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Abstract. In geological characterization, the traditional methods that rely on the covariance matrix for continuous variable 10 

estimation often either neglect or oversimplify the challenge posed by subsurface non-stationarity. This study presents an 

innovative methodology using ancillary data such as geological insights and geophysical exploration to address this challenge 

directly, with the goal of accurately delineating the spatial distribution of subsurface petrophysical properties, especially, in 

large geological fields where non-stationarity is prevalent. This methodology is based on the geodesic distance on an embedded 

manifold and is complemented by the level-set curve as a key tool for relating the observed geological structures to intrinsic 15 

geological non-stationarity. During validation, parameters 𝜌 and 𝛽 were revealed to be the critical parameters that influenced 

the strength and dependence of the estimated spatial variables on secondary data, respectively. Comparative evaluations 

showed that our approach performed better than a traditional method (i.e., kriging), particularly, in accurately representing the 

complex and realistic subsurface structures. The proposed method offers improved accuracy, which is essential for high-stakes 

applications such as contaminant remediation and underground repository design. This study focused primarily on two-20 

dimensional models. There is a need for three-dimensional advancements and evaluations across diverse geological structures. 

Overall, this research presents novel strategies for estimating non-stationary geologic media, setting the stage for improved 

exploration of subsurface characterization in the future. 

1 Introduction 

The challenge in subsurface investigations, particularly those involving hydrogeology, is to define petrophysical attributes 25 

such as hydraulic properties accurately. This challenge is exacerbated in large spatial domains characterised by a high level of 

heterogeneity (Hewett, 1986; Adams & Gelhar, 1992; Boggs et al., 1992; Hu & Chugunova, 2008; Park et al., 2021). Direct 

measurements of primary variables, such as permeability, porosity, storage coefficient and dispersivity, often show 

considerable spatial variability. These variations can be attributed to inherent geological processes, and they make the 

interpretation of data from single, localised samples an exceedingly complex task. 30 
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In addition to direct measurements, secondary data, which are often derived by methods such as geophysical techniques, play 

a key role in subsurface investigations. Such data provide invaluable insights into the spatial distribution of primary variables, 

thereby enriching our understanding of the less-explored regions (e.g. Yaramanci et al., 1999; Soupios et al., 2007; Doetsch et 

al., 2010; Mao et al., 2015). Although the profound importance of secondary data in revealing the spatial variability of 

subsurface properties has been recognised, the search for an unambiguous methodology to fully exploit its potential is still 35 

ongoing. 

Traditionally, secondary data have been used in subsurface analysis to provide focused insights. For example, through 

amplitude interpretation in seismic exploration, correlations between seismic velocities and rock properties were established 

(Cooper et al., 1965; Rubin et al., 1992; Hyndman et al., 1994; Lumley, 2001; Pride et al., 2003). Similarly, electrical resistivity 

tomography sheds light on subsurface resistivity; since resistivity is related to pore fluid properties, the subsurface resistivity 40 

acts as an indicator of properties such as porosity and water saturation (Kemna et al., 2002; Dietrich et al., 2014). In addition, 

geological surveys provide a comprehensive picture of the subsurface lithological distributions, which influence variations in 

hydrogeological parameters (e.g. D'Affonseca et al., 2020). Nevertheless, the precise nature of these correlations remains a 

subject of active investigation. 

Besides these traditional analyses, site investigations, when combined with secondary data analysis, provide ample detailed 45 

insights (Batu, 1998; Kerrou et al., 2013). However, there is an ongoing debate suggesting that these findings may be heavily 

influenced by the individual expertise and heuristic interpretations of the practitioner, rather than a universally accepted 

methodology. Considering the inherent limitations and uncertainties of secondary information, it is clear that the existing 

methods cannot fully capture the complex heterogeneities of subsurface stratigraphy, thus highlighting the urgent need for 

innovative methods to utilise secondary data sets holistically. 50 

In subsurface studies, the intrinsic non-stationarity, which is an unavoidable feature of the real subsurface in practical-scale 

problems, is a predominant challenge. This problem is especially pronounced when considering the robust spatial correlations 

of hydraulic properties (Cressie, 1986; Cressie, 1993; Yeh and Liu, 2000; Higdon et al., 2022; Piao and Park, 2023). In 

conventional geostatistics, we often assume that these spatial correlations are consistent across an entire study area; however, 

actual observations often contradict this assumption. In large areas subjected to different geological processes, the directions 55 

that indicate strong spatial correlations can vary considerably (Piao and Park, 2023). For example, while site surveys mainly 

provide information on strike and dip directions at shallow depths, advanced techniques such as seismic exploration provide 

information from greater depths and reveal the more complex spatial interactions of the subsurface. By combining these data 

sources, we can discover the detailed subsurface heterogeneities shaped by a range of geological processes. However, some of 

the predominantly used methods, such as cokriging, occasionally cannot these subtleties, particularly when mapping spatial 60 

variations. Often these shortcomings are due to fundamental errors such as the assumption of stationarity (Strebelle, 2002). 

In the field of hydrogeological characterization, the distinct directionality of both conductive and non-conductive layers plays 

a crucial role in determining groundwater flow trajectories and the intricacies of solute migration. During analytical 

considerations, any oversights, data gaps or limitations in estimation techniques can lead to profound misconceptions regarding 
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flow dynamics and solute dispersion in aquifer systems. These discrepancies are accentuated in multiphase flow situations. 65 

These include situations with unsaturated flow (e.g., Suk & Park, 2019), interactions between groundwater and hydrocarbons 

(e.g., Qin et al., 2007), or situations in which supercritical CO2 interfaces with brine (e.g., Han et al., 2010). In these complex 

arenas, small errors in measuring directionality can lead to large consequences, underscoring the acute sensitivity of flow 

mechanics to nuanced shifts in subsurface properties. Therefore, the careful and accurate delineation of these characteristics is 

critical for hydrogeological exploration. 70 

In the following discussion, we examine closely the complexities of non-stationarity in covariance-based methods. Recent 

research focused on this issue, with most techniques relying on the geodesic kernel—as done by Feragen et al. (2015), 

Jayasumana et al. (2015) and Pereira et al. (2022)—and kernel convolution methods, as reported by Higdon (1998), Higdon et 

al. (2022), Paciorek (2003) and Fouedjio et al. (2016). These cutting-edge techniques represent a notable departure from 

classical geostatistical methods, such as kriging. The unique strength of these new techniques lies in providing an adaptive 75 

framework that seamlessly integrates spatially variable statistics. This adaptability stems from the integration of Riemannian 

manifolds or tailor-made non-stationary covariance functions. Hence, these methods excel at capturing and modelling the 

nuances of directional variation in spatial associations—a task that traditional kriging struggles to accomplish with the same 

finesse. 

Recently, innovative methods designed to capture complex spatial variations have been applied in hydrogeological studies. 80 

For example, Piao and Park (2023) used the intrinsic geometry in manifold embedding customised for non-stationary field 

characterization in hydrogeology. Their study highlighted the importance of understanding of the nuances in the distribution 

of hydraulic properties. In particular, the use of non-stationarity enhanced spatial field estimates led to drastic improvements 

in estimation accuracy. 

Notably, the existing literature lacks explicit guidance on the construction of manifolds in a geological context. The processes 85 

of creating manifolds and extracting associated geometric information from secondary data are of paramount importance. Such 

processes provide a crucial link between secondary geological data and practical estimation techniques. Without this crucial 

link, the full potential of these methods cannot be realised, resulting in a significant gap in non-stationary field characterization. 

In this study, a basic framework for using secondary data is developed via a contextual approach. By extracting spatial insights 

from these data, we provide a perspective for estimating primary variables, especially in areas that are characterised by 90 

pronounced variations in directional dependence accross spatial locations. Here, we emphasise that this study was not aimed 

at using secondary information at specific locations to improve estimates based on correlations between primary and secondary 

data, as is done traditionally. Instead, this study proposes a more judicious and strategic use of secondary data in subsurface 

characterization within a geological context. 

2 Targeted secondary data for analysis  95 

Section 2 reviews the specific types of secondary data that extremely important for the proposed methodology. The emphasis 

is on the data that provide directional information about spatial correlations that are inherently non-stationary. Such data types 
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provide insight into the intricacies of geological formations and their variable orientations, thereby improving our 

understanding and challenging the traditional geostatistical paradigms. 

