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Abstract

In the recent past, the Gravity Recovery and Climate Experiment (GRACE) satellite mission and its successor GRACE Follow-

On (GRACE-FO), have become invaluable tools for characterizing drought through measurements of Total Water Storage

Anomaly (TWSA). However, the existing approaches have often overlooked the uncertainties in TWSA that stem from GRACE

orbit configuration, background models, and intrinsic data errors. Here we introduce a fresh view on this problem which

incorporates the uncertainties in the data: the Probabilistic Storage-based Drought Index (PSDI). Our method leverages Monte

Carlo simulations to yield realistic realizations for the stochastic process of the TWSA time series. These realizations depict a

range of plausible drought scenarios that later on are used to characterize drought. This approach provides probability for each

drought category instead of selecting a single final category at each epoch. We have compared PSDI with the deterministic

approach (SDI) over major global basins. Our results show that the deterministic approach often leans towards an overestimation

of storage-based drought severity. Furthermore, we scrutinize the performance of PSDI across diverse hydrologic events, spanning

continents from the United States to Europe, the Middle East, Southern Africa, South America, and Australia. In each case,

PSDI emerges as a reliable indicator for characterizing drought conditions, providing a more comprehensive perspective than

traditional deterministic indices. In contrast to the common deterministic view, our probabilistic approach provides a more

realistic characterization of the TWS drought, making it more suited for adaptive strategies and realistic risk management.
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Key Points:8
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Abstract15

In the recent past, the Gravity Recovery and Climate Experiment (GRACE) satellite mis-16

sion and its successor GRACE Follow-On (GRACE-FO), have become invaluable tools for17

characterizing drought through measurements of Total Water Storage Anomaly (TWSA).18

However, the existing approaches have often overlooked the uncertainties in TWSA that19

stem from GRACE orbit configuration, background models, and intrinsic data errors. Here20

we introduce a fresh view on this problem which incorporates the uncertainties in the data:21

the Probabilistic Storage-based Drought Index (PSDI). Our method leverages Monte Carlo22

simulations to yield realistic realizations for the stochastic process of the TWSA time se-23

ries. These realizations depict a range of plausible drought scenarios that later on are used24

to characterize drought. This approach provides probability for each drought category in-25

stead of selecting a single final category at each epoch. We have compared PSDI with the26

deterministic approach (SDI) over major global basins. Our results show that the deter-27

ministic approach often leans towards an overestimation of storage-based drought severity.28

Furthermore, we scrutinize the performance of PSDI across diverse hydrologic events, span-29

ning continents from the United States to Europe, the Middle East, Southern Africa, South30

America, and Australia. In each case, PSDI emerges as a reliable indicator for characterizing31

drought conditions, providing a more comprehensive perspective than traditional determin-32

istic indices. In contrast to the common deterministic view, our probabilistic approach33

provides a more realistic characterization of the TWS drought, making it more suited for34

adaptive strategies and realistic risk management.35

Plain Language Summary36

Total Water Storage (TWS) is defined as the sum of water stored as surface water (e.g.,37

lakes and rivers), groundwater, soil moisture, snow, ice, and vegetation biomass. Since its38

launch in 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite mission39

has provided unique TWS change measurements with manifold applications in hydrology,40
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including characterizing drought events. Scientists have been using satellites like GRACE41

and its successor, GRACE-FO, to understand drought by measuring the Total Water Storage42

Anomaly (TWSA). However, previous methods didn’t consider uncertainties from satellite43

orbits, models, and data errors. This study offers a novel probabilistic approach for char-44

acterizing drought, Probabilistic Storage-based Drought Index (PSDI), which acknowledges45

the uncertainties in the GRACE TWS change. We use simulations to create different drought46

scenarios, offering probabilities for each category instead of one fixed category. Compar-47

ing PSDI to traditional methods, we found that traditional methods tend to overestimate48

drought severity. We tested PSDI across different regions, and it consistently proved to be a49

reliable way to understand drought conditions, offering a more comprehensive perspective.50

