
P
os
te
d
on

2
F
eb

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
70
68
87
90
.0
54
96
41
3/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Sensitivity of the Shallow-to-Deep Convective Transition to

Moisture and Wind Shear in the Amazon

Leandro Alex Moreira Viscardi1, Giuseppe Torri2, David Kenton Adams3, and Henrique M.
J. Barbosa4

1University of Hawaii at Manoa
2University of Hawaii
3Universidad Nacional Autonoma de Mexico
4University of Maryland Baltimore County

April 16, 2024

Abstract

Deep convection is the primary influence on weather and climate in tropical regions. However, understanding and simulating the

shallow-to-deep (STD) convective transition has long been challenging. Here, we conduct high-resolution numerical simulations

to assess the environmental controls on the evolution of isolated convection in the Amazon during the wet season. Observations

and large-scale forcing derived through the constrained variational analysis approach for the GoAmazon2014/5 experiments are

used in the simulations and model validation. The model consistently reproduces the GOAmazon observations for precipitation,

moisture, and surface fluxes of radiation, latent and sensible heat. Through sensitivity experiments, we examine the relative

importance of moisture and vertical wind shear in controlling the STD convective transition. Reducing the pre-convective

humidity within the lower 1.5 km significantly suppresses vertical development and lowers the ice water path. Additionally, the

maximum precipitation rate decreases almost quadratically with column water vapor. Conversely, a reduction of column water

vapor above 1.5 km by a factor of two or more is necessary to produce a comparable decrease in ice water path or precipitation.

Moderate low-level wind shear facilitates the STD transition, leading to an earlier peak of ice water compared to stronger wind

shear or its absence. Although upper-level wind shear negatively influences high cloud formation, its role in controlling the

STD transition is relatively smaller than that of low-level wind shear. Our results help quantify the role of moisture and wind

shear on the STD transition, but also suggest that dynamic factors may exert a more pronounced influence.
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Key Points:10

• SAM-LSM consistently reproduces the GoAmazon2014/5 observations for precip-11

itation, moisture, and surface fluxes during the wet season.12

• Daytime convection shows a noticeable sensitivity to pre-convective low-level hu-13

midity and a weaker response to free troposphere humidity.14

• Vertical wind shear has a lesser influence than humidity on the shallow-to-deep15

convective transition.16
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Abstract17

Deep convection is the primary influence on weather and climate in tropical regions.18

However, understanding and simulating the shallow-to-deep (STD) convective transition19

has long been challenging. Here, we conduct high-resolution numerical simulations to20

assess the environmental controls on the evolution of isolated convection in the Amazon21

during the wet season. Observations and large-scale forcing derived through the constrained22

variational analysis approach for the GoAmazon2014/5 experiments are used in the sim-23

ulations and model validation. The model consistently reproduces the GOAmazon ob-24

servations for precipitation, moisture, and surface fluxes of radiation, latent and sensi-25

ble heat. Through sensitivity experiments, we examine the relative importance of mois-26

ture and vertical wind shear in controlling the STD convective transition. Reducing the27

pre-convective humidity within the lower 1.5 km significantly suppresses vertical devel-28

opment and lowers the ice water path. Additionally, the maximum precipitation rate de-29

creases almost quadratically with column water vapor. Conversely, a reduction of col-30

umn water vapor above 1.5 km by a factor of two or more is necessary to produce a com-31

parable decrease in ice water path or precipitation. Moderate low-level wind shear fa-32

cilitates the STD transition, leading to an earlier peak of ice water compared to stronger33

wind shear or its absence. Although upper-level wind shear negatively influences high34

cloud formation, its role in controlling the STD transition is relatively smaller than that35

of low-level wind shear. Our results help quantify the role of moisture and wind shear36

on the STD transition, but also suggest that dynamic factors may exert a more pronounced37

influence.38

Plain Language Summary39

The Amazon rainforest plays a vital role in the Earth’s climate system. However,40

it is not entirely understood how environmental conditions control the evolution from41

fair weather conditions to severe thunderstorms in regions of the deep Tropics. We ad-42

dress this problem utilizing numerical simulations that capture the interactions between43

the forest, atmosphere, and clouds. Atmospheric modeling data developed for the GoA-44

mazon2014/5 experiment are used to initialize our Amazon-based simulations. The model45

consistently reproduces the Amazon environment throughout the period of our simula-46

tions, which covers December 2014. Additionally, we contrast the model results between47

the control simulation and experiments in which the moisture or wind is modified to eval-48

uate their relative importance to cloud development and precipitation. Lower tropospheric49

moisture is critical to cloud growth. The amount of moisture in the air above 1.5 km has50

a minor contribution to cloud development and precipitation. Low-level wind of mod-51

erate strength facilitates cloud development during the afternoon. The upper-level wind52

negatively affects the ice formation in high clouds. These results help strengthen our knowl-53

edge of tropical convection, critical for improving numerical model performance.54

1 Introduction55

Deep convection dominates the weather and climate in the tropics. Nevertheless,56

comprehending and simulating the convective processes is a formidable challenge due to57

the wide range of spatial and temporal scales involved (Mapes et al., 2009; Moncrieff et58

al., 2012; Zhang et al., 2013). Shallow cumulus convection, a small-scale phenomenon59

lasting tens of minutes and covering spatial scales of the order of a few kilometers, of-60

tentimes evolves into deep convective clouds covering tens of kilometers within typical61

time scales of 2 to 4 hours (Wu et al., 2009; Hohenegger & Stevens, 2013; Adams et al.,62

2013; Henkes et al., 2021; Powell, 2022). Moreover, deep convection frequently becomes63

organized and experiences upscale growth into mesoscale convective systems (MCSs) with64

lifetimes spanning hours to a day and ranging in horizontal scale from 100 km to 1,00065

km (Houze Jr, 2004). Likewise, land-atmosphere interactions and complex physical pro-66
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cesses ranging from cloud microphysics to the generation of gravity waves are intrinsi-67

cally tied to deep convection (Silva Dias et al., 2002; Mapes et al., 2006; Mapes & Neale,68

2011; Jewtoukoff et al., 2013; Gupta et al., 2023).69

General circulation models (GCMs) rely on parameterizations of convective pro-70

cesses and typically struggle to reproduce the shallow-to-deep (STD) convective tran-71

sition over continental regions (Betts, 2002; Betts & Jakob, 2002; Bechtold et al., 2004;72

Grabowski et al., 2006). Their simulated precipitation peaks much earlier than observed73

(Lin et al., 2000; Betts, 2002; Collier & Bowman, 2004; Dai & Trenberth, 2004), which74

is an important source of bias and uncertainty in GCMs to this day (Sherwood et al.,75

2014; Stevens & Bony, 2013; Itterly et al., 2018; Maher et al., 2018; Freitas et al., 2020,76

2024). To circumvent the inherent challenges posed by convective parameterizations, cloud-77

resolving models (CRMs), which explicitly resolve the up- and downdrafts in clouds, have78

been used to study convective processes over continental and oceanic regions. For ex-79

ample, M. Khairoutdinov and Randall (2006) conducted the first high-resolution numer-80

ical simulations to investigate the STD transition over the Amazon. Their findings high-81

lighted the importance of cold pools in forcing the development of deep convection, while82

the impact of vertical wind shear and free tropospheric preconditioning were relatively83

minor. As part of the EUROCS (EUROpean Cloud Systems study), Derbyshire et al.84

(2004) evaluated the sensitivity of cumulus convection to free tropospheric humidity. Un-85

like M. Khairoutdinov and Randall (2006), they observed intense deep precipitating con-86

vection in moister scenarios, whereas only shallow convection was evident in the driest87

scenario. Waite and Khouider (2010) conducted idealized numerical simulations over the88

tropical Atlantic Ocean. Their study emphasized the importance of congestus precon-89

ditioning, which reduces the impact of entrainment on cloud buoyancy, ultimately lead-90

ing to the STD transition. In contrast, Hohenegger and Stevens (2013) showed that the91

transition from congestus to deep convective clouds occurs on shorter time scales than92

required for congestus clouds to moisten the atmosphere sufficiently. This implies that93

dynamic factors play a more substantial role in driving convection. While CRM stud-94

ies offer valuable insights into physical convective processes, they still require validation95

through high-resolution observations, which have typically been lacking in tropical rain-96

forests.97

In the Amazon, important, but often limited field campaigns, have explored dif-98

ferent aspects of tropical convection. Adams et al. (2015) established the Amazon Dense99

GNSS Meteorological Network, a one-year campaign to observe the interaction between100

water vapor fields and deep convection. Adams et al. (2013) also utilized GNSS/GPS101

data from a long-term single site (July 2008 to December 2011) in Manaus, Brazil to eval-102

uate the water vapor convergence associated with the STD transition and found a weak103

and quasi-linear convergence timescale of approximately 8 hours, followed by a robust104

and non-linear convergence timescale of approximately 4 hours during the STD transi-105

tion. Later, Adams et al. (2017) employed this dense network data to investigate how106

vapor fields evolve spatially during during the STD transition. Their results were con-107

sistent with the 4-hour STD timescale and the spatial evolution was reflective of the wa-108

ter vapor convergence posited in the single site study. More recently, the Green Ocean109

Amazon (GOAmazon) 2014/5 Experiment (Martin et al., 2016, 2017) was carried out110

from 2014 to 2015 in the central Amazon, providing the most comprehensive set of ob-111

servations of clouds and aerosols in the Amazon to date. Analyzing this dataset during112

the dry season (June-September), Ghate and Kollias (2016) noted an excess of water va-113

por above 2 km during the early morning when contrasting locally-driven precipitating114

days and nonprecipitating days. Conversely, Zhuang et al. (2017) and Tian et al. (2021)115

observed that deep convective days exhibit relatively higher moisture extending from the116

surface to mid-levels in all seasons. Schiro et al. (2016) showed a robust correlation be-117

tween total column water vapor and precipitation in both the central Amazon and the118

tropical western Pacific. Furthermore, Schiro and Neelin (2019) demonstrated a strong119

connection between the initiation and likelihood of daytime precipitation and the bound-120
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ary layer and lower free troposphere moisture content. Previous studies do not completely121

agree on the relative importance of vertical wind shear. For example, while Zhuang et122

al. (2017) indicated that more intense low-level and deep-layer bulk wind shears facil-123

itate the STD transition during the dry season (June-September), Chakraborty et al. (2018)124

suggested that a more intense low-level shear could inhibit deep convection during the125

transition season (August–November), especially if it increases the entrainment of dry126

air.127

In this paper, we conduct high-resolution model simulations to assess the role of128

moisture and vertical wind shear in controlling the STD convective transition in the Ama-129

zon. First, we focus on model validation employing GoAmazon data for the period of130

December 2014. Then, we conduct idealized sensitivity experiments in which either mois-131

ture or large-scale wind are modified at different atmospheric levels to assess their rel-132

ative importance in the development of deep convection. The paper is structured as fol-133

lows: Section 2 shows the study area. Section 3 describes the material and methods. Sec-134

tion 4 covers the model validation. Sensitivity experiments for moisture and wind shear135

are conducted in section 5. A discussion of the results is given in section 6. Section 7 con-136

tains the conclusions.137

2 Study Region138

The Amazon Basin is bordered by significant altitudes (Figure 1a), primarily in139

the western region, where some peaks in the Andes Mountains rise well over 6,000 me-140

ters in elevation above sea level. However, the simulations are conducted over the GoA-141

mazon2014/5 campaign region in the central Amazon, where the topography can be ad-142

equately considered as an extensive plain with minimal variations (< 130 m in our do-143

main of interest, section 3.2). During the experiment, most of the observations were taken144

from the T3 site, located 70 km downwind of Manaus, in Manacapuru (3.21◦S, 60.60◦W),145

a site characterized by a pasture surrounded by forest and close to the intersection of146

the Solimões River and Negro River (Figure 1b).147

Figure 1. (a) Land topography and ocean depth (NOAA National Centers for Environmental

Information, 2022) around the Amazon. (b) Land cover (Friedl et al., 2010) around the GoAma-

zon2014/5 sites. The dashed circle with a radius of 202 km centered at the T1 site (in Manaus)

corresponds to the S-band radar domain. The dotted circle with a radius of 110 km shows the

domain of the large-scale forcing developed for the GoAmazon2014/5 Experiment (Tang et al.,

2016). We also indicate the Amazon, Solimões, and Negro Rivers on the map. Land cover is from

2014, based on the Moderate Resolution Imaging Spectroradiometer (MODIS) - International

Geosphere-Biosphere Programme (IGBP) land cover classification system. The Amazon Basin

contour is provided by Mayorga et al. (2012).
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3 Material and Methods148

3.1 Data149

For model validation, we use campaign observations of precipitation, moisture, ra-150

diation, and surface latent and sensible heat fluxes. Precipitation is based on the SIPAM151

S-band radar measurements (Schumacher & Funk, 2018), which we average over the do-152

main of the control runs. Sensible heat flux (H) and latent heat flux (LE) are from the153

Quality Controlled Eddy Correlation (QCECOR) Flux Measurement (ARM, 2014b). Sur-154

face radiation fluxes are from the Sky Radiation Radiometers (SKYRAD) and Ground155

