variation in skill throughout the year (although lower skill overall). Finally, at 24 months lead time594

there is a similar variation in skill to that at 12 months, with the minimum in skill occurring during595

JAS and ASO. From these results, it can be concluded that for all lead times considered there is a596
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reduction in skill for target seasons falling within the boreal summer, although this reduction does597

not appear to be as severe as that observed for forecast systems, both dynamical and statistical, that598

attempt to predict the Niño3.4 index directly.599

4. Dataset sensitivity600

In this section, various modifications to the baseline dataset are made in order to assess how601

they affect both the predictive power of the obtained eSPA model as well as its interpretability and602

parsimony.603

a. PCA vs. SSA604

Rather than just use PCA to decompose the SST and d)/dI data into principal components605

and their corresponding EOFs, a form of multivariate Singular Spectrum Analysis (SSA) can be606

applied to embed < lags of the data at each time into a lagged covariance matrix, resulting in607

< +1 EOFs for each PC in the decomposition. This can be thought of as an application of Takens’608

delay embedding theorem (Takens 1981), which states that the dynamics of a system can be609

reconstructed from a series of observations of a single variable over time (i.e. each PC) provided610

the embedding dimension is sufficiently large to ensure that the topology of the reconstructed611

attractor is equivalent to the topology of the original system’s attractor. Embedding dimensions of612

3 months and 6 months are considered here (referred to as 3 lags and 6 lags hereafter). From an613

interpretability perspective, embedding lagged instances of the data means that each cluster now614

contains a sequence of composites that capture the evolution of the system through time within615

that cluster. Additionally, as will be shown below, it typically results in more parsimonious eSPA616

models than those obtained from PCA-derived features without sacrificing predictability.617

Figure 14 compares the performance metrics on the test set for eSPA models trained using618

features derived from PCA as well as SSA with a 3-month embedding and SSA with a 6-month619

embedding. In general, the out-of-sample performance is comparable between PCA and SSA,620

with SSA having a slight advantage in terms of AUC at longer lead times (although it is also less621

calibrated at these lead times). Figure 15 compares the various measures of parsimony between622

the models obtained using PCA and SSA. Across the different lead times, it is clear that using SSA623

results in the model selecting fewer features as being important (with the exception of SSA with 3624
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a) AUC b) ACC c) ECE

F��. 14: Comparison of performance metrics between features generated using PCA vs. SSA.

lags at a lead time of 3 months), as well as a fewer number of total clusters. The ratio of significant625

clusters to the total number of clusters is generally larger for SSA and at all lead times using SSA626

results in fewer switches between clusters (with the exception of SSA with 6 lags at a lead time of 3627

months). From these results, it is clear that using SSA leads to a more parsimonious eSPA model,628

even if out-of-sample performance is not improved.629

Another advantage of SSA over PCA is the additional information that is conveyed in the630

composites generated from the cluster centroids due to having the extra lagged data. Figure 16631

illustrates this for two clusters taken from the SSA with 6 lags at 3 months lead time by showing632

the sequence of SST composite images obtained from clusters 2 and 3. Note that these are the633

clusters that are active for the same 1982/83 eastern Pacific El Niño that is shown in figure 8a-8f.634

For brevity, the SST composite at 6 months lag has been omitted, along with all of the d)/dI635

composites. The sequence shows the initial onset of the event while the system is in cluster 2 and636

then the maturation and peak of the event while the system is in cluster 3. Furthermore, the entire637

progression of the composite images across both clusters is very smooth and continuous and allows638

for additional interpretability over just using composites obtained from PCA.639

b. Sensitivity to labels640

The generation of the labels from HadISST observations involves a subjective choice for the641

threshold to use on the Niño3.4 index above/below which an instance is labelled as El Niño or642

La Niña. The sensitivity of the out-of-sample performance to this threshold is examined in figure643

17a-17b, which compares the test set AUC for both the standard threshold of ±0.4� as well as a644

higher threshold of ±0.8�. This has the effect of filtering out low amplitude events but also reduces645
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a) Number of important features b) Number of clusters

c) Ratio of significant clusters d) Normalised number of switches between clusters