Our probabilistic approach offers a more realistic view of TWS drought, making it suitable51

for adaptive strategies and risk management.52

1 Introduction53

The modern reality of human settlement is the consequence of many historical events, but54

perhaps none influenced human settlements as much as droughts and famine. DNA analysis55

indicates that a series of extreme droughts that occurred 75-135 thousand years ago may56

have been the reason for the first human migration out of Africa (Scholz et al., 2007).57

Following several consequential droughts over the past century (e.g., the 1921 drought in58

Europe, the 1930s Dust Bowl drought in the US, 1928-1930 drought in China, 1980s drought59

and famine in Africa, 2000s Millennium drought in Australia), increasingly more effort has60

focused on understanding, monitoring and predicting droughts and their impacts (Mishra61

& Singh, 2010; Heim Jr, 2002; AghaKouchak et al., 2015; Svoboda et al., 2002; Wilhite et62

al., 2007; Kreibich et al., 2022; AghaKouchak et al., 2021).63

Compared to other hazards witnessed over the past four decades, drought impacts are often64

felt by a much larger number of people worldwide (Wilhite, 2000; FAO, 2021; AghaKouchak65

et al., 2021). Numerous nations have grappled with significant economic losses resulting66
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from drought events. Notably, according to the NOAA’s National Centers for Environmental67

Information (NCEI) report, the United States has experienced 26 significant droughts in the68

past century, amounting to a staggering economic loss of at least $ 249 billion, equivalent69

to nearly $ 10 billion per occurrence. In Europe, the southern and western regions, in70

particular, face an annual drought-related expenditure estimated at up to e 9 billion, which71

could surge to over e 65 billion if climate action is not taken (Naumann et al., 2021). Aside72

from the financial burdens, climate change, and unsustainable water management practices73

have amplified the frequency and severity of drought occurrences worldwide over the past74

two decades. This trend is projected to escalate further in the future (see e.g., Hisdal et al.,75

2001; Coumou & Rahmstorf, 2012; Yu et al., 2014; Donat et al., 2016; Teuling, 2018; Li et76

al., 2021; C. Zhao et al., 2020).77

The negative consequences of drought can be effectively alleviated through the implemen-78

tation of risk management strategies rather than relying on crisis management (Wilhite,79

2000; Zscheischler et al., 2018). Such a proactive response may be achieved by establishing80

reliable drought monitoring systems, including early warning systems and forecasting capa-81

bilities, operating at both national and local levels (Wilhite et al., 2007; AghaKouchak et al.,82

2023). These systems trigger a series of decisions aimed at helping communities navigate the83

challenges posed by drought events (Mishra & Singh, 2011; Sun et al., 2017). To enhance84

drought monitoring efforts and provide valuable guidance to decision-makers, numerous85

drought indices have been developed (Mishra & Singh, 2010). These indices condense the86

intricacies of drought into a single numerical value, effectively characterizing its onset, in-87

tensity, frequency, and duration (Zargar et al., 2011; Wilhite, 2000; Ahmadalipour et al.,88

2017). Such indices offer a comprehensive representation of drought by utilizing single or89

multiple climatic and hydrometeorological variables such as precipitation, streamflow, evap-90

otranspiration, temperature, and snowpack (e.g., Svoboda et al., 2016; Hosseini-Moghari et91

al., 2020).92
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A comprehensive understanding of drought dynamics necessitates the observation of Total93

Water Storage (TWS) including snow, surface water, soil moisture, and groundwater storage94

(M. Zhao et al., 2017; M. J. Tourian et al., 2023). Traditionally, TWS monitoring has95

relied on costly and time-consuming site measurements, providing limited regional and local96

coverage. While hydrological and land surface models partially address this issue, estimating97

TWS in regions lacking in-situ runoff data for calibrating rainfall-runoff models still yields98

high uncertainties (Jiang et al., 2014; S. Yi et al., 2023). Since its launch in 2002, the Gravity99

Recovery And Climate Experiment (GRACE) satellite mission has revolutionized the remote100

measurement of TWS Anomalies (TWSA) at regional to continental scales (Tapley et al.,101

2004; M. J. Tourian et al., 2022). The GRACE mission came to an end on 12 October 2017,102

due to battery failure, after more than 15 years of Earth observation. However, its successor,103

