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Abstract

The minerals carrying the magnetic remanence in geological samples are commonly a solid solution series of iron-titanium spinels

known as titanomagnetites. Despite the range of compositions within this series, micromagnetic studies that characterize the

magnetic domain structures present in these minerals have typically focused on magnetite. No studies systematically comparing

the domain-states present in titanomagnetites have been undertaken since the discovery of the single vortex (SV) structure

and the advent of modern micromagnetism. The magnetic properties of the titanomagnetite series are known to vary with

composition, which may influence the domain states present in these minerals, and therefore the magnetic stability of the

samples bearing them.

We present results from micromagnetic simulations of titanomagnetite ellipsoids of varying shape and composition to find the

size ranges of the single domain (SD) and SV structures. These size ranges overlap, allowing for regions where the SD and

SV structures are both available. These regions are of interest as they may lead to magnetic instability and “pTRM tails’

in paleointensity experiments. We find that although this SD+SV zone occupies a narrow range of sizes for equidimensional

magnetite, it is widest for intermediate (TM30-40) titanomagnetite compositions, and increases for both oblate and prolate

particles, with some compositions and sizes having an SD+SV zone up to 100s of nm wide. Our results help to explain the

prevalence of pTRM tail-like behavior in paleointensity experiments. They also highlight regions of particles with unusual

domain states to target for further investigation into the definitive mechanism behind paleointensity failure.
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Key Points:11

• We systematically map out the domain states in titanomagnetite as a function of12

shape and composition.13

• Our results highlight ranges of compositions, shapes and sizes which contain un-14

reliable paleomagnetic recorders.15

• For certain shapes and compositions, these regions span hundreds of nanometers,16

representing a significant proportion of remanence carriers.17
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Abstract18

The minerals carrying the magnetic remanence in geological samples are commonly a19

solid solution series of iron-titanium spinels known as titanomagnetites. Despite the range20

of possible compositions within this series, micromagnetic studies that characterize the21

magnetic domain structures present in these minerals have typically focused on magnetite.22

No studies systematically comparing the domain-states present in titanomagnetites have23

been undertaken since the discovery of the single vortex (SV) structure and the advent24

of modern micromagnetism. The magnetic properties of the titanomagnetite series are25

known to vary strongly with composition, which may influence the domain states present26

in these minerals, and therefore the magnetic stability of the samples bearing them.27

We present results from micromagnetic simulations of titanomagnetite ellipsoids28

of varying shape and composition to find the size ranges of the single domain (SD) and29

SV structures. These size ranges overlap, allowing for regions where the SD and SV struc-30

tures are both available. These regions are of interest as they may lead to magnetic in-31

stability and “pTRM tails” in paleointensity experiments. We find that although this SD+SV32

zone occupies a narrow range of sizes for equidimensional magnetite, it is widest for in-33

termediate (TM30-40) titanomagnetite compositions, and increases for both oblate and34

prolate particles, with some compositions and sizes having an SD+SV zone up to 100s35

of nm wide. Our results help to explain the prevalence of pTRM tail-like behavior in pa-36

leointensity experiments. They also highlight regions of particles with unusual domain37

states to target for further investigation into the definitive mechanism behind paleoin-38

tensity failure.39

Plain Language Summary40

Rocks that record Earth’s magnetic field often contain the mineral magnetite. The41

crystal structure of magnetite allows titanium atoms to substitute for iron, giving rise42

to a range of minerals known as titanomagnetites. The internal magnetic structure of43

titanomagnetite particles in rocks, known as the “domain structure”, controls the abil-44

ity of that particle to record magnetic fields. Particles with certain kinds of domain struc-45

ture are unstable magnetic recorders, which can cause problems for experiments trying46

to determine Earth’s magnetic field strength in the past (paleointensity experiments).47

Although the domain structures in magnetite are well understood, there are no recent48

studies which describe them in titanomagnetites.49

In this paper, we simulate the domain structures in small titanomagnetite parti-50

cles and map these out as a function of size, shape and chemical composition. In doing51

so, we identify types of magnetic particles with multiple possible domain structures that52

may give rise to unstable magnetizations. Our results indicate that some titanomagnetite53

particles may have unstable magnetizations over a much larger range of sizes than has54

previously been seen in magnetite. This wide range of sizes could explain the high fail-55

ure rates of paleointensity experiments.56

1 Introduction57

Magnetite is one of the most important magnetic minerals in igneous and sedimen-58

tary rocks, commonly forming during the crystallization of basaltic magmas, and in sed-59

iments through erosional and biogenic processes. Stoichiometrically pure magnetite (Fe3O4)60

is a well studied magnetic mineral, but in nature it forms a solid solution series with ti-61

tanium rich ulvospinel (Fe2TiO4). Titanomagnetite compositions within the series Fe3−xTixO462

(0 ≤ x ≤ 1) are represented using the notation TMx (e.g. x = 0.6 is TM60). Funda-63

mental magnetic properties of the titanomagnetites, including the Curie temperature (Nishitani64

& Kono, 1983), saturation magnetization (Bleil, 1976) and magnetocrystalline anisotropy65

constants (Ka̧kol et al., 1994), have been observed to vary across the solid solution se-66
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ries. The distribution of Curie temperatures in igneous rocks compiled from a compi-67

lation of 38 papers indicate that approximately 75% of paleomagnetic samples do not68

contain pure magnetite (see supplementary information for detailed references). Instead,69

they suggest that compositions from TM0 to TM60 are prevalent along with other min-70

erals. Despite this wide range of compositions and behaviours in nature, the rock mag-71

netic properties of titanomagnetites and their influences on paleomagnetic experiments72

are understudied.73

Rocks containing titanomagnetites are used to determine Earth’s magnetic field strength74

and direction in the distant past. This information has many practical applications in75

the geosciences, from detecting the age of archeological samples, to determining the mo-76

tion of tectonic plates and the nucleation age of Earth’s inner core. The fundamental physics77

that explain how a rock can record a thermal remanent magnetization (TRM) by cool-78

ing in a field was first described by Louis Néel (Néel, 1949). This work assumes that the79

magnetic particles contained within rocks are uniformly magnetized in a structure known80

as “single-domain” (hereafter referred to as SD). Unfortunately, the SD structure is only81

energetically efficient over a small range of particle sizes, and the majority of the mag-82

netization in natural materials is carried by particles in other states, as we show below.83

Consequently, paleomagnetic experiments often produce results that are complicated and84

difficult to interpret. A better understanding of the domain states present in magnetic85

materials is necessary to understand this behavior, and to ensure that paleomagnetists86

can obtain accurate results.87

To determine the dominant domain states of a magnetic particle, researchers use88

the micromagnetic modelling approach of Brown (1963). This technique was adapted89

by Fredkin and Koehler (1987) into a computational finite-element based technique, which90

finds stable magnetization states that minimize the energy of the particle. Some of the91

earliest findings from this approach demonstrated that magnetite particles sized approx-92

imately 100 nm - 1 µm have magnetizations which curl in a “vortex” shape around a uni-93

form core, known as the Single Vortex (SV) structure (Schabes & Bertram, 1988; W. Williams94

& Dunlop, 1989).95

Recent work has shown that there is an “unstable zone” (where particle relaxation96

times drop precipitously) in equidimensional magnetite particles at the lower size limit97

of the SV structure. In this region, the dominant domain state is a single vortex with98

the vortex core aligned along a magnetocrystalline hard axis direction . The energy needed99

to escape this state is small, and so it is not stable over geological timescales. Nagy et100

al. (2022) additionally showed that competition between shape easy- and hard-aligned101

SV states in magnetite can produce complicated “partial TRM (pTRM) tail” behaviour102

similar to that frequently seen in paleointensity experiments (e.g. Bol’Shakov, 1979; Dun-103

lop & Özdemir, 2001; Riisager & Riisager, 2001; Santos & Tauxe, 2019).104

Several studies have focused on determining the range of sizes and shapes over which105

domain states are stable in metallic iron (Muxworthy & Williams, 2015), magnetite (Muxworthy106

& Williams, 2006; Nagy et al., 2019), and greigite (Muxworthy et al., 2013; Valdez-Grijalva107

et al., 2018). Despite the range of titanomagnetite compositions prevalent in nature, there108

has been little work published on domain states in titanomagnetites since Butler and Baner-109

jee (1975). That study showed that the size range over which the SD structure was sta-110

ble varied as a function of TM composition. Moskowitz (1980) and Moskowitz and Halgedahl111

(1987) followed this work, calculating this size range for TM60 as a function of oxida-112

tion, temperature and stress. These two studies were undertaken before the discovery113

of the SV structure, instead considering a transition between a single domain and the114

two-domain structure of Kittel (1949). Muxworthy and Williams (2006) used micromag-115

netic modelling to determine the range of sizes for which the SD and SV structures were116

available in elongated magnetite cuboids. This range of sizes differed significantly from117

that of Butler and Banerjee (1975), but a modern micromagnetic approach was not ap-118

plied to other TM compositions. Khakhalova et al. (2018) simulated single and multi-119
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vortex states in a large pyramidal TM54 particle, but did not explore the variation in120

domain state with the size and shape of particles.121

In this paper, we present results from a series of micromagnetic models using the122

Micromagnetic Earth Related Robust Interpreted Language Laboratory (MERRILL; Ó123

Conbhuí et al., 2018) software package, v1.8.6p. Each simulation determines the range124

of possible sizes over which the single domain and single vortex structures can exist us-125

ing a “size hysteresis” algorithm (e.g. Witt et al., 2005; Muxworthy & Williams, 2006,126