Geological observations often tend to have non-stationary correlations. This nature of geological observations is incompatible 100 

with the traditionally accepted assumption of stationarity in the conventional geostatistical methods such as kriging. To explain 

this, see the geologic map in Fig. 1(a) showing surface sedimentary rock formations, commonly known as folds, with distinct 

spatial variations in orientation. This map shows the Joseon Supergroup within the Taebaeksan Basin in Gangwon-do, South 

Korea. The dominant features seen in the map are the lower Palaeozoic (Cambrian–Ordovician) sedimentary and 

metasedimentary rocks such as sandstone, shale, limestone, dolomite, quartzite and slate (see Son & Lee, 1966; Choi et al., 105 

2016). 

From Fig. 1a, we see that the sedimentary formations have a clear stratigraphic sequence, indicating their sequential deposition. 

Over geologic time scales, these formations experienced various tectonic forces and diagenetic processes, resulting in their 

current surface expressions. The boundaries of these formations, which have uneven thickness and intricate patterns, provide 

important insights into the dynamics of their depositional environments. 110 

Such boundary patterns are important for inferring subsurface petrophysical properties. The continuity along these boundaries 

suggests that depositional environments remained relatively consistent in a direction parallel to these boundaries. This implies 

a greater degree of similarity in lithological and petrophysical properties along these lines. Conversely, as deposition 

progressed in a direction perpendicular to these boundaries, variations in the depositional conditions become more pronounced. 

Thus, we can hypothesise that the spatial correlation of petrophysical properties is more extensive along the depositional strike 115 

(parallel to the formation boundary). In contrast, this correlation decreases more rapidly when examined in the normal direction 

to the boundary. 

(a)

 
(b) 
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Figure 1. Geologic and geophysical representations of non-stationary spatial correlations: (a) A part of the geologic map of the 
Joseon Supergroup within the Taebaeksan Basin in Gangwon-do, South Korea, showing sedimentary rock formations with varying 
orientations. (b) The seismic profile of the F3 block in the southern North Sea, showing subsurface horizons with non-stationary 120 
orientations over a span of 5 km in the 𝒙-direction and 0.88 s (two-way travel time) in the 𝒚-direction. Reflectors show varying dips, 
indicating a geologic structure influenced by the underlying Permian salt dome intrusion. 
 

Similarly, Fig. 1(b) shows a seismic profile where the horizons represent non-stationary orientations. This seismic profile 

represents the 691st inline of a three-dimensional (3D) seismic profile acquired in the F3 block in the southern North Sea. The 125 

extracted profile spans 5 km in the 𝑥-direction and 0.88 s (two-way travel time) in the 𝑦-direction. The pixel spacing is 

approximately 9 m in the 𝑥-direction and approximately 0.0015 s in the 𝑦-direction. The data-acquisition site is characterised 

by an anticlinal dip of the upper sedimentary layers because of the underlying Permian salt dome intrusion, resulting in a 

complex geologic structure. In the profile, the right part shows steeply dipping reflectors, while the dip decreases towards the 

upper layers (Schroot & Schüttenhelm, 2003). In contrast, the left part has relatively flat reflectors. In general, the petrophysical 130 

properties are similar within a given reflector; however, there are discrepancies among different layers, implying that physical 

proximity does not necessarily correspond to similarity in petrophysical properties. When predicting subsurface properties 

from limited geophysical data such as well logs, it is essential to consider the subsurface reflection structure. Modern image 

processing techniques, such as those explored (in part) in this study, can effectively delineate these features. 

In an undisturbed geologic environment in the absence of major deformation such as faults or plutonic intrusions, hydraulic 135 

properties often follow the direction of sedimentary deposition. This orientation results from the consistent geologic processes 

in similar depositional and diagenetic environments over time. The key indicators of this orientation include strike directions 

determined from field surveys, lithologic boundaries on geologic maps and seismic reflectors in exploration data. These 

markers provide the secondary information that is essential for geostatistical estimators when inferring petrophysical properties. 
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The main hypothesis of this study is that petrophysical properties are predominantly correlated in the sedimentary depositional 140 

direction, especially in aquifers with sedimentary matrices, regardless of their consolidation state. The objective of this study 

was to identify those linear features from secondary data that help elucidate the geologic layering and estimate primary 

petrophysical properties such as permeability. It is imperative to recognise that these boundary orientations can vary because 

of deformation, indicating directional non-stationarity influenced by specific geologic conditions during and after deposition. 

Therefore, the study of these linear features can enhance our understanding of geological formations and improves the accuracy 145 

of hydrogeological evaluations. This paper describes a method to obtain this information and incorporate it into the estimation 

of the primary variable. 

3 Theory 

3.1 Geostatistical implications of the manifold 

In geostatistics, the manifold is not merely a geometric construct; it is a fundamental tool for understanding spatial variation 150 

because it provides a framework for capturing spatial non-stationarity in the directions of correlation. Conceptually, the 

manifold provides a blueprint—a structured representation—that delineates the intricate spatial shifts in correlation within a 

given domain. 

Consider a manifold as a surface residing in the 𝑋𝑌𝑍 -space, parameterised by the 𝑢𝑣 -plane. This relationship can be 

represented mathematically by as 155 
𝑋 = 𝑢
𝑌 = 𝑣

𝑍 = 𝑓(𝑢, 𝑣)
, (1) 

where the function 𝑓(𝑢, 𝑣) captures the intricate shape and undulations of the manifold, encapsulating spatial heterogeneities 

in subsurface parameters. The 𝑢𝑣-plane provides a base reference—a standard metric space—upon which the nuances of a 

manifold are projected or resolved. 𝑋 and 𝑌 correspond directly to 𝑢 and 𝑣, respectively, and the expression 𝑍 = 𝑓(𝑢, 𝑣) 

captures the depth of a manifold, highlighting the spatial nonstationarities in correlation orientations. 160 

Figure 2 shows two representations of the manifold concept. Figure 2(a) shows a 3D visualisation of the manifold. The grey 

surface delineates the manifold. Superimposed on this manifold is a blue surface, which represents a specific level. The 

intersection of this level with the manifold defines a curve that is referred to as the level-set curve (in Sect. 3.2), analogous to 

geological strikes. The magenta line indicates the direction of the level-set curve (interchangeably, strike in the geological 

context) on the manifold, and the green line indicates the dip direction, which is aligned with the steepest gradient (i.e., dip), 165 

regardless of ascending or descending dip. 

Figure 2(b) shows the two-dimensional (2D) projections of linear segments, indicating strike and dip directions at designated 

measurement locations corresponding to Figure 2a. The red line in this 2D projection corresponds to the magenta line in the 

3D visualisation, representing the strike direction. In contrast, the blue line in the 2D projection mirrors the green line in the 
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3D visualisation, indicating the direction of the gradient at a given manifold point. Note that the length of the blue line in the 170 

projection appears shortened because of the angle between the manifold and the actual 2D plane. In the most extreme case, 

when the manifold is oriented vertically, this blue line indicating the dip direction may appear to have virtually zero length in 

the projection. 

(a) (b) 

 
Figure 2. Conceptual illustrations of the manifold in geostatistics: (a) A three-dimensional (3D) representation of the manifold (grey 

surface) with a given level (blue surface). The intersection of the manifold and the level forms a level-set curve. The magenta line 175 
indicates the direction of the level-set curve (or geological strike) on the manifold, while the green line indicates the dip direction, 

aligned with the steepest gradient; (b) two-dimensional (2D) projections of the linear segments corresponding to the strike (red line) 

and dip (blue line) directions at specific measurement locations related to (a). The change in length of the blue line in the 2D 

projection reflects the angle between the manifold and the actual 2D plane. 

The level-set curve, suggesting the locations of geological formation boundaries, offers significant insight into the geometry 180 

of the manifold and its implications for spatial estimation. In the visual representation, manifold measurements in 3D are 

projected onto a 2D plane. However, in practical applications, the process operates in reverse: information is gathered from a 

2D plane (i.e., secondary data) and utilised to construct the 3D manifold. As discussed in the following sections, the 

orthogonality theorem suggests a perpendicular relationship between the direction of this curve and the gradient of the manifold. 

This relationship suggests that by understanding the direction of the level-set curves, one can understand the geometric 185 

complexity of a manifold. The central goal of this study was to extract information about manifold geometry from secondary 

data sources (e.g., strikes) in the 2D plane and use these data to reconstruct the 3D manifold for spatial estimation. 

