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Abstract19

This study assesses the vulnerability of Arctic coastal settlements and infrastructures20

to coastal erosion and permafrost warming. We enhanced the Arctic Coastal Infrastructure21

dataset (SACHI) to include road types, airstrips, and artificial water reservoirs. Analysis22

of coastline change rates from 2000-2020, permafrost ground temperature and active layer23

thickness changes from the ESA Permafrost Climate Change Initiative identified at-risk24

settlements for 2030, 2050, and 2100. Our study incorporates a thorough validation process25

for each dataset utilized, ensuring the verification and accuracy of the data. Our findings26

are concerning: by 2100, 23% of Arctic coastal settlements will be impacted by coastal27

erosion Based on linear trends, permafrost ground temperature will rise by 8°C and active28

layer thickness will increase by 0.9 m. 65% of all present infrastructures/settlements will29

be affected by permafrost warming between 5-15°C and 35% from active layer thickening30

of 1-5 meter. This the first study to identify settlements at risk from coastal erosion and31

warming permafrost along Arctic and permafrost-dominated coasts at a regional scale for the32

northern hemisphere. We provide an estimation of the total number of coastal communities33

and associated infrastructures being directly endangered by coastal erosion until 2100. Our34

results highlight that adaptation to current and future environmental changes is needed now35

in order to counteract a deterioration of living conditions in permafrost coastal settlements.36

Plain Language Summary37

This study examines the risks to Arctic coastal areas and infrastructure, such as roads38

and buildings, from increasing coastal erosion and permafrost warming. Analyzing coastline39

changes, permafrost temperatures, and the thickness of the thawing layer from 2000 to40

2020, we identified the areas most at risk by 2030, 2050, and 2100. Our research finds41

that by 2100, about 23% of Arctic coastal settlements may face infrastructure damage due42

to coastal erosion. Additionally, permafrost is likely to warm by 8°C, and its top thawing43

layer could thicken by 0.9 meters, potentially affecting 65% of existing infrastructure and44

settlements with enhanced ground instability. This is the first large-scale study assessing45

coastal erosion and permafrost warming risks along Arctic and permafrost-rich coasts across46

the northern hemisphere. We estimate that a significant number of coastal communities47

and their infrastructures are at risk until 2100. These findings highlight the urgent need for48

adaptation strategies to mitigate environmental changes and protect the living conditions49

in Arctic permafrost coastal areas.50

1 Introduction51

In a context of recent and rapid warming of the Arctic region, oceanic and terrestrial52

environments are experiencing rapid changes. Modeled projections are confirming a signif-53

icant increase of these changes by 2100 (IPCC, 2022), impacting the biosphere and Arctic54

and permafrost living communities. A major change occurring within the Arctic Ocean is55

the rapid decline of sea-ice extent and thickness due to global warming (Stroeve & Notz,56

2018; Meredith et al., 2019). The summer sea-ice extent is expected to decline by 12.6%57

per decade and the open-water season to lengthen from 63 to 90 days by 2100 (A. Crawford58

et al., 2021), increasing the exposure time of the Arctic coast to dynamic marine conditions59

and storm impacts (Overeem et al., 2011; A. D. Crawford et al., 2022). By 2100, the global60

sea level is predicted to rise between 0.3 to 1.1 meters (Oppenheimer et al., 2019) due to61

oceanic thermal expansion, glaciers, and ice-sheets melting (Oppenheimer et al., 2019; Box62

et al., 2022), which can be also observed in the Arctic Ocean (Rose et al., 2019). Rising63

relative and absolute sea levels in combination with increasingly severe storms, are espe-64

cially impacting communities being placed in low-lying coastal areas and exposed to coastal65

erosion and flooding events (Irrgang et al., 2022).66
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Terrestrial permafrost is degrading in response to increasing mean air temperature67

which transfers to rising ground temperatures and more precipitation (Vasiliev et al., 2020;68

Smith et al., 2022). In the Northern Hemisphere (NH), permafrost ground temperatures69

(GT) have been increasing on average by about 1°C since 1997 (Bartsch et al., 2023).70

Its warming contributes to the deepening of the active layer thickness (ALT) enhancing71

thermokarst processes where ground-ice thawing generates lake and thaw-pond formation,72

lake drainage, ground subsidence and shoreline destabilization (Smith et al., 2022; Hjort73

et al., 2022). At the interface between land and sea, the permafrost coastline and local74

communities are subject to various pressures. Arctic permafrost coasts are among the fastest75

eroding coasts of the globe and are registering extreme erosion rates locally exceeding 4076

m/yr (Malenfant et al., 2022). The average pan-arctic coastal retreat rate was estimated at77

0.5 m/yr from Lantuit et al. (2012) and is expected to double before the end of the century78

(Nielsen et al., 2022). Erosion is a natural process but was observed to accelerate in various79

regions during last decades (B. M. Jones et al., 2018; Irrgang et al., 2018; Isaev et al.,80

2019; Whalen et al., 2022; Tanguy, Whalen, Prates, & Vieira, 2023). High retreat rates are81

mainly occurring where unlithified but ice-bound tundra cliffs are exposed to waves during82

the sea-ice free season. The Beaufort coast is experiencing one of highest mean retreat rates83

of the Arctic with 1.1 m/yr (Overduin et al., 2014) and the highest rates are related to84

block failures generated by the combination of ground-ice thawing and sapping from wave85

action at the cliff-base (Cunliffe et al., 2019; Thomas et al., 2020). Low-lying areas are86

especially vulnerable to coastal erosion and flooding, which are important issues for coastal87

communities since they are impacting livelihoods and infrastructure (Radosavljevic et al.,88

2016; Tanguy, Whalen, Prates, Pina, et al., 2023). Various coastal settlements have been89

majorly impacted by coastal erosion, storm surges and flooding such as Shishmaref in Alaska90

and Tuktoyaktuk in Canada (Marino & Lazrus, 2015; Whalen et al., 2022). Under such91

conditions, the stability of roads, airstrips, buildings, oil tanks and pipelines is becoming an92

important economic and environmental issue and poses engineering challenges for coastal93

communities (Buzard et al., 2021; Hjort et al., 2022; D. A. Streletskiy et al., 2019a).94

Satellite data can be potentially used to implement a circumarctic monitoring scheme.95

The Sentinel-1/2 derived Arctic Coastal Human Impact dataset (SACHI; Bartsch et al.96

(2021)) shows increasing human presence and industrial activity linked to oil/gas exploita-97

tion and mining along the Arctic. This dataset considered three types of human impact as98

visible from space: linear transport infrastructure (roads and railways), buildings and other99

constructions (e.g. bridges), and other impacted areas (gravel pads, open pit mining areas,100

etc.) and was limited to a 100 km fringe from the Arctic and permafrost coastline. In the101

latter classification, airstrips were not distinguished individually and were included in the102

”other impacted area” class, and different road construction types (gravel versus tarmac)103

were not considered. Initial analyses showed the potential of satellite data to separate road104

types (Bartsch, Pointner, et al., 2020). Artificial water bodies were also not included al-105

though water surfaces can be easily detected with satellite data. These features are built for106

water supply but also from the oil and mining industry, potentially promoting contaminants107

accumulations and local pollution issues (Glotov et al., 2018). The classification of different108

types of road, airstrips and the addition of water reservoirs is essential not only for a better109

characterization of human impact zones, but also for potential risk assessments including110

the socio-economic values of the various infrastructures.111

Permafrost coastline evolution is commonly assessed using historical aerial photography112

combined with high-resolution satellite imagery, or airborne data. The variety of scales,113

investigated time periods and study sites extends makes it difficult to compare regions and114

to get a comprehensive picture of pan-arctic coastal dynamics. The Arctic Coastal Dynamic115