2015; Nagy et al., 2019) where a minimum energy state is calculated in a titanomagnetite127

particle whilst progressively varying its size (described fully in Section 2.1). We perform128

these simulations for ellipsoidal titanomagnetite particles of varying composition and ax-129

ial ratio, from oblate to prolate. Our results, which are presented in Section 3 give the130

size ranges for the SD and SV structures for a range of TM compositions and prolate131

and oblate particles. This expands on the existing results of Muxworthy and Williams132

(2006) for prolate magnetites by more than an order of magnitude. We discuss the im-133

plications of these results, as well as the potential impact on paleomagnetic experiments134

in Section 4.135

2 Methodology136

2.1 The size hysteresis algorithm137

For each geometry and titanomagnetite composition in this paper, we use a “size138

hysteresis” algorithm. A graphical example for a sphere of TM25 is shown in Figure 1.139

The algorithm works as follows:140

1. For a 40 nm particle of a particular titanomagnetite composition and geometry,141

start with a uniform magnetization aligned along one of the magnetocrystalline142

easy axes in zero external field. An energy minimization is performed using MER-143

RILL on this particle, producing a magnetization that is a local energy minimum144

(LEM) state.145

2. The magnetization is taken and scaled up to a particle of a slightly larger size. An146

energy minimization is then performed on the new particle size. We define our size147

using the diameter of a sphere with equivalent volume (referred to as ESVD; equiv-148

alent spherical volume diameter). We increase the particle size by 10 nm when the149

ESVD is between 40 and 250 nm, and steps of 25 nm are used from 250 to 500150

nm.151

3. For a certain size range, the particle will remain in the SD structure (Figure 1 i.),152

but at some critical size, the SD structure stops being energetically favorable, and153

the domain state collapses to the SV structure (Figure 1 ii.). We call the diam-154

eter associated this size dmax, which is defined as being the center point between155

the SD and SV structures (e.g. between Figure 1 i. and ii.).156

4. We continue this process of scaling the magnetization onto particles of progres-157

sively larger sizes and minimizing the energy, repeating up to a size of 500 nm.158

5. After reaching 500 nm, we reverse the process, mapping the magnetization onto159

progressively smaller particles and minimizing the energy. At some point, (between160

Figure 1 iii. and iv.), the particle transitions from the SV structure to the SD struc-161

ture. We call this size dmin, which may differ from dmax.162

As can be seen from Figure 1, the critical sizes for transitioning between the SD163

and SV structures and vice-versa are not the same, with dmax occurring at a larger size164

(165 nm) than dmin (105 nm). During the “shrinking” branch of the magnetization, we165

observe a hard-aligned vortex (Figure 1 iii.). The region between dmin and dmax is there-166

fore of interest as it may contain the “unstable zone” of Nagy et al. (2017).167
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Figure 1. Ratio of the magnetization over the saturation magnetization (M/Ms) plotted
against EVSD (nm) in a “size hysteresis loop” for a sphere of TM25. The blue solid line repre-
sents the magnetization as the particle is grown from 40 from 500 nm, and the orange dashed
line represents the magnetization as it is shrunk from 500 nm to 40 nm. Example magnetization
states from the loop are shown at points i - iv). Vectors represent the direction of the magneti-
zation at that location in the particle. Grey cylinder in ii) and iii) represents an isosurface where
the relative helicity (hrel, described in the supplemental information) is 0.95. Colors represent
the absolute value of the dot product of these vectors with the direction of the net magnetization,
with lighter yellow regions being aligned with the net magnetization, and darker purple regions
being perpendicular. The magnetization transitions from the SD to the vortex state between i)
and ii) (160-170 nm) and the magnitude of the magnetization continues to be reduced up to 500
nm due to the tightening of the vortex core. The vortex rotates to a magnetocrystalline hard axis
direction between ii) and iii) and transitions back into a single domain state between iii) and iv)
(100-90 nm) along a different easy direction. dmin and dmax are plotted as vertical lines.
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2.2 Compositions and geometries168

In this study, we will test the effects of titanomagnetite composition as well as shape169

on dmax and dmin. To produce a micromagnetic model using a particular material, fun-170

damental material parameters are needed: the Curie temperature Tc, saturation mag-171

netization Ms, exchange constant Aex and magnetocrystalline anisotropy constants k1172

and k2. An extensive set of experimental data from previous work was compiled. Poly-173

nomial fits to these data were used to obtain functions that can return the material pa-174

rameters for a given TM composition. Details of the datasets and resulting parameters175

used in this study are given in the Supplemental Material.176

We applied the size hysteresis algorithm to ellipsoids of rotation with thirteen dif-177

ferent axial ratios, logarithmically spaced between 1/3 and 3. A set of thirteen differ-178

ent titanomagnetite compositions was used, in 5% increments from 0% to 60% Ti. Tetra-179

hedral meshes were produced for each size, shape and composition using the Coreform180

Cubit software package (Coreform LLC, 2017). The coarseness of the mesh used depended181

on the size of the geometry (keeping minimum number of elements to ∼ 15000) and the182

exchange length (λex; Rave et al., 1998) of the material. For some combinations of com-183

position and geometry, dmax was not reached by a size of 500 nm. In these cases, we ran184

the algorithm to a size of 1 µm (in steps of 50 nm to 800 nm, then 100 nm to 1 µm), with185

a set of meshes using a maximum of a million elements. This meant that some meshes186

exceeded ex and so dmax values greater than 500 nm should be considered less precise.187

If dmax was greater than 1 µm, then it was not reported, and dmin was instead obtained188

by forcing a vortex state initial condition at 500 nm and proceeding with the “shrink-189

ing” branch as normal.190

For each composition and geometry, two size hysteresis simulations were run, one191

in which the major axis of the ellipsoid was aligned with the magnetocrystalline easy axis192

of the material (referred to as “magnetocrystalline easy-shape easy” or ME-SE), and one193

in which it was aligned with the magnetocrystalline hard axis (referred to as “magne-194

tocrystalline hard-shape easy” or MH-SE). The results displayed in Section 3 were pro-195

duced by taking the maximum dmax and minimum dmin of the two datasets for each com-196

position and geometry, and the resulting surfaces were interpolated by a 2d cubic spline197

using the SciPy package (Virtanen et al., 2020). The difference between results from the198

ME-SE and MH-SE datasets are discussed in Sections 3.2 and 3.3.199

The LEMs at each step in the size hysteresis loop were visualized using the Par-200

aView software (Ayachit, 2015). For each visualization, the relative helicity hrel was cal-201

culated (see supplementary material for details). To determine dmin and dmax, the SV202

structure was identified by the presence of a coherent cylindrical isosurface at hrel=0.95203

containing a “vortex core” intersecting the surface of the particle in two places, and the204

SD structure was identified by the absence of such a core. Examples of SV structures205

with vortex cores can be seen in Figure 1 ii and iii). When visualizing LEM states, the206

volume and magnetization arrows are colored by the absolute cosine of the angle between207

the individual magnetization vectors and the particle’s net magnetization. The lighter208

colours in the cores of vortex structures demonstrate that the bulk of the magnetization209

is carried in this core, and that the volume of the core influences the magnitude of the210

net magnetization.211
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3 Results212

3.1 Anisotropy energies of the titanomagnetite series213
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Figure 2. Magnetocrystalline anisotropy energy densities for an SD titanomagnetite particle
as a function of composition. Different coloured lines are the anisotropy energy density for differ-
ent magnetocrystalline directions. The line with the lowest (most negative) magnetocrystalline
energy density is the easy axis.

Figure 2 shows the magnetocrystalline energy densities in SD titanomagnetites for214

the <1 0 0>, <1 1 0> and <1 1 1> directions obtained from our fit to experimental data215

for the k1 and k2 anisotropy constants. The magnetocrystalline easy axis for a particle216

can be determined by the lowest (most negative) energy. Anisotropy properties change217

significantly across the titanomagnetite series, the easy axis is along <1 1 1> for TM0218

- 50, changing to <1 1 0> at ∼ TM51 and <1 0 0> at ∼ TM59. The hard axis is <1219

0 0> from TM0 - 55 and changes to <1 1 1> just above TM55. The difference in anisotropy220

energy between the easy and hard directions reaches a maximum at ∼ TM20, and is sig-221

nificantly smaller at high TM compositions (≥TM40).222

3.2 Observed states223

Examples of typical states observed during the size hysteresis algorithm are shown224

in Figures 1 and 3. Spherical particles behaved as in Figure 1, with the SD structure chang-225

ing into an SV structure on the growing branch and back to an SD structure on the shrink-226

ing branch, usually rotating to a magnetocrystalline hard direction close to dmin on the227

shrinking branch (Figure 1 iii). The rotation to a magnetocrystalline hard-aligned vor-228

tex was occasionally preceded by a rotation to a magnetocrystalline intermediate axis,229

particularly in TM55 and TM60 particles. SV states aligned with the magnetocrystalline230

hard axis were found by Nagy et al. (2017) to have extremely low stability, which may231

be of interest for paleomagnetists. Oblate particles behaved similarly for both ME-SE232

and MH-SE aniostropies, nucleating a vortex along the short (shape hard) axis of the233

particle (Figure 3e - f).234

Different states were observed in prolate particles depending on elongation direc-235

tion: In ME-SE particles, a vortex state aligned along the major axis continued to ex-236

ist without changing up to the maximum size of 500 nm (Figure 3a ii) and continued un-237
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Figure 3. Example size hysteresis loop for particles elongated along the magnetocrystalline
easy axis (left column) and for the same particles elongated along the magnetocrystalline hard
axis (right column). a - b) size hysteresis loop for a prolate magnetite particle with an axial ratio
of 2.50. c - d) size hysteresis loop for a prolate TM60 particle with an axial ratio of 1.73. e - f)
size hysteresis loop for an oblate particle with an axial ratio of 0.58. In all plots, the numerals
i), ii), iii), iv), v) denote the order in which the minimizations were performed, and the colours
represent the growing (blue) or shrinking (orange) branch. dmin and dmax are plotted as vertical
dotted lines.
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changed down to dmin (Figure 3a iii). By contrast, in MH-SE particles, a secondary sharp238

drop in the magnetization was observed at sizes above dmax, with the SV state along the239

major axis (Figure 3b iii) transitioning to a state with a curved vortex core which had240

its ends deflected away from the major axis (Figure 3b iv). These cores were deflected241

in a variety of directions, forming “Banana” or “S” shapes depending on the whether the242

two ends of the core were deflected in adjacent or opposing directions. The deflected vor-243

tex structures persisted to lower sizes on the shrinking branch than on the growing branch,244

leading to another “loop” on the size hysteresis diagrams. The transition at dmin for MH-245

