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Abstract

Unfrozen water content (UWC) is a key parameter affecting a variety of soil physical-mechanical properties and processes in

frozen soil systems. However, traditional estimation models suffer limitations due to oversimplified assumptions or limited

applicable conditions. Given that, there is a compelling need to explore alternative modeling approaches that leverage machine

learning (ML) algorithms, which have shown increasing potential in engineering fields. To this end, this study evaluated

and compared six widely known ML algorithms (i.e., three ensemble models: RF, LightGBM and XGBoost; and three non-

ensemble models: KNN, SVR and BPNN) for modeling UWC based on collected experimental datasets. These algorithms were

optimized and evaluated using a framework combining Bayesian optimization and cross-validation to ensure model stability and

generalization. The results demonstrated that the ensemble tree-based methods, particularly LightGBM and XGBoost, achieved

the highest predictive accuracy and superior overall performance. On the other hand, the nonensemble methods exhibited

poorer generalization abilities. Interestingly, during 10-fold cross-validation, consistent underperformance was observed for

a particular fold, possibly stemming from the challenges of the data distribution in that fold after random shuffling. The

present study highlights the effectiveness of ensemble learning approaches, importance of proper hyperparameter tuning and

validation strategies, and intrinsic modeling challenges arising from the difference between the freezing and thawing phase change

behaviors. This comprehensive ML model comparison and robust training framework provide valuable guidance on selecting

suitable data-driven techniques for modeling frozen soil properties for cold regions hydrogeology and engineering practices.
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Abstract: 18 

Unfrozen water content (UWC) is a key parameter affecting a variety of soil physical-mechanical 19 

properties and processes in frozen soil systems. However, traditional estimation models suffer 20 

limitations due to oversimplified assumptions or limited applicable conditions. Given that, there is a 21 

compelling need to explore alternative modeling approaches that leverage machine learning (ML) 22 

algorithms, which have shown increasing potential in engineering fields. To this end, this study 23 

evaluated and compared six widely known ML algorithms (i.e., three ensemble models: RF, LightGBM 24 

and XGBoost; and three non-ensemble models: KNN, SVR and BPNN) for modeling UWC based on 25 

collected experimental datasets. These algorithms were optimized and evaluated using a framework 26 

combining Bayesian optimization and cross-validation to ensure model stability and generalization. The 27 

results demonstrated that the ensemble tree-based methods, particularly LightGBM and XGBoost, 28 

achieved the highest predictive accuracy and superior overall performance. On the other hand, the non-29 

ensemble methods exhibited poorer generalization abilities. Interestingly, during 10-fold cross-30 

validation, consistent underperformance was observed for a particular fold, possibly stemming from the 31 

challenges of the data distribution in that fold after random shuffling. The present study highlights the 32 

effectiveness of ensemble learning approaches, importance of proper hyperparameter tuning and 33 

validation strategies, and intrinsic modeling challenges arising from the difference between the freezing 34 

and thawing phase change behaviors. This comprehensive ML model comparison and robust training 35 

framework provide valuable guidance on selecting suitable data-driven techniques for modeling frozen 36 

soil properties for cold regions hydrogeology and engineering practices. 37 

Keywords: Unfrozen water content; Machine learning; Ensemble learning; Bayesian optimization; 38 

Model comparison  39 



1. Introduction 40 

The freezing of water to form ice is one of the most common phase transformations in the natural 41 

environment (Wettlaufer, 1999). At a negative temperature, not all pore water in a soil undergoes 42 

transformation into ice; rather, a certain amount of liquid water exists because of capillarity and the 43 

surface energy of soil particles, which is termed as unfrozen water (Xu et al., 2001). The relationship 44 

between unfrozen water content (UWC) and subzero temperature is typically referred to as the soil-45 

freezing characteristic curve (SFCC) (Ren et al., 2021). The variation of UWC during freezing–thawing 46 

process significantly influences the thermal, hydraulic and mechanical properties of frozen soils. It is 47 

also often accompanied with water migration (Zhang et al., 2018b), frost heave (Li et al., 2018; Ren et 48 

al., 2023a; Pei et al., 2024), and thaw settlement (Zhang and Michalowski, 2015; Liu et al., 2024) of 49 

the frozen soil system, which potentially leads to geological disasters as well as poses great threats to 50 

the infrastructures and environment in cold regions. Therefore, the accurate determination of UWC in 51 

frozen soils is of great scientific and practical importance in cold region hydrogeology and engineering 52 

practices. 53 

The UWC in frozen soils depends on plenty of factors, including soil properties (e.g., mineral 54 

composition, soil pore size distribution, water content, density, composition and concentration of pore 55 

solution), and external conditions which include environmental temperature, pressure, and freezing-56 

thawing and drying-wetting histories (Xu et al., 2001; Tian et al., 2014; Kong et al., 2020). In addition, 57 

due to the hysteresis effect between the freezing and thawing branches of SFCC, the UWC at the same 58 

subzero temperature often exhibit differences (Zhang et al., 2020; Li JX et al., 2024). The complicated 59 

effects of these factors and their intricate interactions on UWC result in difficulties associated with the 60 

convenient and precise measurement of UWC in frozen soils, under either the laboratory or in-situ 61 



conditions. Therefore, many studies have shifted their focus towards developing UWC estimation 62 

models, including empirical relations fitted to experimental data, semi-empirical relations based on soil-63 

water characteristic curve (SWCC), and models derived from various theories (e.g., Mckenzie et al., 64 

2007; Liu and Yu, 2013; Wang C et al., 2017; Bai and Lai, 2018; Li Z et al., 2020).  65 

For example, Anderson and Tice (1972) proposed an empirical model, wherein the UWC is 66 

regarded as a simple power function of subzero temperature. However, the model parameters need to 67 

be determined by experiments and lack physical meanings (Kong et al., 2020; Wan et al., 2022). To 68 

address these limitations, Kong et al. (2020) proposed a piecewise function consisting of a linear 69 

equation and a power equation to describe SFCC. In addition, the equation proposed by Anderson and 70 

Tice tends to infinity at freezing temperatures close to 0 °C, rendering it unacceptable in numerical 71 

modeling of frozen soil behavior. Instead, Michalowski (1993) proposed an exponential equation taking 72 

into account the residual UWC, which was adopted by Zhang and Michalowski (2015) for thermo-73 

hydro-mechanical analysis of frost heave and thaw settlement. By combining the simplified Clapeyron 74 

equation with the Brooks and Corey (1964) SWCC equation, Sheshukov and Nieber (2011) obtained a 75 

relationship for UWC and subzero temperature. Chai et al. (2018) considered the UWC as the sum of 76 

unfrozen capillary water and unfrozen bound water, and proposed calculation equations based on the 77 

freezing points of these two components. Jin et al. (2020) established a theoretical model for quantify 78 