GRACE Follow-On (GRACE-FO), has continued the GRACE legacy since its launch on 22104

May 2018. GRACE(-FO) data have been extensively utilized for manifold applications,105

including monitoring ice sheets and glaciers (e.g., van den Broeke et al., 2009; Gardner et106

al., 2013; Shepherd et al., 2018), tracking anthropogenic groundwater depletion (e.g., Rodell107

et al., 2007, 2009; Famiglietti et al., 2011; Voss et al., 2013; Saemian et al., 2022), forecasting108

flood events (e.g., Reager & Famiglietti, 2009; Gouweleeuw et al., 2018), and quantifying109

and comprehending hydrological processes (e.g., Lorenz et al., 2014; Saemian et al., 2020;110

M. Tourian et al., 2018; Behling et al., 2022), to name but a few.111

GRACE-derived estimates of TWS have been employed in developing indices aimed at112

assessing drought on a regional to global scale. For example, Yirdaw et al. (2008) developed113

the Total Storage Deficit Index (TSDI), utilizing the Palmer Drought Severity Index (PDSI;114

Palmer, 1965) and the Soil Moisture Deficit Index (SMDI; Narasimhan & Srinivasan, 2005),115

to characterize the Canadian Prairie droughts of 2002/2003. Another notable endeavor by116

Thomas et al. (2014) presented a comprehensive framework for drought characterization117

based on GRACE-derived TWSA over regions including the Amazon, Zambezi, Texas, and118

the southeastern United States. Additionally, H. Yi & Wen (2016) devised the GRACE-119

based Hydrological Drought Index (GHDI) to characterize drought in the continental United120
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States from 2003 to 2012, building upon the foundation of the PDSI concept. Among recent121

indicators we can name the Drought Severity Index (DSI) by M. Zhao et al. (2017), the122

Water Storage Deficit Index (WSDI) by Sinha et al. (2017), and a long-term standardized123

GRACE reconstructed TWSA index (SGRTI) by Zhong et al. (2023).124

The indices mentioned above have the potential for monitoring and assessing the TWS125

drought at regional to global scales. Nevertheless, they adopt a deterministic approach that126

disregards the intrinsic uncertainties associated with characterizing drought using GRACE127

observations. These uncertainties are inherent in the GRACE data due to factors such as its128

orbit configuration, measurement concept, various post-processing approaches of GRACE129

data, and different options for de-aliasing products. Besides, the estimation of GRACE130

uncertainty varies among different GRACE level-2 products, in both magnitude and spatial131

pattern. Most of the centers offer an uncertainty measure (known as formal errors) in132

the form of spherical harmonic coefficients. Figure 1 shows the coefficient-wise ratio of133

average formal errors and empirical errors of the GRACE solution following the approach134

suggested by Kvas et al. (2019). The ideal ratio is set at one, with values below indicating an135

underestimation of empirical errors, whereas values exceeding one signify an overestimation.136

The three official centers (JPL, CSR, and GFZ) together with AIUB, HUST, and SWPU137

exhibit a similar pattern. The SWPU solution demonstrates a pronounced overestimation138

of formal errors, particularly for low d/o (under 30). ITSG and Tongji display comparable139

patterns, although Tongji tends to lean slightly towards a more pessimistic estimation of140

errors. In contrast, COST-G reflects more realistic formal errors in comparison to empirical141

errors but appears overly optimistic for lower d/o values. The distinctive pattern observed142

in the CNES product can be attributed to the regularization applied during the derivation143

of the gravity field from the Level-1 dataset. The disparities in formal error performance144

among GRACE Level-2 products underscore the inherent uncertainty in GRACE data and145

consequently, the necessity for a comprehensive approach that effectively considers GRACE146

uncertainty while characterizing drought.147
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To address this gap in conventional methods, we propose a probabilistic approach that148

considers all possible scenarios and associated impacts. Our approach leverages Monte Carlo149

simulations to obtain realistic realizations of TWSA compatible with GRACE-TWSA and150

its corresponding uncertainties. We then characterize drought based on TWSA using our151

proposed drought index, the Probabilistic Storage-based Drought Index (PSDI). This index152

indicates not only drought but also its corresponding occurrence probability. We compare153