SE particles was often more subtle than for ME-SE ones, with little change in energy,246

and often a closed loop (dmin = dmax) e.g. Fig 3b).247

The “S” shaped vortices were frequently observed undergoing rotations during the248

shrinking branch of the size hysteresis loop, with the core rotating to lie along one of the249

short (shape-hard) axes of the particle, similar to the states observed in Nagy et al. (2022),250

which were found to cause pTRM tails in paleointensity experiments. This behaviour251

can be seen in Figure 3d ii-iv, and occurred most frequently in prolate particles with ax-252

ial ratios between 1 and 2. This rotation to a short axis was occasionally observed in ME-253

SE particles, but was far less prevalent overall.254

3.3 Trends in dmin and dmax255

The critical domain transition sizes for dmin and dmax for each composition and shape256

are presented as contour plots and surfaces in Figure 4. To obtain dmin and dmax as a257

continuous function of TM composition and axial ratio, the extant data were interpo-258

lated using a piecewise cubic 2D interpolation routine. White dashed contours with 100259

nm spacing are used to highlight regions where dmax was greater than 500 nm, where260

a rapid increase occurs. Additionally, some regions of the dmin and dmax surfaces are miss-261

ing from this dataset. This is because the SD state persists beyond 1 µm during the grow-262

ing branch of the size hysteresis loop. Obtaining dmin and dmax for loops above this size263

becomes rapidly more computationally expensive264

The surfaces displayed in Figure 4 exhibit some consistent trends with both size265

and shape. Slices through these surfaces (represented by thick lines on Figure 4a, b and266

d) at constant composition or axial ratio are displayed in Figure 5. The most noticeable267

feature of the surfaces is that dmax sharply increases for both prolate and oblate parti-268

cles relative to equidimensional ones for all compositions (Figure 4a,c). By contrast dmin269

tends to increase with increasing axial ratio across almost all shapes. The relationship270

between dmax and TM composition is more complicated. For equidimensional particles,271

dmax appears to increase rapidly for compositions from TM00 - TM40, decrease from TM40272

- TM50, followed by another increase to TM55 and a decrease to TM60. This broad trend273

is observed for all other shapes where data are available. dmin tends to increase relatively274

uniformly with increasing TM composition.275

The dmin and dmax surfaces for both the ME-SE and MH-SE particles are displayed276

in Figure 6. It is apparent that the dmax surface in Figure 4 is similar to the ME-SE sur-277

face, except at the highest TM compositions. This is primarily driven by the reduced278

dmax for prolate MH-SE particles, with many of the loops being closed (i.e, dmin = dmax).279

The anisotropy for MH-SE particles has a less uniaxial character, and so the SD struc-280

ture cannot be a LEM state at larger sizes. The LEM states in the ME-SE particles change281

rapidly from an SD structure to a vortex structure, accompanied by a sharp drop in the282

net magnetization (Figure 3a i to ii) By contrast, the MH-SE particles change more grad-283

ually from an SD to an SV structure (Figure 3b i to ii), with the first SV states having284

wide vortex cores encompassing nearly the entire particle. There is also a reduction in285

dmax for MH-SE oblate surfaces (Figure 3e - f), particularly at intermediate TM com-286

positions.287
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Figure 4. Plots of the maximum dmax and minimum dmin of the ME-SE and MH-SE
anisotropies as a function of composition and shape. a) Contour plot of the maximum size at
which the SD structure was observed on growing (dmax). b) Contour plot of the minimum size at
which the SV structure was observed when shrinking (dmin). c) 3D surface plot of the dmin and
dmax surfaces in a and b. d) Contour plot of the difference (in nm) between the surfaces shown in
a, b and c. This represents the range of sizes where both the SD and SV structures are available
to a particle of this composition and geometry. The surface and contour plots shown here are
produced from a smoothed cubic spline surface fit to the data, with the original data located on
the corners of the grid. Thicker grid lines show the locations of slices through the contour plot
shown in Figure 5. White dashed contours represent wider spacings of 100 nm in regions where
500 < dmax < 1000 nm, where the models may be less precise. Note that for ease of viewing, the
surface in c is truncated at 500 nm. dmax data are missing for particles that remained in the SD
structure after growing to 1 µm.
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Figure 6. Critical size surfaces for ME-SE (left) vs MH-SE (right) particles. The presentation
of these surfaces is the same as in Figure 4c.

4 Discussion288

4.1 Comparison to other studies289

Our results provide the first description of the domain states present in titanomag-290

netites using modern micromagnetic models. Our maps of the size ranges of the SD and291

SV structures follow the work of Butler and Banerjee (1975), but our results are based292

on unconstrained, inhomogeneous 3-D models. This allows us to evaluate the true LEM293

states not available from classic Kittel two-domain structure calculations. Additionally,294

our titanomagnetite material parameters are empirically derived using far more data than295

were available to Butler and Banerjee, and include the second magnetocrystalline anisotropy296

constant k2. This robust physical basis, combined with the increased scale and resolu-297

tion of our models, enables us to make realistic predictions about the domain states of298

remanence carriers in igneous rocks. This in turn enables us to identify carriers with po-299

tential to cause problematic behaviors in paleomagnetic experiments.300

The results presented in Section 3 are most quantitatively comparable to those of301

Muxworthy and Williams (2006), who applied the size-hysteresis algorithm for prolate302

magnetite parallelipipeds. We extend this approach to 12 additional compositions and303

oblate geometries. Our results for dmin and dmax in magnetite are compared to theirs304

(converted to ESVD) in Figure 5. The dmax data follow a very similar trend with our305

dmax values being slightly smaller for all elongations. The dmin values are also mostly306

consistent, but Muxworthy & Williams observe a large increase in dmin at an axial ra-307

tio of 2.5, which is not seen in our data. The general similarity between the trends in308

both studies is encouraging, demonstrating the reproducibility of the size-hysteresis al-309

gorithm.310

The discrepancy between some of our dmin values and those of Muxworthy and Williams311

(2006) can be explained by numerous differences between our methodology and theirs;312

The material parameters for magnetite used are slightly different, our domain states are313

defined differently, Muxworthy & Williams used a micromagnetic method involving a fast314

fourier transform rather than the finite element method currently used in MERRILL,315

and our results are for ellipsoidal particles rather than parallelepipeds. Ellipsoids were316
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used because faceted surfaces affect the available domain states available to a particle,317

an effect known as configurational anisotropy (see W. Williams et al., 2006 for a detailed318

discussion). The ellipsoidal geometry minimizes the effect of configurational anisotropy319

by minimizing the size of faceted surfaces, ensuring that the dominant controls on dmin320

and dmax are composition and axial ratio.321

Usov and Serebryakova (2023) calculated the energies of different domain states322

present in magnetite ellipsoids, using a different algorithm to that employed in MER-323

RILL. They calculated a critical size, defined as the size at which the energy of the SV324

structure was lower than that of the SD structure. These critical sizes lie between our325

dmin and dmax when converted to ESVD, which should be expected as our critical sizes326

are bounds on the existence of the structures. The authors findings also shared three com-327

mon features with ours; Firstly, differences between the size ranges of domain structures328

in ME-SE and MH-SE particles. Secondly, SD and SV structures existing in overlapping329

size ranges. Finally, SV states aligned with a variety of magnetocrystalline and shape330

easy/hard directions. These similarities when using a different software, algorithm, and331

material parameters suggest that these features are robust properties of titanomagnetites.332

4.2 Domain states and instability333

The range of sizes between dmin and dmax, where both the SD and SV structures334

can exist, is largest for highly elongated or flattened particles and intermediate TM com-335

positions. Within this range of sizes, the magnetocrystalline hard-aligned vortex observed336

by Nagy et al. (2017) is observed in equidimensional particles, and the multiple avail-337

able domain states could lead to non-ideal “pTRM tail” type behaviour in paleointen-338

sity experiments. The “unstable zone” of Nagy et al. containing magnetocrystalline hard-339

aligned vortices was only found to be ∼ 10 nm wide for equidimensional magnetite, but340

we demonstrate that for other compositions and geometries, there are multiple available341

domain states that can exist over many hundreds of nanometers.342

A second region with multiple domain structures was observed in prolate MH-SE343

particles at larger sizes than dmax (e.g. Figure 3b, d). In this region, an SV state aligned344

with the long (shape-easy) of the particle coexists with a state where the ends of the vor-345

tex core are deflected away from this axis. The deflection is likely related to the influ-346

ence of the magnetocrystalline easy axes, which could pull the core away from the shape-347

easy direction towards one of a number of magnetocrystalline-easy directions. Upon fur-348

ther shrinking, the vortex core rotated further and shape-hard aligned SV states were349

frequently observed. The multiplicity of states offered by the different magnetocrystalline350

and shape directions, and the wide range of sizes over which these states overlap with351

the SV state suggest that there may be a second “unstable zone” in prolate MH-SE par-352

ticles above dmax and into the SV size range. Nagy et al. (2022) simulated pTRM tail353

behaviour using a prolate faceted magnetite particle that did not have any single-domain354