Radiation Radiometers (GNDRAD) (ARM, 2013). Column water vapor (CWV) is cal-156

culated from the balloon-borne sounding system (SONDE), which provides the vertical157

profiles of thermodynamic conditions 4 times per day during the period of this study,158

at 02, 08, 14, and 20 LST (ARM, 2014a).159

Large-scale atmospheric fields of water vapor mixing ratio, temperature, wind, and160

moisture and temperature tendencies are based on 3-hour Constrained Variational Anal-161

ysis Data (VARANAL). This assimilation product was developed using atmospheric fields162

from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim163

reanalysis (Dee et al., 2011), which were mainly constrained by the SIPAM S-band radar164

precipitation rate and ARM surface fluxes through the column heat and moisture bud-165

get analysis (Tang et al., 2016). The VARANAL data represent an average over the anal-166

ysis domain centered at T1 site, covering a radius of 110 km (Figure 1b).167

The Moderate Resolution Imaging Spectroradiometer (MODIS) provides data prod-168

ucts of land cover type (MCD12Q1 Version 6) and leaf area index (MCD15A2H Version169

6.1) (Friedl et al., 2010). Specifically, we use the land cover product based on the Inter-170

national Geosphere-Biosphere Programme (IGBP) land cover classification system. Silt,171

clay, and sand content in the soil are based on in-situ measurements of the soil type “Terra172

Firme” (Terra-firma) described in Table 1 on Schaefer et al. (2017). Soil temperature173

and wetness are based on the NASA Global Land Data Assimilation System (GLDAS)174

Noah Land Surface Model L4 3 hourly 0.25 x 0.25 degree V2.1 (Rodell et al., 2004).175

3.2 Model Configuration176

We employ the numerical model System for Atmospheric Modeling (SAM), ver-177

sion 6.11.8, which solves the anelastic equations of motion and uses liquid water static178

energy, total nonprecipitating, and precipitating water as thermodynamic prognostic vari-179

ables (M. F. Khairoutdinov & Randall, 2003). The equations are solved using lateral pe-180

riodic boundary conditions. A prognostic turbulent kinetic energy 1.5-order closure scheme181

is used to parameterize subgrid-scale effects. Different microphysics parameterizations182

are available, including the single-moment (Morrison, 2003), double-moment (Morrison183

et al., 2005), and Predicted Particle Properties (P3) (Morrison & Milbrandt, 2015) schemes.184

The radiative heating can be prescribed or calculated by choosing a radiation scheme,185

either the Community Atmosphere Model (CAM3) (Collins et al., 2006) or the Rapid186

Radiative Transfer Model (RRTM) (Mlawer et al., 1997) schemes. Surface fluxes can be187

prescribed or calculated using Monin-Obukhov similarity theory or a simplified Land Sur-188

face Model (LSM) (Lee & Khairoutdinov, 2015), which is only compatible with the CAM3189

radiation scheme for the current SAM-LSM version.190

The baseline configuration for the simulations analyzed in this paper considers a191

domain of 200×200×27 km3. This choice was made primarily to reasonably accommo-192

date MCSs, given that they typically span about 100 km (Houze Jr, 2004). The hori-193

zontal resolution is 500 m, and the vertical resolution varies: it starts at a minimum of194

50 m below 1.5 km and increases to 300 m in the upper troposphere. From there, it grad-195

ually stretches up to 500 m at the model’s upper boundary, which reaches 27 km, result-196

ing in 128 vertical levels. The temporal resolution is 5 seconds, and instantaneous model197
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fields and statistics are output every 30 minutes. The control simulation uses the P3 mi-198

crophysics scheme. The CAM3 radiation scheme is called every 150 seconds. Surface fluxes199

are calculated through the LSM (see Section 3.3).200

The large-scale forcing is based on the VARANAL dataset for the period of De-201

cember 2014 in the central Amazon. Winds were nudged with a 2-hour timescale through-202

out the simulation. The water vapor mixing ratio was nudged only during the spin-up,203

considered as the period from 1-5 December 2014, with a timescale of 6 hours.204

For the purpose of model validation, we conducted additional simulations where205

the only modificatio was the choice of the microphysics scheme: single-moment, double-206

moment, or P3 schemes. We also assessed model sensitivity to resolution and domain207

size by performing additional simulations at 250 m resolution or with a 400×400×27 km3
208

domain.209

3.3 Land Surface Model Configuration210

The simplified Land Surface Model uses a minimalist set of parameters to solve the211

transport of heat, moisture, and radiation in the soil and vegetation and calculate the212

transfer of momentum between the surface and the atmosphere (Lee & Khairoutdinov,213

2015). It adequately idealizes the land-atmosphere interactions, which fundamentally in-214

fluence convection over the Amazon forest (Silva Dias et al., 2002; Betts, 2002). To de-215

fine the characteristics of the surface and the vegetation for the LSM, we use the MODIS216

data of land cover type during 2014 and mean leaf area index (LAI) for December 2014217

over a domain of 200×200 km2 centered at T3 site (see Figure S1). These are associated218

with the period and area of our simulations. The surface LAI was set to 4.4 m2 m−2,219

which corresponds to the domain average in satellite observations. In addition, we choose220

to cover the surface uniformly with evergreen broadleaf forests, which cover 83% of the221

area in observations. However, based on several tests conducted to optimize the LSM222

parameters, we modify the default near-infrared visible albedo for vegetation from 0.20223

to 0.30, the root length from 150 cm to 200 cm, and the displacement height factor from224

0.68 to 0.65. The corresponding displacement height is 0.65 × 20 m = 13 m, where 20225

m is the default value of the height of the canopy. These modifications improve the agree-226

ment between the observations and the simulated surface radiation, latent and sensible227

heat fluxes.228

The soil is simulated using 11 layers from the surface down to a depth of 400 cm.229

Clay and sand contents for each layer are based on in-situ measurements on Terra-firma230

forests (section 3.1). The initial conditions for soil temperature and soil wetness are based231

on GLDAS Noah, which provides information on 4 layers: 0-10, 10-40, 40-100, and 100-232

200 cm. The LSM soil layers close to the surface, which experience greater diurnal cy-233

cle variation, are interpolated using the nearest neighbor method. The deeper soil lay-234

ers are interpolated (and extrapolated) linearly. The initial profile of soil temperature235

and wetness is shown in Figure S2.236

3.4 Cloud Regime Days237

For the sensitivity experiments, we select a set of deep convective (Deep) days from238

the control simulation (P3 scheme, with a horizontal resolution of 500 m and a domain239

size of 200x200x27 km3) and perturb the sounding or the large-scale forcing imposed.240

For the Deep selection, we require that the domain average of total ice presents a dis-241

tinct deepening during the afternoon, characteristic of the STD convective transition.242

The chosen Deep days are December 17th, 21st, 23rd, and 26th. For comparison, we also243

select a set of shallow cumulus (ShCu) days from the control run. We identify four days244

with negligible ice content and minimum surface precipitation: December 9th, 13th, 27th,245
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and 28th. Figure S3 shows the profile of cloud liquid and total ice for our selection of246

cloud regime days.247

4 Model Validation248

A comparison between simulated and observed CWV, precipitation rate, LE, and249

H is shown in Figure 2. Results are shown for simulations using the single-moment, double-250

moment, and P3 microphysics schemes, in addition to the higher-resolution (P3/250m)251

and larger domain (P3/400km) runs.252

Figure 2. Comparison of modeling results (solid colors), large-scale forcing (dashed gray),

and observations (dotted) for (a) Precipitation rate (mm/hr), (b) Column water vapor (cm), (c)

Latent heat flux (W/m2), and (d) Sensible heat flux (W/m2) averaged over the model domain.

Simulated and observed CVW values agree very well in the first week, likely a re-253

sult of the nudging imposed during the spin-up period, after which some differences be-254

gin to appear. CWV values are generally higher for the P3 scheme and lower for the single-255

moment run. The P3 cases exhibit the strongest correlation (Pearson) with the obser-256

vations: 0.78 for P3/250m and 0.75 for both P3 and P3/400km (see the Taylor diagrams257

in Figure S4). Conversely, the single-moment scheme shows a weaker correlation with258

the observed CWV (0.56), while the double-moment scheme correlation is close to that259

of the P3 scheme (0.70). For the standard deviation of CWV, the model values range260

from 0.24 mm (P3/250m) to 0.28 mm (Single-Moment), while the observations indicate261

a value of 0.34 mm. Despite this difference, these statistics suggest that the model can262
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reproduce observed moisture content reasonably well for at least one month without re-263

sorting to any water vapor nudging.264

The different simulations closely reproduce the observed surface precipitation rate,265

with correlations ranging from 0.76 (P3/250m) to 0.79 (P3/400km). The simulations ex-266

hibit better agreement for lower precipitation rates, while they tend to underestimate267

the most intense precipitation events, which are associated with MCSs. Moreover, the268

model precipitation did not show significant sensitivity to the microphysics, spatial res-269

olution, or domain size. We hypothesize that the model’s underestimation of intense sur-270

face precipitation could potentially be attributed to the periodic boundary conditions.271

These conditions might prevent the advection of MCSs that could have developed in ar-272

eas outside the domain. Nevertheless, our validation results remain satisfactory, partic-273

ularly considering our primary focus is locally-driven STD convective transitions.274

Observed surface fluxes are reproduced reasonably well in the model runs. LE cor-275

relations with observations vary from 0.81 (double-moment) to 0.84 (P3, P3/250m, and276

P3/400km), while the H correlations range from 0.78 (double-moment) to 0.80 (P3, P3/250m,277

and P3/400km). The model only slightly overestimates the standard deviation of the ob-278

served mean LE, with the difference between model runs and observations being less than279

2 W m−2. However, it should be noted that the ECOR flux measurement system pro-280

vides local measurements of surface fluxes in a grassland region (T3 site, see Figure 1b),281

while the model provides an average for an area of 200×200 km2 (or 400×400 km2 for282

P3/400km), entirely covered by evergreen broadleaf forest. These differences make the283

qualitative agreement between model simulations and observations all the more remark-284

able.285

To evaluate the surface radiation budget, Figure 3 compares modeled and observed286

surface shortwave and longwave fluxes, including both downward and upward compo-287

nents. There is high-frequency variability in the observations that is not present in the288

model, likely because its values correspond to horizontal averages over the domain, whereas289

observational values are taken at the T3 site. Nevertheless, the model reproduces the290

observations satisfactorily for downward/upward surface shortwave and upward longwave291

fluxes (correlation ranges 0.82-0.86, Figure S5). In the case of downward longwave fluxes,292

the correlation is weaker, ranging from 0.57 (single and double-moment) to 0.62 (P3, P3/250m,293

and P3/400km), although these values are reasonable.294

Overall, our simulations with different microphysics schemes compared reasonably295

well with the observations considered in our validation analysis. The exception was the296

column water vapor, where the P3 scheme showed a stronger correlation with the ob-297

servations. While neither the higher resolution (P3/250m) nor the larger domain size (P3/400km)298

simulations demonstrated significant improvements over the P3 case, they significantly299

increased computational costs. This motivated our choice of the P3 scheme with 500 m300

horizontal resolution and a 200×200 km2 domain size as the control run configuration301

which underlies the results presented below.302

5 Sensitivity Experiments303

To evaluate the role of moisture and vertical wind shear in the STD convective tran-304

sition, a series of sensitivity experiments are carried out. First, we perturb the water va-305

por profile at low levels and the free troposphere to investigate the importance of low-306

and mid-level preconditioning. For vertical wind shear, we modify the structure of the307

low or upper-level jets to evaluate the relative importance of wind shear at different lev-308

els. The results in this section are associated with the mean composites for the four Deep309

or ShCu (section 3.4) simulated days.310

Figure 4 shows the composite of cloud liquid (rl), total ice (ri), and rainwater (rr)311

mixing ratios for the Deep and ShCu days averaged over the model domain. In addition312
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Figure 3. Similar to Figure 2, but for (a) downward shortwave, (b) upward shortwave, (c)

downward longwave, and (d) upward longwave flux at the surface (W/m2) averaged over the

model domain.

to liquid water, we include the convective boundary layer (CBL) height (magenta dashed313

line), defined as the height at which the buoyancy flux reaches its first local minimum.314

The figure shows that the CBL height follows closely cloud base and the lifting conden-315

sation level, with values reaching a maximum of 1.30 km at 14:45 LST on Deep days and316

1.41 km at 16:15 on ShCu days. Both regimes exhibit a peak in rl associated with shal-317

low convection, below 3 km between 10-14 LST. Additionally, Deep days show two peaks318

in ri. The first occurs between 12-14 LST at upper levels (> 8 km), associated with deep319

convection driven by surface heating (Martin et al., 2016; Tang et al., 2016; Zhuang et320

al., 2017; Tian et al., 2021). The second peak occurs a few hours later, between 16-18321

LST, associated with the late afternoon STD convection transition triggered by these322

land-atmosphere interactions.323

5.1 Low-Level Moisture Experiment324

For the low-level moisture experiment, a moisture perturbation within the lower325

1.5 km of the domain is introduced. We introduce this perturbation by multiplying the326

water vapor mixing ratio by a constant factor. To ensure smoothness of the vertical pro-327

file, we linearly decrease the factor to 0 between altitudes of 1.25 km and 1.75 km. For328

each of the Deep days selected, the model is restarted from the control run at 02 LST329

and the perturbation was applied. Finally, the factors are selected such that the CWV330

for the perturbed profile at 02 LST drops by 1, 2, 3, and 4 mm.331
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Figure 4. Composites for the Deep (top) and ShCu (bottom) regime days showing the diurnal

cycle of domain-averaged (a,d): Cloud liquid water (colormap) and convective boundary layer

(magenta dashed line), (b,e): Total ice, and (c,f): Rain content. The Deep selection includes the

17th, 21st, 23rd, and 26th of December 2014, while the ShCu selection comprises the days of the

9th, 13th, 27th, and 28th (section 3.4).