UWC based on independent variables of temperature, specific surface area and electrical double-layer 79 

parameters. Wan et al. (2022) employed the premelting theory to investigate the variation in unfrozen 80 

water during soil freezing, which provides a new idea to determining UWC. However, these prediction 81 

models derived from experimental data and physical theories suffer from a limited application scope, 82 

restricting their utility to specific soils and thus falling to meet the requirements for widespread practical 83 



application. Addressing these issues is imperative to enhancing our understanding of the complex 84 

behavior of water-ice transition in soils during freezing and thawing, potentially paving the way for the 85 

development of more precise models for UWC prediction (Zou et al., 2023).  86 

In order to address the aforementioned challenges and develop UWC models with broader 87 

applicability, some studies have taken advantage of machine learning (ML) techniques. Shang and Mao 88 

(2001) proposed a model based on backpropagation neural network (BPNN) to predict the empirical 89 

parameters of the SFCC of Morin Clay under different initial water content, dry density and NaCl 90 

concentration. Based on experimental data obtained by nuclear magnetic resonance, Liu et al. (2018) 91 

constructed two models using adaptive network fuzzy inference system (ANFIS) and BPNN to predict 92 

the UWC of saline soil. Wang Q et al. (2020) proposed a new model to predict the UWC of saline soil 93 

based on the combined weighting method and ANFIS. Ren Z et al. (2023) established a model based 94 

on the genetic algorithm and BPNN to predict UWC under extremely-low-temperature conditions. Ren 95 

et al. (2023b) proposed a BPNN modeling framework for predicting the UWC in various types of soils, 96 

based on the collected large amount of experimental data. However, neural networks (NNs) sometimes 97 

yield “random” UWC predictions that violate physical mechanisms. To address this issue, Li JX et al. 98 

(2024) adopted a constrained monotonic neural network to ensure the predicted UWC decreases as the 99 

temperature decreases. However, the algorithms employed in these studies are mainly limited to NNs. 100 

In addition, other ML methods, which have been successfully used in the prediction of landslide 101 

susceptibility as well as soil properties (e.g., Chen et al., 2017; Baghbani et al., 2022), show potential 102 

use in UWC estimation (Nartowska and Sihag, 2024). Therefore, it is imperative to evaluate and 103 

compare the performance of various ML algorithms and determine the most suitable algorithmic models 104 

for predicting UWC. 105 



In our previous study (Ren et al., 2023b), the hysteresis of SFCC was ignored for simplicity and 106 

the freezing and thawing UWC data were combined to train a BPNN model for estimating UWC. A key 107 

limitation of this approach stems from the inconsistency between the target values at the same input 108 

condition, since the UWC at the same subzero temperature exhibit differences during the freezing and 109 

thawing processes, thereby introducing a source of prediction error in the developed model. Therefore, 110 

in this study, the experimental UWC data of freezing and thawing branches are separately collected 111 

from literature to alleviate this concern. Based on these two datasets, six mainstream ML algorithms 112 

(i.e., Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine 113 

(LightGBM), K-Nearest Neighbors (KNN), Support Vector Regression (SVR), and BPNN) were 114 

employed to estimate UWC in frozen soils. The first three algorithms are ensemble learning methods 115 

and the rest three are non-ensemble. To ensure model stability and generalization, a framework combing 116 

Bayesian optimization and 10-fold cross-validation was used to optimize algorithm hyperparameters 117 

and evaluate model performance. The six models were comprehensively compared in terms of their 118 

predictive abilities and other quantitative metrics. The advantages and limitations of each approach are 119 

critically discussed regarding their suitability for modeling complex soil behavior using freezing and 120 

thawing datasets. The results of the present study can guide the selection of suitable data-driven 121 

techniques for modeling frozen soil properties. The overall modeling framework is summarized in Fig. 122 

1. 123 

 124 

2. Dataset preparation 125 

In the present study, soil physical properties and the UWC data were obtained from the literature. 126 

The raw data were extracted from the original plots depicting the UWC-Subzero temperature relations 127 



(i.e., SFCC) using the GetData Graph Digitizer. More details regarding the collected data can be found 128 

in Ren et al. (2023b). The freezing or thawing process was generally measured in the selected studies, 129 

while several studies measured both the freezing and thawing SFCC branches (e.g., Kozlowski and 130 

Nartowska, 2013; Ren and Vanapalli, 2019; Teng et al., 2020). However, due to hysteresis between 131 

freezing and thawing processes, the same soil sample often exhibits different UWC values at the same 132 

subzero temperature. This causes difficulties in ML development since identical inputs corresponding 133 

to different outputs in the training data, hindering effective model training and compromising the 134 

robustness of the trained model. To avoid this obstacle, the dataset collected from studies that measured 135 

both branches was divided into separate freezing and thawing subsets. For studies employing multiple 136 

measurement methods, only the data based on NMR measurements were retained, as it is a relatively 137 

stable and accurate method to measure UWC without damaging the soil samples (Ren et al., 2020; He 138 

et al., 2023). Additionally, for studies measuring UWC under multiple freeze-thaw cycles, only the 139 

UWC measurements on either the freezing or thawing branch of the first cycle were included in the 140 

database. As a result, two separate datasets were obtained: the freezing branch dataset (FBD) and the 141 

thawing branch dataset (TBD). The FBD and TBD comprise 790 and 1410 UWC data points, 142 

respectively. All subsequent analysis and discussions in this study will be based on these two separate 143 

datasets. 144 

 145 

2.1 Data statistical description 146 

Similar to the study by Ren et al. (2023b), the following four factors influencing UWC were 147 

considered: specific surface area (SSA), dry density (ρd), initial volumetric water content (θini), and 148 

subzero temperature (Temp). The statistical features of the two datasets (i.e., FBD and TBD) are 149 



described next. Table 1 summarizes key statistical descriptors of the four input variables and the output 150 

(i.e., UWC) for both the freezing and thawing data subsets. The standard deviation, SD, representing 151 

the arithmetic square root of the variance, serves as a measure of the extent to which observations 152 

deviate from their mean. Skewness, Sk, presents distribution characteristics, with positive Sk suggesting 153 

a bias towards larger-than-average data points, while negative Sk signifies a prevalence of observations 154 

below the mean. Additionally, Kurtosis (Ku) provides insights into the tail distribution, where high Ku 155 

indicates heavy tails and potential outliers, while low kurtosis points to lighter tails with fewer extreme 156 

values compared to a normal distribution (Li and Vanapalli, 2022; Li JX et al., 2024). These statistical 157 

values are calculated based on Eqs. (1) to (3): 158 
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where n is the total number of a variable, Xi andX are the value and mean of the variable, respectively. 162 

Figure 2 presents the histograms as well as kernel density plots of the four variables and the 163 

prediction target (i.e., θu). The FBD exhibits high variability and non-normal distributions for several 164 

key variables. The input feature SSA and the output θu exhibit positive skewed distributions, which 165 

indicates substantial right-tailed distributions, as evidenced by their Sk values (see Table 1) and kernel 166 

density curves. The distribution of θini is close to a normal distribution. Meanwhile, ρd and Temp show 167 

negative skewed distributions with their Sk values below -1, indicating left-tailed shapes. The Ku values 168 

of SSA, ρd, Temp, and θu exceeding 3 further demonstrate heavy tails and large values. In comparison, 169 



the TBD displays different data distributions. The SSA and θu retain strong positive skewness and heavy 170 

tails seen in Fig. 2(a) & (d), and the distribution of SSA becomes steeper compared to a normal 171 

distribution. The θini has a slightly positive skewed distribution while ρd shows minor negative skewness. 172 