LEM states, supporting this hypothesis.355

Without thermal energy barriers, size hysteresis experiments cannot calculate the356

stability of individual particles, but the dmin and dmax sizes represent bounds on a re-357

gion of interest, which should be a target for future micromagnetic studies. Energy bar-358

rier calculations for particles in this region may further our understanding of the pTRM359

tail phenomenon. Equidimensional particles near dmin and prolate MH-SE particles should360

be of particular interest to researchers studying this phenomenon, as they exhibit the361

largest variety of states including the magnetocrystalline hard-aligned vortices of Nagy362

et al. (2017) and the shape hard-aligned vortices of Nagy et al. (2022).363
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4.3 The effect of elongation direction364

Overall, our findings indicate that the domain states available to magnetic parti-365

cles have a dependence on the alignment of the magnetocrystalline and shape easy axes366

(as seen in Figures 3 and 6). This effect has also been observed in micromagnetic algo-367

rithms using magnetite cuboids by Muxworthy and Williams (2006) and recently in mag-368

netite ellipsoids by Usov and Serebryakova (2023). Our results indicate that this effect369

may be even more important than previously thought, as we observe domain states in370

prolate titanomagnetites that are only present when the elongation direction is along a371

shape hard axis, which may cause instability as multiple domain states exist in this re-372

gion.373

There have been few observations of the relationship between the elongation di-374

rection and magnetization direction in natural samples. Feinberg et al. (2004) used the375

Electron Back-Scatter Diffraction (EBSD) technique to make observations about the ori-376

entations of prolate magnetite particles exsolved in clinopyroxene, and Ageeva et al. (2020)377

used the same technique to investigate particles exsolved in plagioclase. Both found mag-378

netite particles elongated along the <1 1 1> (magnetocrystalline easy) and <1 1 0> (in-379

termediate) directions. By contrast, Li et al. (2020) recently found that bullet shaped380

magnetite particles in chains of magnetosomes were predominantly elongated along the381

<1 0 0> (hard) axis. These limited studies indicate that there is varying competition382

between shape and magnetocrystalline axes in natural samples, with the dominant anisotropies383

being strongly tied to the mechanism of particle growth. More EBSD observations of the384

elongation directions in titanomagnetites of different origins will be necessary to constrain385

the available domain states in a wider range of real samples.386

5 Conclusions387

We present a comprehensive set of results from micromagnetic models to determine388

the range of possible domain states in ellipsoidal titanomagnetite particles of varying size,389

shape and composition. Previous micromagnetic models characterizing the domain states390

in samples have focused solely on equidimensional and prolate magnetite particles. The391

range of compositions and shapes described in our study increase the number of exist-392

ing domain state characterizations by more than an order of magnitude, improving our393

understanding of a much wider range of remanence carriers.394

For each titanomagntite composition and geometry, we find the critical size at which395

a single domain (SD) magnetization transitions to a single vortex (SV) magnetization396

upon growing a particle (dmax) and the size at which an SV magnetization transitions397

to an SD magnetization on shrinking the particle (dmin). Particles between these sizes398

can be magnetized both in the single domain structure, and the single vortex structure.399

This is significant, as for these particles we observe vortex structures aligned along the400

magnetocrystalline hard axis, which were found to be unstable by Nagy et al. (2017).401

Our results indicate that titanomagnetite particles of intermediate composition have a402

larger range of sizes where both the SD and SV structures are available, and that this403

range of sizes is larger for both oblate and prolate particles than for equidimensional ones.404

Further, we find that the angle between the magnetocrystalline and shape easy axes405

has a significant effect on the observed domain states in a particle. Prolate particles have406

a much larger SD + SV size range when their elongation direction is along the magne-407

tocrystalline easy axis (ME-SE) than when along the hard axis (MH-SE). MH-SE pro-408

late particles exhibit “S” and “Banana” states in the SV size range, where the vortex core409

of the magnetization is deflected away from the elongation direction. These states some-410

times rotate to the particle’s short axis on shrinking, leading to a potential second “un-411

stable zone” in titanomagnetites. Further investigation of the relationship between par-412

–14–



manuscript submitted to Journal of Geophysical Research: Solid Earth

ticle shape and crystallographic directions in natural samples should be undertaken to413

better understand this effect.414

Overall, we show that the domain states available to grains vary as a function of415

shape and composition. The domain states observed indicate that the range of sizes, shapes416

and compositions of unstable remanence carriers that cause problematic behavior in pa-417

leomagnetic studies could be far larger than previously demonstrated. A prevalence of418

these carriers could explain the high failure rate of paleointensity experiments seen in419

paleomagnetic literature. Future work will focus on the unstable particles identified in420

this study to understand the effects of these instabilities on paleomagnetic experiments.421

Open Research422

The micromagnetic models were produced using the open source micromagnetic423

modeling MERRILL (Ó Conbhuí et al., 2018; W. Williams et al., n.d.), which is avail-424

able under a CC-BY-SA 4.0 International license at https://bitbucket.org/wynwilliams/425

merrill/. A Zenodo repository containing a spreadsheet of results, as well as example426

scripts to reproduce this research can be found at https://doi.org/10.5281/zenodo427

.10471806 (Cych, 2024).428
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Key Points:11

• We systematically map out the domain states in titanomagnetite as a function of12

shape and composition.13

• Our results highlight ranges of compositions, shapes and sizes which contain un-14

reliable paleomagnetic recorders.15

• For certain shapes and compositions, these regions span hundreds of nanometers,16

representing a significant proportion of remanence carriers.17
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Abstract18

The minerals carrying the magnetic remanence in geological samples are commonly a19

solid solution series of iron-titanium spinels known as titanomagnetites. Despite the range20

of possible compositions within this series, micromagnetic studies that characterize the21

magnetic domain structures present in these minerals have typically focused on magnetite.22

No studies systematically comparing the domain-states present in titanomagnetites have23

been undertaken since the discovery of the single vortex (SV) structure and the advent24

of modern micromagnetism. The magnetic properties of the titanomagnetite series are25

known to vary strongly with composition, which may influence the domain states present26

in these minerals, and therefore the magnetic stability of the samples bearing them.27

We present results from micromagnetic simulations of titanomagnetite ellipsoids28

of varying shape and composition to find the size ranges of the single domain (SD) and29

SV structures. These size ranges overlap, allowing for regions where the SD and SV struc-30

tures are both available. These regions are of interest as they may lead to magnetic in-31

stability and “pTRM tails” in paleointensity experiments. We find that although this SD+SV32

zone occupies a narrow range of sizes for equidimensional magnetite, it is widest for in-33

termediate (TM30-40) titanomagnetite compositions, and increases for both oblate and34

prolate particles, with some compositions and sizes having an SD+SV zone up to 100s35

of nm wide. Our results help to explain the prevalence of pTRM tail-like behavior in pa-36

leointensity experiments. They also highlight regions of particles with unusual domain37

states to target for further investigation into the definitive mechanism behind paleoin-38

tensity failure.39

Plain Language Summary40

Rocks that record Earth’s magnetic field often contain the mineral magnetite. The41

crystal structure of magnetite allows titanium atoms to substitute for iron, giving rise42

to a range of minerals known as titanomagnetites. The internal magnetic structure of43

titanomagnetite particles in rocks, known as the “domain structure”, controls the abil-44

ity of that particle to record magnetic fields. Particles with certain kinds of domain struc-45

ture are unstable magnetic recorders, which can cause problems for experiments trying46

to determine Earth’s magnetic field strength in the past (paleointensity experiments).47

Although the domain structures in magnetite are well understood, there are no recent48

studies which describe them in titanomagnetites.49

In this paper, we simulate the domain structures in small titanomagnetite parti-50

cles and map these out as a function of size, shape and chemical composition. In doing51

so, we identify types of magnetic particles with multiple possible domain structures that52

may give rise to unstable magnetizations. Our results indicate that some titanomagnetite53

particles may have unstable magnetizations over a much larger range of sizes than has54

previously been seen in magnetite. This wide range of sizes could explain the high fail-55

ure rates of paleointensity experiments.56

1 Introduction57

Magnetite is one of the most important magnetic minerals in igneous and sedimen-58

tary rocks, commonly forming during the crystallization of basaltic magmas, and in sed-59

iments through erosional and biogenic processes. Stoichiometrically pure magnetite (Fe3O4)60

is a well studied magnetic mineral, but in nature it forms a solid solution series with ti-61

tanium rich ulvospinel (Fe2TiO4). Titanomagnetite compositions within the series Fe3−xTixO462

(0 ≤ x ≤ 1) are represented using the notation TMx (e.g. x = 0.6 is TM60). Funda-63

mental magnetic properties of the titanomagnetites, including the Curie temperature (Nishitani64