3.2 Level-set curve of a manifold 

To further appreciate the importance of the manifold in geostatistics, it is imperative to analyze the concept of the level-set 

curve. Consider a scalar function 𝑓:ℳ → ℝ. The level-set curve, denoted as 𝐿!, for a given value 𝑐 is defined as 190 

𝐿! = {𝐩 ∈ ℳ ∶ 	𝑓(𝐩) = 𝑐}, (2) 
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where 𝐩 represents a point on the manifold, ℳ. The level-set curve consists of those points on the manifold for which the 

function 𝑓 attains a constant value of 𝑐. Given the spatial representations of a manifold, this curve serves as an essential 

reference that captures constant-value contours on the manifold and thus has substantial relevance in geostatistical estimates. 

3.3 Spatial correlation in the context of the level-set curve 195 

In spaces defined by a smooth manifold, ℳ, the concept of geodesic distance becomes paramount. This distance represents 

the shortest path between two points on a curved surface and differs from the traditional Euclidean distance used on flat 

surfaces (conventional geostatistics). 

Mathematically, given two points 𝐩 and 𝐪 that are members of ℳ, their geodesic distance, denoted as 𝑑"(𝐩, 𝐪), can be written 

as 200 

𝑑"(𝐩, 𝐪) = inf BC ‖𝛾#(𝜆)‖𝑑𝜆
$

%
∶ 𝛾: [0,1] → ℳ, 𝛾(0) = 𝐩, 𝛾(1) = 𝐪J , (3) 

where the term ‘inf’ stands for infimum, or the greatest lower bound. 

The key insight here is that when the conventional Euclidean distance is consistent in every direction, the geodesic distance is 

minimum in the direction of the level-set curve. Specifically, this occurs when both points, 𝐩 and 𝐪, lie on this curve. This 

phenomenon suggests that the strongest spatial correlation is found in the direction of the level-set curve. 205 

This understanding emphasises the central role of the level-set curve in geostatistical evaluations. Recognising that points on 

this curve share a heightened spatial affinity allows for the more accurate modelling and analysis of spatial patterns. 

3.4 Utilising secondary data for insights 

In the absence of significant deformation such as joints, faults or plutonic intrusions, hydraulic properties are typically assumed 

to extend primarily in the horizontal direction of the formation. This tendency is attributed to the fact that these properties 210 

develop simultaneously under similar geologic conditions. Because of this inherent characteristic, secondary data become 

increasingly important in geostatistical analysis. This is especially true when identifying linear structures that represent the 

most spatially correlated direction at a given location. These structures often reflect the underlying geologic processes and 

their resulting spatial patterns. As mentioned in Sect. 3.3., this direction coincides with that of the level-set curve. A closer 

examination shows that secondary data can reveal these important spatial orientations, making in-depth geostatistical studies 215 

possible. 

In Sect. 4, we examine in greater detail the process of determining the most spatially correlated direction using secondary data 

and discuss real-world examples based on geologic maps and seismic profiles. 
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3.5 Deriving manifold gradient from secondary data 

Secondary data holds the potential to provide vectors indicating the maximum correlation directions. Using the notation ∇𝑓 to 220 

represent the gradient of 𝑓 on the manifold ℳ, the direction corresponding to the highest spatial correlation at a given point, 

𝐩, is discerned to be orthonormal to ∇𝑓(𝐩). This assertion is based on a cardinal mathematical theorem that states that if a 

function 𝑓 is differentiable, its gradient at a point will either be zero or perpendicular to its level set at that point. 

Thus, the direction of the level-set curve is perpendicular to the direction of the gradient on a manifold. Specifically, the 

gradient of 𝑓  at point 𝐩  is orthogonal to the level-set curve, 𝐿! , at the same point. This relationship can be expressed 225 

mathematically for any vector, 𝐰, tangent to 𝐿! at point 𝐩 as 

∇𝑓(𝐩) ⋅ 𝐰 = 0. (4) 

These orthogonal relations are further encapsulated by the equations: 
𝜕𝐿!
𝜕𝑣 = −

𝜕𝑓
𝜕𝑢 	and	

𝜕𝐿!
𝜕𝑢 =

𝜕𝑓
𝜕𝑣 .

(5) 

The orthogonal relationship in Eq. (5) indicates that one component of the gradient is positive, while the other is negative—230 

indicating that they are perpendicular. 

By recognising and internalising this mathematical interplay, a robust framework can be developed to decipher the spatial 

nuances of a manifold. Thus, geostatistical evaluations become more thorough and insightful. 

3.6 Challenges in manifold reconstruction 

Reconstructing a manifold involves more than determining the direction of the gradient, ∇𝑓. It also requires understanding the 235 

magnitude of the variation. While secondary data provide profound insights, they occasionally lack the granularity or precision 

required for meticulous manifold reconstruction. To overcome these challenges, often iterative strategies or complementary 

methods are required. 

Although the orthogonality between the level-set curve and the gradient of a manifold at a given point is mathematically 

defined in Eq. (5) when 𝑓 is given, for manifold reconstruction from the level-set curve, especially when information is 240 

constrained owing to the lower dimensionality of the level-set curve compared to the manifold, the following modification is 

required: 

V
𝜕𝑓
𝜕𝑢W&'(

= −𝛽
𝜕𝐿!
𝜕𝑣 	and	 V

𝜕𝑓
𝜕𝑣W&'(

= 𝛽
𝜕𝐿!
𝜕𝑢 ,

(6) 

where 𝛽 is introduced as a scalar factor whose exact value is undetermined in the theoretical context, and (𝜕𝑓/𝜕𝑢)&'( and 

(𝜕𝑓/𝜕𝑣)&'( are the estimated manifold gradients in the directions of 𝑢 and 𝑣. The inclusion of 𝛽 provides flexibility, allowing 245 

the model to capture manifold intricacies by adjusting the magnitude of the gradient based on empirical evidence. Thus, 𝛽 

becomes an essential parameter, and it provides the necessary degree of freedom to ensure accurate manifold reconstructions 

from limited data. 
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For an impact of this parameter to the estimated field and the specifics of our empirical approach, which involves determining 

the reasonable 𝛽 values for different cases, readers are directed to Sect. 5. 250 

3.7 Gaussian process regression based on geodesic kernel 

In the domain of spatial structure derivation and geodesic distance computation, statistical methodologies are indispensable to 

make use of extracted spatial nuances. Although several estimation techniques can be used considering the spatial affinity 

embedded within manifolds, Gaussian Process Regression (GPR) is a suitable choice, especially when coupled with a kernel 

tailored to geodesic distances. The GPR can be used with the traditional kriging methods, ensuring consistency with the 255 

existing practices. 

Departing from the realms of traditional kriging and GPR, our proposed methodology offers a unique space to accommodate 

the non-stationary spatial distributions inherent in variable estimation. 

Our methodology is based is the role of the kernel in assessing the similarity of data points. If geological constructs are regarded 

as manifolds, the geodesic kernel is a quintessential measure of such similarities. Given two manifold points, 𝐩) and 𝐩*, the 260 

geodesic kernel can be expressed as 

𝑘[𝐩) , 𝐩*\ = exp`−
𝑑"[𝐩) , 𝐩*\

+

2𝜌+ a , (7) 

where 𝑑"(𝐩) , 𝐩*) represents the geodesic distance between the two points, and 𝜌 (similar to 𝛽) is a critical, yet undetermined 

parameter that defines the correlation scale. Methods to determine 𝛽 and 𝜌 will be discussed in the Results and Discussion 

section (Sect. 5). 265 

The geodesic kernel is adopted considering the nuanced spatial relationship inherent in geological structures. By anchoring the 

kernel to geodesic distances, the similarity measure is inherently aligned with the manifold geometry, thereby enhancing the 

predictive power of GPR. 

The introduction of the geodesic kernel ensures that the similarity measure closely follows the innate geometry of the manifold. 

This alignment optimises the predictive power of GPR. Once the geodesic kernel is computed, it can be seamlessly integrated 270 

into the GPR framework. Thus, we obtain a model that accurately captures spatial dependencies in geological structures, 

addressing both broad patterns and fine-grained variations. 

The equation used for internal estimation in this model is 

𝐳∗ = 𝛀𝐳-.' = 𝚺/.(𝚺.. + 𝜎+𝐈)0$𝐳-.', (8) 

where 𝐳∗ represents estimates of the primary variable at all sampled locations (𝑍-$, ⋯ , 𝑍-1); 𝐳-.' is a vector of 𝑁 observed 275 

values of the primary variables; 𝛀  denotes a 𝐾 ×𝑁  weight matrix; 𝚺/.  and 𝚺..  represent 𝐾 ×𝑁  and 𝑁 ×𝑁  covariance 

matrices, respectively, representing relationships of unknown–known points and known–known points, respectively. In the 

equation, 𝜎+𝐈 with dimension 𝑁 ×𝑁 introduces regularisation into the estimation, and the constant 𝜎+ refers to the reliability 

of the primary data observations, accounting for possible measurement errors. 
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In the future, we will focus on optimising 𝜌  and exploring multi-kernel methods to improve the model performance. 280 

Combining the geodesic kernel with GPR itself represents a notable step in geostatistical analysis, paving the way for advanced 

research and real-world applications (Feragen et al., 2015; Jayasumana et al., 2015; Pereira et al., 2022; Piao & Park, 2023). 