Database (ACD) from Lantuit et al. (2012) provided a first compilation of shoreline change116

data, filling observation gaps with expert estimates. Landsat satellite imagery is a valuable117

data source due to its free availability, and large spatio-temporal coverage. Widely used for118

land-cover changes studies, it can also be used to assess coastline evolution. However, the119

30 m spatial resolution limits the detection of small changes (Xu, 2018). Nitze et al. (2017)120
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provided an efficient machine-learning based method using Landsat-trends to detect lake121

dynamics at a regional scale. It builds on a probability measure for land to water and water122

to land conversion. Bartsch, Ley, et al. (2020) demonstrate the utility of an adaptation of123

this approach for coastline change identification.124

Coastal infrastructures can be threatened by coastal erosion, moreover, GT and ALT125

conditions are also changing within the last decades, which contribute to additional poten-126

tial infrastructure damages via ground subsidence and hydrological changes. Time series of127

mean annual GT and ALT are available from a combination of satellite data (land-surface128

temperature) and reanalyses data through modelling at approximately 1 km nominal res-129

olution for 1997 to 2019 (Obu et al., 2021a, 2021b; Westermann et al., 2015). Increasing130

temperatures have been identified based on these datasets for the Northern Hemisphere131

(Bartsch et al., 2023), and are pronounced along permafrost coastal regions (Miner et al.,132

2022) including sites with comparably high coastal erosion rates (Bartsch, Ley, et al., 2020).133

In this study we (1) provide an update of the SACHI pan-arctic infrastructures dataset134

using a new classification including road types, airstrips and artificial water reservoirs, (2)135

estimate coastal dynamics and erosion rates along coastal settlements based on land-cover136

change detection using the approach of Bartsch, Ley, et al. (2020) for the coastline change137

assessment, (3) identify coastal settlements exposed to the risk of coastal erosion and/or138

permafrost GT and ALT increase over short-, mid- and long-term periods (2030, 2050, 2100),139

and (4) evaluate the accuracy of these different satellite derived datasets using various very-140

high resolution and in-situ validation data at key sites along permafrost-dominated coast.141

2 Study Area142

Our analysis is covering the coast bordering the Arctic Ocean, in addition, we extended143

our study area to the south, to include the largest part of NH permafrost-dominated coast-144

lines. The infrastructures analysis considers the similar extent as the SACHI dataset, defined145

as a 100 km buffer along Arctic and permafrost-dominated coasts, allowing to include set-146

tlements located within estuaries and deltas. The SACHI dataset extents from northwest147

Alaska through the northern coast of the American continent including the Canadian Arctic148

Archipelago to the Hudson Bay until Newfoundland. Greenland, Svalbard and East Scandi-149

navia are included as well as the entire Russian coast (Fig. 1). This area represents 62 000150

km2 and includes a total of 408 settlements, with 292 being directly located at the coast.151

These settlements are defined as areas with concentrated infrastructure, like for example152

hamlets, towns, mining or military bases.153

The coastline dynamics dataset extent is more restricted due to the lack of sufficient154

Landsat acquisitions and due to the large presence of sea-ice along highest coastal latitudes155

(e.g Canadian Archipelago), making the analysis inaccurate. The dataset excludes west-156

ern Scandinavia, northern parts of the Canadian Arctic Archipelago, the Hudson Bay and157

Newfoundland (Fig. 1).158
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Figure 1. Overview of analysed areas. The SACHI 100 km coastal zone (black; Bartsch et al.

(2021)) with included settlements (white dots) and the extent of Landsat derived coastal dynamics

(red). Permafrost zones are derived fromObu et al. (2021c) and background data from GSHHG

and CleanTOPO 2

3 Data159

3.1 Infrastructure dataset: Sentinel-1/2160

As for the first version of the SACHI dataset, this work uses a combination of Sentinel-1161

(Synthetic Aperture Radar-SAR) and Sentinel-2 (multi-spectral-optical) for the detection of162

human footprints along Arctic and permafrost-dominated coasts, using Gradient Boosting163

Machine (GBM) and Deep Learning (Keras) methods. In total 2424 granules at 100 by 100164

km extent acquired from 2016 to 2020 were used in the analysis. More details on data and165

framework are described in Bartsch, Pointner, et al. (2020) and Bartsch et al. (2021).166

3.2 Coastline dynamics dataset: Landsat-7/8167

Coastline change rates were retrieved using satellite data from Landsat 7 and 8 data168

from the TM, ETM+ and OLI sensors, also covering NH permafrost-dominated coasts. The169

study period ranges between 2000 and 2020 in order to represent recent coastal changes, also170

due to sparse data acquisition before 2000 in Siberia and Northern Alaska. Some areas were171

excluded from the analysis due to tiles with sparse availability or noise issues. We applied172
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a filtering of images available between July and August with cloud covers below 70%. The173

used Landsat bands have a spatial resolution of 30 m: Blue, Green, Red, Near-Infrared174

(NIR), Shortwave Infrared 1 (SWIR1), and Shortwave Infrared 2 (SWIR2).175

3.3 Permafrost ground temperature and active layer thickness176

Permafrost trends for GT and ALT were built based on a subset for the 2000-2020177

period using the datasets from the European Space Agency’s (ESA) climate change initiative178

(CCI) permafrost project (Obu et al., 2021b, 2021a). The datasets are based on MODIS179

land surface temperature merged with down-scaled and bias-corrected ERA5 reanalysis near-180

surface air temperature data. The outputs consists of raster layers with approximately 1 km181

nominal spatial resolution. This dataset was previously combined with the SACHI dataset182

from Bartsch et al. (2021). Comprehensive validation information is available within the183

documentation (Heim et al., 2021), but specifically active layer thickness data availability184

was limited and coastal region specific evaluation is unavailable.185

3.4 Validation data186

The updated SACHI dataset went through a validation process with comparison against187

very-high resolution imagery such as Unmanned Aerial Vehicle (UAV) orthomosaics and188

Pléaides© satellites scenes (CNES/Airbus), acquired at eight validation sites along the189

Beaufort, Yukon, Amundsen Gulf coasts (Komakuk, Tuktoyaktuk, Paulatuk, Bathurst,190

Cape Parry, Paulatuk, Sachs Harbour and Ulukhaktok; see Fig. 2). Vectorized infras-191

tructure data from field survey and aerial imagery were used in Greenland settlements, in192

Svalbard, and in Russia (Ehrich et al., 2019; Ingeman-Nielsen & Vakulenko, 2018). In total,193

21 locations were used for infrastructure validation. A dedicated survey of road types was194

carried out in Longyearbyen, Barentsburg and Pyramiden, in Svalbard, in 2021.195

Coastline change rates were validated at four sites using local measurements derived196

from aerial imagery, or very-high resolution (VHR) satellite imagery corresponding to a time-197

period between 2000 and 2020. The validation imagery have a spatial resolution ranging198

from 0.5 to 1.25 m. The coastlines were manually digitized and their positional accuracy was199

calculated based on their spatial resolution and georeferencing quality, in order to evaluate200

the coastline change rate uncertainty (Table 4).201

Finally, the ESA Permafrost Climate Change Initiative (Permafrost cci) Active Layer202

Thickness product was compared to in-situ thaw depth data: T-MOSAiC 2021-myThaw203

(Martin et al., 2023) which provided seasonal thaw depth measured along transects dis-204

tributed in eight Arctic sites, located in Siberia, Svalbard, Alaska, Greenland and Canada205

(Boike et al., 2021). Additional records have been compiled based on the Circumarctic Ac-206

tive Layer Measurements (CALM; D. Streletskiy and Shiklomanov (2021)) network as part207

of the Permafrost cci documentation (Heim et al., 2021). The validation site are represented208

in Fig. 2.209
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Figure 2. Validation sites for infrastructures, coastline change rates and active layer thickness.