Figure 5 depicts the 30-minute average water vapor profiles at 02:15 LST, 08:15332

LST, and 14:15 LST, along with the daytime CWV for both moisture sensitivity exper-333

iments (low-level and free troposphere, with the latter described in the next section). The334

low-level dry perturbations (continuous lines) diminish from nighttime to afternoon due335

to latent heat flux and moisture tendencies. Above the perturbed region, the mixing ra-336

tio values are remarkably similar, indicating minimal vertical mixing. At 14 LST, be-337

fore the late afternoon STD convective transition, the lower tropospheric water vapor338

for the case where CWV drops by 3 mm (BL3mm) is similar to those for the ShCu days.339

In terms of CWV, the experiments BL3mm and BL4mm demonstrate lower CWV values340

compared to ShCu days in the early morning. However, while the ShCu composite re-341

mains relatively stable throughout the diurnal cycle, the Deep composite exhibits wa-342

ter vapor convergence, leading to higher CWV values than the ShCu days for all exper-343

iments in the afternoon.344

Figure 6 shows the magnitude (colors) and relative (contours) difference between345

experiments and control case for cloud liquid, total ice, and rain domain-averaged mix-346

ing ratios. In addition, the liquid water path, ice water path, and surface precipitation347

(lines) are also included. Cloud liquid water is reduced up to 75% near the cloud base,348

with a more extensive impact observed for drier scenarios from 10 to 12 LST. Above 3349

km, the amount of liquid water experiences a significant increase of up to 100% during350

the afternoon in drier scenarios, reflecting a greater presence of warm clouds. Addition-351

ally, the peak in liquid water in drier cases occurs later, shifting from 11:45 LST in the352

control case to 13:15 LST for experiments BL3mm and BL4mm.353

Ice water content shows a significant sensitivity to low-level dry perturbations. For354

example, the control case exhibits an ice water path maximum of 110.1 g m−2, declin-355

ing to 67.2 g m−2, 56.2 g m−2, 40.0 g m−2, and reaching a minimum of 9.5 g m−2 with356

a decrease in CWV by 1, 2, 3, and 4 mm at 02 LST, respectively. The relative differences357

compared to the control case are 33.5%, 44.4%, 60.4%, and 90.6%, respectively, indicat-358

ing a non-linear decrease in the ice water path as a function of the change in CWV.359
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Figure 5. Moisture perturbation. Specific humidity (g/kg) profile at (a,e) 02:15 LST, (b,f)

08:15 LST, (c,g) 14:15 LST, and time series of (d,h) column water vapor (mm) for low-level (up-

per panels, solid colors) and free troposphere (lower panels, solid colors) moisture experiments.

The Deep composite (control) is the dashed black line, and the ShCu composite is the dashed

magenta line.

For the rain content, a decrease in drier scenarios is observed from early morning360

to early afternoon. While the reduction remains insignificant when reducing CWV by361

1 mm, contours of 50% and 75% emerge in the drier cases. In terms of precipitation rate,362

the control case shows a peak of 0.86 mm hr−1, declining to 0.78, 0.68, 0.55, and 0.42363

mm hr−1 with a decrease in CWV by 1, 2, 3, and 4 mm at 02 LST, respectively. The364

decrease in the maximum precipitation rate resulting from changes in CWV can be ef-365

fectively modeled by a quadratic function (Figure S6). Note that despite the observed366

sensitivity of ice content to low-level dry perturbations, where ice content becomes neg-367

ligible in the driest scenario, the model still produces significant amounts of warm pre-368

cipitation for all experiments.369

5.2 Free Troposphere Moisture Experiment370

The experiments conducted in the free troposphere are analogous to the low-level371

moisture experiments, differing only in that the perturbation is applied above 1.5 km.372

We select multiplicative factors such that the CWV for the perturbed profile at 02 LST373

drops by 2, 4, 6, and 8 mm, respectively. These changes in CWV correspond to double374

what is applied in the previous section, and our choice is motivated by the weaker sen-375

sitivity of free troposphere humidity to convection, as we will show below.376

The dry perturbations in the free troposphere diminish throughout the day, sim-377

ilarly to the low-level perturbations (Figure 5). The drier scenarios also exhibit slightly378

drier conditions at lower levels by early afternoon compared to the control run. The free379

troposphere experiments start with a lower CWV value than that of shallow days. How-380

ever, the case FT2mm already presents higher CWV values than the shallow composite381

in the early morning, while FT4mm shows higher values than shallow days only in the382
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Figure 6. Low-level moisture experiment. The composites show the diurnal cycle of domain-

averaged anomalies for (a,d,g,j) Cloud liquid water (g/kg), (b,e,h,k) Total ice (g/kg), and (c,f,i,l)

Rain (g/kg) mixing ratios. Each row corresponds to a different decrease in CWV, (a-c) 1 mm,

(d-f) 2 mm, (g-i) 3 mm, and (j-l) 4 mm. The colors indicate the absolute difference between each

experiment and the control, while the contours show relative differences of 50% (dotted), 75%

(dashed), and 100% (solid). Liquid and ice water paths (right axis, g/m2) are presented along

with cloud liquid and total ice, respectively, and surface precipitation rate (right axis, mm hr−1)

is shown alongside rainwater. The solid line represents the experiment, while the dashed line

represents the control runs conducted during the Deep days.

afternoon (around 14 LST). For the drier cases, FT6mm and FT8mm, their CWV remains383

lower than that of the shallow days throughout the simulation.384

Figure 7 presents the results for the free-troposphere moisture experiments and con-385

trol runs during the Deep days. While applying a dry perturbation above 1.5 km leads386

to a reduction in cloud liquid water and liquid water path throughout the troposphere,387

this impact is relatively minor compared to what is observed in the low-level experiments.388

Cloud ice water exhibits a greater sensitivity to the free troposphere perturbations.389

However, the impact is still relatively minor compared to the perturbations at low lev-390

els. For instance, when the perturbation in the free troposphere and at low levels leads391

to a 2 mm drop in CWV, the maximum ice water path is 99.1 g m−2 and 56.2 g m−2,392

respectively. Similarly, with a 4 mm drop in CWV, the maximum ice water path is 60.9393

g m−2 and 9.5 g m−2 for the perturbations in the free troposphere and at low levels, re-394

spectively. Moreover, the driest free troposphere case (FT8mm) still exhibits significant395
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Figure 7. Same as Figure 6, but for the free troposphere moisture experiment instead, where

the decreases in CWV were 2, 4, 6, and 8 mm.

ice water path values, with a maximum of 45.0 g m−2 at 17:45 LST, being even greater396

than the value observed for the experiment where CWV is reduced by 3 mm at low lev-397

els (BL3mm, 40.0 g m−2).398

Rain content also shows a reasonable sensitivity to the free troposphere perturba-399

tions, although it is minor compared to low-level perturbations. For example, when the400

perturbation in the free troposphere and at low levels leads to a 2 mm drop in CWV,401

the peak of precipitation is 0.82 mm hr−1 and 0.68 mm hr−1, respectively. Similarly, with402

a 4 mm drop in CWV, the peak for the free troposphere experiment remains the same403

(0.82 mm hr−1) while the low-level perturbation shows 0.42 mm hr−1. Finally, the dri-404

est free troposphere case (FT8mm) shows a maximum of 0.64 mm hr−1, which better re-405

lates with experiment BL2mm (0.68 mm hr−1).406

5.3 Wind Jet Experiment407

To assess the impact of wind shear on the deepening of convective clouds in the408

Amazon, we perform sensitivity experiments in which the low- or high-level jets are mod-409

ified. Each jet’s intensity, amplitude, and altitude are changed separately. The modified410

wind profiles are used to force the model, with nudging applied with a timescale of 2 hours411

throughout the simulation.412

In order to have better control of the shape of the wind profiles and easily gener-413

ate sensitivity tests, we approximate the imposed wind using an analytical formula. More414
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specifically, considering the shape of the wind speed, we model this quantity as the su-415

perposition of two Gaussian functions, each representing a jet. The average wind speed416

is fitted to this function, and the fitting parameters are given in Table S1. The wind di-417

rection was fitted to a piece-wise linear function. (Figure 8b). The wind direction is con-418

stant in the bottom ∼2 km. It veers clockwise at a constant rate of about 14◦ km−1 from419

2 to 15 km, and counterclockwise at a rate of -28◦ km−1 from 15 to 20 km, and it is con-420

stant above 20 km (not shown). The wind speed and direction imposed for control runs421

are shown in Figure 8a-b (solid black line).422

Figure 8. Wind profiles for the jet experiments control run showing: (a) large-scale wind

speed and (b) wind direction, as measured (blue) and as idealized (black). Sensitivity experi-

ments perturbed the wind speed profile of either the (c) low-level or (d) upper-level wind jets by

intensifying (blue), widening (orange), shifting (green), or removing the jet (red).

For each jet, we conduct 4 experiments in which we (1) increase the jet strength,423

(2) increase the width, (3) shift the peak position, and (4) remove the jet entirely while424

keeping the wind direction constant in all cases. The modified wind profiles are shown425

in Figures 8c-d. For each experiment, the model is restarted from the control run at 02426

LST of each one of the four Deep days selected, and the modified wind profiles are ap-427

plied to force the model with a 2-h nudging timescale.428

Figure 9 presents the results for the low-level jet experiments. While the jet po-429

sition significantly affects cloud liquid water, the jet width has a negligible impact. The430

higher position possibly enhances the low-level updrafts, leading to an increase of rl above431

2 km, particularly in the late afternoon (around 16 LST), where rl can increase by as432

much as 100%. Removing the low-level jet also exhibits a similar impact on cloud liq-433

uid water, although the anomalies are smaller than those associated with the higher jet.434

The stronger jet only slightly impacts the cloud liquid water. Although the jet influences435

the cloud water profile, the integrated liquid water path is similar in all experiments and436

does not significantly differ from the control.437

The cloud ice content is more significantly affected by the low-level jet. The con-438

trol experiment exhibits peaks in ice water path at 12:45 LST and 16:15 LST. The stronger439

jet simulation shows positive anomalies before 12 LST and after 16 LST, resulting in an440

increase in ri of up to 100%, with negative anomalies observed in between. For the wider441

jet, a positive anomaly dominates throughout the diurnal cycle, especially between 12-442

17 LST, when ri increases up to 100% above 12 km. However, there is only a modest443

increment in ice water path. The higher jet shows a decrease ranging from 50-75% in ri444

around 12 LST and an increase afterwards. There is a delay of the convective activity,445

with a suppression at 12 LST and an increase around 16 LST. When the low-level jet446

is removed, the ice water path is substantially reduced, both at 12 and 16 LST (up to447

75%), with the maximum being reached only around 17:45.448
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Figure 9. Low-level jet experiment. The composites show the diurnal cycle of domain-

averaged anomalies for (a,d,g,j) Cloud liquid water (g/kg), (b,e,h,k) Total ice (g/kg), and (c,f,i,l)

Rain (g/kg) mixing ratios. Each row corresponds to a different low-level jet perturbation, (a-c)

strength, (d-f) width, (g-i) position, and (j-l) removed entirely. The colors indicate the absolute

difference between each experiment and the control, while the contours show relative differences

of 50% (dotted), 75% (dashed), and 100% (solid). Liquid and ice water paths (right axis, g/m2)

are presented along with cloud liquid and total ice, respectively, and surface precipitation rate

(right axis, mm hr−1) is shown alongside rainwater. The solid line represents the experiment,

while the dashed line represents the control runs conducted during the Deep days.