& Kono, 1983), saturation magnetization (Bleil, 1976) and magnetocrystalline anisotropy65

constants (Ka̧kol et al., 1994), have been observed to vary across the solid solution se-66
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ries. The distribution of Curie temperatures in igneous rocks compiled from a compi-67

lation of 38 papers indicate that approximately 75% of paleomagnetic samples do not68

contain pure magnetite (see supplementary information for detailed references). Instead,69

they suggest that compositions from TM0 to TM60 are prevalent along with other min-70

erals. Despite this wide range of compositions and behaviours in nature, the rock mag-71

netic properties of titanomagnetites and their influences on paleomagnetic experiments72

are understudied.73

Rocks containing titanomagnetites are used to determine Earth’s magnetic field strength74

and direction in the distant past. This information has many practical applications in75

the geosciences, from detecting the age of archeological samples, to determining the mo-76

tion of tectonic plates and the nucleation age of Earth’s inner core. The fundamental physics77

that explain how a rock can record a thermal remanent magnetization (TRM) by cool-78

ing in a field was first described by Louis Néel (Néel, 1949). This work assumes that the79

magnetic particles contained within rocks are uniformly magnetized in a structure known80

as “single-domain” (hereafter referred to as SD). Unfortunately, the SD structure is only81

energetically efficient over a small range of particle sizes, and the majority of the mag-82

netization in natural materials is carried by particles in other states, as we show below.83

Consequently, paleomagnetic experiments often produce results that are complicated and84

difficult to interpret. A better understanding of the domain states present in magnetic85

materials is necessary to understand this behavior, and to ensure that paleomagnetists86

can obtain accurate results.87

To determine the dominant domain states of a magnetic particle, researchers use88

the micromagnetic modelling approach of Brown (1963). This technique was adapted89

by Fredkin and Koehler (1987) into a computational finite-element based technique, which90

finds stable magnetization states that minimize the energy of the particle. Some of the91

earliest findings from this approach demonstrated that magnetite particles sized approx-92

imately 100 nm - 1 µm have magnetizations which curl in a “vortex” shape around a uni-93

form core, known as the Single Vortex (SV) structure (Schabes & Bertram, 1988; W. Williams94

& Dunlop, 1989).95

Recent work has shown that there is an “unstable zone” (where particle relaxation96

times drop precipitously) in equidimensional magnetite particles at the lower size limit97

of the SV structure. In this region, the dominant domain state is a single vortex with98

the vortex core aligned along a magnetocrystalline hard axis direction . The energy needed99

to escape this state is small, and so it is not stable over geological timescales. Nagy et100

al. (2022) additionally showed that competition between shape easy- and hard-aligned101

SV states in magnetite can produce complicated “partial TRM (pTRM) tail” behaviour102

similar to that frequently seen in paleointensity experiments (e.g. Bol’Shakov, 1979; Dun-103

lop & Özdemir, 2001; Riisager & Riisager, 2001; Santos & Tauxe, 2019).104

Several studies have focused on determining the range of sizes and shapes over which105

domain states are stable in metallic iron (Muxworthy & Williams, 2015), magnetite (Muxworthy106

& Williams, 2006; Nagy et al., 2019), and greigite (Muxworthy et al., 2013; Valdez-Grijalva107

et al., 2018). Despite the range of titanomagnetite compositions prevalent in nature, there108

has been little work published on domain states in titanomagnetites since Butler and Baner-109

jee (1975). That study showed that the size range over which the SD structure was sta-110

ble varied as a function of TM composition. Moskowitz (1980) and Moskowitz and Halgedahl111

(1987) followed this work, calculating this size range for TM60 as a function of oxida-112

tion, temperature and stress. These two studies were undertaken before the discovery113

of the SV structure, instead considering a transition between a single domain and the114

two-domain structure of Kittel (1949). Muxworthy and Williams (2006) used micromag-115

netic modelling to determine the range of sizes for which the SD and SV structures were116

available in elongated magnetite cuboids. This range of sizes differed significantly from117

that of Butler and Banerjee (1975), but a modern micromagnetic approach was not ap-118

plied to other TM compositions. Khakhalova et al. (2018) simulated single and multi-119
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vortex states in a large pyramidal TM54 particle, but did not explore the variation in120

domain state with the size and shape of particles.121

In this paper, we present results from a series of micromagnetic models using the122

Micromagnetic Earth Related Robust Interpreted Language Laboratory (MERRILL; Ó123

Conbhuí et al., 2018) software package, v1.8.6p. Each simulation determines the range124

of possible sizes over which the single domain and single vortex structures can exist us-125

ing a “size hysteresis” algorithm (e.g. Witt et al., 2005; Muxworthy & Williams, 2006,126

2015; Nagy et al., 2019) where a minimum energy state is calculated in a titanomagnetite127

particle whilst progressively varying its size (described fully in Section 2.1). We perform128

these simulations for ellipsoidal titanomagnetite particles of varying composition and ax-129

ial ratio, from oblate to prolate. Our results, which are presented in Section 3 give the130

size ranges for the SD and SV structures for a range of TM compositions and prolate131

and oblate particles. This expands on the existing results of Muxworthy and Williams132

(2006) for prolate magnetites by more than an order of magnitude. We discuss the im-133

plications of these results, as well as the potential impact on paleomagnetic experiments134

in Section 4.135

2 Methodology136

2.1 The size hysteresis algorithm137

For each geometry and titanomagnetite composition in this paper, we use a “size138

hysteresis” algorithm. A graphical example for a sphere of TM25 is shown in Figure 1.139

The algorithm works as follows:140

1. For a 40 nm particle of a particular titanomagnetite composition and geometry,141

start with a uniform magnetization aligned along one of the magnetocrystalline142

easy axes in zero external field. An energy minimization is performed using MER-143

RILL on this particle, producing a magnetization that is a local energy minimum144

(LEM) state.145

2. The magnetization is taken and scaled up to a particle of a slightly larger size. An146

energy minimization is then performed on the new particle size. We define our size147

using the diameter of a sphere with equivalent volume (referred to as ESVD; equiv-148

alent spherical volume diameter). We increase the particle size by 10 nm when the149

ESVD is between 40 and 250 nm, and steps of 25 nm are used from 250 to 500150

nm.151

3. For a certain size range, the particle will remain in the SD structure (Figure 1 i.),152

but at some critical size, the SD structure stops being energetically favorable, and153

the domain state collapses to the SV structure (Figure 1 ii.). We call the diam-154

eter associated this size dmax, which is defined as being the center point between155

the SD and SV structures (e.g. between Figure 1 i. and ii.).156

4. We continue this process of scaling the magnetization onto particles of progres-157

sively larger sizes and minimizing the energy, repeating up to a size of 500 nm.158

5. After reaching 500 nm, we reverse the process, mapping the magnetization onto159

progressively smaller particles and minimizing the energy. At some point, (between160

Figure 1 iii. and iv.), the particle transitions from the SV structure to the SD struc-161

ture. We call this size dmin, which may differ from dmax.162

As can be seen from Figure 1, the critical sizes for transitioning between the SD163

and SV structures and vice-versa are not the same, with dmax occurring at a larger size164

(165 nm) than dmin (105 nm). During the “shrinking” branch of the magnetization, we165

observe a hard-aligned vortex (Figure 1 iii.). The region between dmin and dmax is there-166

fore of interest as it may contain the “unstable zone” of Nagy et al. (2017).167
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Figure 1. Ratio of the magnetization over the saturation magnetization (M/Ms) plotted
against EVSD (nm) in a “size hysteresis loop” for a sphere of TM25. The blue solid line repre-
sents the magnetization as the particle is grown from 40 from 500 nm, and the orange dashed
line represents the magnetization as it is shrunk from 500 nm to 40 nm. Example magnetization
states from the loop are shown at points i - iv). Vectors represent the direction of the magneti-
zation at that location in the particle. Grey cylinder in ii) and iii) represents an isosurface where
the relative helicity (hrel, described in the supplemental information) is 0.95. Colors represent
the absolute value of the dot product of these vectors with the direction of the net magnetization,
with lighter yellow regions being aligned with the net magnetization, and darker purple regions
being perpendicular. The magnetization transitions from the SD to the vortex state between i)
and ii) (160-170 nm) and the magnitude of the magnetization continues to be reduced up to 500
nm due to the tightening of the vortex core. The vortex rotates to a magnetocrystalline hard axis
direction between ii) and iii) and transitions back into a single domain state between iii) and iv)
(100-90 nm) along a different easy direction. dmin and dmax are plotted as vertical lines.
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2.2 Compositions and geometries168

In this study, we will test the effects of titanomagnetite composition as well as shape169

on dmax and dmin. To produce a micromagnetic model using a particular material, fun-170

damental material parameters are needed: the Curie temperature Tc, saturation mag-171

netization Ms, exchange constant Aex and magnetocrystalline anisotropy constants k1172

and k2. An extensive set of experimental data from previous work was compiled. Poly-173

nomial fits to these data were used to obtain functions that can return the material pa-174

rameters for a given TM composition. Details of the datasets and resulting parameters175

used in this study are given in the Supplemental Material.176

We applied the size hysteresis algorithm to ellipsoids of rotation with thirteen dif-177

ferent axial ratios, logarithmically spaced between 1/3 and 3. A set of thirteen differ-178

ent titanomagnetite compositions was used, in 5% increments from 0% to 60% Ti. Tetra-179

hedral meshes were produced for each size, shape and composition using the Coreform180

Cubit software package (Coreform LLC, 2017). The coarseness of the mesh used depended181

on the size of the geometry (keeping minimum number of elements to ∼ 15000) and the182

exchange length (λex; Rave et al., 1998) of the material. For some combinations of com-183

position and geometry, dmax was not reached by a size of 500 nm. In these cases, we ran184

the algorithm to a size of 1 µm (in steps of 50 nm to 800 nm, then 100 nm to 1 µm), with185

a set of meshes using a maximum of a million elements. This meant that some meshes186

exceeded ex and so dmax values greater than 500 nm should be considered less precise.187