Background data: GSHHG; Cleantopo2 (ocean bottom).

4 Methods210

4.1 General approach211

This work provides an update of the published Sentinel-1/2 derived Arctic Coastal212

Human Impact dataset (SACHI) with the inclusion of new classes such as asphalt, dirt213

and undefined roads, airstrips and artificial water reservoirs, using a combination of Deep214

Learning (DL) and Machine Learning (ML) methods. Areas of erosion and accretion are215

derived from Landsat change probabilities for the period 2000-2020. The retrieved coastline216

change rates were combined with the infrastructure dataset in order to evaluate settlements217

exposure to coastal erosion for short-, mid- and long-term (2030, 2050, 2100). In addition,218

GT and ALT trends are considered for the evaluation of permafrost thaw exposure. Each219

dataset was compared to validation data described in Table 1, in order to evaluate their220

accuracy. The SACHI update considers settlements and infrastructure within the 100 km221

buffer zone of the coastline. New settlements and associated information was added to the222

settlement database. The fusion of coastline change rates and permafrost properties with223

the infrastructure dataset allows for the vulnerability assessment of coastal settlements. The224

overall workflow is shown in Fig. 3.225
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Figure 3. Detailed analysis workflow.
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4.2 SACHI update and validation226

The scheme uses Deep Learning (DL; (U-Net convolutional neural network architecture227

using the deep learning framework Keras) and pixel based Machine Learning (Gradient228

Boosting machines - GBM) techniques. The DL component uses Sentinel-2 and the GBM229

component Sentinel-1 and -2. The satellite data and retrieval scheme used in this study230

is described in Bartsch, Pointner, et al. (2020) and Bartsch et al. (2021). In both cases,231

DL and GBM, super-resolution processing was applied to the 20 m bands of Sentinel-2 in232

order to obtain a 10 m nominal resolution dataset for all used bands as input. Atmospheric233

correction was applied.234

The DL component has been extended through the inclusion of additional classes con-235

sisting of three road types (asphalt, dirt, undefined) and airstrips/airports. The calibration236

dataset for all classes has been revised in order to account for inaccuracies in the Open-237

StreetMap dataset which was used initially. The GBM component also provides a water238

class by using the pixel based approach. Results for the water class have been separated and239

added to the database when in proximity to settlements. These water bodies were manually240

revised and only artificial water bodies (e.g. reservoirs) within settlements kept. This typi-241

cally includes rectangular or circle-like objects as well as lakes enclosed by open pit mining242

activities. A k-means post-processing on road features (using the Sentinel-1/2 bands) was243

applied to evaluate the possibility to distinguish gravel from asphalt roads. The accuracy244

assessment of the SACHI dataset was done by the computation of confusion matrices and245

producer, user, and overall accuracy (in %) of the dataset. The producer accuracy represents246

the percentage objects correctly identified by the modeled dataset. The user accuracy tells247

the percentage of well predicted objects by the dataset (Llano, 2022). In order to validate248

object positioning, we compared the new SACHI version to the validation data from UAV249

orthomosaic, aerial imagery, catastral data and in-situ measurements (Table 1).250

4.3 Permafrost Coastline Dynamics retrieval and validation251

Following the pre-processing method of Nitze et al. (2017), the Landsat time-series252

were used for pixel calculations of probabilities of erosion and accretion (change from land253

to water and visa versa) as well as no change, for the time period 2000 to 2020. A thresh-254

old for separation of change areas was determined in Bartsch, Ley, et al. (2020). A 50%255

probability value was found applicable and has been also applied in the present study. The256

resulting raster information was converted to vector polygons. To facilitate circumpolar257

implementation several post-processing steps have been introduced. The Landsat results258

were limited within a 1 km buffer along the coast in order to limit further analyses to259

coastline related changes, while considering lagoons, deltas and estuaries. Manual quality260

control was performed to detect and remove mis-classification errors induced by coastal lake261

change, snow, sea-ice, land-fast ice, tidal changes and infrastructure removal/construction262

(examples shown in Fig. 4).263
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Figure 4. Examples of mis-classification errors as seen with the polygons outside of the coastal

zone in the raw dataset and needing manual checking and removal. These errors can be induced

by sea-ice (a), snow presence (b), lake change (c), or infrastructures (d). The blue polygons show

accretion and the red erosion. Background map data sources: Esri©, USGS.

4.3.1 Coastline change rates retrieval264

A common approach to determine the rate of shoreline change is to use the Digital265

Shoreline Analysis System (DSAS) developed by USGS which uses time series of vector266

shoreline positions to calculates rate-of-change statistics at regular spaced perpendicular267

transects along a coast (Thieler et al., 2009). This method is effective when using manually268

delineated coastlines, but is not suitable for large automatically extracted datasets. In our269

case, the nature of the polygonal geometry of the derived change areas allows for a simplified270

estimation of the average rate of coastline change derived for each polygon. These polygons271

are in general elongated features, parallel to the coastline. The polygon length and area were272

calculated. The mean width (average coastline change) was calculated assuming an idealized273

rectangular representation of the change area. Annual rates of change were subsequently274

derived. To evaluate the accuracy of this method, we also applied the DSAS workflow to275

the polygons in test areas by converting the polygons to lines and splitting the shape into276

a seaward side and a landward side line, corresponding to the 2000 and 2020 coastline in277

the case of erosion, and vice-versa for accretion. This strategy requires additional manual278
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editing of the polygons and was also applied to validate the overall quality of the Landsat279

probabilities, extending the validation of the coastline position in Bartsch, Pointner, et al.280

(2020) to more sites.281

4.3.2 Coastline position uncertainty282

Calculating the uncertainty linked to coastline positions is necessary in order to evaluate283

the reliability of the coastline change rates. Equation (1) provides the coastline change rate284

uncertainty (U) which was calculated using the coastline position uncertainty (UCP) for285

each coastline, divided by the number of years of the analysed time period (t), (Tanguy,286

Whalen, Prates, & Vieira, 2023):287

U =
√
(U2

CP1 + U2
CP2)/(t2 − t1) (1)288

The coastline position uncertainty is incorporating the image pixel resolution (m) and289

the georeferencing error, RMSE (m). The polygons which were retrieved from the Land-290

sat change detection analyses show changes which occurred within a 20-year time-span291

(2000-2020). The landward and seaward polygon boundaries were define as the respective292

coastlines for the year 2000 and 2020. The uncertainty was also calculated for coastline293

derived from validation data (Table 4).294

4.3.3 Validation of coastline change rates295

Coastline change rates obtained from the Landsat polygons were compared with rates296

obtained with the DSAS method using validation shorelines. The difference between rates297

obtained from validation data and from Landsat polygons were calculated for each site,298

determining the accuracy of the Landsat derived coastline change rates. The End Point299