F��. 15: Measures of parsimony for eSPA models based on PCA- and SSA-derived features.

the class priors for the El Niño and La Niña classes. As a result, the out-of-sample performance is646

reduced for both PCA- and SSA-derived features due to there being fewer examples to learn from647

in training.648

Another modification that can be made to the labels is to filter out short-lived events. In figure649

17c-17d results are shown for both PCA and SSA with 3 lags where the labels have been modified650

so that any El Niño or La Niña events that do not persist for at least 5 months are labelled as651

neutral instead (which is the window that NOAA uses when classifying ENSO events). In terms of652

out-of-sample performance, as measured by AUC on the test set, this has little effect for PCA and653

a slight decrease in performance for SSA. The effects on model parsimony are given in figure S10654

of the supplementary material and are summarised here. Both PCA- and SSA-based models place655

importance on a larger number of features, while both PCA and SSA use a similar number of total656
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a) Cluster 2: 5 months lag b) Cluster 2: 4 months lag c) Cluster 2: 3 months lag

d) Cluster 2: 2 months lag e) Cluster 2: 1 months lag f) Cluster 2: 0 months lag

g) Cluster 3: 5 months lag h) Cluster 3: 4 months lag i) Cluster 3: 3 months lag

j) Cluster 3: 2 months lag k) Cluster 3: 1 months lag l) Cluster 3: 0 months lag

F��. 16: SST composite images for clusters 2 and 3 for SSA (6-month embedding) at 3 months
lead time. Note: the composite at 6 months lag has been omitted for both clusters for brevity.

clusters irrespective of whether the labels are filtered or unfiltered (with the exception of PCA at657

18 months lead time and SSA at 24 months lead time). The ratio of significant clusters is slightly658

reduced for both PCA and SSA and the number of switches between clusters is slightly increased.659
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Based on these findings it appears unnecessary to filter out short-lived events, however it may still660

be useful for certain applications that are targeting a particular timescale.661

c. Sensitivity to amount of training data662

Finally, in this section the sensitivity to the amount of training data used is explored for both PCA663

and SSA with 3 lags. This is of interest for multiple reasons. Firstly, if it can be shown that eSPA664

does not overfit when there is even less training data than is provided by the full ACCESS-OM2665

dataset then this allows for the possibility of instead using reanalysis products that only cover the666

more recent historical period such as the NCEP Global Ocean Data Assimilation System (Behringer667

et al. 1998). Furthermore, it is not uncommon for the first few years of an ocean model dataset to668

be unrealistic due to the spin-up used to initialise the ocean state. For example, the ACCESS-OM2669

model uses atmospheric forcing taken from the JRA-55 reanalysis over the period of 1958 to 2018.670

This forcing is also used during the spin-up of the model, meaning that the system undergoes a671

large shock every 60 years when the forcing jumps from 2018 back to 1958, the result of which is672

that the ocean heat content can take up to 20 years to stabilise to the shock each time.673

Secondly, ENSO can be thought of as being superimposed upon a background regime given by674

the phase of the Interdecadal Pacific Oscillation (IPO). Positive phases of the IPO are characterised675

by a warmer-than-average tropical Pacific and cooler-than-average northern Pacific, while negative676

phases are characterised by cooler tropics and warmer northern regions. The implications of this677

are that ENSO variability, as well as predictability, changes with the phase of the IPO. For example,678

following the phase change from negative to positive in the mid-1970s, El Niño events increased679

in frequency but also became easier to predict (O’Kane et al. 2014). Thirdly, the climate system680

as a whole is highly non-stationary (at least over the observed period), even in the absence of681

anthropogenic forcing, and as such recent data is more relevant to predicting future conditions than682

data occurring earlier in time. In data science and machine learning this is known as concept drift,683

where the statistical properties of the target variable(s), as well as the causal relations between684

predictors and targets, change over time in unforeseen ways.685

The combination of all three of these phenomena can also be observed in the cluster affiliation686

plots for the training set given in figure 6, where many of the clusters that appear prior to ⇠ 1980687

do not appear afterwards and vice versa. This indicates that reducing the size of the training set by688
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removing data from the start of the dataset may result in improved, or at least comparable, out-of-689

sample performance on the final 10% of the dataset. Figure 17e-17f shows the out-of-sample AUC690

on the final 10% of the dataset when the first 10%, 20%, . . ., 50% of the dataset has been removed.691