If dmax was greater than 1 µm, then it was not reported, and dmin was instead obtained188

by forcing a vortex state initial condition at 500 nm and proceeding with the “shrink-189

ing” branch as normal.190

For each composition and geometry, two size hysteresis simulations were run, one191

in which the major axis of the ellipsoid was aligned with the magnetocrystalline easy axis192

of the material (referred to as “magnetocrystalline easy-shape easy” or ME-SE), and one193

in which it was aligned with the magnetocrystalline hard axis (referred to as “magne-194

tocrystalline hard-shape easy” or MH-SE). The results displayed in Section 3 were pro-195

duced by taking the maximum dmax and minimum dmin of the two datasets for each com-196

position and geometry, and the resulting surfaces were interpolated by a 2d cubic spline197

using the SciPy package (Virtanen et al., 2020). The difference between results from the198

ME-SE and MH-SE datasets are discussed in Sections 3.2 and 3.3.199

The LEMs at each step in the size hysteresis loop were visualized using the Par-200

aView software (Ayachit, 2015). For each visualization, the relative helicity hrel was cal-201

culated (see supplementary material for details). To determine dmin and dmax, the SV202

structure was identified by the presence of a coherent cylindrical isosurface at hrel=0.95203

containing a “vortex core” intersecting the surface of the particle in two places, and the204

SD structure was identified by the absence of such a core. Examples of SV structures205

with vortex cores can be seen in Figure 1 ii and iii). When visualizing LEM states, the206

volume and magnetization arrows are colored by the absolute cosine of the angle between207

the individual magnetization vectors and the particle’s net magnetization. The lighter208

colours in the cores of vortex structures demonstrate that the bulk of the magnetization209

is carried in this core, and that the volume of the core influences the magnitude of the210

net magnetization.211
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3 Results212

3.1 Anisotropy energies of the titanomagnetite series213
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Figure 2. Magnetocrystalline anisotropy energy densities for an SD titanomagnetite particle
as a function of composition. Different coloured lines are the anisotropy energy density for differ-
ent magnetocrystalline directions. The line with the lowest (most negative) magnetocrystalline
energy density is the easy axis.

Figure 2 shows the magnetocrystalline energy densities in SD titanomagnetites for214

the <1 0 0>, <1 1 0> and <1 1 1> directions obtained from our fit to experimental data215

for the k1 and k2 anisotropy constants. The magnetocrystalline easy axis for a particle216

can be determined by the lowest (most negative) energy. Anisotropy properties change217

significantly across the titanomagnetite series, the easy axis is along <1 1 1> for TM0218

- 50, changing to <1 1 0> at ∼ TM51 and <1 0 0> at ∼ TM59. The hard axis is <1219

0 0> from TM0 - 55 and changes to <1 1 1> just above TM55. The difference in anisotropy220

energy between the easy and hard directions reaches a maximum at ∼ TM20, and is sig-221

nificantly smaller at high TM compositions (≥TM40).222

3.2 Observed states223

Examples of typical states observed during the size hysteresis algorithm are shown224

in Figures 1 and 3. Spherical particles behaved as in Figure 1, with the SD structure chang-225

ing into an SV structure on the growing branch and back to an SD structure on the shrink-226

ing branch, usually rotating to a magnetocrystalline hard direction close to dmin on the227

shrinking branch (Figure 1 iii). The rotation to a magnetocrystalline hard-aligned vor-228

tex was occasionally preceded by a rotation to a magnetocrystalline intermediate axis,229

particularly in TM55 and TM60 particles. SV states aligned with the magnetocrystalline230

hard axis were found by Nagy et al. (2017) to have extremely low stability, which may231

be of interest for paleomagnetists. Oblate particles behaved similarly for both ME-SE232

and MH-SE aniostropies, nucleating a vortex along the short (shape hard) axis of the233

particle (Figure 3e - f).234

Different states were observed in prolate particles depending on elongation direc-235

tion: In ME-SE particles, a vortex state aligned along the major axis continued to ex-236

ist without changing up to the maximum size of 500 nm (Figure 3a ii) and continued un-237
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Figure 3. Example size hysteresis loop for particles elongated along the magnetocrystalline
easy axis (left column) and for the same particles elongated along the magnetocrystalline hard
axis (right column). a - b) size hysteresis loop for a prolate magnetite particle with an axial ratio
of 2.50. c - d) size hysteresis loop for a prolate TM60 particle with an axial ratio of 1.73. e - f)
size hysteresis loop for an oblate particle with an axial ratio of 0.58. In all plots, the numerals
i), ii), iii), iv), v) denote the order in which the minimizations were performed, and the colours
represent the growing (blue) or shrinking (orange) branch. dmin and dmax are plotted as vertical
dotted lines.
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changed down to dmin (Figure 3a iii). By contrast, in MH-SE particles, a secondary sharp238

drop in the magnetization was observed at sizes above dmax, with the SV state along the239

major axis (Figure 3b iii) transitioning to a state with a curved vortex core which had240

its ends deflected away from the major axis (Figure 3b iv). These cores were deflected241

in a variety of directions, forming “Banana” or “S” shapes depending on the whether the242

two ends of the core were deflected in adjacent or opposing directions. The deflected vor-243

tex structures persisted to lower sizes on the shrinking branch than on the growing branch,244

leading to another “loop” on the size hysteresis diagrams. The transition at dmin for MH-245

SE particles was often more subtle than for ME-SE ones, with little change in energy,246

and often a closed loop (dmin = dmax) e.g. Fig 3b).247

The “S” shaped vortices were frequently observed undergoing rotations during the248

shrinking branch of the size hysteresis loop, with the core rotating to lie along one of the249

short (shape-hard) axes of the particle, similar to the states observed in Nagy et al. (2022),250

which were found to cause pTRM tails in paleointensity experiments. This behaviour251

can be seen in Figure 3d ii-iv, and occurred most frequently in prolate particles with ax-252

ial ratios between 1 and 2. This rotation to a short axis was occasionally observed in ME-253

SE particles, but was far less prevalent overall.254

3.3 Trends in dmin and dmax255

The critical domain transition sizes for dmin and dmax for each composition and shape256

are presented as contour plots and surfaces in Figure 4. To obtain dmin and dmax as a257

continuous function of TM composition and axial ratio, the extant data were interpo-258

lated using a piecewise cubic 2D interpolation routine. White dashed contours with 100259

nm spacing are used to highlight regions where dmax was greater than 500 nm, where260

a rapid increase occurs. Additionally, some regions of the dmin and dmax surfaces are miss-261

ing from this dataset. This is because the SD state persists beyond 1 µm during the grow-262

ing branch of the size hysteresis loop. Obtaining dmin and dmax for loops above this size263

becomes rapidly more computationally expensive264

The surfaces displayed in Figure 4 exhibit some consistent trends with both size265

and shape. Slices through these surfaces (represented by thick lines on Figure 4a, b and266

d) at constant composition or axial ratio are displayed in Figure 5. The most noticeable267

feature of the surfaces is that dmax sharply increases for both prolate and oblate parti-268

cles relative to equidimensional ones for all compositions (Figure 4a,c). By contrast dmin269

tends to increase with increasing axial ratio across almost all shapes. The relationship270

between dmax and TM composition is more complicated. For equidimensional particles,271

dmax appears to increase rapidly for compositions from TM00 - TM40, decrease from TM40272

- TM50, followed by another increase to TM55 and a decrease to TM60. This broad trend273

is observed for all other shapes where data are available. dmin tends to increase relatively274

uniformly with increasing TM composition.275

The dmin and dmax surfaces for both the ME-SE and MH-SE particles are displayed276

in Figure 6. It is apparent that the dmax surface in Figure 4 is similar to the ME-SE sur-277

face, except at the highest TM compositions. This is primarily driven by the reduced278

dmax for prolate MH-SE particles, with many of the loops being closed (i.e, dmin = dmax).279

The anisotropy for MH-SE particles has a less uniaxial character, and so the SD struc-280

ture cannot be a LEM state at larger sizes. The LEM states in the ME-SE particles change281

rapidly from an SD structure to a vortex structure, accompanied by a sharp drop in the282

net magnetization (Figure 3a i to ii) By contrast, the MH-SE particles change more grad-283

ually from an SD to an SV structure (Figure 3b i to ii), with the first SV states having284

wide vortex cores encompassing nearly the entire particle. There is also a reduction in285

dmax for MH-SE oblate surfaces (Figure 3e - f), particularly at intermediate TM com-286

positions.287
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Figure 4. Plots of the maximum dmax and minimum dmin of the ME-SE and MH-SE
anisotropies as a function of composition and shape. a) Contour plot of the maximum size at
which the SD structure was observed on growing (dmax). b) Contour plot of the minimum size at
which the SV structure was observed when shrinking (dmin). c) 3D surface plot of the dmin and
dmax surfaces in a and b. d) Contour plot of the difference (in nm) between the surfaces shown in
a, b and c. This represents the range of sizes where both the SD and SV structures are available
to a particle of this composition and geometry. The surface and contour plots shown here are
produced from a smoothed cubic spline surface fit to the data, with the original data located on
the corners of the grid. Thicker grid lines show the locations of slices through the contour plot
shown in Figure 5. White dashed contours represent wider spacings of 100 nm in regions where
500 < dmax < 1000 nm, where the models may be less precise. Note that for ease of viewing, the
surface in c is truncated at 500 nm. dmax data are missing for particles that remained in the SD
structure after growing to 1 µm.
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4 Discussion288

4.1 Comparison to other studies289

Our results provide the first description of the domain states present in titanomag-290

netites using modern micromagnetic models. Our maps of the size ranges of the SD and291