Rate (EPR, Thieler et al. (2009)), expressing erosion by negative and accretion by positive300

values, was used to compare the coastline change rates from the different datasets. In301

addition, automatic Landsat polygon rates were compared to he DSAS calculated rates for302

polygons, in order to evaluate the accuracy of this method.303

4.4 Permafrost properties evaluation304

For the validation of ALT available from Obu et al. (2021a), we compared the end-of-305

season ALT (Permafrost cci) for a time span of five years from 2015 to 2019 for each of the306

T-MOSAiC sites (in-situ data, Boike et al. (2021); Martin et al. (2023)). Each grid cell of307

the Permafrost cci dataset contains one ALT value for each year with a spatial resolution308

of 0.926 km. Buffers of 1 km, 5 km and 10 km radius were implemented around each of309

the T-MOSAiC sites/transects in which the modeled ALT was combined. Due to the close310

proximity of the transects at Bayelva and Zackenberg, we defined a single 1 km, 5 km and311

10 km radius around these sites.312

5 Results313

5.1 Infrastructure mapping314

5.1.1 SACHI accuracy assessment315

The dataset accuracy was evaluated by comparison with validation data provided from316

very high resolution data (¡ 1 m), ranging from UAV, satellite and aerial imagery and317

cadastral data over several settlements (Table 1). The agreement with the 10 m based318

classification result is 67% with the best detection of 80% for airstrips and other artificial319

areas such as bare-ground patches, gravel pads, open pit and mining areas (Table 2). Roads320

show an overall accuracy of 58% and the post-processing results for road types reveal a good321
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accuracy for the detection of asphalt roads (76%), but only around 40% on average for dirt322

roads. Buildings are accurately detected in 57% and the minimum building size detectable is323

100 m2, as determined with the UAVs survey at Paulatuk and Tuktokaktuk. Figure 5 gives324

a good visual example of the infrastructure detection detail of the dataset at Tuktoyaktuk.325

Comparing the dataset with the road survey (in-situ 2021) in Svalbard, reveal the good326

detection of roads below 10 m width. In fact the dataset was able to detect road widths327

from 2.7 to 12 m. For the road type survey in Svalbard (asphalt and gravel/dirt) : 75% or328

the roads samples are detected by the dataset showing mean width of 5.7m. However, only329

34% were correctly classified. Among these, 40% asphalt roads were correctly classified with330

mean width of 6.3 m, and up to 21% regarding gravel/dirt roads showing a mean width 4.9.331

28% of the the road width survey samples were not detected.332

Table 2. Updated SACHI dataset accuracy (10m nominal resolution versus ¡ 1m). Producer, User

and Overall accuracy values were extracted from computed confusion matrices at each validation

site.

Region Validation site

Infrastructures detection accuracy %
Producer & (User)

roads others features
asphalt dirt buildings airstrip other artificial area

Alaska

Atqasuk - 71 (95) - - -
Nuiqsut - 86 (63) - - -
Unalakleet 74 (27) 82 (80) - - -
Breving Mission - 19 (60) - - -
Chesterfield - 23 (30) - - -
Pruhoe Bay 100 (10) 61 (50) 72 (60) 100 (100) 67 (100)

Russia
Gasale - 20 (25) - - -
Kathanga 100 (5) 24 (75) - - -

West Greenland

Ilulissat - - 42 (60) 100 (93) 90 (83)
Kangeq - - 64 (90) 23 (80) 64 (90)
Oqaatsut - - 30 (30) - 96 (55)
Qeqertarsuaq - - 76 (55) 100 (100) 88 (95)

Svalbard Longyearbyen 31 (45) 47 (16) - - -

Canadian Arctic

Tuktoyaktuk - 72 (73) 50 (79) 100 (95) 83 (75)
Komakuk - 100 - 84 (100) -
Paulatuk - 40 (33) 47 (5) - 72 (60)
Cape Parry - - 100 (44) 17 (100) 70 (81)
Sachs Harbour - 1 (8) 6 (12) - 60 (66)
Ulukhaktok - 49 (80) - 58 (89) 71 (86)

Overall accuracy 67 76 39 57 80 81

5.1.2 Updated SACHI dataset333

In total, almost 1450 km2 were mapped in the updated SACHI version, adding 17%334

more information (Table 3). Artificial water reservoirs were added, accounting for 6902335

supplementary features or 138 km2 and roads have been sub-classified into three different336

types. Dirt roads represent 50% of the total detected roads and asphalt roads 22%. In337

total, 408 settlements were attributed to the infrastructures extent within the analysis area,338

however, only 292 are directly located at the coast. The majority are traditional communities339

living from fishing, hunting, and herding activity (53%). Industrial settlements for mining340

activity or gas/oil extraction represent 20% while the remaining settlements represent other341

uses such as tourism or military, research or weather stations (based on settlement centre342

data as in Bartsch et al. (2021)). Figure 5 shows a comparison between the first and343

updated SACHI version, and with validation data at Tuktoyaktuk Peninsula. We note that344
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the first version overestimated the extent of areas of buildings and other constructions. The345

updated version shows significant improvements in the mapping of airstrips, buildings and346

other constructions with the distinction of individual objects. Artificial water reservoirs are347

now also included in the dataset.348

Table 3. Updated SACHI dataset

Class
first SACHI version updated SACHI version

n° objects area (km2) n° objects area (km2)

Roads

asphalt

428,872 643

293,964 123

dirt 511,930 278

undefined 223,701 157

Buildings and other constructions 219,052 199 212,147 122

Other artificial areas

airstrips

264,732 371

2,149 6

artificial water reservoirs 6,902 138

other artificial areas 225,319 625

Total 912,656 1213 1,476,112 1449

Figure 5. Examples of SACHI versions (a) first (Bartsch et al., 2021), and (b) updated, (c)

validation data from the 2019 UAV orthomosaic at Tuktoyaktuk (Canadian Beaufort coast). Back-

ground map data sources: Pléiades© CNES, 2018, Airbus DS.
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5.2 Coastline changes and exposed settlements349

5.2.1 Coastline changes accuracy assessment350

The coastline change rate uncertainty for the Landsat retrieved rates amounts to 2351

m/yr (Table 4). The results reveal that on the four validation sites, the coastline change352

rates between validation and Landsat data can differ from -7.9 to 0.35 m/yr, where positives353

values represents an overestimation of erosion from the Landsat data and where negatives354

values represents an underestimation of erosion (Table 5). The comparison between rates355

calculated with the DSAS extension and the polygon approach shows a very good fit along356

Barter Island and along the Mackenzie Delta front. Newtok shows a higher difference (-3.4357

and -3.7 m/yr) because the retreat has been poorly captured along the mudflat area fronting358

the settlement, eastward (Fig. 7b). Moreover the validation data was acquired for a shorter359

time-period than the Landsat data (see Table 1). The Point Lonely site shows the highest360

difference compared to the validation data, with a large underestimation of the erosion by361

7.9 m/yr. This is due to the fact that the Landsat data did not well capture the landward362

barrier beach migration, as shown in Fig. 6. However, the blufftop retreat was well captured.363

An additional comparison was made between the Landsat rates using the simplified polygon364

rate retrieval and the DSAS method. The results show that the automatic method for rate365

calculation for the Landsat polygons is very accurate and shows an overall underestimation366

of 0.3 m/yr compared to the DSAS transect based method (last row of Table 5). Regarding367

these validation sites, we can say that the Landsat polygon rates tends to underestimate the368

coastline change rates, however, Fig. 6 and 7 show examples of the good fit of the coastline369

position and calculated change rates of the Landsat derived data.370

Table 4. Characteristics and errors related to imagery used for validation of the coastline de-

lineation. RMSE stands for ”Root Mean Square Error” The RMSE was not considered for the

Landsat data since the images are issued from the same source.