Unlike FBD, the kernel density curves for these two variables in TBD exhibit two peaks (see Fig. 2(b) 173 

& (c)), indicating that the distributions of these two variables are more complex or multimodal 174 

compared to those in FBD. Although the two datasets share some statistical similarities in their means 175 

and SDs, the freezing data overall displays more pronounced non-normal distributions and heavy-tailed 176 

characteristics. These statistical differences highlight the unique characteristics inherent between the 177 

collected freezing and thawing data. 178 

 179 

2.2 Feature importance 180 

The frozen soil is a complicated four-phase system and the amount of unfrozen water in a frozen 181 

soil is a regression function of multiple variables. Therefore, it is necessary to identify how much each 182 

factor affects the UWC and which factor influences the UWC most. Since UWC depends on the intricate 183 

interplay of multiple influencing factors, resulting in a complex non-linear relationship among them, 184 

and the Spearman correlation coefficient (SCC) serves as a nonparametric or distribution-free statistical 185 

measure to describe the rank of variables (Xiao et al., 2016; Li KQ et al., 2022), herein, Spearman 186 

correlation analysis was adopted to analyze the correlation degree between the four input variables and 187 

the output. The SCC can be calculated as: 188 

2
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− ∑                                   (4) 189 

where di is the difference between each pair of the ranked variables and n is the total sample size of 190 

observations. 191 



Figure 3 shows the correlation relationship among the input variables and the output for the two 192 

datasets. Temperature exerts the predominant control on UWC in both the freezing and thawing 193 

processes, with SCC values of 0.59 and 0.61, respectively. Dry density (ρd) has the least effect on UWC 194 

during both processes and was negatively correlated, with SCC values of -0.07 and -0.22, respectively. 195 

However, well-defined correlations were not observed between any input variable and the UWC. This 196 

is because the interactions between the influencing factors are intricate and not yet fully understood. 197 

Therefore, the UWC prediction does not typically depend on any single factor (Li JX et al., 2024). 198 

Notably, for the freezing process, θini has a greater effect than the SSA, whereas the converse is observed 199 

for the thawing process. In the freezing process, the initial liquid water content determines the total 200 

amount of water available for phase transition to ice. However, during thawing, the vast majority of the 201 

initial water has transformed into the ice phase, therefore its direct influence on UWC diminishes. 202 

Instead, the SSA, which quantifies the surface area contact between ice and soil particles, becomes 203 

more impactful. A higher SSA provides more surface for conducting heat transfer and water flow during 204 

thawing. This shift in the relative importance of influential factors again indicates the differences 205 

between the freezing and thawing processes. 206 

 207 

3. Models overview and development 208 

3.1 Six machine learning algorithms 209 

A wide variety of ML algorithms have been developed for multivariate regression modeling. For 210 

this study, six representative ML algorithms were employed to model and predict UWC: RF, XGBoost, 211 

LightGBM, KNN, SVR and BPNN, with the first three being ensemble models and the rest three non-212 

ensemble. The selection of these six ML algorithms is motivated by their diverse strengths and 213 



capabilities. The RF, XGBoost, and LightGBM were specifically chosen as ensemble models can 214 

achieve stronger predictive performance by combining multiple weak learners. Complementing the 215 

ensemble models, we include KNN, SVR, and BPNN, each renowned in ML prediction tasks for their 216 

distinct approaches, ensuring a thorough exploration of diverse modeling strategies for UWC prediction. 217 

The subsequent sections provide succinct overviews of the underlying principles, as well as general 218 

advantages and limitations of each ML algorithms. 219 

 220 

3.1.1 Random forest (RF) 221 

The RF method was developed by Breiman (2001) as an expansion of the classification and 222 

regression trees technique to provide better performance of prediction results. The RF is an extended 223 

algorithm that combines multiple decision trees (DTs) based on the bagging idea of ensemble learning, 224 

which enhances basic models’ diversity by considering a random set of features at splitting nodes (Li 225 

KQ et al., 2022). As schematically illustrated in Fig. 4, the learners (i.e., DTs) are trained separately on 226 

the training dataset, and their individual outputs are combined to form the final learning result, with 227 

each sample holding equal weight. For regression problems, the final output of RF is the average of the 228 

outputs generated by all DTs. The benefits of employing RFs are that the ensembles of trees are used 229 

without pruning. In addition, this method is relatively robust to overfitting (Zhang et al., 2020). 230 

 231 

3.1.2 Extreme gradient boosting (XGBoost) 232 

The XGBoost is an improved optimization algorithm based on Gradient Boosting Decision Tree 233 

(GBDT), as proposed by Chen and Guestrin (2016). In the field of machine learning, it is well 234 

recognized that the XGBoost is currently one of the fastest and best open sources boosted tree 235 



algorithms. The basic element of XGBoost is the single decision tree and its mechanism is to keep 236 

adding and training new trees to fit residuals of last iteration (Dong et al., 2020), as shown in Fig. 5. 237 

Compared with GBDT, the XGBoost performs second-order Taylor expansion of the loss function to 238 

improve calculation accuracy, and adds a regularization term (i.e., Eq. (6)) to the objective function to 239 

prevent overfitting and control the complexity of the model (Yang et al., 2023). Equation 5 evaluates 240 

the model “goodness” relative to the original function (Fan et al., 2021). 241 

_

1
( , ) ( )n K

i i ki=1 k
Obj l y y Ω f

=
= +∑ ∑                      (5) 242 

where, Obj represents the objective function, l is the loss function, K represents the total number of 243 

decision trees, fk represents the complexity of the kth tree, and Ω is the regularization term, which is 244 

expressed as: 245 

21( )
2

Ω f T= γ + λ ω          (6) 246 

where, ω is the score vector, λ is the regularization parameter, and γ is the mini loss. 247 

 248 

3.1.3 Light gradient boosting machine (LightGBM) 249 

Although XGBoost is regarded as a state-of-the-art evaluator with ultra-high performance in both 250 

classification and regression tasks, its efficiency and scalability are not satisfactory in the presence of 251 

high feature dimensions and large data sizes (Wu, 2020; Wang et al., 2021). In contrast, LightGBM, 252 

released by Microsoft in late 2017 (Ke et al., 2017), emerges as a novel gradient boosting technique 253 

designed to address the limitations of traditional boosting algorithms, including high memory usage, 254 

computational complexity and time consumption (Sun et al., 2022).  255 

Differing from XGBoost, the LightGBM leverages Histogram-based techniques to discretize 256 

continuous eigenvalues into multiple integers (also called bins). It performs the gradient accumulation 257 



and counting according to the bin where the eigenvalues are located, and then iterates over all the 258 

eigenvalues to find the optimal splitting point. This not only improves efficiency but also reduces 259 

memory occupation. The discrete split points also have a regularization effect, which could effectively 260 

reduce the over-fitting phenomenon for small datasets (Qiu et al., 2023). In addition, based on the 261 