Rain content follows the changes in total ice mixing ratio, with negative (positive)449

anomalies where ice decreases (increases). However, changes in rr are less significant, with450

smaller areas showing changes greater than 50%. While the surface precipitation shows451

minimal impact in the stronger and wider jet experiments, it exhibits notable differences452

for the other two cases. For the higher jet, precipitation decreases around noon and in-453

creases in the late afternoon, following the changes in ice water path. In the absence of454

a jet, precipitation is particularly reduced between 12-15 LST, with the noon peak be-455

ing roughly 40% lower than that observed in the control runs.456

Figure 10 presents the results for the upper-level jet experiments. There is a strik-457

ing contrast with the low-level jet results. The upper-level jet affects convection only in458

the upper troposphere, with negligible impacts on liquid water. Overall, the experiments459

show an alternating increasing and decreasing ice content pattern. This is related to a460

delay in convection, which can be more easily noticed on the ice water path curves. Both461
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Figure 10. Same as Figure 9, but for the upper-level jet experiment instead.

the noon and afternoon peaks are displaced to later times, and the afternoon peak also462

gets more intense. The exception is the wider jet experiment, where the noon peak slightly463

increases and is not delayed. The changes are more significant after 17 LST when all ex-464

periments exhibit an increase of up to 100% in ice water. In the case of the removed jet,465

the afternoon peak occurs 30 minutes later (16:45 LST). For the stronger and wider jet466

experiments, the peak is delayed by 1 hour (17:15 LST), and for the jet with a relatively467

lower position, the peak occurs 1.5 hours later (17:45 LST). Nonetheless, there is no sig-468

nificant change in the rain content and surface precipitation.469

6 Discussion470

While several studies in the literature have employed CRMs to simulate convec-471

tive properties in both continental (M. F. Khairoutdinov & Randall, 2003; M. Khairout-472

dinov & Randall, 2006; Henderson & Pincus, 2009; Cecchini et al., 2022) and ocean (Blossey473

et al., 2007; M. F. Khairoutdinov et al., 2009; Liu et al., 2015; Blossey et al., 2021) re-474

gions, we conduct simulations specifically for the central Amazon by coupling a CRM475

with a LSM, thus explicitly representing biosphere-atmosphere feedbacks, which plays476

a crucial role on convection over the Amazon tropical forest (Silva Dias et al., 2002). Vilà-477

Guerau de Arellano et al. (2020) utilized a large-eddy model combined with a different478

LSM to investigate the diurnal cycle of energy, moisture, and carbon dioxide from clear479

to cloudy conditions. Nevertheless, their study relied only upon a specific day during the480

Amazon dry season and did not address deep convection. Although the recent work by481

Gonçalves et al. (2022) also utilized a CRM coupled with an LSM to simulate convec-482
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tion in the central Amazon, they did not evaluate the evolution of moisture content and483

surface latent and sensible heat fluxes. This restricts the validation of their simulations484

in reproducing these crucial convective properties, which we have addressed in our study.485

Specifically, we evaluate the model performance using single-moment, double-moment,486

and P3 microphysics schemes. Only the CWV exhibits a noticeable sensitivity to the mi-487

crophysics, where the P3 scheme shows the strongest correlation (Pearson, 0.8) with ob-488

servations. Varying the horizontal resolution (from 500 to 250 m) and domain size (from489

200×200×27 to 400×400×27 km3) reveals minimal sensitivity to the model results. For490

the surface fluxes, the P3 microphysics scheme indicates a correlation of about 0.8 for491

both latent heat and sensible heat fluxes. Overall, our results demonstrate that our sim-492

ulations satisfactorily reproduce the convective properties in the central Amazon.493

Our sensitivity experiments indicate that the humidity in the early morning at lower494

levels plays a crucial role in the late afternoon STD convective transition in the Ama-495

zon. By reducing water vapor in the lowest 1.5 km, the diurnal peak of the ice water path496

substantially drops with changes in CWV, whereas a change of 2 mm causes a reduc-497

tion of ice in the range of 50-75%, and a change of 4 mm results in negligible ice dur-498

ing the simulation. Moreover, the maximum precipitation rate demonstrates an approx-499

imately quadratic decrease with variations in the low-level CWV. Schiro et al. (2016) ex-500

amined the relationship between precipitation and CWV by calculating the condition-501

ally averaged precipitation to CWV using local observations of both variables at corre-502

sponding times. They observed that the probability and intensity of precipitation can503

be roughly characterized by an exponential function of CWV magnitude. It is essential504

to highlight that our approach differs from that of Schiro et al. (2016). We used the domain-505

average for maximum afternoon precipitation, while CWV precedes the diurnal cycle.506

This procedural difference somewhat justifies why we observed a quadratic relationship507

instead of an exponential one, as there is no contradiction between these results. Fur-508

thermore, our findings indicated that achieving a comparable reduction in ice water path509

or precipitation, as observed in the low-level experiments, requires reducing the column510

water vapor by a factor of two or more in the free troposphere.511

While M. Khairoutdinov and Randall (2006) conducted experiments that differed512

from those designed in this study and were limited to a single idealized case during TRMM-513

LBA on February 23, 1999, they similarly indicated that free troposphere precondition-514

ing plays a minor role in convection in the Amazon. Based on GoAmazon2014/5 obser-515

vations, Ghate and Kollias (2016) noted that locally-driven precipitating days during the516

dry season show an early morning water vapor excess above the boundary layer while517

Zhuang et al. (2017); Tian et al. (2021) found that deep convective days exhibit a moister518

environment extending from the surface to higher levels, regardless of the season. Schiro519

and Neelin (2019) showed that the onset and probability of the STD transition are closely520

linked to both lower-free-tropospheric moisture (700–900 hPa) and boundary layer mois-521

ture. Conversely, MSC likelihood rises with higher lower-free-tropospheric humidity, while522

the relationship with boundary layer moisture is less distinct. The relative importance523

of moisture to convection can also vary based on the regions being studied. Focusing on524

the Tropical Western Pacific region on Nauru Island, Holloway and Neelin (2009) found525

a strong correlation between observed precipitation and moisture variability in the free526

troposphere, with limited variability in the boundary layer. Additionally, Bretherton et527

al. (2004) also highlighted the importance of free-tropospheric humidity to convection528

over the Tropical Oceans.529

Vertical wind shear primarily impacts the peak timing of ice water in our simula-530

tions. Furthermore, our findings indicate that convection is enhanced during the after-531

noon when the low-level wind is idealized using a jet of larger width, moderate strength,532

and with a relatively higher peak position from around 2 to 4 km. Conversely, the upper-533

level wind has a minor influence on convective intensity. M. Khairoutdinov and Randall534

(2006) designed experiments employing an idealized large-scale wind forcing and a free535
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wind shear environment. Similar to our results, the STD transition was not prevented536

by removing vertical wind shear. Cecchini et al. (2022) also conducted numerical exper-537

iments to quantify the impact of vertical wind shear in the central Amazon, specifically538

targeting shallow cumulus convection during a typical day in the dry season. By intro-539

ducing incremental changes in the large-scale wind speed across the entire vertical do-540

main, the authors observed a weakening of convective intensity, suggesting that verti-541

cal wind shear prevents the STD convective transition. Here, we have identified that the542

vertical level of wind shear significantly influences its impact on convection. Moreover,543

while stronger vertical wind shear suppresses the initial phase of convection, the STD544

convective transition still occurs, albeit with a delay ranging from a few minutes to an545

hour.546

In contrast to prior observational studies, our modeling results offer quantitative547

insights into the role of vertical wind shear in Amazonian convection. For example, Zhuang548

et al. (2017) observed that ShCu days are linked to stronger mid-level wind shear dur-549

ing the wet season. We observe that when the upper-level jet is shifted from around 12550

to 8 km, which is related to mid-level wind shear, the trigger for the STD transition is551

only delayed by about 1.5 hours. While Chakraborty et al. (2018) indicated that more552

intense low-level shear is associated with shallow convection during the transition sea-553

son, we observe that stronger low-level shear has little influence on cloud liquid water554

and might only provoke a delay in the late afternoon STD transition.555

Thus, our findings suggest that a moderate shear environment might more efficiently556

separate downdrafts and updrafts within the cloud while concurrently organizing the con-557

vergence of low-level water vapor within the cloud layers. A wider jet leads to a smoother558

and more gradual shift in wind shear, extending from the surface to higher altitudes, thereby559

also organizing the water vapor convergence from below the cloud base to higher levels.560

Given the dependence of water vapor convergence on low-level humidity, convection demon-561

strates heightened sensitivity to boundary layer humidity. Meanwhile, the upper-level562

jet primarily impacts the extensive cloud anvil, exerting a relatively minor influence on563

ice content above 8 km. Finally, these results collectively suggest that dynamic factors564

may exert a more pronounced influence on convection in the Amazon.565

7 Conclusions566

While numerous observational studies have explored the environmental controls on567

convection in the Amazon (Itterly et al., 2016; Ghate & Kollias, 2016; Zhuang et al., 2017;568

Schiro et al., 2016, 2018; Chakraborty et al., 2018; Tian et al., 2021; Giangrande et al.,569

2023), we have specifically addressed this problem through high-resolution idealized sim-570

ulations. We employ the System for Atmospheric Modeling (SAM) model coupled with571

a LSM to perform simulations for the Amazon region in December 2014. The model is572

forced with the large-scale fields from the variational analysis, and the observations from573

the GoAmazon2014/5 experiment are used to validate the model results. The LSM de-574

fault input parameters are modified according to in-situ and satellite observations over575

the Amazon region, and fine-tuning tests focused on improving the model agreement with576

the observations. The simulations consistently reproduce the observations for precipi-577

tation, column water vapor (CWV), surface latent and sensible heat fluxes, and surface578

radiation fluxes. Sensitivity tests demonstrate that simulations conducted using a single-579

moment microphysics scheme drifted towards a drier state, while simulations with the580

P3 microphysics scheme more closely reproduce the observed water budget. For a more581

detailed validation of the LSM, having more comprehensive observations of the soil prop-582

erties (e.g., temperature and wetness down to 4 m) would be necessary.583

In light of recent observational studies addressing the shallow-to-deep (STD) con-584

vective transition (Ghate & Kollias, 2016; Zhuang et al., 2017; Tian et al., 2021), our study585

has the advantage of conducting idealized sensitivity experiments in which only one en-586
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vironmental control—moisture or vertical wind shear at low or high levels—is modified587

at a time. This approach efficiently isolates their influence in controlling convection. The588

pre-convective humidity at low levels had the greatest impact on convection. The diur-589

nal peak in the ice water path robustly decays with changes in CWV within the lower590

1.5 km. To have a comparable impact on the diurnal cycle of convection, it is necessary591

to reduce free tropospheric CWV by approximately twice the amount in the lower lev-592

els. Vertical wind shear mainly affects the ice water peak timing. A wider low-level jet593

of moderate strength possibly facilitates the STD convective transition by organizing low-594

level water vapor convergence and potentially separating downdrafts and updrafts within595

the cloud. The upper-level wind shear has a minor influence over convection in the Ama-596

zon.597

While our results provide quantitative information on the role of moisture and wind598

shear in convection, we suggest that sensitivity experiments be conducted using differ-599

ent cloud-resolving models. For instance, SAM uses periodic lateral conditions, artifi-600

cially impacting the numerical results. Using multiple models can aid in evaluating the601

robustness of the findings and identifying potential model biases. Although our sensi-602

tivity experiments identified that the maximum afternoon precipitation rate decreases603

roughly quadratically with changes in pre-convective CWV, particularly in the low-level604

experiment, it is important to note that this relationship was derived from only four val-605

ues of moisture perturbation. This limitation restricts the significance of the findings.606

The robustness of this conclusion should be further addressed, with a particular focus607

on understanding the associated mechanism for this relationship. Finally, we also rec-608

ommend that future studies conduct specific experiments to investigate the role of wa-609

ter vapor convergence and the effects of large-scale wind direction on deep convection.610

8 Data Availability611

The GoAmazon2014/5 observations are publicly available at https://www.arm.gov/612

research/campaigns/amf2014goamazon. The large-scale forcing data based on the vari-613

ational analysis for the GoAmazon2014/5 experiment is available at the ARM Archive:614

http://iop.archive.arm.gov/arm-iop/0eval-data/xie/scm-forcing/iop at mao/.615

The Moderate Resolution Imaging Spectroradiometer (MODIS) data for land cover and616

leaf area index can be downloaded through the Application for Extracting and Explor-617

ing Analysis Ready Samples (AρρEEARS, https://appeears.earthdatacloud.nasa618

.gov/). The Global Land Data Assimilation System (GLDAS) data for soil tempera-619

ture and soil wetness are available at https://disc.gsfc.nasa.gov/datasets/GLDAS620

NOAH025 3H 2.1/summary. For further assistance concerning the model input files and621

the necessary modifications in the SAM’s source code to perform the moisture pertur-622

bations as described in section 5.1 and section 5.2, please refer to the author.623

Acknowledgments624

The authors express their gratitude to Marat Khairoutdinov for providing access to the625

SAM code and for offering valuable assistance with the Land Surface Model. The tech-626

nical support and advanced computing resources from University of Hawai‘i Information627

Technology Services – Cyberinfrastructure, funded in part by the National Science Foun-628

dation CC∗ awards # 2201428 and # 2232862 are gratefully acknowledged. We also ac-629

knowledge the data from the Atmospheric Radiation Measurement (ARM) Program spon-630

sored by the U.S. Department of Energy, Office of Science, Office of Biological and En-631

vironmental Research, Climate and Environmental Sciences Division. L.A.M.V. acknowl-632

edges the Brazilian National Council for Scientific and Technological Development (CNPq)633

graduate fellowship (grant number 148652/2019-0). Additionally, gratitude is extended634

to the Coordination for the Improvement of Higher Education Personnel (CAPES) fel-635

lowship (grant number 88887.571091/2020-00). H.M.J.B acknowledges support from the636