3.8 Calculation of geodesic distance 

In geostatistical studies, especially in manifold learning, it is essential to compute the geodesic distance between two points 

on a manifold. This distance represents the shortest path between two given points on a curved surface and can be regarded as 285 

the equivalent of a ‘straight line’ distance in Euclidean spaces. In a geological context, this distance is critical because it 

characterises the spatial relationships between different geological processes or structures. 

To compute the geodesic distance between two points 𝐩) and 𝐩* on the manifold, described by the coordinates (𝑢) , 𝑣)) and 

[𝑢* , 𝑣*\, respectively, the following formula is used (Piao & Park, 2023): 

𝑑"[𝐩) , 𝐩*\ = C n[𝑢* − 𝑢)\
+𝑔$$ + 2[𝑢* − 𝑢)\[𝑣* − 𝑣)\𝑔+$ + [𝑣* − 𝑣)\

+𝑔++𝑑𝜆
$

%
. (10) 290 

Here, 𝑔 represents the metric tensor of the manifold, and it is a function that captures how distances vary across the manifold 

as a function of direction. More specifically, the metric tensor is defined as follows: 

𝑔 =
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. (11) 

The components 𝑔$$, 𝑔+$ and 𝑔++ of the metric tensor are crucial to understanding the intrinsic geometry of the manifold, and 

they describe how distances change as a function of direction on the manifold surface. The geodesic distance is determined 295 

using Eq. (10) and Eq. (11) by numerical integration. In this study, Legendre–Gauss quadrature with 20 abscissa and weights 

were adopted to improve the accuracy and numerical efficiency. For more details of the equations and the derivation, see Piao 

and Park (2023). 

By systematically applying the formulas given in Sect. 3.6–3.8, an approximate measure of geodesic distance on geological 

manifolds can be obtained. Such calculations pave the way for richer insights into the spatial intricacies of manifolds, thereby 300 

enhancing our understanding of geological structures and processes. 

4 Method 

4.1 Deriving spatial structures from supplementary data 

This subsection describes the methods used to obtain the key ancillary data essential to this study. Secondary data are presented 

mainly in the form of imagery, particularly, geologic maps and seismic profiles. In addition, information derived from 305 
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geological surveys, particularly, the strike and dip directions of formations, is invaluable and is incorporated as ancillary data. 

From these sources, we derive an in-depth understanding of the spatial dependencies present in complex geological settings. 

The emphasis is on linear features as they inherently capture the directional correlation of the spatial distribution, which is 

critical to understanding the spatial coherence of petrophysical attributes. 

From the provided data, linear segments along geological structures that indicate spatial coherence (namely, the level-set 310 

curves and directions), are extracted. For this extraction, sampling points within an image are identified, and windows centred 

on each of these points are created for information extraction. Although several sampling methods, such as pure random, grid, 

and Latin hypercube, are available, the choice is often a matter of preference. In this study, a quasi-random sampling method, 

namely, the Sobol sequence, was used. The window size, which is essential for extracting information precisely, is determined 

empirically. It is essential to ensure that the number of sampling points does not inadvertently introduce redundancy and that 315 

the spatial variability in the image is considered. Hence, the window size (𝑠2)3) was determined to be the ceiling value of 

𝛾 ×min(𝑛4, 𝑛5), where 𝛾 was set as 0.025 in this study. Here, 𝑛4 and 𝑛5 are the number of pixels in the horizontal and vertical 

directions, respectively. The total number of sampling points, symbolised by 𝑛'/6, where the window was applied and the 

linear features were detected, is expressed as 

𝑛'/6 =
2𝑛4𝑛5
𝑆2)3+

. (12) 320 

Within each specified sampling window, a systematic approach consisting of four key tasks was adopted to identify any salient 

linear feature, if present: 

(1) Enhancement of edge structure in images: Given the heterogeneity in the quality of images derived from 

secondary data, techniques that enhance the inherent linear features are essential. The Canny edge detection method 

is particularly effective for this purpose. It can be implemented using the edge function in MATLAB's Image 325 

Processing Toolbox. 

(2) Digitisation of linear features: After the edge enhancement phase, the Hough transform is adopted to convert the 

delineated edges into distinct linear segments that are confined within the specified sampling windows. The segment 

selection procedure is based on MATLAB's Hough transform capabilities (the ‘houghlines’ function) to locate the 

start and end points of these linear trajectories. 330 

(3) Calculation of slopes for directional representation: Individual linear segments in isolation may have no intrinsic 

value for this study, as the primary interest is in the representative direction for each window. Therefore, only the 

slopes of the identified linear segments within a window were retained for further processing. For delineating linear 

features, only lines exceeding a length of 𝑠2)3/2 were considered. The coordinates of the start and end points of 

each lineament are denoted as (𝑢7' , 𝑣7') and (𝑢7& , 𝑣7&), respectively, where 𝑘 ranges from 1 to 𝐾 (where 𝐾 is the 335 

cumulative number of linear segments in the sampling window). Then, the slope of the detected linear segment, 

represented as 𝛼7, can be calculated using the following formula: 
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𝛼7 =
𝑣7' − 𝑣7&

𝑢7' − 𝑢7&
. (13) 

(4) Determination of the representative slope: Given the inherent variability in image quality and clarity, multiple 

slopes indicative of different orientations may be detected within a single window. Such diversity can lead to 340 

inconsistencies. Hence, it is necessary to have a single, representative slope that adequately captures the underlying 

directionality. To address this concern, median slopes were selected from the set of calculated slopes, considering 

the inherent robustness of median slope and its ability to remain unaffected by outliers. Consequently, a median is 

extracted from all 𝛼7 values to denote a representative slope, 𝛼, for that particular sampling window. Knowing 𝛼, 

the angle of structural inclination, 𝜃, can be derived as 𝜃 = arctan(𝛼). Next, the partial derivatives of the level-set 345 

curve direction with respect to 𝑢 and 𝑣, symbolised as 𝜕𝐿!/𝜕𝑢 and 𝜕𝐿!/𝜕𝑣, respectively, are defined as follows: 
𝜕𝐿!
𝜕𝑢 = cos(𝜃) 	and	

𝜕𝐿!
𝜕𝑣 = sin(𝜃) . (14) 

4.2 Conversion from localised level-set curve direction to manifold gradient fields 

First, at the discrete sampled locations, the gradients (𝜕𝑓/𝜕𝑢)&'( and (𝜕𝑓/𝜕𝑣)&'( can be obtained directly using Eq. (6). This 

equation provides a straightforward means of conversion based on the orthonormal relationship between the detected level-set 350 

curve direction and its corresponding manifold gradient at these specific points. 

However, there are challenges in obtaining a comprehensive representation over the entire domain, especially when the 

gradients are insufficient. Equation (6) facilitates the computation for the sampled locations; the geodesic distances, from Eq. 

(10) and Eq. (11), require that these gradients should be uniformly distributed over the entire domain. To overcome this 

problem, the gradient fields must be interpolated over the entire spatial extent. This process, which is based on the locally 355 

detected level-set curve directions, aims to provide a seamless and continuous gradient representation that reproduces all local 

intricacies. 

Hence, GPR (Sect. 3.7) is used in this study. GPR can handle uneven data sets and hence is a suitable tool for this interpolation 

task. GPR appreciates the spatial interplay between points, focusing on the Euclidean distance while omitting complicated 

manifold subtleties. In particular, parameter 𝜌 from Eq. (7) is set empirically by considering the structural variations of an 360 

image. 

4.3 Measure of structural similarity 

Given two images, 𝐀 and 𝐁, with matching dimensions 𝑛4 × 𝑛5, their similarity can traditionally be quantified by comparing 

the basic statistical parameters such as mean and variance. Typically, the correlation coefficient between 𝐀 and 𝐁 is used for 

this comparison. 365 
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However, methods that focus exclusively on direct pixel-by-pixel comparisons may not fully capture the true similarity 

between the estimated and the actual image. To overcome this shortcoming, a more sophisticated metric named the structural 

similarity index measure (SSIM) was developed (Wang et al., 2004). 