Histogram algorithm, the LightGBM implements a leaf-wise algorithm with depth limitation to split 262 

the leaf nodes instead of the level-wise technique for growing decision trees. Specifically, in contrast 263 

to the level-wise algorithm, which traverses the data once and then splits each leaf of the level, the leaf-264 

wise algorithm first determines which leaf within the level will provide the biggest splitting gain and 265 

subsequently performs the split, as shown in Fig. 6. This strategy reduces the complexity of the model, 266 

maintains a high-efficiency level, and simultaneously enhances the resistance to overfitting 267 

(Hajihosseinlou et al., 2023). Furthermore, the LightGBM uses the gradient-based one-side sampling 268 

algorithm and the mutually exclusive feature bundling algorithm to solve the problems of excessive 269 

number of samples and features respectively, which further improves the computational efficiency of 270 

the model. The LightGBM is also frequently used in data mining competition, such as Kaggle, where 271 

it has proven to be a winning solution (Ustuner and Balik, 2019; Cai et al., 2022). For more in-depth 272 

explanations of LightGBM, readers can refer to Ke et al. (2017). 273 

 274 

3.1.4 K-nearest neighbors (KNN) 275 

The KNN algorithm is one of the simplest ML algorithms in terms of both underlying principles 276 

and, often, computational demand. As a nonparametric classifier introduced by Cover and Hart (1967), 277 

the KNN is based on labeling the unknown instance using known instances. At the stage of classification 278 

for a given new sample, the KNN algorithm searches through all training samples and then computes 279 



the distances between the target sample and each training data point to determine the nearest neighbors 280 

and produce the classification output (Yamac et al., 2020). Typically, the Euclidean distance algorithm 281 

is used to calculate the distances between instances (Araya and Ghezzehei, 2019).  282 

For a simple classification task shown in Fig. 7, when k = 3, there are two triangles and one circle 283 

in the nearest neighborhood of the unknown class. Consequently, the unknown class is determined to 284 

be Class B. While k = 5, the category becomes Class A. When applied for regression problems, KNN 285 

predicts the value of a new instance by averaging the values of its “k” nearest (i.e., most similar) 286 

neighbors in the training data. The KNN is considered as a nonparametric algorithm since it does not 287 

assume an underlying data distribution. However, the KNN does not perform any generalization on the 288 

training data and retains all data points, which may result in overfitting. Additionally, the need for 289 

distance computation of k-nearest neighbors makes the algorithm computationally intensive with large 290 

datasets, limiting its scalability (Ray, 2019; Zhao et al., 2022). Moreover, the KNN algorithm is highly 291 

sensitive to redundant and irrelevant features and therefore feature selection must be done carefully 292 

(Yamac et al., 2020). 293 

 294 

3.1.5 Support vector regression (SVR) 295 

Support vector machine (SVM), as a type of generalized linear classifiers proposed by Cortes and 296 

Vapnik (1995), is derived from the structural risk minimization hypothesis to minimize both empirical 297 

risk and the confidence interval of the learning machine for improved generalization capability. The 298 

SVM is developed based on statistical learning theory, the basic idea of which is to map the original 299 

datasets from the input space to a high-dimensional or even infinite-dimensional feature space, in order 300 

to define a separable hyperplane that maximizes the margin between classes, such that the classification 301 



problem becomes simpler in the feature space (Raghavendra and Deka, 2014; Hosseinzadeh et al., 2021). 302 

The function that transforms data from input space to feature space is called the kernel function. The 303 

SVM model requires the data to be located in this hyperplane as much as possible to minimize the total 304 

deviation of all the data from the hyperplane. Additionally, the SVM method uses a small number of 305 

support vectors instead of the entire sample space, which makes it easier to calculate the final decision 306 

function with improved robustness and efficiency. Compared with complex NNs, the SVM has 307 

demonstrated better performance and requires fewer hyperparameters to be tuned while avoiding local 308 

minima (Khlosi et al., 2016; Wang F et al., 2020). 309 

Although the SVM was developed to solve classification tasks, it has been extended to regression 310 

scenarios (Smola and Schölkopf, 1998), which is known as the support vector regression (SVR). For 311 

regression problems, the SVR introduces an ε-insensitive loss function to determine a hyperplane, 312 

which allows for some deviation between the predicted and target values without affecting loss 313 

calculation. In other words, the loss is calculated only when the absolute value of the difference between 314 

predictions and targets is greater than ε (Lu and Wang, 2023). As shown in Fig. 8, values centered on 315 

the function and within the error range on either side of it are considered correctly predicted, while only 316 

values outside the dash line are incorporated into loss computation and model updating process.  317 

 318 

3.1.6 Backpropagation neural network (BPNN) 319 

The BPNN is a well-known learning method for multi-layer feedforward neural network trained 320 

by an error backpropagation algorithm (Li J et al., 2012). The BPNN was first proposed by Paul Werbos 321 

in 1974 and later popularized by Rumelhart et al. (1986). The BPNN can not only simulate various 322 

nonlinear relationships between variables, but also has self-adaptability and self-learning capabilities. 323 



As shown in Fig. 9, a complete BPNN consists of input layer, hidden layers and output layer. The 324 

number of neurons in the hidden layers largely affects the performance of BPNNs. Specifically, each 325 

neuron in the hidden layer receives the weighted combination of input values from the preceding layer 326 

and calculates an output depending on the activation function, which is then propagated as the input to 327 

neurons in the next hidden layer. This process can be mathematically represented as: 328 

1

n

j i i
i

y f w x b
=

 = + 
 
∑                              (7) 329 

where xi is the value of neurons in the previous layer, wi represents weights, b represents bias, f is 330 

activation function, and yj is the output of the current neuron. 331 

The training of BPNN includes two key processes: forward propagation of the input signals and 332 

backpropagation of error. In the forward propagation, information flows from the input layer to the 333 

output layer (Kurt and Kayfeci, 2009). And during backpropagation, the error between the predictions 334 

from the forward pass and target values is calculated and then propagated back to the input layer to 335 

update weights (Feng et al., 2015). The activation function also plays an important role in the training 336 

and performance of the model, as it determines the output of the neurons based on their input. It provides 337 

the necessary nonlinearity for the model to represent complex functions. Commonly used activation 338 

functions include the rectified linear unit (ReLU) function (Eq. (8)), as used in this study, along with 339 

the sigmoid and hyperbolic tangent (tanh) function. 340 

                               ( ) ( )ReLU 0x = max ,x                              (8) 341 

Despite its powerful learning ability and popularity, the BPNN has limitations such as being prone 342 

to falling into local optimum (Liu et al., 2013), which causes the training of BPNN being more sensitive 343 

to the initial network weights (Tongle et al., 2016). 344 

 345 



3.2 Bayesian optimization and cross-validation 346 

The above six ML algorithms were employed to construct models based on the freezing branch 347 

dataset (FBD) and the thawing branch dataset (TBD). To facilitate subsequent model evaluation, 90 348 

and 160 data points were selected randomly from FBD and TBD respectively, forming the freezing test 349 

dataset (FBD_test) and the thawing test dataset (TBD_test). The remaining data were used for models 350 

training and validation. Specifically, the rest 700 data points from the original FBD were used as the 351 

freezing training-validation dataset (FBD_train-val), while the rest 1250 data points from the original 352 