–19–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

U.S. Department of Energy, Office of Science, Biological and Environmental Research637

program under Award Number DE-SC-0023058.638

References639

Adams, D. K., Barbosa, H. M. J., & Gaitán De Los Ŕıos, K. P. (2017). A spatiotem-640
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Key Points:10

• SAM-LSM consistently reproduces the GoAmazon2014/5 observations for precip-11

itation, moisture, and surface fluxes during the wet season.12

• Daytime convection shows a noticeable sensitivity to pre-convective low-level hu-13

midity and a weaker response to free troposphere humidity.14

• Vertical wind shear has a lesser influence than humidity on the shallow-to-deep15

convective transition.16
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Abstract17

Deep convection is the primary influence on weather and climate in tropical regions.18

However, understanding and simulating the shallow-to-deep (STD) convective transition19

has long been challenging. Here, we conduct high-resolution numerical simulations to20

assess the environmental controls on the evolution of isolated convection in the Amazon21

during the wet season. Observations and large-scale forcing derived through the constrained22

variational analysis approach for the GoAmazon2014/5 experiments are used in the sim-23

ulations and model validation. The model consistently reproduces the GOAmazon ob-24

servations for precipitation, moisture, and surface fluxes of radiation, latent and sensi-25

ble heat. Through sensitivity experiments, we examine the relative importance of mois-26

ture and vertical wind shear in controlling the STD convective transition. Reducing the27

pre-convective humidity within the lower 1.5 km significantly suppresses vertical devel-28

opment and lowers the ice water path. Additionally, the maximum precipitation rate de-29

creases almost quadratically with column water vapor. Conversely, a reduction of col-30

umn water vapor above 1.5 km by a factor of two or more is necessary to produce a com-31

parable decrease in ice water path or precipitation. Moderate low-level wind shear fa-32

cilitates the STD transition, leading to an earlier peak of ice water compared to stronger33

wind shear or its absence. Although upper-level wind shear negatively influences high34

cloud formation, its role in controlling the STD transition is relatively smaller than that35

of low-level wind shear. Our results help quantify the role of moisture and wind shear36

on the STD transition, but also suggest that dynamic factors may exert a more pronounced37

influence.38

Plain Language Summary39

The Amazon rainforest plays a vital role in the Earth’s climate system. However,40

it is not entirely understood how environmental conditions control the evolution from41

fair weather conditions to severe thunderstorms in regions of the deep Tropics. We ad-42

dress this problem utilizing numerical simulations that capture the interactions between43

the forest, atmosphere, and clouds. Atmospheric modeling data developed for the GoA-44

mazon2014/5 experiment are used to initialize our Amazon-based simulations. The model45

consistently reproduces the Amazon environment throughout the period of our simula-46

tions, which covers December 2014. Additionally, we contrast the model results between47

the control simulation and experiments in which the moisture or wind is modified to eval-48

uate their relative importance to cloud development and precipitation. Lower tropospheric49

moisture is critical to cloud growth. The amount of moisture in the air above 1.5 km has50

a minor contribution to cloud development and precipitation. Low-level wind of mod-51

erate strength facilitates cloud development during the afternoon. The upper-level wind52

negatively affects the ice formation in high clouds. These results help strengthen our knowl-53

edge of tropical convection, critical for improving numerical model performance.54

1 Introduction55

Deep convection dominates the weather and climate in the tropics. Nevertheless,56

comprehending and simulating the convective processes is a formidable challenge due to57

the wide range of spatial and temporal scales involved (Mapes et al., 2009; Moncrieff et58

al., 2012; Zhang et al., 2013). Shallow cumulus convection, a small-scale phenomenon59

lasting tens of minutes and covering spatial scales of the order of a few kilometers, of-60

tentimes evolves into deep convective clouds covering tens of kilometers within typical61

time scales of 2 to 4 hours (Wu et al., 2009; Hohenegger & Stevens, 2013; Adams et al.,62

2013; Henkes et al., 2021; Powell, 2022). Moreover, deep convection frequently becomes63

organized and experiences upscale growth into mesoscale convective systems (MCSs) with64

lifetimes spanning hours to a day and ranging in horizontal scale from 100 km to 1,00065

km (Houze Jr, 2004). Likewise, land-atmosphere interactions and complex physical pro-66
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cesses ranging from cloud microphysics to the generation of gravity waves are intrinsi-67

cally tied to deep convection (Silva Dias et al., 2002; Mapes et al., 2006; Mapes & Neale,68

2011; Jewtoukoff et al., 2013; Gupta et al., 2023).69

General circulation models (GCMs) rely on parameterizations of convective pro-70

cesses and typically struggle to reproduce the shallow-to-deep (STD) convective tran-71

sition over continental regions (Betts, 2002; Betts & Jakob, 2002; Bechtold et al., 2004;72

Grabowski et al., 2006). Their simulated precipitation peaks much earlier than observed73

(Lin et al., 2000; Betts, 2002; Collier & Bowman, 2004; Dai & Trenberth, 2004), which74

is an important source of bias and uncertainty in GCMs to this day (Sherwood et al.,75

2014; Stevens & Bony, 2013; Itterly et al., 2018; Maher et al., 2018; Freitas et al., 2020,76

2024). To circumvent the inherent challenges posed by convective parameterizations, cloud-77

resolving models (CRMs), which explicitly resolve the up- and downdrafts in clouds, have78

been used to study convective processes over continental and oceanic regions. For ex-79

ample, M. Khairoutdinov and Randall (2006) conducted the first high-resolution numer-80

ical simulations to investigate the STD transition over the Amazon. Their findings high-81

lighted the importance of cold pools in forcing the development of deep convection, while82

the impact of vertical wind shear and free tropospheric preconditioning were relatively83

minor. As part of the EUROCS (EUROpean Cloud Systems study), Derbyshire et al.84

(2004) evaluated the sensitivity of cumulus convection to free tropospheric humidity. Un-85

like M. Khairoutdinov and Randall (2006), they observed intense deep precipitating con-86

vection in moister scenarios, whereas only shallow convection was evident in the driest87

scenario. Waite and Khouider (2010) conducted idealized numerical simulations over the88

tropical Atlantic Ocean. Their study emphasized the importance of congestus precon-89

ditioning, which reduces the impact of entrainment on cloud buoyancy, ultimately lead-90

ing to the STD transition. In contrast, Hohenegger and Stevens (2013) showed that the91

transition from congestus to deep convective clouds occurs on shorter time scales than92

required for congestus clouds to moisten the atmosphere sufficiently. This implies that93

dynamic factors play a more substantial role in driving convection. While CRM stud-94

ies offer valuable insights into physical convective processes, they still require validation95

through high-resolution observations, which have typically been lacking in tropical rain-96

forests.97

In the Amazon, important, but often limited field campaigns, have explored dif-98

ferent aspects of tropical convection. Adams et al. (2015) established the Amazon Dense99

GNSS Meteorological Network, a one-year campaign to observe the interaction between100

water vapor fields and deep convection. Adams et al. (2013) also utilized GNSS/GPS101

data from a long-term single site (July 2008 to December 2011) in Manaus, Brazil to eval-102

uate the water vapor convergence associated with the STD transition and found a weak103

and quasi-linear convergence timescale of approximately 8 hours, followed by a robust104

and non-linear convergence timescale of approximately 4 hours during the STD transi-105

tion. Later, Adams et al. (2017) employed this dense network data to investigate how106

vapor fields evolve spatially during during the STD transition. Their results were con-107

sistent with the 4-hour STD timescale and the spatial evolution was reflective of the wa-108

ter vapor convergence posited in the single site study. More recently, the Green Ocean109

Amazon (GOAmazon) 2014/5 Experiment (Martin et al., 2016, 2017) was carried out110

from 2014 to 2015 in the central Amazon, providing the most comprehensive set of ob-111

servations of clouds and aerosols in the Amazon to date. Analyzing this dataset during112

the dry season (June-September), Ghate and Kollias (2016) noted an excess of water va-113

por above 2 km during the early morning when contrasting locally-driven precipitating114

days and nonprecipitating days. Conversely, Zhuang et al. (2017) and Tian et al. (2021)115

observed that deep convective days exhibit relatively higher moisture extending from the116

surface to mid-levels in all seasons. Schiro et al. (2016) showed a robust correlation be-117

tween total column water vapor and precipitation in both the central Amazon and the118

tropical western Pacific. Furthermore, Schiro and Neelin (2019) demonstrated a strong119

connection between the initiation and likelihood of daytime precipitation and the bound-120
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ary layer and lower free troposphere moisture content. Previous studies do not completely121

agree on the relative importance of vertical wind shear. For example, while Zhuang et122

al. (2017) indicated that more intense low-level and deep-layer bulk wind shears facil-123

itate the STD transition during the dry season (June-September), Chakraborty et al. (2018)124

suggested that a more intense low-level shear could inhibit deep convection during the125

transition season (August–November), especially if it increases the entrainment of dry126

air.127

In this paper, we conduct high-resolution model simulations to assess the role of128

moisture and vertical wind shear in controlling the STD convective transition in the Ama-129

zon. First, we focus on model validation employing GoAmazon data for the period of130

December 2014. Then, we conduct idealized sensitivity experiments in which either mois-131

ture or large-scale wind are modified at different atmospheric levels to assess their rel-132

ative importance in the development of deep convection. The paper is structured as fol-133

lows: Section 2 shows the study area. Section 3 describes the material and methods. Sec-134

tion 4 covers the model validation. Sensitivity experiments for moisture and wind shear135

are conducted in section 5. A discussion of the results is given in section 6. Section 7 con-136

tains the conclusions.137

2 Study Region138

The Amazon Basin is bordered by significant altitudes (Figure 1a), primarily in139

the western region, where some peaks in the Andes Mountains rise well over 6,000 me-140

ters in elevation above sea level. However, the simulations are conducted over the GoA-141

mazon2014/5 campaign region in the central Amazon, where the topography can be ad-142

equately considered as an extensive plain with minimal variations (< 130 m in our do-143

main of interest, section 3.2). During the experiment, most of the observations were taken144

from the T3 site, located 70 km downwind of Manaus, in Manacapuru (3.21◦S, 60.60◦W),145

a site characterized by a pasture surrounded by forest and close to the intersection of146

the Solimões River and Negro River (Figure 1b).147

Figure 1. (a) Land topography and ocean depth (NOAA National Centers for Environmental

Information, 2022) around the Amazon. (b) Land cover (Friedl et al., 2010) around the GoAma-

zon2014/5 sites. The dashed circle with a radius of 202 km centered at the T1 site (in Manaus)

corresponds to the S-band radar domain. The dotted circle with a radius of 110 km shows the

domain of the large-scale forcing developed for the GoAmazon2014/5 Experiment (Tang et al.,

2016). We also indicate the Amazon, Solimões, and Negro Rivers on the map. Land cover is from

2014, based on the Moderate Resolution Imaging Spectroradiometer (MODIS) - International

Geosphere-Biosphere Programme (IGBP) land cover classification system. The Amazon Basin

contour is provided by Mayorga et al. (2012).
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3 Material and Methods148

3.1 Data149

For model validation, we use campaign observations of precipitation, moisture, ra-150

diation, and surface latent and sensible heat fluxes. Precipitation is based on the SIPAM151

S-band radar measurements (Schumacher & Funk, 2018), which we average over the do-152

main of the control runs. Sensible heat flux (H) and latent heat flux (LE) are from the153

Quality Controlled Eddy Correlation (QCECOR) Flux Measurement (ARM, 2014b). Sur-154

face radiation fluxes are from the Sky Radiation Radiometers (SKYRAD) and Ground155

Radiation Radiometers (GNDRAD) (ARM, 2013). Column water vapor (CWV) is cal-156

culated from the balloon-borne sounding system (SONDE), which provides the vertical157

profiles of thermodynamic conditions 4 times per day during the period of this study,158

at 02, 08, 14, and 20 LST (ARM, 2014a).159

Large-scale atmospheric fields of water vapor mixing ratio, temperature, wind, and160

moisture and temperature tendencies are based on 3-hour Constrained Variational Anal-161

ysis Data (VARANAL). This assimilation product was developed using atmospheric fields162

from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim163

reanalysis (Dee et al., 2011), which were mainly constrained by the SIPAM S-band radar164

precipitation rate and ARM surface fluxes through the column heat and moisture bud-165

get analysis (Tang et al., 2016). The VARANAL data represent an average over the anal-166

ysis domain centered at T1 site, covering a radius of 110 km (Figure 1b).167

The Moderate Resolution Imaging Spectroradiometer (MODIS) provides data prod-168

ucts of land cover type (MCD12Q1 Version 6) and leaf area index (MCD15A2H Version169

6.1) (Friedl et al., 2010). Specifically, we use the land cover product based on the Inter-170

national Geosphere-Biosphere Programme (IGBP) land cover classification system. Silt,171

clay, and sand content in the soil are based on in-situ measurements of the soil type “Terra172

Firme” (Terra-firma) described in Table 1 on Schaefer et al. (2017). Soil temperature173

and wetness are based on the NASA Global Land Data Assimilation System (GLDAS)174