The SSIM was designed to evaluate the perceptual quality of images, but it goes beyond mere numerical disparities. the SSIM 

emphasises the local patterns of pixel intensities within images, more closely aligning with the perception of the human visual 370 

system. The SSIM is expressed mathematically as 

SSIM(𝐀, 𝐁) =
(2𝜇𝐀𝜇𝐁 + 𝐶$)(2𝜎𝐀𝐁 + 𝐶+)

(𝜇𝐀+ + 𝜇𝐁+ + 𝐶$)(𝜎𝐀+ + 𝜎𝐁+ + 𝐶+)
, (15) 

where 𝜇𝐀 and 𝜇𝐁 are the means of 𝐀 and 𝐁, respectively; 𝜎𝐀+ and 𝜎𝐁+ are the variances of 𝐀 and 𝐁, respectively; 𝜎𝐀𝐁 is the 

covariance of 𝐀 and 𝐁; and 𝐶$ and 𝐶+ are constants to avoid instability (both are unity in this study). 

The SSIM defined in Eq. (15) ranges from −1 to 1. An SSIM value of 1 indicates that the two images being compared are 375 

perceptually identical. Conversely, a value of −1 indicates complete structural dissimilarity. In most real-world scenarios, the 

SSIM fluctuates between 0 and 1: values closer to 0 indicate less structural similarity, while those closer to 1 indicate higher 

similarity. Therefore, higher SSIM values indicate better perceptual quality when two images are juxtaposed. 

5 Results and discussion 

5.1 Geological map as secondary data 380 

The geologic map shown in Fig. 1(a) delineates the formation boundaries of the constituent geologies (Sect. 2). These 

boundaries provide a deeper understanding of the stratigraphic order, which is fundamental to recognising the hydrogeologic 

properties of sedimentary formations. In such terrains, correlation scales tend to be longer along bedding planes than in 

perpendicular directions because of the uniform depositional conditions that prevailed. Hence, nearby points within a single 

lithostratigraphic unit formed during an identical geochronological span tend to exhibit analogous petrophysical properties. 385 

Notably, angular unconformities are not considered in this context. Instead, all boundaries are assumed to have been parallel 

to the overlying and underlying formations to some degree during deposition. 

Building on this understanding, we can extract directional information by applying the method described in Sect. 4.1. Figure 

3 shows the results of boundary identification combined with the derived tangential slopes at selected locations, effectively 

highlighting the detected geologic boundaries from the geologic map shown in Fig. 1(a). In addition, the tangential lines 390 

associated with these boundary curves are shown as line segments. During delineation, the window covered an area of 6 × 6 

pixels, and the total number of sampling points was 3730, considering 𝑛4 and 𝑛5 as 308 and 218 pixels, respectively. These 

identified linear features act as indicators of the directions of the level-set curve at their respective sampling points. These 

features can be interpreted as the gradient of a manifold describing the directional shifts of spatial correlations throughout the 

modelling domain. 395 
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Figure 3. Boundary identification results paired with the tangential gradients derived at selected locations showing the detected 

geologic boundaries and associated tangential lines. The linear features indicate the level-set curve directions at their corresponding 

sampling points, representing the gradient of a manifold representing directional shifts of spatial correlations. 

Figure 4 shows the interpolated gradients, labelled as (𝜕𝑓/𝜕𝑢)&'( and (𝜕𝑓/𝜕𝑣)&'(, with 𝜌 as 40 pixels. This value, 𝜌 = 40 400 

(Eq. 7), was empirically determined considering the general trend of lithological boundaries (Sect. 4.2). In general, a smaller 

𝜌 value in GPR can capture more detailed structures at the cost of overfitting. To compensate for the potential inaccuracies in 

linear feature delineation, we adopted a 𝜎+ value of 1 × 10−1 (Eq. 8) during the interpolation process. Observations from the 

figure indicate pronounced gradient variations throughout the domain, suggesting the potential non-stationarity and directional 

oscillations in spatial correlations. In contrast, the conventional methods such as kriging, which are based on Euclidean 405 

principles, theoretically produce zero values for both 𝜕𝑓/𝜕𝑢 and 𝜕𝑓/𝜕𝑣. The geodesic distance calculated using Eq. (10) and 

Eq. (11) were based on these interpolated gradients, (𝜕𝑓/𝜕𝑢)&'( and (𝜕𝑓/𝜕𝑣)&'(. 
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(a) 

 
(b) 

 
Figure 4. Interpolated gradients labelled (𝝏𝒇/𝝏𝒖)𝒆𝒔𝒕  and (𝝏𝒇/𝝏𝒗)𝒆𝒔𝒕  for a 𝝆 value of 40 pixels. (a) and (b) show the estimated 

gradient fields in the 𝒖 and 𝒗 directions, respectively. 410 
In light of the calculations discussed, the unconditionally simulated results shown in Fig. 5 provide a credible representation 

of the hydraulic conductivity distribution over the region shown, informed by its geologic background. This plot is based on 

50 data points that are randomly distributed and follow a normal distribution at random locations (indicated by white dots with 

black borders). These markers represent the log-transformed hydraulic conductivities with the log-transformed mean and 

variance both equal to 1. The geodesic kernel GPR methods explained in Sect. 3.7, based on manifold embedding, were used 415 

to process these figures. The resulting hypothetical predictions are consistent with the discernible non-stationary directional 

patterns seen in the ancillary geologic map data (Figure 1a) and reflect a sedimentary basin setting. Meanwhile, the derived 

results agree with the factual data sets, such as hydraulic conductivities derived from aquifer evaluations, at selected monitoring 
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sites. During this computational exercise, 𝜌 was set to 100 pixels, and 𝛽 was fixed at 10—consistent with Case 1 (refer to 

baseline scenario), to facilitate subsequent juxtapositions with alternative 𝜌 and 𝛽 configurations. 420 

 
Figure 5. Unconditionally simulated representation of the petrophysical property (e.g., hydraulic conductivity) distribution over the 

studied region (Fig. 1a), based on geologic secondary information. The estimated distribution is based on 50 data points, represented 

by white dots with black outlines. 

From the analytical exploration, results of two additional test scenarios were evaluated: 𝜌 = 150 and 𝛽 = 10 (Case 2) and 425 

𝜌 = 100 and 𝛽 = 5 (Case 3), both shown in Fig. 6. The figure shows that a higher 𝜌 value (Case 2), which corresponds to the 

correlation scale used in traditional geostatistical techniques such as kriging, results in reduced resolution of the structural 

variations compared to Case 1. This observation is consistent with the understanding that longer correlation-scale structures 

may lack the finer scale variations inherent in the embedded manifold. In Case 3, a lower 𝛽 value is correlated with reduced 

magnitudes of (𝜕𝑓/𝜕𝑢)&'(  and (𝜕𝑓/𝜕𝑣)&'( . This reduction suggests that geometrical subtleties of the manifold are not 430 

adequately reflected in the generated estimates. Thus, 𝛽 inherently measures the degree to which the variability of the manifold 

affects the estimation. At its limit, as 𝛽 approaches zero (i.e., a flat manifold obtained by nullifying 𝑍 in Eq. (1)), the result 

will reproduce the isotropic correlation scale results that are typical of the conventional kriging. From Case 3, it is evident that 

𝛽 plays a critical role in determining the alignment of the estimates with the embedded manifold. 

  435 
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(a) 

 
(b) 

 
Figure 6. Comparatively simulated results for hydraulic conductivity distribution informed by the geologic background. Two test 

scenarios are presented: (a) Case 2 with parameters 𝝆 = 𝟏𝟓𝟎 and 𝜷 = 𝟏𝟎, and (b) Case 3 with parameters 𝝆 = 𝟏𝟎𝟎 and 𝜷 = 𝟓. The 

white dots with black borders indicate the 50 random data used in Case 1. 

The parameters 𝜌 and 𝛽 are elucidated as the integral determinants of the morphological configuration of the projected field. 

It is necessary to calibrate them carefully to implement our proposed algorithmic approach. The adoption of cross-validation 440 

methods, as outlined by Piao and Park (2023), was proposed as a feasible strategy to delineate these empirical coefficients. 