our results with those from the conventional deterministic approaches over the major river154

basins. Moreover, the performance of PSDI in capturing the main hydrological drought155

extremes is examined within the GRACE era. PSDI facilitates more informed and proactive156

responses to water resource challenges and serves as a practical tool for decision-makers and157

water resource managers to assess and manage drought-related risks more realistically.158
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Figure 1. The coefficient-wise ratio of average formal errors and empirical errors of the GRACE

solutions following the approach suggested by Kvas et al. (2019). For the average formal errors,

the mean of the reported variance of the spherical harmonics coefficients is computed for monthly

solutions from January 2005 to December 2010, which is assumed to hold a homogeneous data

quality. To estimate the empirical errors, we compute the standard deviation of the coefficients

after removing the mean, linear trend, and annual and semi-annual signals. The optimal value of

the ratio is one, and values below one indicate an underestimation of the empirical errors, while

values bigger than one show overestimation. We have only included solutions that provide formal

errors.
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2 Data and Method159

2.1 GRACE data160

The GRACE TWSA can be obtained from the two main approaches, namely Spherical161

Harmonics (SHs) and mass concentration blocks (mascons). In the former, one needs to162

apply post-processing steps including noise reduction and signal restoration while the latter163

is already the Level-3 product (gridded TWSA over the globe). These approaches are briefly164

described in section 1 of the supplementary file. In line with the common practice within the165

hydrology community, we have utilized the mascons solutions. The probabilistic approach166

for characterizing storage-based drought index, however, can readily be applied to any level-167

3 products that provide estimations for GRACE TWSA and its corresponding uncertainty.168

Among the mascon products, we have employed the one from Goddard Space Flight Center169

(GSFC), NASA. The GSFC mascon product has been widely used in the geodesy and Earth170

science communities to investigate a range of phenomena, including hydrology, glaciology,171

and solid Earth dynamics, and can be downloaded from https://earth.gsfc.nasa.gov/172

geo/data/grace-mascons. We used the latest version of the dataset available at the time173

of our analysis, which covers the period from August 2002 to November 2022. The dataset174

includes monthly gravity field solutions with a grid size of 0.5 ◦.175

2.2 Methodology176

We propose a probabilistic framework to characterize storage-based drought. The framework177

is illustrated in Figure 2, Figure 3, and Figure 4 using TWSA over the Death Valley basin178

in the US as an example. To characterize drought, we must first define a reference, based on179

which a prolonged relative water deficiency is determined. It is common to consider the long-180

term monthly average, also known as the climatology, as the reference or normal condition181

in a region. Obtaining accurate climatology from short time series can be challenging.182

Calculating the climatology over at least 30 years, preferably 60 years, is standard practice,183

as this time frame allows us to average out the effects of short-term variability, resulting184
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in a more robust estimate of the long-term average conditions (e.g., Hulme, 1992; Jones &185

Hulme, 1996; Svoboda et al., 2012). The GRACE and GRACE-FO missions, with their186

approximately 20-year duration, fall short of providing sufficient data for calculating long-187

term climatology. In this study, we utilized a combination of different models to estimate188

TWSA dating back to 1980. To this end, we incorporated a total of 13 state-of-the-art189

datasets including Global Hydrological Models (GHMs), Land Surface Models (LSMs), and190

atmospheric reanalysis models. To combine models, we employed the Multivariate Linear191

Regression (MLR) method. We compared the results of Multiple Linear Regression (MLR)192

in reconstructing TWSA with GRACE time series (see Supplementary section 2). The MLR193

exhibits a strong capability to capture the features and effectively reconstruct TWSA data194

as far back as 1980. It demonstrated superior performance compared to the ensemble mean195

of the models, as indicated by a substantial improvement in both the correlation coefficient196

(on average from 0.87 to 0.97) and the Kling-Gupta Efficiency (KGE) score (on average from197

0.27 to 0.95) across major river basins. For more details about the datasets and long-term198

TWSA, please refer to Supplementary section 2. This extended time frame enables us to199

capture significant climate events and phenomena that influence long-term climate, such as200

the El Niño-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) (Sohn201

et al., 2013; Coelho & Goddard, 2009).202

The climatology, along with its corresponding uncertainty (see Figure 2 (a)), is obtained by:203