Noah Land Surface Model L4 3 hourly 0.25 x 0.25 degree V2.1 (Rodell et al., 2004).175

3.2 Model Configuration176

We employ the numerical model System for Atmospheric Modeling (SAM), ver-177

sion 6.11.8, which solves the anelastic equations of motion and uses liquid water static178

energy, total nonprecipitating, and precipitating water as thermodynamic prognostic vari-179

ables (M. F. Khairoutdinov & Randall, 2003). The equations are solved using lateral pe-180

riodic boundary conditions. A prognostic turbulent kinetic energy 1.5-order closure scheme181

is used to parameterize subgrid-scale effects. Different microphysics parameterizations182

are available, including the single-moment (Morrison, 2003), double-moment (Morrison183

et al., 2005), and Predicted Particle Properties (P3) (Morrison & Milbrandt, 2015) schemes.184

The radiative heating can be prescribed or calculated by choosing a radiation scheme,185

either the Community Atmosphere Model (CAM3) (Collins et al., 2006) or the Rapid186

Radiative Transfer Model (RRTM) (Mlawer et al., 1997) schemes. Surface fluxes can be187

prescribed or calculated using Monin-Obukhov similarity theory or a simplified Land Sur-188

face Model (LSM) (Lee & Khairoutdinov, 2015), which is only compatible with the CAM3189

radiation scheme for the current SAM-LSM version.190

The baseline configuration for the simulations analyzed in this paper considers a191

domain of 200×200×27 km3. This choice was made primarily to reasonably accommo-192

date MCSs, given that they typically span about 100 km (Houze Jr, 2004). The hori-193

zontal resolution is 500 m, and the vertical resolution varies: it starts at a minimum of194

50 m below 1.5 km and increases to 300 m in the upper troposphere. From there, it grad-195

ually stretches up to 500 m at the model’s upper boundary, which reaches 27 km, result-196

ing in 128 vertical levels. The temporal resolution is 5 seconds, and instantaneous model197
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fields and statistics are output every 30 minutes. The control simulation uses the P3 mi-198

crophysics scheme. The CAM3 radiation scheme is called every 150 seconds. Surface fluxes199

are calculated through the LSM (see Section 3.3).200

The large-scale forcing is based on the VARANAL dataset for the period of De-201

cember 2014 in the central Amazon. Winds were nudged with a 2-hour timescale through-202

out the simulation. The water vapor mixing ratio was nudged only during the spin-up,203

considered as the period from 1-5 December 2014, with a timescale of 6 hours.204

For the purpose of model validation, we conducted additional simulations where205

the only modificatio was the choice of the microphysics scheme: single-moment, double-206

moment, or P3 schemes. We also assessed model sensitivity to resolution and domain207

size by performing additional simulations at 250 m resolution or with a 400×400×27 km3
208

domain.209

3.3 Land Surface Model Configuration210

The simplified Land Surface Model uses a minimalist set of parameters to solve the211

transport of heat, moisture, and radiation in the soil and vegetation and calculate the212

transfer of momentum between the surface and the atmosphere (Lee & Khairoutdinov,213

2015). It adequately idealizes the land-atmosphere interactions, which fundamentally in-214

fluence convection over the Amazon forest (Silva Dias et al., 2002; Betts, 2002). To de-215

fine the characteristics of the surface and the vegetation for the LSM, we use the MODIS216

data of land cover type during 2014 and mean leaf area index (LAI) for December 2014217

over a domain of 200×200 km2 centered at T3 site (see Figure S1). These are associated218

with the period and area of our simulations. The surface LAI was set to 4.4 m2 m−2,219

which corresponds to the domain average in satellite observations. In addition, we choose220

to cover the surface uniformly with evergreen broadleaf forests, which cover 83% of the221

area in observations. However, based on several tests conducted to optimize the LSM222

parameters, we modify the default near-infrared visible albedo for vegetation from 0.20223

to 0.30, the root length from 150 cm to 200 cm, and the displacement height factor from224

0.68 to 0.65. The corresponding displacement height is 0.65 × 20 m = 13 m, where 20225

m is the default value of the height of the canopy. These modifications improve the agree-226

ment between the observations and the simulated surface radiation, latent and sensible227

heat fluxes.228

The soil is simulated using 11 layers from the surface down to a depth of 400 cm.229

Clay and sand contents for each layer are based on in-situ measurements on Terra-firma230

forests (section 3.1). The initial conditions for soil temperature and soil wetness are based231

on GLDAS Noah, which provides information on 4 layers: 0-10, 10-40, 40-100, and 100-232

200 cm. The LSM soil layers close to the surface, which experience greater diurnal cy-233

cle variation, are interpolated using the nearest neighbor method. The deeper soil lay-234

ers are interpolated (and extrapolated) linearly. The initial profile of soil temperature235

and wetness is shown in Figure S2.236

3.4 Cloud Regime Days237

For the sensitivity experiments, we select a set of deep convective (Deep) days from238

the control simulation (P3 scheme, with a horizontal resolution of 500 m and a domain239

size of 200x200x27 km3) and perturb the sounding or the large-scale forcing imposed.240

For the Deep selection, we require that the domain average of total ice presents a dis-241

tinct deepening during the afternoon, characteristic of the STD convective transition.242

The chosen Deep days are December 17th, 21st, 23rd, and 26th. For comparison, we also243

select a set of shallow cumulus (ShCu) days from the control run. We identify four days244

with negligible ice content and minimum surface precipitation: December 9th, 13th, 27th,245
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and 28th. Figure S3 shows the profile of cloud liquid and total ice for our selection of246

cloud regime days.247

4 Model Validation248

A comparison between simulated and observed CWV, precipitation rate, LE, and249

H is shown in Figure 2. Results are shown for simulations using the single-moment, double-250

moment, and P3 microphysics schemes, in addition to the higher-resolution (P3/250m)251

and larger domain (P3/400km) runs.252

Figure 2. Comparison of modeling results (solid colors), large-scale forcing (dashed gray),

and observations (dotted) for (a) Precipitation rate (mm/hr), (b) Column water vapor (cm), (c)

Latent heat flux (W/m2), and (d) Sensible heat flux (W/m2) averaged over the model domain.

Simulated and observed CVW values agree very well in the first week, likely a re-253

sult of the nudging imposed during the spin-up period, after which some differences be-254

gin to appear. CWV values are generally higher for the P3 scheme and lower for the single-255

moment run. The P3 cases exhibit the strongest correlation (Pearson) with the obser-256

vations: 0.78 for P3/250m and 0.75 for both P3 and P3/400km (see the Taylor diagrams257

in Figure S4). Conversely, the single-moment scheme shows a weaker correlation with258

the observed CWV (0.56), while the double-moment scheme correlation is close to that259

of the P3 scheme (0.70). For the standard deviation of CWV, the model values range260

from 0.24 mm (P3/250m) to 0.28 mm (Single-Moment), while the observations indicate261

a value of 0.34 mm. Despite this difference, these statistics suggest that the model can262
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reproduce observed moisture content reasonably well for at least one month without re-263

sorting to any water vapor nudging.264

The different simulations closely reproduce the observed surface precipitation rate,265

with correlations ranging from 0.76 (P3/250m) to 0.79 (P3/400km). The simulations ex-266

hibit better agreement for lower precipitation rates, while they tend to underestimate267

the most intense precipitation events, which are associated with MCSs. Moreover, the268

model precipitation did not show significant sensitivity to the microphysics, spatial res-269

olution, or domain size. We hypothesize that the model’s underestimation of intense sur-270

face precipitation could potentially be attributed to the periodic boundary conditions.271

These conditions might prevent the advection of MCSs that could have developed in ar-272

eas outside the domain. Nevertheless, our validation results remain satisfactory, partic-273

ularly considering our primary focus is locally-driven STD convective transitions.274

Observed surface fluxes are reproduced reasonably well in the model runs. LE cor-275

relations with observations vary from 0.81 (double-moment) to 0.84 (P3, P3/250m, and276

P3/400km), while the H correlations range from 0.78 (double-moment) to 0.80 (P3, P3/250m,277

and P3/400km). The model only slightly overestimates the standard deviation of the ob-278

served mean LE, with the difference between model runs and observations being less than279

2 W m−2. However, it should be noted that the ECOR flux measurement system pro-280

vides local measurements of surface fluxes in a grassland region (T3 site, see Figure 1b),281

while the model provides an average for an area of 200×200 km2 (or 400×400 km2 for282

P3/400km), entirely covered by evergreen broadleaf forest. These differences make the283

qualitative agreement between model simulations and observations all the more remark-284

able.285

To evaluate the surface radiation budget, Figure 3 compares modeled and observed286

surface shortwave and longwave fluxes, including both downward and upward compo-287

nents. There is high-frequency variability in the observations that is not present in the288

model, likely because its values correspond to horizontal averages over the domain, whereas289

observational values are taken at the T3 site. Nevertheless, the model reproduces the290

observations satisfactorily for downward/upward surface shortwave and upward longwave291

fluxes (correlation ranges 0.82-0.86, Figure S5). In the case of downward longwave fluxes,292

the correlation is weaker, ranging from 0.57 (single and double-moment) to 0.62 (P3, P3/250m,293

and P3/400km), although these values are reasonable.294

Overall, our simulations with different microphysics schemes compared reasonably295

well with the observations considered in our validation analysis. The exception was the296

column water vapor, where the P3 scheme showed a stronger correlation with the ob-297

servations. While neither the higher resolution (P3/250m) nor the larger domain size (P3/400km)298

simulations demonstrated significant improvements over the P3 case, they significantly299

increased computational costs. This motivated our choice of the P3 scheme with 500 m300

horizontal resolution and a 200×200 km2 domain size as the control run configuration301

which underlies the results presented below.302

5 Sensitivity Experiments303

To evaluate the role of moisture and vertical wind shear in the STD convective tran-304

sition, a series of sensitivity experiments are carried out. First, we perturb the water va-305

por profile at low levels and the free troposphere to investigate the importance of low-306

and mid-level preconditioning. For vertical wind shear, we modify the structure of the307

low or upper-level jets to evaluate the relative importance of wind shear at different lev-308

els. The results in this section are associated with the mean composites for the four Deep309

or ShCu (section 3.4) simulated days.310

Figure 4 shows the composite of cloud liquid (rl), total ice (ri), and rainwater (rr)311

mixing ratios for the Deep and ShCu days averaged over the model domain. In addition312
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Figure 3. Similar to Figure 2, but for (a) downward shortwave, (b) upward shortwave, (c)

downward longwave, and (d) upward longwave flux at the surface (W/m2) averaged over the

model domain.

to liquid water, we include the convective boundary layer (CBL) height (magenta dashed313

line), defined as the height at which the buoyancy flux reaches its first local minimum.314

The figure shows that the CBL height follows closely cloud base and the lifting conden-315

sation level, with values reaching a maximum of 1.30 km at 14:45 LST on Deep days and316

1.41 km at 16:15 on ShCu days. Both regimes exhibit a peak in rl associated with shal-317

low convection, below 3 km between 10-14 LST. Additionally, Deep days show two peaks318

in ri. The first occurs between 12-14 LST at upper levels (> 8 km), associated with deep319

convection driven by surface heating (Martin et al., 2016; Tang et al., 2016; Zhuang et320

al., 2017; Tian et al., 2021). The second peak occurs a few hours later, between 16-18321

LST, associated with the late afternoon STD convection transition triggered by these322

land-atmosphere interactions.323

5.1 Low-Level Moisture Experiment324

For the low-level moisture experiment, a moisture perturbation within the lower325

1.5 km of the domain is introduced. We introduce this perturbation by multiplying the326

water vapor mixing ratio by a constant factor. To ensure smoothness of the vertical pro-327

file, we linearly decrease the factor to 0 between altitudes of 1.25 km and 1.75 km. For328

each of the Deep days selected, the model is restarted from the control run at 02 LST329

and the perturbation was applied. Finally, the factors are selected such that the CWV330

for the perturbed profile at 02 LST drops by 1, 2, 3, and 4 mm.331
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Figure 4. Composites for the Deep (top) and ShCu (bottom) regime days showing the diurnal

cycle of domain-averaged (a,d): Cloud liquid water (colormap) and convective boundary layer

(magenta dashed line), (b,e): Total ice, and (c,f): Rain content. The Deep selection includes the

17th, 21st, 23rd, and 26th of December 2014, while the ShCu selection comprises the days of the

9th, 13th, 27th, and 28th (section 3.4).