In the field of continuous variable estimation, non-stationary estimation has been elusive historically; most such estimations 

were based on zoning methods. However, the conventional zoning approach, which assumes null correlation between different 

zones, may be ineffective when variables across zones exhibit correlations. The proposed method is as an effective alternative 

under such circumstances. In particular, while geological processes leading to non-stationary correlation orientations were 445 
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recognised, they were mostly ignored or adjusted to reflect a dominant direction. These modifications can lead to inferior 

results, especially in groundwater flow and solute transport simulations where the directionality of conductive layers can be 

critical. Furthermore, in cases where geologic maps are not available, field-derived formation orientation data, such as strike 

and dip directions, can be invaluable for reconstructing the manifold geometry. In this context, the strike direction can indicate 

the orientation of the level-set curve, and the dip, the manifold geometry. The integration of such field data into the 450 

methodological framework of this study remains a work in progress, and detailed results are expected in future publications. 

5.2 Seismic profile as secondary data 

Seismic data form an important complementary tool to reveal the underlying subsurface structures. As shown in Fig. 1(b), 

seismic reflectors, shown on a profile, play a key role in identifying the arrangement of different lithological layers. These 

profiles not only provide insight into stratigraphy, which is essential for defining petrophysical properties in sedimentary basins, 455 

but also are important for reservoir characterization, particularly in the petroleum industry. Although seismic data are often 

associated with hydrocarbon exploration, these data are versatile enough to be extended to other hydrogeological applications, 

including groundwater resource management and the identification of ideal CO2 storage sites. This subsection illustrates how 

the techniques reported herein effectively leverage seismic profiles, similar to the geologic maps, for subsurface analysis. 

Figure 7 shows the results of linear feature identification for two window sizes: 14 pixels, as shown in Fig. 7(a), and 28 pixels, 460 

as shown in Fig. 7(b), with number of sample points determined to be 3042 and 722, respectively. For the seismic profile, the 

pixel counts along the 𝑥 and 𝑦 axes are 555 (𝑛4) and 557 (𝑛5) for window sizes of 14 and 28 pixels, respectively, reflecting a 

resolution that is approximately 4.6 times that of the geological map example (See Sect. 5.1, where 𝑛4 and 𝑛5 are 308 and 218, 

respectively). The delineated tangential linear features serve as proxies for the level-set curve directions (i.e., 𝜕𝐿!/𝜕𝑢 and 

𝜕𝐿!/𝜕𝑣). From Fig. 7, we see that a higher level of structural detail is captured when a smaller window size is used. Thus, we 465 

conclude that a smaller window size should be chosen in cases where a detailed manifold gradient pattern can improve the 

estimation accuracy. 
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(a) 

 
(b) 

 
Figure 7. Linear feature identification in a seismic profile for different window sizes: (a) A window size of 14 pixels with 3042 sample 

points; (b) a window size of 28 pixels with 722 sample points. 470 

Figure 8 shows the interpolated gradients of (𝜕𝑓/𝜕𝑢)&'( and (𝜕𝑓/𝜕𝑣)&'(, which were derived from the proxies for the level-

set curve directions at the sampling locations. Only the 28-pixel window size was considered for this particular demonstration 

for the computational efficiency. As in the previous section, GPR was used for regression. In the estimation, 𝜌 was empirically 

determined as 50 pixels and 𝜎+ was taken as 1 × 10−1. Consistent with the findings reported in Sect. 5.1, noticeable variations 

were observed in the interpolated gradients throughout the domain. This pattern highlights a non-stationary spatial relationship, 475 

resulting in a non-unitary matrix of 𝑔 in Eq. (11). The gradients (𝜕𝑓/𝜕𝑢)&'( and (𝜕𝑓/𝜕𝑣)&'( were then used to calculate the 

geodesic distance. 

(a) 
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(b) 

 
Figure 8. Interpolated gradients, labelled (𝝏𝒇/𝝏𝒖)𝒆𝒔𝒕 and (𝝏𝒇/𝝏𝒗)𝒆𝒔𝒕, derived from proxies for the level-set curve directions, using 

a window size of 28 pixels, where (a) shows the estimated gradient field in the 𝒖 direction, and (b) shows the estimated gradient field 

in the 𝒗 direction. 480 
Given that the seismic profile is vertical to the surface, dispersed data cannot be easily obtained by the conventional methods. 

Hence, a two-step approach was adopted. In the first step, hypothetical data were generated by unconditional simulation. In 

the second step, the unconditional simulation from the first step was treated as an actual field. Within this simulated field, three 

artificial boreholes were introduced, and full petrophysical properties (e.g., permeability) were assumed at these borehole 

locations. This framework allowed a comparison between the conditional simulation based on the second phase and the 485 

unconditional simulation from the first phase to assess the reproducibility of the proposed method. For the unconditional 

generation, 100 randomly distributed data points, following a normal distribution, were assigned to random locations 
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distributed uniformly in both the 𝑢 and 𝑣 directions. Thus, following the approach described in the previous section (Sect. 4), 

these data can be interpreted as log-transformed hydraulic conductivity or permeability values. In the next phase, the three 

boreholes were set at 𝑢 = 100, 250 and 400 pixels along the 𝑥-axis. The data from these boreholes and the secondary data were 490 

considered available for estimation in this second phase. The GPR was used as a regressor in both the unconditional simulation 

and the conditional estimation. 

The results of the unconditional simulation, based on 100 random data points, are shown in Fig. 9. These results show patterns 

similar to the sequential distribution of high and low permeability values, which is a typical distribution seen in sedimentary 

basins. For this simulation, 𝜌 = 150 pixels, 𝛽 = 10, and 𝜎+ = 1 × 10−1, consistent with the previous scenario (Sect. 5.1.). From 495 

these simulated results, three hypothetical boreholes were selected at 𝑥 = 100, 250 and 400 pixels. The log-transformed 

permeability at these boreholes was assumed to be known, and their patterns, as shown in Fig. 10, indicate sedimentological 

sequences influenced by the characteristic transgression and regression of the sea level. 

 
Figure 9. Unconditional simulation results showing patterns reminiscent of the sequential high and low permeability distributions 500 
typical of sedimentary basins. This simulation was based on 100 randomly distributed data points (white dots with black outlines) 
with parameters set to 𝝆 = 150 pixels and 𝜷 = 10. 
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(a) (b) (c) 

 
Figure 10. Patterns of log-transformed petrophysical property (e.g. hydraulic conductivity) at three hypothetical borehole locations 

at (a) 𝒖 = 100, (b) 𝒖 = 250 and (c) 𝒖 = 400 pixels. 505 
Statistical evaluation of the selected hypothetical boreholes and the entire domain provides remarkable insights. The minimum 

and maximum log-transformed permeabilities were−4.54 and 2.44, respectively, for boreholes and −4.55 and 2.73, respectively, 

for the entire domain. The mean permeability for the boreholes was −0.001, while that for the entire domain was 0.093. 

Furthermore, the recorded variances were 1.1125 and 0.9979 for the boreholes and the entire domain, respectively. A 

comparison of the histograms of the two data sets revealed a pronounced negative skew. The value of the Kullback–Leibler 510 

divergence, as a measure of histogram similarity, was 0.03, suggesting that the two distributions were essentially identical. 

This result underscores the suitability of the selected boreholes for conditional estimation. 

A simulation was then conditioned on the three hypothetical boreholes using the same seismic profile from the unconditional 

simulation as that for the secondary data. The results obtained using the simple GPR, kriging and proposed method were 

compared. Kriging yielded remarkably poorer results mainly because it could not handle the non-stationarity of the field. For 515 

kriging, the correlation scales in the 𝑥 and 𝑦 directions were derived from the correlogram, which was derived from the 

unconditional simulation that accurately represented the spatial statistics of the actual field. The correlation scales in the 𝑥 and 

𝑦 directions were 143 (denoted as 𝜌:) and 27 (denoted as 𝜌;) pixels, respectively. Additionally, the geodesic kernel in Eq. (7) 

was modified to an anisotropic Euclidean distance expressed as follows: 

𝑘7<)")3"[𝐩) , 𝐩*\ = exp �−
[𝑥) − 𝑥*\

+

2𝜌:+
−
[𝑦) − 𝑦*\

+

2𝜌;+
�. 520 

From the above equation, kriging clearly did not consider the rotations of 𝜌: and 𝜌;. 
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Figure 11 shows the results obtained using the proposed method and kriging. The differences are clear: kriging struggles with 

the non-stationarity of the field, yielding results that are incongruent with the real scenario. In contrast, a visual inspection 

confirms that the results of the proposed method closely match the true field represented by the unconditional simulation. With 

regard to the correlation between the true field and estimates, the correlation coefficients of the proposed method is 0.9, while 525 

that of kriging is only 0.51. This stark difference in correlation coefficients highlights the inherent superiority of the proposed 

method, even when kriging is informed with precise spatial statistics. Although the basic statistics such as means and variances 

show some variation across the true field, results of the proposed method, and kriging results, they are relatively consistent 

overall. 