Validation data Acquisition date Pixel size (m) Mean RMSE (m)
Coastline position

uncertainty (m)
Coverage

Coastline change rate

uncertainty (m/yr)

Pléiades (multi-spectral, pan-sharpened) 2018 0.5 0.35 0.6
Mackenzie Delta Front 0.14

Aerial photography (panchromatic) 2000 1.25 2 2.4

Maxar WV2 (pan-sharpened) 2020 0.5 1 1.1
Barter Island 0.26

Maxar Ikonos (panchromatic) 2000 0.8 5 5.1

Pléiades (multi-spectral, pan-sharpened) 2018 0.5 0.35 0.6
Point Lonely 0.28

Maxar Ikonos (panchromatic) 2000 0.8 5 5.1

Pléiades (multi-spectral, pan-sharpened) 2019 0.5 0.35 0.6
Newtok 0.36

Maxar Ikonos (panchromatic) 2005 0.8 5 5.1

Landsat-7/8 2020 30 - 30
Arctic and permafrost coasts 2

Landsat-7/8 2000 30 - 30

Table 5. Inter-comparison between rate calculation methods for validation and Landsat derived

data using the DSAS workflow and the polygon geometry method for change rate calculations.

Barter Island Mackenzie Delta Front Newtok Point Lonely Air Station

Validation Data

Represented period 2000-2020 2000-2018 2005 - 2019 2000 - 2018

DSAS mean change rate (m/yr) -3.01 -4 -12.9 -15.8

Uncertainty (m/yr) +/- 0.26 +/- 0.14 +/- 0.36 +/- 0.28

Landsat derived data

Polygons mean change rate (m/yr) -3.36 -3.54 -9.2 -7.9

DSAS mean change rate (m/yr) -3.63 -4.1 -9.5 -8.02

Uncertainty (m/yr) +/- 2 +/- 2 +/- 2 +/- 2

Difference

Validation - Landsat Polygon rates (m/yr) 0.35 -0.46 -3.7 -7.9

Validation - Landsat DSAS rates (m/yr) 0.62 0.1 -3.4 -7.78

Landsat Polygon - Landsat DSAS rates (m/yr) 0.27 0.56 0.3 0.12

–15–



manuscript submitted to Earth’s Future

5.2.2 Settlements exposed to coastal erosion371

Over the time period 2000-2020, significant coastline position changes were detected372

along 292 settlements located directly at the coast. These changes represent a total of373

476 km of coastline length showing an average change rate of -0.8 m/yr, where erosion374

is dominating 70% of the investigated coast. Accretion is located along mobile coastal375

forms such as barriers islands, beaches and spits (Table 6). Settlements and infrastructures376

potentially affected by coastal erosion by 2030, 2050 and 2100 were identified based on a377

linear extrapolation of erosion rates, based on the 2000-2020 time-period (Appendix A2)378

According to this extrapolation, 16% of the coastal settlements will be subject to in-379

frastructure damage or loss due to coastline retreat in 2030 and up to 23% in 2100. Along380

these specific settlements, the average erosion rate is about -3.2 m/yr. The difference in the381

amount of affected settlements arises from the fact, that some settlements are built a bit382

more inland and will only get affected later. By 2100 the total surface area of infrastructures383

(as detected with the 10 m resolution ) potentially at risk from by coastal erosion equals to384

17.8 km2, including bare-ground areas (see Appendix A1). The Alaskan coast stands out,385

with 25 settlements exposed to coastal erosion by 2100, showing average erosion of 3.6 m/yr.386

In Russia, the majority of exposed settlements is located along the Chukchi Peninsula (12),387

and Central Siberia coast (20, Laptev and Kara Sea). In Svalbard, Longyearbyen, Barents-388

burg, and Svea are suspected to be affected by coastal erosion by 2100. In Canada, the389

settlements of Tuktoyaktuk, Stokes Point and Kugluktuk were identified at risk. In Green-390

land, no settlements were estimated at risk from coastal erosion. Note that the majority of391

the Greenland coastline consists of solid rock and erosion is limited to unconsolidated cliffs392

(Luetzenburg et al., 2023). Due to ice recent ice loss, deltas shows a prograding trend in393

Greenland (Bendixen et al., 2017). Moreover some areas are experiencing glacial isostatic394

rebound. Coastline change rates below 2 m/yr were not considered in the study due to their395

non-significance defined by the Landsat coastline change rate uncertainty (U).396

Table 6. Coastline dynamics at settlement vicinity for the period 2000-2020

erosion accretion

n° of settlements
mean change rate

(m/yr)

mean rate

(m/yr)

max. rate

(m/yr)

length

(km)

mean rate

(m/yr)

max. rate

(m/yr)

length

(km)

Total coastal settlements 292 -0.8 -2.9 -20.4 336 3.2 12.7 140

Exposed settlements in 2100 69 -1.8 -3.2 -20.4 150 2.9 4.5 20

Very high erosion rates up to 19 m/yr are found along the Alaskan Beaufort coast397

at Point Lonely Air Station (190 km eastward of Prudhoe Bay; Fig. 6). The back-shore398

of this area is characterized by tundra dissected by ice-wedge polygons, where erosion is399

characterised by block failure along the bluff. To the east, the coastline is characterized400

by an enclosed lagoon of 2 km length and 0.7 km width which is facing the airstrip. As401

a continuation of the fast erosion of the tundra cliffs, the lagoon’s barrier beach was also402

moving very rapidly towards the mainland in the last 20 years. A major coastline retreat403

phase occurred during the last decade, after 2009, as seen on Figure 6. The retrieved data404

from Landsat trends show that the bluff-top retreat has been well captured in this area.405

However, we note a clear rupture in the retrieved change area at the level of the barrier406

beach enclosing a coastal lagoon, where its retreat has not been well captured (Fig. 6).407

These specific coastal land-forms are prone to rapid changes during storm events, potentially408

impacting their width. It is possible that the barrier beach became so narrow during its409

retreat phase, that it was not detected in the Landsat data, so that it was not possible410

to distinguish between the coastal lagoon and open ocean. Moreover, the turbidity of the411

lagoon waters could have influenced the Landsat pixel classification.412
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Figure 6. High erosion and infrastructure loss at Point Lonely Air Station. The imagery is

from July 2009. The red overlapping area represents erosion area retrieved from Landsat trends.

We note a very good fit with the shorelines of 2000 and 2018 along the bluff, however the barrier

beach migration was not well captured. The coastlines positions were derived from VHR satellite

imagery corresponding to Ikonos©-2000 (0.8 m spatial resolution); WorldView-1-2009 (0.5 m) and

Pléiades© CNES/Airbus-2018 (0.5 m). Background map data source: Google, ©2009 Maxar

Technologies.