TBD were used as the thawing training-validation dataset (TBD_train-val). 353 

Before models training, all model inputs and outputs should generally be standardized. The 354 

purpose of this is to avoid excessive network prediction error due to the large order of magnitude 355 

difference between different features (Raju et al., 2020), as well as arguably to make the algorithms 356 

converge faster. Therefore, we utilized StandardScaler from the scikit-learn preprocessing library to 357 

standardize both the FBD and TBD. The StandardScaler standardizes features by removing the mean 358 

and scaling to unit variance. The underlying principle of standardization can be described by the 359 

following equation: 360 

norm D
XX X

S
−

=                                  (9) 361 

As noted by Zhang et al. (2020), standardization or normalization is unnecessary for RFs because 362 

they are insensitive to the range of inputs. Since DT-based models focus on the distribution of variables 363 

and conditional probabilities between them, rather than the raw values, normalization is not required. 364 

In fact, for RF, LightGBM, XGBoost and other DT-based models, data normalization has little effect 365 

on output results, which has been observed in several studies (Coulston et al., 2012). Therefore, in this 366 

study, data standardization was not performed prior to establishing the three DT-based ensemble models. 367 



The predictive performance of ML models depends on the appropriate combinations of 368 

hyperparameters, such as the number of regression trees and the number of random variables of nodes 369 

(i.e., Max depth) in RFs. Hyperparameter optimization is fundamentally a problem of optimizing a 370 

specific mapping function over graph-structured configuration space (Zhang et al., 2021). While the 371 

significance of hyperparameters is evident, manually exploring the optimum hyperparameter 372 

combinations requires experienced insight and can be tedious (Kim et al., 2022). In response to this 373 

challenge, Bayesian optimization (BO) emerges as an efficient solution to hyperparameter tuning 374 

problem by searching through hyperparameter candidates. The core technique of BO lies in utilizing 375 

the prior probability of the objective function and observation points to update the posterior probability 376 

distribution and then find the next minimal value point with a more posterior probability distribution 377 

and get the optimal hyperparameter through iterations (Zhang et al., 2023). Since new candidates are 378 

selected based on the results from previous hyperparameters, the best combination of hyperparameters 379 

can be configured in less time and fewer evaluations than grid search or random search (Li and Kanoulas, 380 

2018). Therefore, in this study, the BO was employed to fine-tune the hyperparameters of each model 381 

to maximize performance. For the automated search for optimal hyperparameter configurations during 382 

model training, we utilized the Hyperopt Python library, leveraging its sequential model-based 383 

optimization (SMBO) technique powered by the Tree of Parzen Estimators (TPE) algorithm. This 384 

enabled efficient tuning tailored to each model's unique configuration needs. 385 

In addition, we strategically incorporated 10-fold cross-validation (CV) within the BO framework 386 

to assess the generalization capabilities of models under each identified hyperparameter combination 387 

obtained during the BO process. More specifically, the 10-fold CV process categorizes both FBD_train-388 

val and TBD_train-val into ten equal-sized datasets randomly. In the case of FBD_train-val, a dataset 389 



with 630 data points was utilized for training the six ML models, while the remaining 70 data points 390 

were for validation. Similarly, for TBD_train-val, a dataset with 1125 and 125 data points was used for 391 

training and validation, respectively. This procedure was repeated 10 times with one of the 10 folds 392 

served as the validation dataset each time, and 10 validation performance scores were generated for 393 

every hyperparameter candidate. The hyperparameter configuration that achieved the highest average 394 

score was then selected as the optimal setting for the model. It is undeniable that incorporating 10-fold 395 

CV into the framework of BO increases computational cost and runtime for finding the optimal 396 

hyperparameters of models. Hence, for the candidate hyperparameters of BPNN, we opted not to set a 397 

continuous range but specifying common discrete values. Additionally, the number of Bayesian 398 

iterations affects the running times of the whole model (Stephens and Donnelly, 2003). The iteration 399 

number was consistently set to 100 in this study to save computational cost. 400 

Three performance indicators were adopted to evaluate the performance of the above six models: 401 

coefficient of determination (R2), root mean square error (RMSE) and mean absolute percentage error 402 

(MAPE). The R2 indicator measures the level of fitness between the target and model prediction values. 403 

The RMSE is more sensitive to large errors between the target and prediction, due to the quantification 404 

by using squared difference. In contrast, the MAPE demonstrates low sensitivity to outliers, which 405 

makes it a suitable indicator for data with anticipated outliers (Huang et al., 2023). The three model 406 

indicators can be calculated as follows:  407 
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where n is the number of samples, yi is the target value, ŷi is the prediction value, andy is the average 411 

value of y. 412 

To assess the stability of the models, we calculated the average R2, RMSE and MAPE of the 10 413 

folds. The 10-fold average R2 in validation was used as the score metric for BO. Once the optimal 414 

hyperparameter combinations were identified, models with the optimal hyperparameters were saved (to 415 

avoid model weights being updated again) and used to predict UWC based on FBD_test and TBD_test. 416 

As mentioned previously, these two datasets were separated from the dataset before model training and 417 

validation, hence representing new and unseen data for the established models. Since 10-fold CV was 418 

incorporated in the BO process, there were 10 test results. The final predicted results were calculated 419 

by weighted averaging the test results from each fold, where the weights were the R2 values on the 420 

validation set. This weighted approach was implemented to mitigate potential disparities in performance 421 

among different folds, ensuring a balanced representation of the overall model performance. The 422 

calculation formula is expressed as: 423 
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 (13) 424 

where, Pfinal is the final predicted result, Pi is the test result from Fold i, R2i is the R2 value on the 425 

validation set for Fold i, and i ranges from 1 to 10. 426 

For the purpose of benchmarking the six ML models against the test data, the Taylor diagram was 427 

used as an effective tool. It can provide a concise visualization of statistical relationship between the 428 

models’ predictions and targets, through the correlation coefficient, the centered pattern root-mean-429 

square error (CRMSE) and standard deviation (Taylor, 2001; Hu et al., 2020). 430 



 431 

4. Results and analysis 432 

Optimizing hyperparameters is crucial for achieving optimal performance in ML algorithms. 433 

However, due to the high dimensionality of the hyperparameter space, exhaustively searching all 434 

combinations in the hyperparameter space is computationally expensive and time-consuming. 435 

Therefore, only the most influential hyperparameters on model performance were considered and 436 

selected for optimization in this study. Table 2 summarizes the key hyperparameters of each ML 437 

algorithm and their corresponding optimized values based on FBD_train-val and TBD_train-val. The 438 

following analysis utilized these models configured with the optimal hyperparameter combination. 439 

The average R2 and RMSE values obtained through the 10-fold CV for each model on FBD and 440 