Note that for these plots the test set size is kept proportional to the original dataset (i.e. it is the692

final 10% of the truncated dataset), while in figure 17g-17h the test set is kept fixed at 10% of the693

original dataset size. For the proportional test set size, there is an improvement in out-of-sample694

performance relative to the baseline dataset for nearly all lead times and reductions in training data695

for both PCA and SSA. For PCA the best overall performance is obtained when 50% of the dataset696

is retained, particularly at longer lead times, while for SSA the best overall performance is obtained697

for 60% and 70% of the original dataset. In fact, the performance is only worse than the baseline698

dataset for a lead time of 18 months in a handful of cases.699
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Effects of label threshold on out-of-sample performance

PCA SSA: 3 lags

a)

c)

b)

d)

e) f)

g) h)

Effects of filtering short-lived events on out-of-sample performance

Sensitivity to amount of training data relative to the baseline dataset. Proportional test set size

PCA SSA: 3 lags

PCA SSA: 3 lags

PCA SSA: 3 lags

Sensitivity to amount of training data relative to the baseline dataset: fixed test set size.

F��. 17: AUC vs. lead time for various modifications to the baseline dataset.
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It is important to note however that the reduction in test set size means that the test set does not700

contain the same instances across different overall dataset sizes. To explore how this affects the701

predictions, figure 17g-17h shows the out-of-sample AUC when the test set is kept fixed at 10% of702

the original dataset size. Compared to the baseline dataset there are still improvements observed,703

although not quite as substantial as before. Nevertheless, for PCA retaining 50% or 60% of the704

original dataset still results in a good overall improvement in performance, while for SSA retaining705

60% or 70% of the original dataset gives good improvement but less so at the longer lead times.706

Figures S11 and S12 in the supplementary material show the same measures of parsimony707

presented in figure 15 but for the various reductions in dataset size (with the proportional test708

set). As a general rule for SSA and to a lesser extent PCA, initial reductions in the dataset size709

result in fewer important features being used in the model, however further reductions past 70%710

result in models containing a greater number of important features. For PCA nearly all of the711

models trained on reduced amounts of data used fewer total clusters and, at shorter lead times712

in particular, contained a larger number of significant clusters and had fewer switches on average713

between clusters. The same trends are also observed for SSA in general with some exceptions;714

the baseline dataset has a relatively larger number of significant clusters at longer lead times and715

differences in the average number of switches between clusters are less clear-cut.716

Overall the results in this section suggest that good performance can be obtained for eSPA models717

using substantially less data than is available in the full ACCESS-OM2 dataset. Note that further718

improvements would likely be expected if the number of features was also reduced, for example719

features 150-200 (i.e. the final 50 d)/dI PCs) were rarely deemed to be important in the, vector720

which would justify their removal from the final model. The demonstrated improvements with721

reductions in training data suggest that perhaps multiple eSPA models could be fitted to different722

periods. Initially, this could be done according to the different phases of the IPO, however, a more723

satisfactory solution would be to incorporate some form of temporal regularisation for switching724

between models trained on different metastable states (Horenko 2010; De Wiljes et al. 2014).725

Differences in the model structure obtained for each metastable state could then be used to probe726

how the dynamics of ENSO have changed over the observed period. Such investigations will be727

performed in future work.728
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5. Conclusions729

This paper has applied the entropy-optimal Scalable Probabilistic Approximation algorithm to730

systematically classify ENSO variability over the period of 1958-2018 in a resimulated ocean model731

dataset. A Long Short-Term Memory classifier is also included as a benchmark representative of732

state-of-the-art deep learning methods for the same dataset. For lead times ranging from 3 months733

to 24 months, both classifiers are trained to predict the phase of ENSO as one of three possible734

classes (El Niño, La Niña or neutral) based on the first 100 principal components taken from an735

empirical orthogonal function analysis of global sea surface temperature anomalies as well as the736

vertical derivative of subsurface temperature at the equator, both derived from the resimulated737

ocean model.738

Relative to the LSTM model, eSPA exhibited substantially better out-of-sample performance739

in terms of area under the ROC curve for all lead times, better mean accuracy at all lead times740