Considering linear erosion rates, we estimate that infrastructure of a total of 45 set-413

tlements will get affected by coastal erosion by 2030 and 69 settlements by 2100. These414

settlements are mainly associated with residential areas with traditional food-harvesting415

activities (45%) and 33% with gas/oil and mining industry. Other affected settlements are416

abandoned or are military or weather stations. Coastline change rates estimated at Barter417

Island show a good fit with validation data and reveal significant retreat averaging 3.4 m/yr418

in front of the bluff-top (visible as red overlapping areas in Fig. 7a). Some accretion area419

is present along the barrier island and spits (northwest) and a beach (600 m length) at the420

northeast sector of the island. It seems to grow at a rate of 4.2 m/yr. The coastline position421

estimated in 2100 shows a potential loss of infrastructures due to coastal erosion such as the422

front road of the island and a part of the radar station of Kaktovik (Fig. 7a). Along the423

Bering sea, the traditional settlement of Newtok (Fig. 7b) is also a good example of high424

erosion rates, which will cause a loss of the majority of the infrastructures if no relocation425

plan is implemented. This is evident in the projected coastline positions for the mid- and426

long-term (Fig. 7b). The projected coastline positions may underestimate areas at risk427

(from the airstrip towards the east) as seen with the difference between the red overlapping428

area and the validation coastlines. Although our projections are conservative, they do show429

the loss of infrastructure over the mid- and long term periods.430
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Figure 7. Example of results with merged infrastructure and coastline dynamics datasets, show-

ing potential loss of infrastructures at a) Kaktovik (U.S. Beaufort Sea) and at b) Newtok (U.S.

Bering Sea). At Barter Island (a), the front road and the radar station may be affected in the

long-term. At Newtok, averaging 9.2 m/yr, coastal erosion has already destroyed infrastructures.

In case erosion continues at such a great pace, the majority of the settlement is expected disappear

by 2100 (purple line). The coastline positions were derived from VHR satellite imagery correspond-

ing to Ikonos©-2005 (0.8 m spatial resolution) and Pléiades© CNES/Airbus-2019 (0.5 m). Maps

Data: a) ESRI; b) Google, ©2019 CNES / Airbus.

5.3 Warming permafrost and exposed settlements431

5.3.1 Active Layer Thickness validation432

The comparison between the T-MOSAiC 2021 myThaw dataset (Martin et al., 2023)433

and the Permafrost cci ALT is displayed in Appendix A5. Due to the lack of Permafrost cci434

model results for 2020 and 2021 we compared different time periods (Permafrost cci end-435

of-season ALT: 2015 to 2019, T-MOSAiC: all ALT measurements from 2021). The Per-436

mafrost cci ALT and the measured ALT data agreed well for the following stations: Samoylov437

(Siberia, Russia; A5c). Toolik Lake (Alaska, USA; A5d) and the Zackenberg ”wet” transect438

(Greenland; A5g). Differences between the modeled and measured data can be explained439

with the nature of the T-MOSAiC measurements which are obtained throughout the whole440

summer whereas the Permafrost cci ALT is the end-of-season value. Hence, the seasonal441

evolution of the ALT is not captured by the modeled dataset. We found major disagreements442

for the following sites: (both) Bayelva transects (Svalbard, Norway; A5a), Kevo Vaisejaeggi443

(Finland; A5b), Siksik Creek (Trail Valley Creek, Canada; A5e), Cambridge Bay (Canada;444

A5f) and the Zackenberg ”dry” transect (Greenland; A5g).445

The two T-MOSAiC sites in Svalbard showed a high spatial variability despite their446

proximity (about 500 m). The median ALT (1.2 m and 0.8 m respectively) was best repre-447

sented within the Permafrost cci ALT dataset in the 10 km radius around the T-MOSAiC448

sites as the outliers of the box-plot are in range of the measured ALT (A5a). Both sites449

were located within one grid cell. This outlined one of the challenges as the different site450

specifics (i.e. soil properties, snow cover, vegetation height, water level) led to very dif-451

ferent ALT which are not reproduced by the model as the spatial resolution is too coarse452

(0.926 km). The same issue applies to the Zackenberg transects as the T-MOSAiC ALT453

measured at the “dry” transect extended the ALT measured at the “wet” transect and the454

Permafrost cci ALT shown in A5g). For the T-MOSAiC sites Kevo Vaisejaeggi and Siksik455

Creek, the Permafrost cci ALT was at least twice as high as the measured values (A5b,e).456
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It was vice versa for the T-MOSAiC sites at Cambridge Bay (A5f) were the measured ALT457

is almost three times the modeled ALT.458

A comparison between the T-MOSAiC, CALM and Permafrost cci ALT (10 km radius)459

sites is illustrated in Appendix A6a-g. In Svalbard (A6a), we found a larger difference460

between the median ALT for the Permafrost CCI ALT and the CALM than for the other461

study sites. The median Permafrost cci ALT was 0.31 m compared to 1.56 m for the462

CALM site within 60 km radius and 1.01 m and 0.95 m for the sites located within 120463

km. In Kevo, Finland, (A6b), the Permafrost cci ALT showed higher variability than the464

T-MOSAiC and CALM sites. The T-MOSAiC sites generally showed lower thaw depths465

than both Permafrost cci ALT and the CALM sites in Kevo and in Siksik Creek (A6b,d).466

In Samoylov (A6c), the Permafrost cci ALT and CALM site within 60 km showed the same467

median thaw depth (0.51 m) whereas the thaw depths at the T-MOSAiC site (median468

0.36 m) was more similar to the CALM sites at a radius of 120 km (median thaw depths469

0.35 m and 0.41 m). The T-MOSAiC dataset from Toolik lake in Alaska (A6e) showed470

higher variability than both the Permafrost CCI ALT and CALM datasets and the median471

thaw depths for the T-MOSAiC dataset agreed better with all the CALM sites compared472

to the Permafrost CCI ALT dataset. Since no CALM site was located within 400 km of473

the T-MOSAiC site in Cambridge Bay (A6f), only the comparison to the Permafrost CCI474

ALT is shown. The median thaw depth of the T-MOSAiC dataset at this site was 0.52475

m higher compared to the thaw depth of the Permafrost cci ALT dataset. In Zackenberg,476

the T-MOSAiC “dry” dataset was more similar to the CALM dataset whereas the “wet”477

T-MOSAiC dataset was more similar to the Permafrost cci ALT dataset.478
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Figure 8. The 1 km (yellow), 5 km (red) and 10 km (blue) radius for the T-MOSAiC site Bayelva

which were defined to crop the Permafrost cci ALT data sets from 2015 to 2019. The (grayscale)

color bar for the Permafrost cci ALT is from 0.01 to 10 m.

5.3.2 Projection of permafrost conditions and exposed settlements479

The results of the Permafrost cci time-series shows that since the last 20 years, the GT480

of northern permafrost dominated coasts is warming at a global average rate of +0.10°C/yr481

(Fig. 8a (white box) with maximum values up to +0.25°C/yr). We note a high variability482

between coastal regions, with Svalbard and Siberian coasts showing GT trends above global483

average. The Central Siberian coast shows the highest average GT change of +0.16°C/yr,484

however, the highest rates (above 0.20°C/yr) are found for the Canadian Arctic, Greenland,485

Svalbard and Western Siberian coasts.486

Looking at the ALT, the model shows less variability (Fig. 8b). The global average487

change rate is about +0.01 m/yr (white box), with maximum rates up to +0.09 m/yr488

(Hudson Bay area). The highest average ALT rate is found along the European Plain coast489

(0.03 m/yr). Note that the model also represents decreasing GT for the Canadian Arctic and490

Greenland coasts with minimum values down to and -0.15°C/yr. The ALT shows minimum491
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values from -0.04 to -0.07 m/yr along the coasts of Alaska, Hudson Bay, Greenland and492

Western Siberia.493

Figure 9. Annual trends for ground temperatures (at 2 meters depth) and active layer thickness

per regions. The extent considered corresponds to the SACHI limits (100 km coastal zone). The

trends were calculated over the 2000-2020 period using the datasets of Obu et al. (2021b) and Obu

et al. (2021a).