TBD during training and validation are summarized in Tables 3 and 4, respectively. The ensemble tree-441 

based models (i.e., RF, LightGBM, XGBoost) demonstrated excellent performance in predicting UWC 442 

on both datasets, as evidenced by high R2 values exceeding 0.97 and low RMSE values below 0.02 443 

during training, indicating strong goodness-of-fit. Among the ensemble models, the LightGBM 444 

achieved the highest average training R2 values of 0.9956 on FBD and 0.9870 on TBD, with RMSE 445 

values of 0.0075 and 0.0112, respectively. The XGBoost and RF closely followed with outstanding 446 

performance. In contrast, non-ensemble models (KNN, SVR, and BPNN) did not perform as well as 447 

the ensemble methods. Their training R2 scores on FBD ranged from 0.91 to 0.94, with higher RMSE 448 

values between 0.025 and 0.035. Specifically, the SVR scored high training R2 value of 0.9387 and 449 

achieved low training RMSE value of 0.0283, outperforming the other two non-ensemble models. 450 

As shown in Fig. 10, the three ensemble methods also performed better than non-ensemble models 451 

in validation processes, with R2 values ranging from 0.85 to 0.90 and low RMSE values. In FBD_val, 452 



the LightGBM led with an R2 value of 0.8601 and an RMSE value of 0.0388. Conversely, for TBD_val, 453 

the XGBoost obtained the highest R2 of 0.8970 with the lowest RMSE. However, non-ensemble models 454 

exhibited a decline in performance, with R2 values dropping to 0.80-0.83 and RMSE values rising to 455 

above 0.04, indicating an increase in variance and minor overfitting compared to ensemble models. 456 

Among the non-ensemble models, the KNN exhibited the poorest performance on TBD_val (R2 = 457 

0.7663 and RMSE = 0.0464), despite achieving a training R2 value of 0.9006. This suggests that KNN 458 

may be less effective at capturing the complex relationships between the input variables and UWC, and 459 

is more prone to overfitting compared to SVR and BPNN. Summing up the comparison of model 460 

performance on training and validation sets, the generalization abilities of ensemble tree-based methods 461 

on new data are better than their non-ensemble counterparts. 462 

In order to get more insights on the models’ performance, their R2 results of the 10-fold CV on the 463 

two validation datasets (i.e., FBD_val and TBD_val) are depicted in Fig. 11. Interestingly, the validation 464 

results show that all models exhibited poorer performance consistently on the 3rd fold compared to 465 

others when evaluated on FBD_val (see Fig. 11 (a)). The drop is most pronounced for the KNN, with 466 

an R2 of 0.506 on the 3rd fold compared to its highest R2 value of 0.9111 – indicating a gap over 0.4. 467 

The other models exhibited smaller yet evident decrease on the 3rd fold. In contrast, the worst validation 468 

fold generally shifts to the 4th fold when models are evaluated on TBD_val. Notably, the degree of 469 

underperformance on the 4th fold improved for all models compared to FBD_val, although the KNN 470 

still demonstrated the largest discrepancy on this fold. For the BPNN and XGBoost, the worst validation 471 

result on TBD_val occurred in the 10th fold rather than the 4th fold, as shown in Fig. 11(b). 472 

It is worth mentioning that, although the BPNN obtained the lowest training R2 of 0.9132 and 473 

0.8736 on the two datasets, its R2 values on the validation sets (i.e., 0.8273 and 0.8161) are the highest 474 



among the three non-ensemble models. This implies that BPNN has the lowest degree of overfitting 475 

and may have better captured the underlying data patterns. However, it may benefit from additional 476 

training data for enhanced performance. In addition, the higher R2 values of BPNN on the two validation 477 

sets compared with that reported in Ren et al. (2023b) (i.e., 0.76) indicates that separately training 478 

models based on the freezing and thawing branch datasets could potentially improve model 479 

performance. 480 

In Fig. 12, a visual representation compares the target values versus the predictions by the six 481 

models on the two test datasets. It is evident that the non-ensemble learning models, particularly KNN, 482 

exhibit a larger number of data points deviating from the 1:1 line compared to the ensemble learners, 483 

indicating their slightly inferior predictive performance. Figure 13 gives a more straightforward 484 

comparison of the six models in terms of their R2, RMSE and MAPE on the test datasets. Overall, most 485 

models achieved satisfactory predictive performance with R2 values above 0.8 on FBD_test, except for 486 

the SVR. Specifically, the LightGBM notably achieved the highest R2 with the lowest RMSE, 487 

outperforming the other five models in terms of accuracy. It also attained the lowest MAPE value of 488 

0.36, indicating a superior ability in minimizing error rates. Followed closely, the XGBoost secured 489 

with an R2 of 0.861, an RMSE of 0.031 and an MAPE of 0.384. However, models’ performance on 490 

TBD_test exhibited varying results, with the XGBoost achieving the top R2 and lowest MAPE, clearly 491 

demonstrating strongest predictive accuracy on this dataset. The LightGBM also maintained excellent 492 

performance with R2, RMSE and MAPE values of 0.888, 0.031 and 0.306, respectively. Among the 493 

other four models, the KNN performed the worst with the lowest R2, the highest RMSE and the second-494 

highest MAPE. This positions it as the model with the poorest performance and the lowest accuracy on 495 

TBD_test. The performance of the SVR and BPNN on this test dataset is similar, as evidenced by their 496 



RMSE values, both of which are 0.041. The significant discrepancy in the model performance between 497 

the two test datasets can be attributed to the distinct nature of the datasets’ distributions and inherent 498 

patterns. Referring to Figs. 12 and 13, the LightGBM performs best in this comparative analysis on 499 

both test datasets, outperforming the other five models employed in this study. 500 

Figure 14 is the Taylor diagrams that provide useful diagnostic comparisons between the six ML 501 

models’ predictions and targets. The reference variable of the Taylor diagrams is the target UWC in test 502 

datasets (the REF point on the horizontal axis). It can be seen that the LightGBM obtained the highest 503 

correlation coefficient while the RF had the smallest standard deviation on FBD_test. The performance 504 

gap between the six models is not large on this test dataset. On TBD_test, however, the models’ 505 

performance is more discrete, and the KNN achieved the lowest correlation coefficient, far away from 506 

the other models as well as the REF point. 507 

 508 

5. Discussion 509 

In this study, the collected UWC data were partitioned into separate freezing and thawing datasets. 510 

The statistical analysis revealed distinct distributions between the two datasets, suggesting significant 511 

differences in their underlying features. This split is justified physically that different mechanisms 512 

govern the change of UWC in soil freezing and thawing processes. The former is influenced chiefly by 513 

temperature, while the latter becomes more affected by soil particle properties such as SSA. For 514 

example, the correlation between SSA and UWC jumps from 0.2 on the FBD to 0.46 on the TBD (see 515 

Fig. 3). In addition, although the complicated mechanisms responsible to the hysteresis have not been 516 

thoroughly revealed, the difference between the freezing and thawing SFCC branches does manifest, 517 

especially in the high subzero temperature range (Tian et al., 2014; Zhou et al., 2018; Ren and Vanapalli, 518 