The SSIM values were compared; the proposed method had an SSIM value of 0.915, while that of kriging was 0.706. This 530 

considerable difference further emphasises that compared to the kriging results, the estimates obtained by the proposed method 

are much closer to the actual data. 

(a) 

 
(b) 
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Figure 11. Comparative visualisation of the estimated fields using conditioning data from Fig. 10 and two methods: (a) the estimated 

field produced by the proposed method, and (b) the estimated field derived from kriging. 

In addition, the relative uncertainty inherent in both the developed and kriging methods was evaluated. The results are shown 535 

in Fig. 12. For a clearer visualisation of the uncertainty spread across the domain, only the borehole positioned at 𝑢 = 250 

pixels was considered. It is critical to note that the proposed method is based on geodesic distance, a metric that is supported 

by secondary data. Consequently, the relative uncertainty is not simply distributed based on the linear distance from the 

borehole. Instead, it exhibits a nuanced distribution that reflects the integration of secondary information. This nuance is 

inherently logical: different lithologies have different correlation scales. Thus, while some lithological units may exhibit 540 

extended correlation scales, others may exhibit a more localised nature. In stark contrast, the uncertainty propagation of the 

kriging method is predominantly influenced by the simple Euclidean distance from the borehole. Therefore, its uncertainty 

distribution shows a gradual and homogenous increase with the distance from the borehole. This difference between the two 

methods emphasises the robustness of the proposed method in capturing the complexity of spatial relationships influenced by 

multiple data sources, as opposed to the simpler and distance-dependent approach of kriging. 545 

(a) 
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(b) 

 
Figure 12. Comparative visualisation of the relative uncertainty distributions for the proposed method and kriging considering a 

borehole located at 𝒖 = 250 pixels: the uncertainty distribution for (a) the proposed method and (b) kriging. 

Analysis of the aforementioned cases clearly indicate the advantages of the proposed method over conventional kriging. Our 

method, which is based on the assimilation of secondary data, can effectively delineate the complex petrophysical parameter 

distribution of the target area. Consequently, it can yield more accurate predictions in the simulation of subsurface flows than 550 

the predictions based on traditional kriging. The traditional method, by design, often oversimplifies spatial relationships using 

a limited set of spatial parameters. 

In more complex scenarios, such as solute transport simulations and multiphase flows, the difference between the proposed 

method and conventional techniques becomes particularly sharp. In these situations, even minute granular-scale variabilities, 

especially when intertwined with structural connectivity, can drastically affect simulation results. Consider, for example, the 555 
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critical tasks of evaluating the potential impact of contaminant sources for strategic mitigation, assessing the risk of CO2 

leakage because of an imperfect cap rock, or investigating the suitability of sites for the geological disposal of high-level 

radioactive waste. In these critical contexts, compared to the traditional methods, the proposed method has much higher 

accuracy because of which this method is capable of providing insights that are both more reliable and more actionable. 

6 Summary and conclusion 560 

Subsurface non-stationarity has always been a formidable challenge in geological characterization. The traditional methods 

based on the covariance matrix to estimate continuous variables often either ignore or oversimplify this complex problem. In 

contrast, this study adopted a direct approach. By incorporating ancillary data, we formulated a rigorous theory and 

methodology that gives us accurate estimates of the spatial distribution of subsurface petrophysical properties. This 

methodology is particularly relevant given the widespread non-stationarity inherent in large-scale geological fields. The 565 

geodesic distance on the embedded manifold, which is the foundation of the method proposed herein, was introduced as a 

fundamental tool. Field observations were linked to the intrinsic geological non-stationarity by using the level-set curve. This 

curve serves as a key indicator for interpreting the manifold information from observed geological structures and effectively 

addresses the spatial variations in the correlation direction characteristic of inhomogeneous geological processes. 

During the implementation phase, using the geological map and seismic profile as secondary data, we found that parameters 570 

𝜌 and 𝛽 play a crucial role. Specifically, 𝜌 indicates correlation strength and is analogous to the correlation length in the 

conventional geostatistics, and 𝛽  governs the dependence of the estimates on the secondary data. Therefore, a careful 

calibration of these parameters is essential. Comparative analyses showed that the proposed method significantly outperforms 

conventional methods, such as kriging, especially in terms of reproducing subsurface structures with subtle shifts in correlation 

direction. In particular, the uncertainty in our method encompasses both data proximity and the complex correlation structures 575 

inherent in the secondary data. That is, the uncertainty exhibits non-stationarity, mirroring the estimates. This representation 

agrees well with geological contexts and provides a more rational and intuitive representation of subsurface uncertainties. 

The accuracy of estimating subsurface media distribution is extremely important, especially in critical applications such as 

contaminant remediation design and underground repository siting. In these contexts, even small inaccuracies can have 

profound negative consequences. The theories and methods presented herein offer promising solutions to these complex 580 

subsurface challenges. By skilfully leveraging the subtleties of secondary data, our approach facilitates the accurate 

characterization of petrophysical properties that exhibit non-stationarity. 

However, the study has some limitations. The study mainly focused on 2D methods. There is an urgent need to explore 3D 

frameworks to further enhance the practicality of the proposed method. The present application focuses on the distribution of 

layered petrophysical properties. However, evaluations over a wider range of geological structures, especially those associated 585 

with remarkable subsurface geological deformations (such as faults and plutonic intrusions) are yet to be performed. In future 
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study, efforts should be made to validate the adaptability of the methodology to various secondary data sets and assessing its 

effectiveness over a broader range of geologic processes. 

In conclusion, this paper reports innovative theoretical foundations and practical method for estimating spatial distributions 

characterised by non-stationarity in geological media. These contributions are significant advances towards bridging the 590 

prevailing knowledge gaps. The profound implications of these outcomes for addressing the existing challenges in subsurface 

characterization are evident, and a solid foundation has been established to facilitate diverse research efforts in the future. 

Code availability. All software programs were written in MATLAB. All the executable software used in this study are 
available through a public data repository once the manuscript is accepted for publication. 

Data availability. All the data used in this study are available through a public data repository once the manuscript is accepted 595 
for publication. 

Author contributions. EP and JP developed the theory, method and the code. EP, JP, HJ, WSH and HS discussed results and 
validate the results. EP and YSK wrote the paper with contributions from all authors. 

Competing interests. The authors declare that they have no conflict of interest. 

Financial support. This research was supported by the National Research Foundation of Korea (NRF) grant funded by the 600 
Korea Government (MSIT) (RS-2023-002772264). 

Acknowledgements. The authors acknowledge the use of AI technologies, including OpenAI’s ChatGPT and Google’s Bard, 
for their assistance in the conceptual development of this work. These tools were instrumental in improving English expression, 
a critical tool for non-native English-speaking authors to achieve scientific accuracy. DeepL’s language refinement services 
also significantly augmented the linguistic quality of the manuscript. 605 

References 

Adams, E. E., and Gelhar, L. W.: Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis, Water 

Resour. Res., 28(12), 3293-3307, https://doi.org/10.1029/92WR01757, 1992. 

Batu, V.: Aquifer hydraulics: a comprehensive guide to hydrogeologic data analysis, John Wiley & Sons, 1998. 

Boggs, J. M., Young, S. C., Beard, L. M., Gelhar, L. W., Rehfeldt, K. R., and Adams, E. E.: Field study of dispersion in a 610 

heterogeneous aquifer: 1. Overview and site description, Water Resour. Res., 28(12), 3281-3291, 

https://doi.org/10.1029/92WR01756, 1992. 



29 
 

Choi, D. K., Lee, J. G., Lee, S. B., Park, T. Y. S., and Hong, P. S.: Trilobite biostratigraphy of the lower Paleozoic (Cambrian–

Ordovician) Joseon Supergroup, Taebaeksan Basin, Korea, Acta Geologica Sinica-English Edition, 90(6), 1976-1999, 

https://doi.org/10.1111/1755-6724.13016, 2016. 615 

Cooper Jr, H. H., Bredehoeft, J. D., Papadopulos, I. S., and Bennett, R. R.: The response of well-aquifer systems to seismic 

waves, J. Geophys. Res., 70(16), 3915-3926, https://doi.org/10.1029/JZ070i016p03915, 1965. 