SV structures follow the work of Butler and Banerjee (1975), but our results are based292

on unconstrained, inhomogeneous 3-D models. This allows us to evaluate the true LEM293

states not available from classic Kittel two-domain structure calculations. Additionally,294

our titanomagnetite material parameters are empirically derived using far more data than295

were available to Butler and Banerjee, and include the second magnetocrystalline anisotropy296

constant k2. This robust physical basis, combined with the increased scale and resolu-297

tion of our models, enables us to make realistic predictions about the domain states of298

remanence carriers in igneous rocks. This in turn enables us to identify carriers with po-299

tential to cause problematic behaviors in paleomagnetic experiments.300

The results presented in Section 3 are most quantitatively comparable to those of301

Muxworthy and Williams (2006), who applied the size-hysteresis algorithm for prolate302

magnetite parallelipipeds. We extend this approach to 12 additional compositions and303

oblate geometries. Our results for dmin and dmax in magnetite are compared to theirs304

(converted to ESVD) in Figure 5. The dmax data follow a very similar trend with our305

dmax values being slightly smaller for all elongations. The dmin values are also mostly306

consistent, but Muxworthy & Williams observe a large increase in dmin at an axial ra-307

tio of 2.5, which is not seen in our data. The general similarity between the trends in308

both studies is encouraging, demonstrating the reproducibility of the size-hysteresis al-309

gorithm.310

The discrepancy between some of our dmin values and those of Muxworthy and Williams311

(2006) can be explained by numerous differences between our methodology and theirs;312

The material parameters for magnetite used are slightly different, our domain states are313

defined differently, Muxworthy & Williams used a micromagnetic method involving a fast314

fourier transform rather than the finite element method currently used in MERRILL,315

and our results are for ellipsoidal particles rather than parallelepipeds. Ellipsoids were316
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used because faceted surfaces affect the available domain states available to a particle,317

an effect known as configurational anisotropy (see W. Williams et al., 2006 for a detailed318

discussion). The ellipsoidal geometry minimizes the effect of configurational anisotropy319

by minimizing the size of faceted surfaces, ensuring that the dominant controls on dmin320

and dmax are composition and axial ratio.321

Usov and Serebryakova (2023) calculated the energies of different domain states322

present in magnetite ellipsoids, using a different algorithm to that employed in MER-323

RILL. They calculated a critical size, defined as the size at which the energy of the SV324

structure was lower than that of the SD structure. These critical sizes lie between our325

dmin and dmax when converted to ESVD, which should be expected as our critical sizes326

are bounds on the existence of the structures. The authors findings also shared three com-327

mon features with ours; Firstly, differences between the size ranges of domain structures328

in ME-SE and MH-SE particles. Secondly, SD and SV structures existing in overlapping329

size ranges. Finally, SV states aligned with a variety of magnetocrystalline and shape330

easy/hard directions. These similarities when using a different software, algorithm, and331

material parameters suggest that these features are robust properties of titanomagnetites.332

4.2 Domain states and instability333

The range of sizes between dmin and dmax, where both the SD and SV structures334

can exist, is largest for highly elongated or flattened particles and intermediate TM com-335

positions. Within this range of sizes, the magnetocrystalline hard-aligned vortex observed336

by Nagy et al. (2017) is observed in equidimensional particles, and the multiple avail-337

able domain states could lead to non-ideal “pTRM tail” type behaviour in paleointen-338

sity experiments. The “unstable zone” of Nagy et al. containing magnetocrystalline hard-339

aligned vortices was only found to be ∼ 10 nm wide for equidimensional magnetite, but340

we demonstrate that for other compositions and geometries, there are multiple available341

domain states that can exist over many hundreds of nanometers.342

A second region with multiple domain structures was observed in prolate MH-SE343

particles at larger sizes than dmax (e.g. Figure 3b, d). In this region, an SV state aligned344

with the long (shape-easy) of the particle coexists with a state where the ends of the vor-345

tex core are deflected away from this axis. The deflection is likely related to the influ-346

ence of the magnetocrystalline easy axes, which could pull the core away from the shape-347

easy direction towards one of a number of magnetocrystalline-easy directions. Upon fur-348

ther shrinking, the vortex core rotated further and shape-hard aligned SV states were349

frequently observed. The multiplicity of states offered by the different magnetocrystalline350

and shape directions, and the wide range of sizes over which these states overlap with351

the SV state suggest that there may be a second “unstable zone” in prolate MH-SE par-352

ticles above dmax and into the SV size range. Nagy et al. (2022) simulated pTRM tail353

behaviour using a prolate faceted magnetite particle that did not have any single-domain354

LEM states, supporting this hypothesis.355

Without thermal energy barriers, size hysteresis experiments cannot calculate the356

stability of individual particles, but the dmin and dmax sizes represent bounds on a re-357

gion of interest, which should be a target for future micromagnetic studies. Energy bar-358

rier calculations for particles in this region may further our understanding of the pTRM359

tail phenomenon. Equidimensional particles near dmin and prolate MH-SE particles should360

be of particular interest to researchers studying this phenomenon, as they exhibit the361

largest variety of states including the magnetocrystalline hard-aligned vortices of Nagy362

et al. (2017) and the shape hard-aligned vortices of Nagy et al. (2022).363
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4.3 The effect of elongation direction364

Overall, our findings indicate that the domain states available to magnetic parti-365

cles have a dependence on the alignment of the magnetocrystalline and shape easy axes366

(as seen in Figures 3 and 6). This effect has also been observed in micromagnetic algo-367

rithms using magnetite cuboids by Muxworthy and Williams (2006) and recently in mag-368

netite ellipsoids by Usov and Serebryakova (2023). Our results indicate that this effect369

may be even more important than previously thought, as we observe domain states in370

prolate titanomagnetites that are only present when the elongation direction is along a371

shape hard axis, which may cause instability as multiple domain states exist in this re-372

gion.373

There have been few observations of the relationship between the elongation di-374

rection and magnetization direction in natural samples. Feinberg et al. (2004) used the375

Electron Back-Scatter Diffraction (EBSD) technique to make observations about the ori-376

entations of prolate magnetite particles exsolved in clinopyroxene, and Ageeva et al. (2020)377

used the same technique to investigate particles exsolved in plagioclase. Both found mag-378

netite particles elongated along the <1 1 1> (magnetocrystalline easy) and <1 1 0> (in-379

termediate) directions. By contrast, Li et al. (2020) recently found that bullet shaped380

magnetite particles in chains of magnetosomes were predominantly elongated along the381

<1 0 0> (hard) axis. These limited studies indicate that there is varying competition382

between shape and magnetocrystalline axes in natural samples, with the dominant anisotropies383

being strongly tied to the mechanism of particle growth. More EBSD observations of the384

elongation directions in titanomagnetites of different origins will be necessary to constrain385

the available domain states in a wider range of real samples.386

5 Conclusions387

We present a comprehensive set of results from micromagnetic models to determine388

the range of possible domain states in ellipsoidal titanomagnetite particles of varying size,389

shape and composition. Previous micromagnetic models characterizing the domain states390

in samples have focused solely on equidimensional and prolate magnetite particles. The391

range of compositions and shapes described in our study increase the number of exist-392

ing domain state characterizations by more than an order of magnitude, improving our393

understanding of a much wider range of remanence carriers.394

For each titanomagntite composition and geometry, we find the critical size at which395

a single domain (SD) magnetization transitions to a single vortex (SV) magnetization396

upon growing a particle (dmax) and the size at which an SV magnetization transitions397

to an SD magnetization on shrinking the particle (dmin). Particles between these sizes398

can be magnetized both in the single domain structure, and the single vortex structure.399

This is significant, as for these particles we observe vortex structures aligned along the400

magnetocrystalline hard axis, which were found to be unstable by Nagy et al. (2017).401

Our results indicate that titanomagnetite particles of intermediate composition have a402

larger range of sizes where both the SD and SV structures are available, and that this403

range of sizes is larger for both oblate and prolate particles than for equidimensional ones.404

Further, we find that the angle between the magnetocrystalline and shape easy axes405

has a significant effect on the observed domain states in a particle. Prolate particles have406

a much larger SD + SV size range when their elongation direction is along the magne-407

tocrystalline easy axis (ME-SE) than when along the hard axis (MH-SE). MH-SE pro-408

late particles exhibit “S” and “Banana” states in the SV size range, where the vortex core409

of the magnetization is deflected away from the elongation direction. These states some-410

times rotate to the particle’s short axis on shrinking, leading to a potential second “un-411

stable zone” in titanomagnetites. Further investigation of the relationship between par-412
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ticle shape and crystallographic directions in natural samples should be undertaken to413

better understand this effect.414

Overall, we show that the domain states available to grains vary as a function of415

shape and composition. The domain states observed indicate that the range of sizes, shapes416

and compositions of unstable remanence carriers that cause problematic behavior in pa-417

leomagnetic studies could be far larger than previously demonstrated. A prevalence of418

these carriers could explain the high failure rate of paleointensity experiments seen in419

paleomagnetic literature. Future work will focus on the unstable particles identified in420

this study to understand the effects of these instabilities on paleomagnetic experiments.421

Open Research422

The micromagnetic models were produced using the open source micromagnetic423
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S1 - Curie Temperatures of Natural Samples

To demonstrate the importance of our study, we compiled 1391 Curie temperature

measurements for igneous rocks from a compilation of 38 papers (Ozima et al., 1968;

Larson et al., 1969; Kono, 1974; Coe et al., 1978, 1984; Chauvin et al., 1991; Sherwood

et al., 1993; Mankinen, 1994; Tsunakawa & Shaw, 1994; Gonzalez et al., 1997; Rolph,

1997; Hill & Shaw, 1999, 2000; Calvo et al., 2002; Carvallo et al., 2003, 2004; Wang &

Van der Voo, 2004; Feinberg et al., 2006; Matzka & Krása, 2007; Böhnel et al., 2009;

Calvo-Rathert et al., 2009, 2011, 2013; Tanaka & Komuro, 2009; Ferk et al., 2010, 2012;

Michalk et al., 2010; Paterson et al., 2010; Donadini et al., 2011; Fontana et al., 2011;

de Groot et al., 2012, 2013; Vérard et al., 2012; Piper et al., 2013; Villasante-Marcos &

Pavón-Carrasco, 2014; Ahn et al., 2016; Bowles et al., 2018, 2020). These results were

filtered to exclude results which could not be titanomagnetites by using a maximum Curie

temperature of 590◦C. A histogram of the results (with a maximis shown in Figure S1,

ignoring results with a maximum temperature higher than that consistent with magne.