Figure 5 depicts the 30-minute average water vapor profiles at 02:15 LST, 08:15332

LST, and 14:15 LST, along with the daytime CWV for both moisture sensitivity exper-333

iments (low-level and free troposphere, with the latter described in the next section). The334

low-level dry perturbations (continuous lines) diminish from nighttime to afternoon due335

to latent heat flux and moisture tendencies. Above the perturbed region, the mixing ra-336

tio values are remarkably similar, indicating minimal vertical mixing. At 14 LST, be-337

fore the late afternoon STD convective transition, the lower tropospheric water vapor338

for the case where CWV drops by 3 mm (BL3mm) is similar to those for the ShCu days.339

In terms of CWV, the experiments BL3mm and BL4mm demonstrate lower CWV values340

compared to ShCu days in the early morning. However, while the ShCu composite re-341

mains relatively stable throughout the diurnal cycle, the Deep composite exhibits wa-342

ter vapor convergence, leading to higher CWV values than the ShCu days for all exper-343

iments in the afternoon.344

Figure 6 shows the magnitude (colors) and relative (contours) difference between345

experiments and control case for cloud liquid, total ice, and rain domain-averaged mix-346

ing ratios. In addition, the liquid water path, ice water path, and surface precipitation347

(lines) are also included. Cloud liquid water is reduced up to 75% near the cloud base,348

with a more extensive impact observed for drier scenarios from 10 to 12 LST. Above 3349

km, the amount of liquid water experiences a significant increase of up to 100% during350

the afternoon in drier scenarios, reflecting a greater presence of warm clouds. Addition-351

ally, the peak in liquid water in drier cases occurs later, shifting from 11:45 LST in the352

control case to 13:15 LST for experiments BL3mm and BL4mm.353

Ice water content shows a significant sensitivity to low-level dry perturbations. For354

example, the control case exhibits an ice water path maximum of 110.1 g m−2, declin-355

ing to 67.2 g m−2, 56.2 g m−2, 40.0 g m−2, and reaching a minimum of 9.5 g m−2 with356

a decrease in CWV by 1, 2, 3, and 4 mm at 02 LST, respectively. The relative differences357

compared to the control case are 33.5%, 44.4%, 60.4%, and 90.6%, respectively, indicat-358

ing a non-linear decrease in the ice water path as a function of the change in CWV.359
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Figure 5. Moisture perturbation. Specific humidity (g/kg) profile at (a,e) 02:15 LST, (b,f)

08:15 LST, (c,g) 14:15 LST, and time series of (d,h) column water vapor (mm) for low-level (up-

per panels, solid colors) and free troposphere (lower panels, solid colors) moisture experiments.

The Deep composite (control) is the dashed black line, and the ShCu composite is the dashed

magenta line.

For the rain content, a decrease in drier scenarios is observed from early morning360

to early afternoon. While the reduction remains insignificant when reducing CWV by361

1 mm, contours of 50% and 75% emerge in the drier cases. In terms of precipitation rate,362

the control case shows a peak of 0.86 mm hr−1, declining to 0.78, 0.68, 0.55, and 0.42363

mm hr−1 with a decrease in CWV by 1, 2, 3, and 4 mm at 02 LST, respectively. The364

decrease in the maximum precipitation rate resulting from changes in CWV can be ef-365

fectively modeled by a quadratic function (Figure S6). Note that despite the observed366

sensitivity of ice content to low-level dry perturbations, where ice content becomes neg-367

ligible in the driest scenario, the model still produces significant amounts of warm pre-368

cipitation for all experiments.369

5.2 Free Troposphere Moisture Experiment370

The experiments conducted in the free troposphere are analogous to the low-level371

moisture experiments, differing only in that the perturbation is applied above 1.5 km.372

We select multiplicative factors such that the CWV for the perturbed profile at 02 LST373

drops by 2, 4, 6, and 8 mm, respectively. These changes in CWV correspond to double374

what is applied in the previous section, and our choice is motivated by the weaker sen-375

sitivity of free troposphere humidity to convection, as we will show below.376

The dry perturbations in the free troposphere diminish throughout the day, sim-377

ilarly to the low-level perturbations (Figure 5). The drier scenarios also exhibit slightly378

drier conditions at lower levels by early afternoon compared to the control run. The free379

troposphere experiments start with a lower CWV value than that of shallow days. How-380

ever, the case FT2mm already presents higher CWV values than the shallow composite381

in the early morning, while FT4mm shows higher values than shallow days only in the382
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Figure 6. Low-level moisture experiment. The composites show the diurnal cycle of domain-

averaged anomalies for (a,d,g,j) Cloud liquid water (g/kg), (b,e,h,k) Total ice (g/kg), and (c,f,i,l)

Rain (g/kg) mixing ratios. Each row corresponds to a different decrease in CWV, (a-c) 1 mm,

(d-f) 2 mm, (g-i) 3 mm, and (j-l) 4 mm. The colors indicate the absolute difference between each

experiment and the control, while the contours show relative differences of 50% (dotted), 75%

(dashed), and 100% (solid). Liquid and ice water paths (right axis, g/m2) are presented along

with cloud liquid and total ice, respectively, and surface precipitation rate (right axis, mm hr−1)

is shown alongside rainwater. The solid line represents the experiment, while the dashed line

represents the control runs conducted during the Deep days.

afternoon (around 14 LST). For the drier cases, FT6mm and FT8mm, their CWV remains383

lower than that of the shallow days throughout the simulation.384

Figure 7 presents the results for the free-troposphere moisture experiments and con-385

trol runs during the Deep days. While applying a dry perturbation above 1.5 km leads386

to a reduction in cloud liquid water and liquid water path throughout the troposphere,387

this impact is relatively minor compared to what is observed in the low-level experiments.388

Cloud ice water exhibits a greater sensitivity to the free troposphere perturbations.389

However, the impact is still relatively minor compared to the perturbations at low lev-390

els. For instance, when the perturbation in the free troposphere and at low levels leads391

to a 2 mm drop in CWV, the maximum ice water path is 99.1 g m−2 and 56.2 g m−2,392

respectively. Similarly, with a 4 mm drop in CWV, the maximum ice water path is 60.9393

g m−2 and 9.5 g m−2 for the perturbations in the free troposphere and at low levels, re-394

spectively. Moreover, the driest free troposphere case (FT8mm) still exhibits significant395
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Figure 7. Same as Figure 6, but for the free troposphere moisture experiment instead, where

the decreases in CWV were 2, 4, 6, and 8 mm.

ice water path values, with a maximum of 45.0 g m−2 at 17:45 LST, being even greater396

than the value observed for the experiment where CWV is reduced by 3 mm at low lev-397

els (BL3mm, 40.0 g m−2).398

Rain content also shows a reasonable sensitivity to the free troposphere perturba-399

tions, although it is minor compared to low-level perturbations. For example, when the400

perturbation in the free troposphere and at low levels leads to a 2 mm drop in CWV,401

the peak of precipitation is 0.82 mm hr−1 and 0.68 mm hr−1, respectively. Similarly, with402

a 4 mm drop in CWV, the peak for the free troposphere experiment remains the same403

(0.82 mm hr−1) while the low-level perturbation shows 0.42 mm hr−1. Finally, the dri-404

est free troposphere case (FT8mm) shows a maximum of 0.64 mm hr−1, which better re-405

lates with experiment BL2mm (0.68 mm hr−1).406

5.3 Wind Jet Experiment407

To assess the impact of wind shear on the deepening of convective clouds in the408

Amazon, we perform sensitivity experiments in which the low- or high-level jets are mod-409

ified. Each jet’s intensity, amplitude, and altitude are changed separately. The modified410

wind profiles are used to force the model, with nudging applied with a timescale of 2 hours411

throughout the simulation.412

In order to have better control of the shape of the wind profiles and easily gener-413

ate sensitivity tests, we approximate the imposed wind using an analytical formula. More414
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specifically, considering the shape of the wind speed, we model this quantity as the su-415

perposition of two Gaussian functions, each representing a jet. The average wind speed416

is fitted to this function, and the fitting parameters are given in Table S1. The wind di-417

rection was fitted to a piece-wise linear function. (Figure 8b). The wind direction is con-418

stant in the bottom ∼2 km. It veers clockwise at a constant rate of about 14◦ km−1 from419

2 to 15 km, and counterclockwise at a rate of -28◦ km−1 from 15 to 20 km, and it is con-420

stant above 20 km (not shown). The wind speed and direction imposed for control runs421

are shown in Figure 8a-b (solid black line).422

Figure 8. Wind profiles for the jet experiments control run showing: (a) large-scale wind

speed and (b) wind direction, as measured (blue) and as idealized (black). Sensitivity experi-

ments perturbed the wind speed profile of either the (c) low-level or (d) upper-level wind jets by

intensifying (blue), widening (orange), shifting (green), or removing the jet (red).

For each jet, we conduct 4 experiments in which we (1) increase the jet strength,423

(2) increase the width, (3) shift the peak position, and (4) remove the jet entirely while424

keeping the wind direction constant in all cases. The modified wind profiles are shown425

in Figures 8c-d. For each experiment, the model is restarted from the control run at 02426

LST of each one of the four Deep days selected, and the modified wind profiles are ap-427

plied to force the model with a 2-h nudging timescale.428

Figure 9 presents the results for the low-level jet experiments. While the jet po-429

sition significantly affects cloud liquid water, the jet width has a negligible impact. The430

higher position possibly enhances the low-level updrafts, leading to an increase of rl above431

2 km, particularly in the late afternoon (around 16 LST), where rl can increase by as432

much as 100%. Removing the low-level jet also exhibits a similar impact on cloud liq-433

uid water, although the anomalies are smaller than those associated with the higher jet.434

The stronger jet only slightly impacts the cloud liquid water. Although the jet influences435

the cloud water profile, the integrated liquid water path is similar in all experiments and436

does not significantly differ from the control.437

The cloud ice content is more significantly affected by the low-level jet. The con-438

trol experiment exhibits peaks in ice water path at 12:45 LST and 16:15 LST. The stronger439

jet simulation shows positive anomalies before 12 LST and after 16 LST, resulting in an440

increase in ri of up to 100%, with negative anomalies observed in between. For the wider441

jet, a positive anomaly dominates throughout the diurnal cycle, especially between 12-442

17 LST, when ri increases up to 100% above 12 km. However, there is only a modest443

increment in ice water path. The higher jet shows a decrease ranging from 50-75% in ri444

around 12 LST and an increase afterwards. There is a delay of the convective activity,445

with a suppression at 12 LST and an increase around 16 LST. When the low-level jet446

is removed, the ice water path is substantially reduced, both at 12 and 16 LST (up to447

75%), with the maximum being reached only around 17:45.448
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Figure 9. Low-level jet experiment. The composites show the diurnal cycle of domain-

averaged anomalies for (a,d,g,j) Cloud liquid water (g/kg), (b,e,h,k) Total ice (g/kg), and (c,f,i,l)

Rain (g/kg) mixing ratios. Each row corresponds to a different low-level jet perturbation, (a-c)

strength, (d-f) width, (g-i) position, and (j-l) removed entirely. The colors indicate the absolute

difference between each experiment and the control, while the contours show relative differences

of 50% (dotted), 75% (dashed), and 100% (solid). Liquid and ice water paths (right axis, g/m2)

are presented along with cloud liquid and total ice, respectively, and surface precipitation rate

(right axis, mm hr−1) is shown alongside rainwater. The solid line represents the experiment,

while the dashed line represents the control runs conducted during the Deep days.

Rain content follows the changes in total ice mixing ratio, with negative (positive)449

anomalies where ice decreases (increases). However, changes in rr are less significant, with450

smaller areas showing changes greater than 50%. While the surface precipitation shows451

minimal impact in the stronger and wider jet experiments, it exhibits notable differences452

for the other two cases. For the higher jet, precipitation decreases around noon and in-453

creases in the late afternoon, following the changes in ice water path. In the absence of454

a jet, precipitation is particularly reduced between 12-15 LST, with the noon peak be-455

ing roughly 40% lower than that observed in the control runs.456

Figure 10 presents the results for the upper-level jet experiments. There is a strik-457

ing contrast with the low-level jet results. The upper-level jet affects convection only in458

the upper troposphere, with negligible impacts on liquid water. Overall, the experiments459

show an alternating increasing and decreasing ice content pattern. This is related to a460

delay in convection, which can be more easily noticed on the ice water path curves. Both461
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Figure 10. Same as Figure 9, but for the upper-level jet experiment instead.

the noon and afternoon peaks are displaced to later times, and the afternoon peak also462

gets more intense. The exception is the wider jet experiment, where the noon peak slightly463

increases and is not delayed. The changes are more significant after 17 LST when all ex-464

periments exhibit an increase of up to 100% in ice water. In the case of the removed jet,465

the afternoon peak occurs 30 minutes later (16:45 LST). For the stronger and wider jet466

experiments, the peak is delayed by 1 hour (17:15 LST), and for the jet with a relatively467

lower position, the peak occurs 1.5 hours later (17:45 LST). Nonetheless, there is no sig-468

nificant change in the rain content and surface precipitation.469

6 Discussion470

While several studies in the literature have employed CRMs to simulate convec-471

tive properties in both continental (M. F. Khairoutdinov & Randall, 2003; M. Khairout-472

dinov & Randall, 2006; Henderson & Pincus, 2009; Cecchini et al., 2022) and ocean (Blossey473

et al., 2007; M. F. Khairoutdinov et al., 2009; Liu et al., 2015; Blossey et al., 2021) re-474

gions, we conduct simulations specifically for the central Amazon by coupling a CRM475

with a LSM, thus explicitly representing biosphere-atmosphere feedbacks, which plays476

a crucial role on convection over the Amazon tropical forest (Silva Dias et al., 2002). Vilà-477