Cressie, N.: Kriging nonstationary data, J. Am. Stat. Assoc., 81(395), 625-634, https://doi.org/10.2307/2288990, 1986. 

Cressie, N.: Aggregation in geostatistical problems, Springer Netherlands, pp. 25-36, 1993. 

D'Affonseca, F. M., Finkel, M., and Cirpka, O. A.: Combining implicit geological modeling, field surveys, and hydrogeological 620 

modeling to describe groundwater flow in a karst aquifer, Hydrogeol. J., 28(8), 2779-2802, 

https://doi.org/10.1007/s10040-020-02220-z, 2020. 

Dietrich, S., Weinzettel, P. A., and Varni, M.: Infiltration and drainage analysis in a heterogeneous soil by electrical resistivity 

tomography, Soil Sci. Soc. Am. J., 78(4), 1153-1167, https://doi.org/10.2136/sssaj2014.02.0062, 2014. 

Doetsch, J., Linde, N., Coscia, I., Greenhalgh, S. A., and Green, A. G.: Zonation for 3D aquifer characterization based on joint 625 

inversions of multimethod crosshole geophysical data, Geophysics, 75(6), G53-G64, 

https://doi.org/10.1190/1.3496476, 2010. 

Feragen, A., Lauze, F., and Hauberg, S.: Geodesic exponential kernels: When curvature and linearity conflict, Proc. IEEE 

Conf. Comput. Vis. Pattern Recognit., pp. 3032-3042, https://doi.org/10.48550/arXiv.1411.0296, 2015. 

Fouedjio, F., Desassis, N., and Rivoirard, J.: A generalized convolution model and estimation for non-stationary random 630 

functions, Spatial Stat., 16, 35-52, https://doi.org/10.1016/j.spasta.2016.01.002, 2016. 

Han, W. S., McPherson, B. J., Lichtner, P. C., and Wang, F. P.: Evaluation of trapping mechanisms in geologic CO2 

sequestration: Case study of SACROC northern platform, a 35-year CO2 injection site, Am. J. Sci., 310(4), 282-324, 

https://doi.org/10.2475/04.2010.03, 2010. 

Hewett, T. A.: Fractal distributions of reservoir heterogeneity and their influence on fluid transport, SPE Annual Technical 635 

Conference and Exhibition, SPE-15386, https://doi.org/10.2118/15386-MS, 1986. 

Higdon, D.: A process-convolution approach to modeling temperatures in the North Atlantic Ocean, Environ. Ecol. Stat., 5, 

173-190, https://doi.org/10.1023/A:1009666805688, 1998. 

Hu, L. Y., and Chugunova, T.: Multiple-point geostatistics for modeling subsurface heterogeneity: A comprehensive review, 

Water Resour. Res., 44(11), https://doi.org/10.1029/2008WR006993, 2008. 640 

Hyndman, D. W., Harris, J. M., & Gorelick, S. M.: Coupled seismic and tracer test inversion for aquifer property 

characterization, Water Resour. Res., 30(7), 1965-1977, https://doi.org/10.1029/94WR00950, 1994. 

Jayasumana, S., Hartley, R., Salzmann, M., Li, H., and Harandi, M.: Kernel methods on Riemannian manifolds with Gaussian 

RBF kernels, IEEE Trans. Pattern Anal. Mach. Intell., 37(12), 2464-2477, 

https://doi.org/10.1109/TPAMI.2015.2414422, 2015. 645 



30 
 

Kemna, A., Vanderborght, J., Kulessa, B., and Vereecken, H.: Imaging and characterisation of subsurface solute transport 

using electrical resistivity tomography (ERT) and equivalent transport models, J. Hydrol., 267(3-4), 125-146, 

https://doi.org/10.1016/S0022-1694(02)00145-2, 2002. 

Kerrou, J., Renard, P., Cornaton, F., and Perrochet, P.: Stochastic forecasts of seawater intrusion towards sustainable 

groundwater management: application to the Korba aquifer (Tunisia), Hydrogeol. J., 21(2), 425-440, 650 

https://doi.org/10.1007/s10040-012-0911-x, 2013. 

Lumley, D. E.: Time-lapse seismic reservoir monitoring, Geophysics, 66(1), 50-53, https://doi.org/10.1190/1.1444921, 2001. 

Mao, D., Revil, A., Hort, R. D., Munakata-Marr, J., Atekwana, E. A., and Kulessa, B.: Resistivity and self-potential 

tomography applied to groundwater remediation and contaminant plumes: Sandbox and field experiments, J. Hydrol., 

530, 1-14, https://doi.org/10.1016/j.jhydrol.2015.09.031, 2015. 655 

Paciorek, C. J.: Nonstationary Gaussian processes for regression and spatial modelling, Carnegie Mellon University, Doctoral 

dissertation, 2003. 

Park, E., Kim, K. Y., and Suk, H.: A basin-scale aquifer characterization using an inverse analysis based on groundwater level 

fluctuation in response to precipitation: Practical application to a watershed in Jeju Island, South Korea, J. Hydrol.: 

Regional Studies, 37, 100933, https://doi.org/10.1016/j.ejrh.2021.100933, 2021. 660 

Pereira, M., Desassis, N., and Allard, D.: Geostatistics for large datasets on Riemannian manifolds: a matrix-free approach, 

arXiv preprint, arXiv:2208.12501, https://doi.org/10.48550/arXiv.2208.12501, 2022. 

Piao, J., and Park, E.: Enhancing Estimation Accuracy of Nonstationary Hydrogeological Fields via Geodesic Kernel-Based 

Gaussian Process Regression, J. Hydrol., 130150, https://doi.org/10.1016/j.jhydrol.2023.130150, 2023. 

Pride, S. R., Harris, J. M., Johnson, D. L., Mateeva, A., Nihel, K. T., Nowack, R. L., Rector, J. W., Spetzler, H., Wu, R., 665 

Yamomoto, T., Berryman, J. G., and Fehler, M.: Permeability dependence of seismic amplitudes, The Leading Edge, 

22(6), 518-525, https://doi.org/10.1190/1.1587671, 2003. 

Qin, X. S., Huang, G. H., Chakma, A., Chen, B., and Zeng, G. M.: Simulation-based process optimization for surfactant-

enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites, Sci. Total Environ., 381(1-3), 17-37, 

https://doi.org/10.1016/j.scitotenv.2007.04.011, 2007. 670 

Rubin, Y., Mavko, G., and Harris, J.: Mapping permeability in heterogeneous aquifers using hydrologic and seismic data, 

Water Resour. Res., 28(7), 1809-1816, https://doi.org/10.1029/92WR00154, 1992. 

Schroot, B. M., & Schüttenhelm, R. T.: Shallow gas and gas seepage: expressions on seismic and other acoustic data from the 

Netherlands North Sea, J. Geochem. Explor., 78, 305-309, https://doi.org/10.1016/S0375-6742(03)00112-2, 2003. 

Son, C. M., and Lee, D. S.: Explanatory text of the Geological Map of Ogdong Sheet, Geological Survey of Korea, Sheet-675 

6925-III, scale 1: 50,000, 30p, 1966. 

Soupios, P. M., Kouli, M., Vallianatos, F., Vafidis, A., and Stavroulakis, G.: Estimation of aquifer hydraulic parameters from 

surficial geophysical methods: A case study of Keritis Basin in Chania (Crete–Greece), J. Hydrol., 338(1-2), 122-131, 

https://doi.org/10.1016/j.jhydrol.2007.02.028, 2007. 



31 
 

Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics, Math. Geol., 34, 1-21, 680 

https://doi.org/10.1023/A:1014009426274, 2002. 

Suk, H., and Park, E.: Numerical solution of the Kirchhoff-transformed Richards equation for simulating variably saturated 

flow in heterogeneous layered porous media, J. Hydrol., 579, 124213, https://doi.org/10.1016/j.jhydrol.2019.124213, 

2019. 

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.: Image quality assessment: from error visibility to structural 685 

similarity, IEEE Trans. Image Process., 13(4), 600-612, https://doi.org/10.1109/TIP.2003.819861, 2004. 

Yaramanci, U., Lange, G., and Knödel, K.: Surface NMR within a geophysical study of an aquifer at Haldensleben (Germany), 

Geophys. Prospect., 47(6), 923-943, https://doi.org/10.1046/j.1365-2478.1999.00161.x, 1999. 

Yeh, T. C. J., and Liu, S.: Hydraulic tomography: Development of a new aquifer test method, Water Resour. Res., 36(8), 2095-

2105, https://doi.org/10.1029/2000WR900114, 2000. 690 