Around 25% of these measured TC values fall into the 580◦C bin, indicating that the

predominant carrier is magnetite in ∼25% of all igneous rocks. This indicates that the

remaining 75% have a magnetization predominantly carried by titanomagnetites or other

low TC magnetic minerals.

S2 - Intrinsic Properties of the Titanomagnetite Series

To be able to simulate the titanomagnetite (TMx, where “x” denotes the titanium per-

centage) series using the Micromagnetic Earth Related Robust Interpreted Language Lab-

oratory (MERRILL; Ó Conbhúı et al., 2018), continuous descriptions of intrinsic magnetic

properties are needed. This includes compositional variations of the Curie temperature

(TC), as well as compositional and temperature dependence of saturation magnetization

(Ms), the first and second anisotropy constants (k1 and k2, respectively), and the ex-
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change interaction constant (Aex). We fit these parameters to existing datasets, cited

in their respective sections below. The results of our fits at room temperature for the

compositions used in this study are shown in Table S1. Further details are given in the

respective sections for each parameter.

S2.1 - Curie Temperature

A total of 95 TC data spanning the full compositional range (magnetite to ülvospinel)

were compiled from 19 sources (Akimoto et al., 1957; Uyeda, 1958; Syono, 1965; Ozima

& Larson, 1970; Readman & O’Reilly, 1972; Robins, 1972; Hauptman, 1974; O’Donovan

& O’Reilly, 1977; Rahman & Parry, 1978; Özdemir & O’Reilly, 1978; Keefer & Shive,

1981; Nishitani & Kono, 1983; Heider & Williams, 1988; Moskowitz, 1993; Wanamaker

& Moskowitz, 1994; Hunt et al., 1995; Sahu & Moskowitz, 1995; Dunlop & Özdemir,

1997; Moskowitz et al., 1998). The data are presented in Figure S1 alongside the best-fit

polynomial of the form:

TC = 372.37x3 − 691.52x2 − 413.85x + 580◦C, (1)

where x here denotes a fraction rather than a percentage (e.g. x=0.6 for TM60). The

polynomial is constrained such that TC is 580◦C for magnetite and -153◦C for ulvospinel.

S2.2 - Saturation Magnetization

A data set of 486 Ms measurements from 19 sources were compiled (Pauthenet & Bochi-

rol, 1951; Akimoto et al., 1957; Uyeda, 1958; Syono, 1965; Ozima & Larson, 1970; Ozima

& Sakamoto, 1971; Rahman & Parry, 1978; Özdemir & O’Reilly, 1978; Nishitani & Kono,

1983; Wechsler et al., 1984; Moskowitz & Halgedahl, 1987; Newell et al., 1990; Banerjee,

1991; Ka̧kol et al., 1991a, 1991b; Moskowitz, 1993; Ka̧kol et al., 1994; Moskowitz et al.,

1998). This represents compositions from TM00 to TM70. MERRILL requires input Ms

values as volume normalized magnetizations in A/m, but some studies report Ms as mass
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normalize in Am2/kg. To convert these units, we use a density-composition relationship

derived from density data for TM00, TM60, and TM100 (Hunt et al., 1995; Dunlop and

Özdemir, 1997): ρ(x) = −418.03x + 5194.9. The room temperature Ms values obtained

from our fit to the data at the compositions used in this paper are given in Table S1.

S2.3 - Anisotropy Constants

For k1, we compiled a set of 99 data from 13 sources, spanning TM00 to TM68

(Bickford Jr, 1950; Williams & Bozorth, 1953; Calhoun, 1954; Bickford et al., 1957;

Syono, 1965; Fletcher & O’Reilly, 1974; Moskowitz & Halgedahl, 1987; Ka̧kol et al.,

1991b; Aragón, 1992; Ka̧kol et al., 1994; Sahu & Moskowitz, 1995; Hunt et al., 1995;

Mart́ın-Hernández et al., 2006).

For k2 only 27 data points are available from four sources, spanning TM00 to TM55

(Bickford et al., 1957; Syono & Ishikawa, 1963; Ka̧kol et al., 1991b; Mart́ın-Hernández

et al., 2006) We note that the limited compositional range of k2 data restricts room

temperature micromagnetic models to TM00–TM60. The room temperature k1 and k2

values obtained from our fits to the data at the compositions used in this paper are given

in Table S1.

S2.4 - Exchange Constant

Limited data are available for the variation of the exchange interaction (Aex) for the

titanomagnetite series – data are only available for magnetite at a range of temperatures

(Heider & Williams, 1988). A fit to these temperatures yielded the following relation:

Aex(T ) = 1.3838 × 10−11

(
1 − T

TC

)0.67448

, (2)

where T and TC are measured in ◦C and TC = 580◦C for magnetite. The fit to the data

is plotted in Figure . This fit results in a room temperature (20◦C) Aex of 1.351 × 10−11

for magnetite. To scale this for compositional variation in the titanomagnetite series we
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use a Curie temperature scaling law proposed by Chikazumi (1964) and used in early TM

studies (Butler & Banerjee, 1975; Moskowitz, 1980; Moskowitz & Halgedahl, 1987). Aex

at room temperature is therefore given by the formula:

Aex(x) = 1.3838 × 10−11

(
TC(x) + 273.15

853.15

)(
1 − 20

TC(x)

)0.67448

, (3)

where TC(x) is given by Equation 1.

Text S3 - Visualization of Magnetization States

The relative helicity hrel - used to calculate the presence of vortex cores and magneti-

zation states is given by the formula:

hrel =
m̂ · ∇ × m̂

||∇ × m̂||
, (4)

where m̂ is the magnetization unit vector at a given location in the mesh. An isosurface

of |hrel| = 0.95 was plotted for everywhere that ||∇×m̂|| ≥ 1 (as hrel becomes noisy when

||∇ × m̂|| is close to zero).

|sc|, used to color the LEM states, is given by:

|sc| =
|m̂ ·M |
||M ||

, M =

∫∫∫
V

m̂ dV. (5)
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Coe, R. S., Grommé, S., & Mankinen, E. A. (1978). Geomagnetic paleointensities from

January 29, 2024, 10:49am



X - 8 :

radiocarbon-dated lava flows on Hawaii and the question of the pacific nondipole low.

Journal of Geophysical Research: Solid Earth, 83 (B4), 1740–1756.

Coe, R. S., Gromme, S., & Mankinen, E. A. (1984). Geomagnetic paleointensities from

excursion sequences in lavas on Oahu, Hawaii. Journal of Geophysical Research:

Solid Earth, 89 (B2), 1059–1069.

de Groot, L. V., Dekkers, M. J., & Mullender, T. A. (2012). Exploring the potential

of acquisition curves of the anhysteretic remanent magnetization as a tool to detect

subtle magnetic alteration induced by heating. Physics of the Earth and Planetary

Interiors , 194 , 71–84.

de Groot, L. V., Mullender, T. A., & Dekkers, M. J. (2013). An evaluation of the

influence of the experimental cooling rate along with other thermomagnetic effects

to explain anomalously low palaeointensities obtained for historic lavas of Mt Etna

(Italy). Geophysical Journal International , 193 (3), 1198–1215.
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Figure S1. Histogram of measured Curie temperatures of igneous rocks from a compi-

lation of 38 papers.
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Table S1. Rock magnetic properties for the TM series at 20◦C, generated by fitting to the

datasets referenced in the text.
x TC Ms k1 k2 Aex

(%) (◦C) (kA/m) (104 J/m3) (104 J/m3) (10−11 J/m)
0 580.00 488.46 -1.2209 -0.4303 1.3514
5 557.63 450.33 -1.7818 0.0841 1.3147
10 532.07 414.59 -2.1315 0.3954 1.2727
15 503.62 381.01 -2.2983 0.5217 1.2259
20 472.55 349.40 -2.3095 0.4995 1.1747
25 439.14 319.54 -2.1919 0.3826 1.1196
30 403.66 291.22 -1.9718 0.2385 1.0608
35 366.41 264.22 -1.6752 0.1452 0.9988
40 327.65 238.33 -1.3274 0.1826 0.9340
45 287.67 213.32 -0.9534 0.4214 0.8665
50 246.74 188.96 -0.5781 0.9008 0.7965
55 205.15 164.97 -0.2261 1.5900 0.7239
60 163.17 141.06 0.0772 2.3172 0.6480
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Figure S1. Curie temperature as a function of titanomagnetite composition. Blue circles:

Individual data points, Red line: polynomial fit to data.
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Figure S2. Exchange constant for magnetite as a function of temperature (blue circles) and

fit to these data (red line) given by Equation 2.

January 29, 2024, 10:49am