2020). This means that for the same subzero temperature, the corresponding UWC on the freezing 519 

branch is higher than that on the thawing branch. Therefore, the amalgamation of freezing-thawing 520 

UWC dataset for training ML models introduces potential risks of ambiguous input-output mappings. 521 

That is, the same input corresponds different targets in the training dataset, which may compromise the 522 

stability and robustness of models during training. Additionally, this uncertainty could lead to notable 523 

fluctuations in the models’ prediction for a given input, or, the trained model may struggle to generalize 524 

to new, unseen data, as it is hard for it to produce correct output for the same input scenarios. This 525 

limitation can adversely affect the model’s performance when applied to real-world situations. Hence, 526 

the reasonable spilt of the freezing and thawing data enables the ML models to better capture the 527 

inherent laws of changes in UWC during the freezing and thawing processes, and improve the accuracy 528 

of prediction. 529 

The 10-fold CV was integrated within BO to determine the optimal hyperparameter configuration 530 

for each model. This framework enables maximizing the potential of each optimized model for fair 531 

comparison rather than relying solely on the performance based on a single random split. In other words, 532 

the cross-validation is effective in avoiding the impacts of the randomness of dataset division and 533 

ensuring the robustness of the trained model. And to a certain extent, it can also help mitigate overfitting 534 

and underfitting. However, the application of the 10-fold CV in BO does impose additional 535 

computational expense which may become prohibitive for inherently slower models like NNs. 536 

Therefore, when optimizing the hyperparameters of BPNN in this study, we did not set a continuous 537 

parameter range like the other five models. Instead, we opted for specific, predetermined values, such 538 

as restricting the number of hidden layers to discrete options like 1, 2, and 3, depending on the question 539 

investigated. This strategy was made to strike a good balance between the efficient exploration of the 540 



hyperparameter space and the reduction of generalization error for subsequent comparison between 541 

models. 542 

The noteworthy underperformance on the third fold during the 10-fold CV of models built on FBD 543 

warrants further investigation. One potential explanation is that in this fold, the validation data 544 

distribution pattern is rather distinctive, encompassing a greater number of particular samples, such as 545 

more outliers or noisy data, compared to the training data. That is, models may be less capable of 546 

generalizing to the validation data in Fold 3 due to insufficient similar samples in the training data of 547 

this fold. In contrast, during the CV of models based on TBD, most models exhibited poorest 548 

performance on the fourth fold. This shift partially highlights the difference in data distribution between 549 

the freezing and thawing datasets. The above phenomenon could also be attributed to some problems 550 

in parameters and hyperparameters tuning for the models. It is plausible that models require different 551 

parameter settings for optimal performance based on underlying distribution and pattern of the training 552 

data in Fold 3, which emphasizes the importance of carefully selecting and tuning parameters during 553 

ML tasks. Furthermore, this observation reflects the potential for models to experience notable 554 

performance drops under certain dataset spilt, which demonstrates the necessity of using the 10-fold 555 

CV in this study to assess model robustness and generalizability. 556 

Moreover, it is also possible that subtle overfitting effects may have occurred which negatively 557 

impact models’ performance during the validation process. Taking the performance of models based 558 

on FBD_train-val as an example, the high R2 and low RMSE values during the training process on the 559 

Fold 3 imply adequate model fitting. As shown in Table 5, however, the performance of all models on 560 

unseen data in the validation set has significantly decreased, indicating a potential occurrence of 561 

overfitting. This overfitting tendency is not exclusive to the validation set, but extending to the test sets 562 



(i.e., FBD_test and TBD_test). Comparing Table 3 and Figure 13 reveals a notable decline in predictive 563 

performance of models on the two test sets compared to the training sets, accompanied by a significant 564 

increase in errors, where the R2 difference is approximately 10%. Despite employing the weighted 565 

approach to obtain the final test results, this potential overfitting phenomenon still occurs in two test 566 

sets, which would be mitigated through the augmentation of dataset size by collecting additional data 567 

or the introduction of regularization techniques to the models. 568 

Among the six ML models, the KNN exhibited its poorest performance on Fold 3 of the FBD_val 569 

and Fold 4 of the TBD_val, displaying notable disparities compared to other folds. This discrepancy 570 

suggests that the performance of KNN may be significantly influenced by the local structure of the data. 571 

As a nonparametric algorithm, KNN relies solely on a few nearest training samples (i.e., its 572 

“neighbors”), making it susceptible to the influence of outliers when the value of k is small (Abu Alfeilat 573 

et al., 2019). If a particular fold contains data with substantial variations or non-uniform distribution in 574 

specific regions, KNN may exhibit poor performance in that fold. Furthermore, the performance of 575 

KNN may be highly influenced by the selection of hyperparameters, such as the number of neighbors 576 

(i.e., k). Different folds may necessitate varying numbers of neighbors to adapt to changes in the local 577 

data structure. Consequently, considerable variations in performance may be observed in the 10-fold 578 

CV. Therefore, when employing the KNN algorithm, it is suggested that special attention should be 579 

paid to the handling of outliers and noise. 580 

The LightGBM and XGBoost, as highly optimized gradient boosting algorithms, demonstrated 581 

superior predictive power on both FBD and TBD. These algorithms iteratively fit new models to 582 

emphasize previously mispredicted instances, thereby incrementally optimizing the ensemble as a 583 

whole. Although the overall performance of the RF is not as good as the above two boosting models, 584 



its performance is superior to that of the non-ensemble models. This is expected as ensemble learning 585 

algorithms like random forests and boosting methods (e.g., LightGBM and XGBoost) combine multiple 586 

weaker models to create an overall stronger model, reducing variance (Skurichina and Duin, 2002; 587 

Ferreira and Figueiredo, 2012). Specifically, taking the RF as an example, it averages predictions from 588 

an ensemble of decorrelated decision trees grown on random subsets of the data and features, which 589 

helps reduce variance relative to a single decision tree model. In contrast, the non-ensemble methods 590 

such as KNN, SVR, and BPNN did not exhibit such predictive advantages. The predictions of KNN 591 

rely on the average of the k nearest neighbors. However, in the study, Bayesian optimization results 592 

indicate that the optimal values for the number of neighbors (i.e., k value) in KNN are 2 and 3 on 593 

FBD_train and TBD_train, respectively (refer to Table 2). Such relatively small k values may make 594 

models more susceptible to noisy data and outliers, so that KNN yielded unreasonable predictions. The 595 

SVR and BPNN, while possessing universal approximation properties, are prone to overfitting given 596 

challenges associated with hyperparameter optimization and lack of ensemble effect. However, as 597 

mentioned in Section 4, the BPNN did display competitive capability in UWC prediction among the 598 

three non-ensemble algorithms. This can be attributed to its robust and strong power to model complex 599 

nonlinear relationships, stemming from its multilayer structure and the application of the 600 

backpropagation algorithm during training. 601 

In summary, the ensemble approaches provided the most effective and robust solutions for the 602 

prediction task in this study because of their ability to synergistically combine multiple simple basic 603 

learners, especially the gradient boosting methods. The three non-ensemble models manifested 604 

relatively poorer performance, even though the 10-fold CV strategy ensured their robustness and 605 

stability. Further hyperparameter tuning and diverse ensemble techniques could help the non-ensemble 606 



models boost predictive accuracy and achieve better generalization, on the assignment of estimating 607 