TWSA[tm] =
1

N

yN∑
y=y1

TWSA[ty,m] (1)

σ2
TWSA[tm]

=
1

N

√√√√ yN∑
y=y1

σ2
TWSA[ty,m] (2)

where TWSA[tm] represents the TWSA climatology for monthm, y denotes the year and can204

vary from y1 to yN , m corresponds to the month within a year, taking values 1, 2, 3, . . . , 12,205
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and N is the number of years in the long-term dataset. Note that we deliberately retain206

the trend in the time series. We reason that the trend reflects long-term changes in climate,207

such as temperature increases or precipitation pattern alterations, and that it affects the208

frequency and severity of droughts (see Supplementary section 3 for more details). We then209

subtract the climatology from the GRACE TWSA time series to obtain TWS residual (S):210

S[ty,m] = TWSA[ty,m]− TWSA[tm] (3)

σS[ty,m] =
√

σ2
TWSA[ty,m] + σ2

TWSA[tm]
(4)

where negative values of S represent water storage deficits.211

To reduce the effects of short-term fluctuations due to precipitation and other factors, we212

chose to use a 3-month moving average to smooth the TWS residual (see Figure 2 (b)):213

S[t] = f ∗ S[t]unsmoothed (5)

where ∗ denotes the convolution operation, and f is the kernel [1/3, 1/3, 1/3] which is214

convolved with the S[t]unsmoothed time series.215

To address the inherent uncertainty, it becomes essential to employ a stochastic approach216

that incorporates S along with its associated uncertainty. At each epoch, we postulate a217

normal distribution with the mean being the obtained TWS residual S[t] and σ = σS[t].218

Sampling from this distribution in each time step allows us to create realizations of the S219

time series. Several methods exist for sampling from a Gaussian distribution, and one widely220

used technique is the Box-Muller transform (Box & Muller, 1958). This method guarantees221

generating a realization of S, which is independent epoch-wise with no artificial correlations.222

We then use Monte Carlo Simulation (Mooney, 1997; Metropolis & Ulam, 1949) to generate223
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Figure 2. (a) Time series of the long-term TWSA from GRACE and the long-term climatology

(1980–2012) from the hindcasted TWSA together with their uncertainties. At each epoch, we

assume a Gaussian distribution for the uncertainties and the depicted uncertainty corresponds to

the 1-σ level. Here the results are shown for the Death Valley basin in the US.

multiple realizations of S. Figure 3 shows 10 000 realization of TWS residual considering224

the 3-σ uncertainty. The density of the realizations is highest around the mean signal and225

decays following a Gaussian distribution. The colored lines overlaid on the time series depict226

the distribution of outcomes for three specific epochs: July 2004, May 2013, and April 2015.227

To characterize drought within each time epoch, one common approach is to use the per-228

centile rank method and the U.S. Drought Monitor (USDM) criteria. To this end, a set of229

five drought categories is defined (Table 1).230

The quantile values for the S time series can be extracted as the inverse of the Cumulative231

Distribution Function (CDF), also known as the quantile function:232

Q(p) = F−1(p) (6)

–11–



manuscript submitted to Water Resources Research

Figure 3. The TWS residual (S) together with its 10 000 realizations, calculated using Monte

Carlo simulation. Here the results are shown for the Death Valley basin in the US. The distribution

of realizations for three epochs, namely July 2004, May 2013, and April 2015 are marked with

colored dots over the time series and are shown in sub-figures.

Table 1. Drought categories and corresponding percentile ranges as defined by the U.S. Drought

Monitor (USDM).