(substantially better for lead times greater than or equal to 12 months) and better expected calibration741

error for lead times greater than or equal to 12 months (worse for lead times less than 12 months).742

In most cases, the misclassifications by eSPA on the test set were between the neutral class and743

El Niño or La Niña. The predicted conditional probability for each instance in the test set was744

also shown to be correlated with the amplitude of the underlying Niño3.4 index from which the745

labels were generated. In contrast, the LSTM model struggled to correctly predict the neutral class746

at shorter lead times while at longer lead times it struggled to predict classes other than neutral.747

The LSTM predictions also exhibited little variation in the probability assigned to each class. In748

terms of computational cost, it was demonstrated that an eSPA model can be completely trained749

(i.e. converged to a local minimum) for every 30-220 epochs of training the most competitive750

LSTM model on the same dataset. Note that since the LSTM model is trained using first-order,751

gradient-based optimisation it cannot be shown to have completely converged to a local minimum752

of the loss function. However, in practice approximately 10,000-100,000 epochs were required753

to observe no further improvement in the loss when training the best possible model (which still754

exhibited substantially worse performance as described above).755

Another major advantage of eSPA is the ease at which its predictions can be thoroughly inter-756

rogated and interpreted. By examining the feature importance vector , , it was shown that eSPA757

induces a strong (but approximate) sparsification of the feature space, with only the leading PCs of758
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SST and d)/dI making up most of the contribution to the discretisation error. By looking at the759

significance of each of the obtained clusters (as determined by Fisher’s exact hypothesis test), the760

majority of least significant clusters were those associated with the neutral class while the number761

of significant clusters (at the 5% level) was found to be approximately constant with lead time.762

Furthermore, incorrect predictions on the test set appear to be made from less significant clusters763

in general. This provides an additional measure of confidence in the predictions being made aside764

from the conditional probabilities coming from the ⇤ matrix.765

A novel contribution presented in this paper has been the generation of composite images for766

each of the clusters by combining the PCs for each of the cluster centroids with their corresponding767

EOFs. From these reconstructions, it was seen that at shorter lead times the composite images768

for the most significant clusters correspond to patterns representing mature or emerging/declining769

El Niño or La Niña states (as well as intermediate neutral states), while at longer lead times770

they correspond to precursor states consisting of extra-tropical anomalies. Computing the pattern771

correlations between composites, an increased diversity was observed in the precursor patterns772

with the highest predictive skill for El Niño and La Niña events with increasing lead time. For all773

lead times considered, decomposing the predictions into their target seasons showed that, although774

there is a slight reduction in skill for target seasons falling within the boreal summer, this reduction775

does not appear to be as severe as that observed for forecast systems that attempt to predict the776

Niño3.4 index directly. Finally, further modifications to the baseline ACCESS-OM2 dataset were777

explored showing that improvements can be made in the parsimony of the trained eSPA model778

without sacrificing predictive power. These modifications included using PCs generated from779

a multivariate Singular Spectrum Analysis rather than PCA, as well as reducing the amount of780

training data by only including more recent observations as a means of circumventing concept781

drift, of which the latter also resulted in improved out-of-sample performance.782

Given the promising results presented in this paper, there are numerous options for extending783

the current method and analysis in future work, of which just a few are mentioned here. Firstly, as784

mentioned already in section 4, the demonstrated improvements with reductions in training data785

suggest that multiple eSPA models could be fitted to different periods of the historical record,786

with some form of temporal regularisation governing the switching between models trained on787

different metastable states. Secondly, there is the potential to develop eSPA, as well as its analogous788
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regression formulation SPARTAn, into a proper ENSO forecast system. A proof-of-concept for this789

has already been presented in Horenko et al. (2023). This would then be thoroughly assessed using790

hindcasts in the same way as conventional dynamical and statistical forecast systems (Barnston791

et al. 2012). Finally, it would be interesting to apply eSPA to daily atmospheric data to look at792

classifying climate variability on intraseasonal time scales, for example by predicting the Madden-793

Julian oscillation.794
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