By 2100, the average coastal permafrost GT is expected to increase by 8°C and the494

ALT by 0.9 m. The trend projections for 2100 suggest extreme GT warming above 9°C all495

along the Russian coast as well as along the Beaufort Sea coast, the mouth of the Amundsen496

Gulf and Eastern Greenland (Appendix A4, A3).497

Among the total infrastructures mapped, 65% are located on ground estimated to warm498

between 5 to 15°C by 2100, representing 65% of the settlements, and 35 % of the identified499

exposed settlement area are expected to experience ALT increase between 1 to 5 m by 2100.500

For the settlements identified to be exposed to infrastructure damage from coastal501

erosion by 2100, the ALT is expected to increase by an average of 1.5 m and GT by 9.7°C502

by 2100. The majority (60%) of settlements are located on ground temperature increase503

at 2 m depth ranging from 4 to 12°C and ALT increase from 0.5 to 2 m/yr (Fig. 9). The504

highest GT increase (+17.8°C) was estimated at the settlement of Valkumey (East Siberian505

Sea) and the highest ALT increase (+6.14 m) at Shaktoolik city (Bering strait). In 2019,506

the ALT was estimated at 0.9 m for at exposed settlements. The highest ALT was found at507

an Alaskan exposed settlement in 2019 (1.8 m) and could potentially reach up to 2.3 m in508

2100. Settlements in Canada, Svalbard and Russia show ALT less than 1 m depth in 2019.509

ALT is expected to more than double by the end of the century. Canada shows the lowest510

average ALT in 2019, due to the northern location of exposed settlements (Fig. 10)511
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Figure 10. Associated ground temperature and active layer thickness change at identified set-

tlements at risk from coastal erosion by 2100.

Figure 11. Active Layer Thickness (ALT) and extrapolation for different time-periods. ALT

was estimated at infrastructure extent of settlements at risk from coastal erosion and averaged per

region.

6 Discussion512

6.1 Infrastructure identification513

In this study, our focus was on analyses of settlements and infrastructure occurring514

along permafrost-dominated coastal areas. The new SACHI dataset provides improved in-515

formation on infrastructure occurrence in the Arctic, particularly for roads, airstrips and516

artificial areas. Due to the limitation to 10 m nominal resolution, 33% of individual human517
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related features were not captured across the validation sites. Specifically road and building518

detection is challenging. The amount of detectable buildings is controlled by the resolution519

and the quality of the Sentinel-2 data (multi-spectral), which limits the detection of small520

constructions, and object mis-classification can occur with the presence of snow patches,521

rock outcrops, landfills, construction debris and large driftwood accumulations along the522

shore. Asphalt roads are scarcely present in the Arctic and along permafrost coasts, since523

the majority of roads are made of dirt or gravel which is easier and cheaper to construct and524

maintain. In some settlements, roads are made of concrete blocks, falling in the undefined525

category. Although the Sentinel-2 imagery has been processed for atmospheric corrections526

(aerosol optical thickness and water vapour), clouds are still influencing the data quality and527

can lead to mis-classification in addition to calibration and training data issues. The DL and528

GBM algorithms were trained on specific areas, however, the heterogeneity of geographic529

regions across the Arctic and along permafrost coasts may influence the performance of the530

algorithms. It could be shown that Sentinel-2 allows to capture also roads below 10 m width531

in some cases. Individual building detection needs to be improved with DL and GBM using532

VHR optical images. However their processing remains challenging at regional scale. The533

Sentinel-1 SAR images were used for the GBM processing. Distortion, noise, and incidence534

angle inherent to SAR images may affect image quality and result in detection issues of535

spatial features (Kumar, 2021). Moreover, air and ground temperatures are critical param-536

eters influencing back-scatter values (Bergstedt et al., 2018). However, the assessment shows537

that the 10 m spatial resolution allows consistently identifying human impacted areas such538

as very small settlements with few houses, which need to be considered in risk assessment539

studies across the entire Arctic. However, our results remains conservative in the estimation540

of potential risks on communities and infrastructures.541

6.2 Coastline changes542

The use of consistent Landsat time-series for the detection of coastline changes within543

20 years shows to be efficient to provide estimations of average coastline rates on a regional544

to pan-Arctic scale. Although the results agree with validation data, it is important to545

note that coastline changes below 2 m/yr were not considered in the analysis since they546

were below the detection threshold. This results in an underestimation of coastal changes,547

since the majority of permafrost-dominated coast is estimated to erode at a pace of up548

to two meters per year and areas of accretion are comparatively scarce (B. Jones et al.,549

2020; Irrgang et al., 2022). According to the results, the prevailing mechanism of coastline550

changes in the vicinity of settlements is erosion. Accumulation was detected relatively rarely.551

Moreover, local and regional studies based on the analysis of VHR imagery, coastline erosion552

has been accelerating in recent years in various areas of the Arctic (Tanguy, Whalen, Prates,553

& Vieira, 2023; Whalen et al., 2022) revealing potential economic risks (Ogorodov et al.,554

2020). The assessment of coastline changes at the regional scale, as well as the detection555

of inter-annual variability of coastline changes remains a challenge when using open-access556

satellite data. Compared to transect-based analyses (DSAS), our study estimates only557

average rates within changing areas, and does not consider regular transects spacing such as558

in the DSAS framework. Moreover a shoreline reference is not consistently defined with this559

method. In fact, the Landsat trends detect change from water to land and land to water560

and do not consistently allow to distinguish between the retreat of a bluff-top or a waterline561

and visual checking is necessary to evaluate if erosion is associated to bluff-top retreat such562

as along the Beaufort coast, or due to sediment migration as along barrier islands and spits.563

Tanguy, Whalen, Prates, and Vieira (2023) have shown differences in coastline change rates564

measurement up to 20% when considering blufftop/vegetation line or waterline between as a565

shoreline reference. For the purposes of coastal risk assessment along permafrost coasts with566

the projection of future coastline position, it is necessary to characterize retreat of the bluff-567

top line rather than migration of mobile deposition sedimentary features such as beaches,568

spits and barrier islands. Note that other factors, such as sea level rise, depression flooding569

or thermokarst lake breaching can induce future rapid and extensive coastline retreat and570
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were not considered in the present study for the projected coastline position. The projected571

coastline position does not consider potential erosion acceleration or flooded areas which572

can significantly influence inland water progression.573

6.3 Permafrost thaw574

The GT and ALT Permafrost CCI products have been validated with various in-situ575

measurements. However, the datasets reveal regional biases associated with the spatial576

resolution (near 1 km) of the modeled datasets which do not capture land-cover spatial577

variability at a finer scale. Ground stratigraphy and snow cover are significant controlling578

factors for ALT. The currently used ground stratigraphies in the Permafrost cci modelling579

are derived from land-cover classification (Westermann et al., 2015; Palmtag et al., 2022) and580

do not consistently represent real ground conditions. Hence, significant errors are expected581

where bedrock is actually represented as moisture-rich ground. Thus, the characterization582

of change using relative values is more adapted than the use of absolute values. However,583

note that this study is not considering actual ALT and that its increase may not be always584

synonym of increasing vulnerability and subsidence risk. Since the study area extends585

over the arctic region and considers permafrost dominated coasts, some areas may show586

deep active layer thickness where its increasing trend is less relevant for risk assessment.587