Guerau de Arellano et al. (2020) utilized a large-eddy model combined with a different478

LSM to investigate the diurnal cycle of energy, moisture, and carbon dioxide from clear479

to cloudy conditions. Nevertheless, their study relied only upon a specific day during the480

Amazon dry season and did not address deep convection. Although the recent work by481

Gonçalves et al. (2022) also utilized a CRM coupled with an LSM to simulate convec-482
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tion in the central Amazon, they did not evaluate the evolution of moisture content and483

surface latent and sensible heat fluxes. This restricts the validation of their simulations484

in reproducing these crucial convective properties, which we have addressed in our study.485

Specifically, we evaluate the model performance using single-moment, double-moment,486

and P3 microphysics schemes. Only the CWV exhibits a noticeable sensitivity to the mi-487

crophysics, where the P3 scheme shows the strongest correlation (Pearson, 0.8) with ob-488

servations. Varying the horizontal resolution (from 500 to 250 m) and domain size (from489

200×200×27 to 400×400×27 km3) reveals minimal sensitivity to the model results. For490

the surface fluxes, the P3 microphysics scheme indicates a correlation of about 0.8 for491

both latent heat and sensible heat fluxes. Overall, our results demonstrate that our sim-492

ulations satisfactorily reproduce the convective properties in the central Amazon.493

Our sensitivity experiments indicate that the humidity in the early morning at lower494

levels plays a crucial role in the late afternoon STD convective transition in the Ama-495

zon. By reducing water vapor in the lowest 1.5 km, the diurnal peak of the ice water path496

substantially drops with changes in CWV, whereas a change of 2 mm causes a reduc-497

tion of ice in the range of 50-75%, and a change of 4 mm results in negligible ice dur-498

ing the simulation. Moreover, the maximum precipitation rate demonstrates an approx-499

imately quadratic decrease with variations in the low-level CWV. Schiro et al. (2016) ex-500

amined the relationship between precipitation and CWV by calculating the condition-501

ally averaged precipitation to CWV using local observations of both variables at corre-502

sponding times. They observed that the probability and intensity of precipitation can503

be roughly characterized by an exponential function of CWV magnitude. It is essential504

to highlight that our approach differs from that of Schiro et al. (2016). We used the domain-505

average for maximum afternoon precipitation, while CWV precedes the diurnal cycle.506

This procedural difference somewhat justifies why we observed a quadratic relationship507

instead of an exponential one, as there is no contradiction between these results. Fur-508

thermore, our findings indicated that achieving a comparable reduction in ice water path509

or precipitation, as observed in the low-level experiments, requires reducing the column510

water vapor by a factor of two or more in the free troposphere.511

While M. Khairoutdinov and Randall (2006) conducted experiments that differed512

from those designed in this study and were limited to a single idealized case during TRMM-513

LBA on February 23, 1999, they similarly indicated that free troposphere precondition-514

ing plays a minor role in convection in the Amazon. Based on GoAmazon2014/5 obser-515

vations, Ghate and Kollias (2016) noted that locally-driven precipitating days during the516

dry season show an early morning water vapor excess above the boundary layer while517

Zhuang et al. (2017); Tian et al. (2021) found that deep convective days exhibit a moister518

environment extending from the surface to higher levels, regardless of the season. Schiro519

and Neelin (2019) showed that the onset and probability of the STD transition are closely520

linked to both lower-free-tropospheric moisture (700–900 hPa) and boundary layer mois-521

ture. Conversely, MSC likelihood rises with higher lower-free-tropospheric humidity, while522

the relationship with boundary layer moisture is less distinct. The relative importance523

of moisture to convection can also vary based on the regions being studied. Focusing on524

the Tropical Western Pacific region on Nauru Island, Holloway and Neelin (2009) found525

a strong correlation between observed precipitation and moisture variability in the free526

troposphere, with limited variability in the boundary layer. Additionally, Bretherton et527

al. (2004) also highlighted the importance of free-tropospheric humidity to convection528

over the Tropical Oceans.529

Vertical wind shear primarily impacts the peak timing of ice water in our simula-530

tions. Furthermore, our findings indicate that convection is enhanced during the after-531

noon when the low-level wind is idealized using a jet of larger width, moderate strength,532

and with a relatively higher peak position from around 2 to 4 km. Conversely, the upper-533

level wind has a minor influence on convective intensity. M. Khairoutdinov and Randall534

(2006) designed experiments employing an idealized large-scale wind forcing and a free535
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wind shear environment. Similar to our results, the STD transition was not prevented536

by removing vertical wind shear. Cecchini et al. (2022) also conducted numerical exper-537

iments to quantify the impact of vertical wind shear in the central Amazon, specifically538

targeting shallow cumulus convection during a typical day in the dry season. By intro-539

ducing incremental changes in the large-scale wind speed across the entire vertical do-540

main, the authors observed a weakening of convective intensity, suggesting that verti-541

cal wind shear prevents the STD convective transition. Here, we have identified that the542

vertical level of wind shear significantly influences its impact on convection. Moreover,543

while stronger vertical wind shear suppresses the initial phase of convection, the STD544

convective transition still occurs, albeit with a delay ranging from a few minutes to an545

hour.546

In contrast to prior observational studies, our modeling results offer quantitative547

insights into the role of vertical wind shear in Amazonian convection. For example, Zhuang548

et al. (2017) observed that ShCu days are linked to stronger mid-level wind shear dur-549

ing the wet season. We observe that when the upper-level jet is shifted from around 12550

to 8 km, which is related to mid-level wind shear, the trigger for the STD transition is551

only delayed by about 1.5 hours. While Chakraborty et al. (2018) indicated that more552

intense low-level shear is associated with shallow convection during the transition sea-553

son, we observe that stronger low-level shear has little influence on cloud liquid water554

and might only provoke a delay in the late afternoon STD transition.555

Thus, our findings suggest that a moderate shear environment might more efficiently556

separate downdrafts and updrafts within the cloud while concurrently organizing the con-557

vergence of low-level water vapor within the cloud layers. A wider jet leads to a smoother558

and more gradual shift in wind shear, extending from the surface to higher altitudes, thereby559

also organizing the water vapor convergence from below the cloud base to higher levels.560

Given the dependence of water vapor convergence on low-level humidity, convection demon-561

strates heightened sensitivity to boundary layer humidity. Meanwhile, the upper-level562

jet primarily impacts the extensive cloud anvil, exerting a relatively minor influence on563

ice content above 8 km. Finally, these results collectively suggest that dynamic factors564

may exert a more pronounced influence on convection in the Amazon.565

7 Conclusions566

While numerous observational studies have explored the environmental controls on567

convection in the Amazon (Itterly et al., 2016; Ghate & Kollias, 2016; Zhuang et al., 2017;568

Schiro et al., 2016, 2018; Chakraborty et al., 2018; Tian et al., 2021; Giangrande et al.,569

2023), we have specifically addressed this problem through high-resolution idealized sim-570

ulations. We employ the System for Atmospheric Modeling (SAM) model coupled with571

a LSM to perform simulations for the Amazon region in December 2014. The model is572

forced with the large-scale fields from the variational analysis, and the observations from573

the GoAmazon2014/5 experiment are used to validate the model results. The LSM de-574

fault input parameters are modified according to in-situ and satellite observations over575

the Amazon region, and fine-tuning tests focused on improving the model agreement with576

the observations. The simulations consistently reproduce the observations for precipi-577

tation, column water vapor (CWV), surface latent and sensible heat fluxes, and surface578

radiation fluxes. Sensitivity tests demonstrate that simulations conducted using a single-579

moment microphysics scheme drifted towards a drier state, while simulations with the580

P3 microphysics scheme more closely reproduce the observed water budget. For a more581

detailed validation of the LSM, having more comprehensive observations of the soil prop-582

erties (e.g., temperature and wetness down to 4 m) would be necessary.583

In light of recent observational studies addressing the shallow-to-deep (STD) con-584

vective transition (Ghate & Kollias, 2016; Zhuang et al., 2017; Tian et al., 2021), our study585

has the advantage of conducting idealized sensitivity experiments in which only one en-586
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vironmental control—moisture or vertical wind shear at low or high levels—is modified587

at a time. This approach efficiently isolates their influence in controlling convection. The588

pre-convective humidity at low levels had the greatest impact on convection. The diur-589

nal peak in the ice water path robustly decays with changes in CWV within the lower590

1.5 km. To have a comparable impact on the diurnal cycle of convection, it is necessary591

to reduce free tropospheric CWV by approximately twice the amount in the lower lev-592

els. Vertical wind shear mainly affects the ice water peak timing. A wider low-level jet593

of moderate strength possibly facilitates the STD convective transition by organizing low-594

level water vapor convergence and potentially separating downdrafts and updrafts within595

the cloud. The upper-level wind shear has a minor influence over convection in the Ama-596

zon.597

While our results provide quantitative information on the role of moisture and wind598

shear in convection, we suggest that sensitivity experiments be conducted using differ-599

ent cloud-resolving models. For instance, SAM uses periodic lateral conditions, artifi-600

cially impacting the numerical results. Using multiple models can aid in evaluating the601

robustness of the findings and identifying potential model biases. Although our sensi-602

tivity experiments identified that the maximum afternoon precipitation rate decreases603

roughly quadratically with changes in pre-convective CWV, particularly in the low-level604

experiment, it is important to note that this relationship was derived from only four val-605

ues of moisture perturbation. This limitation restricts the significance of the findings.606

The robustness of this conclusion should be further addressed, with a particular focus607

on understanding the associated mechanism for this relationship. Finally, we also rec-608

ommend that future studies conduct specific experiments to investigate the role of wa-609

ter vapor convergence and the effects of large-scale wind direction on deep convection.610

8 Data Availability611

The GoAmazon2014/5 observations are publicly available at https://www.arm.gov/612

research/campaigns/amf2014goamazon. The large-scale forcing data based on the vari-613

ational analysis for the GoAmazon2014/5 experiment is available at the ARM Archive:614

http://iop.archive.arm.gov/arm-iop/0eval-data/xie/scm-forcing/iop at mao/.615

The Moderate Resolution Imaging Spectroradiometer (MODIS) data for land cover and616

leaf area index can be downloaded through the Application for Extracting and Explor-617

ing Analysis Ready Samples (AρρEEARS, https://appeears.earthdatacloud.nasa618

.gov/). The Global Land Data Assimilation System (GLDAS) data for soil tempera-619

ture and soil wetness are available at https://disc.gsfc.nasa.gov/datasets/GLDAS620

NOAH025 3H 2.1/summary. For further assistance concerning the model input files and621

the necessary modifications in the SAM’s source code to perform the moisture pertur-622

bations as described in section 5.1 and section 5.2, please refer to the author.623
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Figure S1. (a) Land cover type and (b) LAI on SAM’s coordinate. The 200x200 km2 domain

is centered at the T3 site (3.21◦S, 60.60◦W). Land cover is from 2014, and LAI is based on the

average for December 2014. We also indicate in (a) the Solimões River and Negro River.

Figure S2. (a) Soil temperature and (b) soil wetness initial condition. GLDAS Noah data for

1 December 2014 at 00 UTC.
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Figure S3. Cloud regime days. The first row (a,c,e,g) shows the cloud liquid, and the second

row (b,d,f,h) shows the total ice mixing ratio profile for the selected Deep days. The third row

(i,k,m,o) shows the cloud liquid, and the fourth row (j,l,n,p) shows the total ice mixing ratio

profile for the selected ShCu days.
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Figure S4. Taylor Diagrams. (a) Precipitation rate. (b) Column water vapor. (c) Latent heat

flux. (d) Sensible heat flux. The statistics correspond to the standard deviation of the mean and

Pearson correlation.

January 24, 2024, 5:33pm



: X - 5

Figure S5. Taylor Diagrams. (a) Surface downward shortwave flux. (b) Surface upward

shortwave flux. (c) Surface downward longwave flux. (d) Surface upward longwave flux. The

statistics correspond to the standard deviation of the mean and Pearson correlation.
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Figure S6. Maximum precipitation as a function of the change in CWV is depicted for the (a)

Low-level and (b) free troposphere moisture experiments. The blue solid line with square markers

represents the model results, while the orange dashed line shows the corresponding quadratic fit.

Table S1. Function parameters utilized in the idealization of the large-scale horizontal wind

of the form: vspd(z) = v0 + a1 exp
(
− (z−z1)

2

2σ2
1

)
+ a2 exp

(
− (z−z2)

2

2σ2
2

)
. For the control wind, v0 = 0.5

m s−1, a1 = 8.4 m s−1, z1 = 2.1 km, σ1 = 1.6 km, a2 = 5.4 m s−1, z2 = 11.75 km, and σ2 =

2.5 km. For the experiments (low- or high-level jets), the change in jet properties is achieved by

varying only one control wind parameter at a time, as follows:

Experiment Jet property v0 a1 z1 σ1 a2 z2 σ2

Both Control 0.5 8.4 2.1 1.6 5.4 11.75 2.5
Low-level strength 13
Low-level removed 0
Low-level position 4.5
Low-level width 2.7
Upper-level strength 10
Upper-level removed 0
Upper-level position 9
Upper-level width 3.5
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