UWC in frozen soils. Future work may explore how to effectively connect the freezing and thawing 608 

sub-models into a unified framework to capture the complexity of soil behaviors. 609 

 610 

6. Summary 611 

In this study, the UWC data collected from the literature was partitioned into separate freezing and 612 

thawing datasets. Based on the two datasets, six machine learning models were developed and evaluated 613 

for estimating UWC in frozen soils, including RF, LightGBM, XGBoost, KNN, SVR and BPNN. To 614 

ensure the robustness and generalizability of models, the integrated 10-fold CV and BO framework was 615 

employed to assess the stability of models and identify optimal hyperparameters across different data 616 

splits. 617 

The results demonstrated that the three ensemble models (RF, LightGBM and XGBoost) achieved 618 

superior accuracy and satisfactory generalization abilities, owing to their synergistic integration of 619 

multiple basic learners. The LightGBM and XGBoost displayed the top prediction power on both the 620 

freezing and thawing test datasets. Despite slightly lower scores, the RF also exhibited reliable 621 

performance. On the other hand, the non-ensemble algorithms including KNN, SVR and BPNN 622 

performed relatively poorer in predictive accuracy compared to ensemble models, as evidenced by their 623 

lower R2 and larger RMSE during both training and validation. Among the non-ensembles, the BPNN 624 

showcased relatively robust modeling proficiency, which attributes to its nonlinear approximation 625 

strengths. Overall, the non-ensemble methods lagged behind their ensemble counterparts.  626 

Findings highlight the superiority and effectiveness of ensemble learning approaches, especially 627 

gradient boosting trees, for the UWC estimation task in the study. The present results provide useful 628 



guidance on selecting and applying advanced machine learning techniques for modeling frozen soil 629 

properties and behaviors during different processes. It underscores the importance of proper validation 630 

strategies and accounting for distinct freezing/thawing phase change behaviors when developing data-631 

driven models for cold regions hydrogeology and engineering practices. 632 
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Table 1. Statistical description of the two datasets 864 

Dataset Variable Unit Mean SD Sk Ku 

 SSA m2/g 90.35 111.433 3.421 13.872 

 θini m3/m3 0.35 0.143 0.721 1.148 

FBD ρd g/cm3 1.54 0.304 -2.317 6.265 

 Temp °C -7.78 6.519 -1.583 6.437 

 θu m3/m3 0.13 0.112 1.723 4.510 

 SSA m2/g 63.12 103.229 4.585 23.767 

 θini m3/m3 0.38 0.170 0.172 -0.386 

TBD ρd g/cm3 1.38 0.336 -0.840 0.465 

 Temp °C -4.93 5.199 -1.511 1.948 

 θu m3/m3 0.11 0.098 1.665 3.341 
  865 



Table 2. Key hyperparameters for the six ML models 866 

Model Key hyperparameters 
Optimal values 

Freezing Thawing 

RF 

n_estimators 664 789 
max_depth 12 20 

min_samples_split 2 2 
min_samples_leaf 1 1 

max_features 1 1 

LightGBM 

n_estimators 768 513 
max_depth 7 7 
num_leaves 70 30 

min_child_samples 2 13 
subsample 0.66 0.73 
reg_alpha 0.02 0.02 

reg_lambda 10.17 1.14 

XGBoost 

n_estimators 200 726 
max_depth 7 7 

learning_rate 0.52 0.14 
subsample 0.84 0.26 
reg_alpha 0.06 0.02 

reg_lambda 27.19 17.78 

KNN 
algorithm 2 2 

n_neighbors 2 3 

SVR 

kernel function RBF RBF 
c 6.9 7.2 

epsilon 0.007 0.049 
gamma 6.03 7.00 

BPNN 

n_layer 1 1 
n_hid 64 32 

lr 0.05 0.02 
batch_size 128 128 

activation function ReLu ReLu 
epochs 100 100 

  867 



Table 3. Models’ performance on FBD 868 

Process 
Models 

Training Validation 
R2 RMSE R2 RMSE 

RF 0.9743 0.0183 0.8551 0.0413 
LightGBM 0.9956 0.0075 0.8601 0.0388 
XGBoost 0.9928 0.0097 0.8526 0.0406 

KNN 0.9352 0.0291 0.8091 0.0460 
SVR 0.9387 0.0283 0.8209 0.0459 

BPNN 0.9132 0.0336 0.8273 0.0451 
 869 
 870 
 871 
 872 
 873 

Table 4. Models’ performance on TBD 874 

Process 
Models 

Training Validation 
R2 RMSE R2 RMSE 

RF 0.9833 0.0127 0.8766 0.0338 
LightGBM 0.9870 0.0112 0.8806 0.0331 
XGBoost 0.9869 0.0113 0.8970 0.0311 

KNN 0.9006 0.0311 0.7663 0.0464 
SVR 0.9276 0.0266 0.8140 0.0415 

BPNN 0.8736 0.0351 0.8161 0.0415 
 875 
 876 
 877 
 878 
 879 
 880 

Table 5. Models’ performance on Fold 3 based on FBD 881 

Process 
Models 

Training Validation 
R2 RMSE R2 RMSE 

RF 0.9212 0.0330 0.6501 0.0458 
LightGBM 0.9964 0.0070 0.5570 0.0515 
XGBoost 0.9937 0.0093 0.6442 0.0462 

KNN 0.9400 0.0288 0.5060 0.0544 
SVR 0.9428 0.0282 0.7058 0.0420 

BPNN 0.9212 0.0330 0.6501 0.0458 
  882 



 883 
Fig. 1 Framework for unfrozen water content estimation 884 

  885 



 886 
Fig. 2 Histogram plots of the input variables and output 887 
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 889 

 890 
Fig. 3 Spearman correlation coefficient heat map among variables on (a) FBD and (b) TBD 891 
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 893 

Fig. 4 The structure of random forest 894 
 895 
 896 

 897 
Fig. 5 The structure of XGBoost 898 



 899 

Fig. 6 Schematic diagram of the (a) level-wise and (b) leaf-wise algorithm 900 
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 902 
 903 

 904 
Fig. 7 Schematic diagram of KNN classification 905 
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 907 
Fig. 8 Schematic diagram of SVR hyperplane data distribution 908 

 909 
 910 
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 912 

 913 
Fig. 9 The structure of BPNN with input layer, hidden layers and output layer 914 

  915 



 916 
Fig. 10 Performance of the six ML models on validation datasets 917 

 918 

Fig. 11 The R2 results for each fold on (a) FBD_val and (b) TBD_val 919 
  920 



 921 

Fig. 12 Prediction results of the six ML models 922 



 923 
Fig. 13 Performance comparison of the six ML models 924 

 925 

 926 
Fig. 14 Taylor diagrams of the six ML models on (a) FBD_test and (b) TBD_test 927 
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