Increasing ALT might be relevant in areas characterized by shallow ALT, such as higher588

latitudes Arctic settlements where subsidence and infrastructure instabilities can be caused589

by abrupt thaw depth. Permafrost temperature trends can be also used as a proxy to assess590

areas with risk of thaw subsidence. The experimental study by Wagner et al. (2018) has591

shown the significant effect of increasing GT with permafrost thaw, by the deepening of592

the permafrost table and subsidence. Based on an area of 143 m2, and 1.5 m soil depth,593

their results reveal a linear relationship between GT increase and subsidence where an594

augmentation of 13 °C results in ALT increase of 1 m and subsidence of 10 cm. Projections595

for GT reveal that 27% of the studied area (100 km coastal fringe) will potentially face596

changing GT of above 10 °C by 2100, coinciding with 34% of the total mapped infrastructures597

area, which could potentially be affected by subsidence and infrastructure damage.598

Studies have shown that summer surface deformation is derivable over low-land per-599

mafrost regions from Sentinel-1 SAR. In the area of Point Lonely Air Station ground surface600

displacement ranged between 2-6 cm in the summer 2017. However, long time series and in-601

situ data are lacking to confirm the recorded subsidence within the InSAR pixel scale(Strozzi602

et al., 2018). Assessment of risk areas associated to increasing ALT would need to consider603

the actual ALT. Moreover, increase of GT and ALT may lead to enhanced thermokarst pro-604

cess, with the alteration of permafrost land-forms that could significantly affect the Arctic605

hydrology (Grosse et al., 2013; Liljedahl et al., 2016; Tanguy, Whalen, Prates, Pina, et al.,606

2023). Furthermore, permafrost thaw alters Arctic hydrology (Grosse et al., 2013; Liljedahl607

et al., 2016; Tanguy, Whalen, Prates, Pina, et al., 2023) and enhances thermo-hydrological608

erosion, which may lead to dispersion of contaminants from toxic leakage of buried wastes609

and landfill at industrial sites (Langer et al., 2023).610

6.4 Exposed infrastructures and settlements to coastal erosion611

The combined analysis of the coastline change dataset and the updated SACHI dataset612

allows the identification of settlements at risk from coastal erosion, from short- to long-613

term periods (2030, 2050, 2100). In some locations, the results are coherent with local614

measurements, such as the study of Nicu et al. (2021), which investigated coastline changes615

and potential impacts on the cultural heritage site of Hiorthhamn in Svalbard (78°14’50”616

N, 15°42’30” E). Our pan-Arctic approach was able to identify 52 coastal settlements in617

Alaska (within study area extent), with 25 settlements being exposed to coastal erosion by618

2100. The results agree for 11 settlements, also identified by the study of Buzard et al.619

(2021) with identification of 14 additional settlements mostly located along the Beaufort620

Sea coast. However, note that the magnitude of coastline change considered can affect the621
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detection of exposed settlements. Note that some communities are also affected by river622

migration hazards which are important in delta regions. Moreover, the present study does623

not consider future external factors which may increase or reduce erosion rates (sea level rise,624

subsidence, beach accretion). Hence, our approach does not replace local detailed analyses625

which remains necessary at individual settlements, for the identification of coastal risks.626

For the first time, our dataset allows for a pan-Arctic estimation of the amount of627

settlements being exposed to oncoming and future coastal erosion, warming permafrost628

temperatures and active layer thickening. However, the very likely intensification of drivers629

of coastal erosion, such as storm surges and lengthening of the open water season, were not630

incorporated in our analyses. Thus, it is likely that our results present a rather conservative631

estimation of the total number of coastal settlements being affected by coastal erosion in the632

future. The assessment of infrastructure damage and associated costs within coastal areas633

needs to be assessed in order to quantify economic consequences (D. A. Streletskiy et al.,634

2019b; Buzard et al., 2021; Ogorodov et al., 2023).635

7 Conclusions636

Our study has demonstrated the effectiveness of remote sensing techniques in assessing637

the evolution of arctic and permafrost coastlines over the last 20 years. The results show638

that erosion dominates along coastal settlement areas (70%), with retreat rates of up to 19639

m/yr. Extrapolation of the coastline position for 2100 reveals that 23% of coastal settlements640

will be affected by coastal erosion, with a total estimated infrastructure loss/damage area641

of 18 km2. The majority of identified exposed settlements are localized along Alaskan642

and Siberian coasts. Simultaneously, ground temperature has shown a significant warming643

trend, and the active layer is thickening. By 2100, it is estimated that ground temperatures644

of the permafrost coastal zone will have risen by 8°C and the active layer by 0.9 m. These645

changes in ground conditions are subject to enhanced permafrost degradation, damaging646

infrastructure and populations’ livelihoods. Indeed, 65% of infrastructures are built in areas647

where ground temperatures are expected to rise between 5 and 15°C, and 35% over active648

layer thickness increase between 1 to 5 meters. These trends indicate a potential increase649

in ground subsidence, flooding hazards and changes in hydrological systems. To minimize650

the risks and costs faced by coastal permafrost communities, coastline management and651

adaptation strategies need to be adopted rapidly.652

In a context of changing permafrost conditions, this work provides relevant information653

at the pan-Arctic scale for the identification of settlements and infrastructures at risk by the654

end of the century. This is an important first step towards developing mitigation strategies655

and thus reducing the vulnerability of Arctic settlements to future coastal hazards.656
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Appendix A Additional maps, figure and tables.657

Figure A1. Rapid coastal erosion threatening coastal infrastructures at Utqiagvik (Barrow,

Alaska) after a storm during the summer 2023. A road portion was destroyed and we note the

presence of a red tank and remaining big-bags down the bluff. Blufftop failure is occuring as seen

on inset (b). Image credit: Ben Jones
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Figure A2. Settlements potentially exposed to coastal erosion. Contains modified Copernicus

Sentinel data 2016 to 2022.
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Figure A3. Ground temperature change in by 2100 based in trends derived from Permafrost cci

data (Obu et al., 2021b). The hexagons are width and height is 50 km and the ground temperatures

trend for the period 1999-2020 were averaged within the hexagons.
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Figure A4. Active Layer Thickness change by 2100, within the 100 km zone from the coast.
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Figure A5. Comparison of the T-MOSAiC 2021 myThaw dataset with the output from the

ESA Permafrost Climate Change Initiative (Obu et al., 2021a) end-of season ALT product from

2015 to 2019 for all eight sites. The Permafrost CCI ALT output was read out for a 1 km, 5 km

and 10 km radius around each of the eight T-MOSAiC stations, except for the two Bayelva sites

(a) and the two Zackenberg transects (g) where one model ALT output was generated due to close

proximity of the site locations.

–30–



manuscript submitted to Earth’s Future

Figure A6. Comparison of the T-MOSAiC 2021 myThaw dataset (Martin et al., 2023) with

the output from the ESA Permafrost Climate Change Initiative (Obu et al., 2021a) end-of season

ALT product from 2015 to 2019 for all eight sites and the CALM ALT data (Heim et al., 2021).

The Permafrost cci ALT output was investigated for a 10 km radius around each of the eight T-

MOSAiC stations (Fig. 8, except for the two Bayelva sites (a) and the two Zackenberg transects

(g) where one model ALT output was generated due to close proximity of the site locations (green

box-plots). The purple box-plots contain the end-of-season ALT data obtained at the CALM sites

in a 60 km radius around the T-MOSAiC sites. The pink box-plots contain the end-of-season ALT

data obtained at the CALM sites in a 120 km radius around the T-MOSAiC sites.
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Open Research Section658

The data that support the findings of this study will be openly available following an659

embargo at Zenodo. This study and associated datasets were designed for scientific purposes660

only and should not be taken as professional engineering advice.661
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