Drought Category Description Percentile Range

D0 Abnormally dry 20–30%
D1 Moderate drought 10–20%
D2 Severe drought 5–10%
D3 Extreme drought 2–5%
D4 Exceptional drought Less than 2%

where Q(p) represents the quantile function and F−1(p) denotes the inverse CDF evaluated233

at probability p. In a conventional deterministic approach, the drought category for each234

epoch is determined based on its quantile value of S. For example in Figure 4 (a), the dark235

solid line represents the quantile function of the S time series. Using such a function one236

can characterize drought for case (1), case (2), and case (3) as D4, D1, and no drought,237

respectively.238

Such an approach overlooks the uncertainty in TWS residual S. However, accounting for239

uncertainty would entail obtaining the quantile function for all realizations of S. These240

functions form a cloud of points rather than a single line as it has been illustrated in Fig-241

ure 4 (a). The quantile functions are shown in grayscale representing the probability Pr(p, S)242

for a given percentile p and TWS residual S. Already at this stage, a glance at Figure 4 (a)243

reveals the complexity introduced by the uncertainty envelope, challenging the conventional244

–12–
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approach to assigning a specific class to a particular measurement. It is noteworthy that the245

uncertainty envelope depicted in Figure 4 (a) exhibits a stationarity character, indicating246

general uncertainty in the data regardless of the specific time of measurements. This char-247

acteristic is reflective of the general uncertainty of S, emphasizing the broader statistical248

context rather than being tied to specific instances in time.249

Now, let’s delve into the characterization of drought for one of the measurements illustrated250

in Figure 3. In this context, alongside the consideration of the stationary uncertainty as re-251

flected in the quantile envelope and represented by Pr(p, S), it becomes essential to account252

for the uncertainty associated with the measurement at that specific epoch. This is funda-253

mentally crucial because two GRACE measurements with the same value of S may exhibit254

varying levels of uncertainty. Therefore, we incorporate the probability density function of255

the value St, denoted by f(St), obtained from the mean and uncertainty of that epoch.256

f(St) is shown for the three sample epochs on the top right panel of Figure 4. At each257

epoch, we multiply this probability density function with the entire distribution Pr(p, S),258

as illustrated in Figure 4 (c). Essentially, this multiplication results in a down-weighting of259

probabilities located in the tails of f(St).260

Once Pr(p, S) f(St) is achieved, to obtain PSDI at each epoch and for each drought category261

Di, we can integrate the probabilities both in S and p domains and normalize it with the262

integral over the entire domain:263

PSDI(t,Di) =

∫
S

∫
Di

Pr(p, S)f(St) dp ds∫
S

∫ 1

0

Pr(p, S)f(St) dp ds

(7)

By performing this process for all drought categories and time epochs, we generate a com-264

prehensive probabilistic representation of drought severity over time. For decision-making265

purposes, the highest-probability category can be judiciously chosen as the definitive drought266

classification for a particular month. The flowchart of the proposed probabilistic approach267

is shown in Figure 5.268
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Figure 4. (a) The quantile functions (inverse of the Cumulative Distribution Function (CDF))

of the S realizations are depicted. The varying shades of gray signify the density of data points,

with darker shades indicating higher density. The drought categories, ranging from D0 to D4,

are delineated within their respective percentile ranges, each denoted by its corresponding color.

Colored dots illustrate the positions of the three cases from Figure 3 on the quantile functions

plot. These cases are further elaborated in a magnified view, accompanied by the corresponding

probability distribution derived from S and its associated uncertainty. (b) Similarly, as in (a), this

visualization portrays the quantile functions plot, but encompasses the complete range of quantile

values. (c) The density of the counted points after integrating the probability distribution stemming

from the S and its corresponding uncertainty. It’s important to note that the presented results are

centered on the Death Valley basin within the United States.
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(Supplementary Sec. 2)
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(eq. 3, eq. 4 & eq. 5; Fig 2)

TWSA (GRACE)

Obtaining quantile function for all of the 
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Figure 5. Flowchart of the proposed PSDI framework.

3 Results and Discussion269

3.1 PSDI vs SDI270

The PSDI approach offers a more nuanced understanding of drought conditions compared to271

the SDI approach. This is because PSDI captures the uncertainty associated with drought272

severity, while the SDI approach may oversimplify the classification of drought conditions.273

Although the SDI categorization is often the most probable category according to the PSDI,274

the neighboring categories may also have significant probabilities. This tendency becomes275

more pronounced as the intensity of the drought increases. This can be attributed to the276
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lower slope of the CDF curve over more severe droughts and the wider range of quantile277

values.278

To delve deeper into the analysis, we have quantified the disparities between drought cat-279

egorizations as defined by SDI and PSDImax—the category of drought with the highest280

probability in PSDI—across the world’s major river basins, with the exclusion of Greenland281

and Antarctica. The findings, illustrated in Figure 6 (a), shed light on the prevalence of282

these discrepancies throughout the study period spanning from 2003 to 2016. The ratio283

exhibits a range of variations, hovering near zero for basins such as Lake Balkhash in south-284

eastern Kazakhstan or Po in Italy to a significant value of 30% over Highland of Ethiopia285

and Somalia in Africa or Sao Francisco in Brazil. In general, the risk of mischaracterizing286

storage-based drought through the deterministic approach is notably high (exceeding 10%287

in Figure 6 (a)) across Africa (excluding the northern region), Eastern Europe, Mongolia,288

Russia, and within the river basins of Nelson river, St. Lawrence, and Colorado (Argentina).289

In instances where discrepancies arise between SDI and PSDImax, a predominant tendency290

is for SDI to overestimate the drought category. This is evident when comparing Figure 6291

(b) and Figure 6 (c).292

To investigate further, Figure 7 provides a visual comparison between two approaches for293

characterizing drought: probabilistic (PSDI) and deterministic (SDI), over several selected294

basins. The distribution of the basins is shown in the top panel of the Figure 7. For each295

basin, the drought categories, ranging from the status of no drought to exceptional drought296

(D4), are displayed in columns. The probability assigned to each category at every time297

step is depicted using gray scale. The deterministic perspective is illustrated with red boxes,298

allowing for a direct comparison of the two approaches.299

The Danube and Ganges basins exhibited no disparity between SDI and PSDImax from300

2015 to 2016. In contrast, the Mississippi basin displayed the most substantial mismatch301

between SDI and PSDImax. It’s noteworthy that these mismatches were confined to adjacent302

categories. Specifically, when considering mismatches spanning more than one category, only303
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Figure 6. (a) Basin-wise distribution of the discrepancies between SDI and PSDImax. The

values represent the percentage of epochs where PSDImax differs from SDI by at least two drought

categories. (b) the percentage of epochs with a discrepancy of more than one category higher in SDI

compared to PSDImax. (b) the percentage of epochs with a discrepancy of more than one category

lower in SDI compared to PSDImax. Greenland and Antarctica are excluded from the maps.

four basins had such occurrences: one month in Amazonas and Nile, two months in Niger,304

and five months in Murray Darling. Across all basins, when a discrepancy arose between305

SDI and PSDImax, the SDI category consistently indicated a higher severity of drought.306
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Figure 7. Top: The global distribution of the selected basins. Bottom: The SDI (red boxes)

together with PSDI (gray scale probability range) for selected basins. The basins are shown in two

groups considering the period with more frequency of drought, the first row between 2015–2016

and the second row between 2006–2007. The “-” represents “no drought” or “normal state” of the

water storage.

–18–



manuscript submitted to Water Resources Research

We have investigated further the sensitivity of different categories of drought to incorpo-307

rating uncertainties into drought characterization. Figure 8 (a) visualizes the percentage308

of epochs where PSDImax differs from SDI by at least two drought categories. The results309

suggest that such discrepancies can diverge significantly in the categorization of drought con-310

ditions, especially in the D1, D2, and D3 categories, especially in D2. We have also compared311

the ratio of the mismatch period with respect to different climate categories (Figure 8 (b)).312

For more detailed information about the categories and the method of classification, please313

see section 4 in the supplementary file. Although the mismatch range can vary from arid to314

humid climate, the average value of the mismatch is the same over different climate regions,315

with a slightly higher value for the Dry sub-humid regions (Dry sH).316

(a) (b)

Figure 8. (a) A barplot illustrates the percentage of epochs where PSDImax diverges from SDI

by at least two drought categories. (b) Boxplot of the mismatch between the PSDImax and SDI over

different climate categories, namely, arid to hyper-arid (A to hA), semi-arid (SA), dry sub-humid

(Dry sH), and humid (H). It is noteworthy that to count the number of months, we have considered

those with more than one category difference between the PSDImax and SDI.

3.2 Performance of the PSDI during extreme hydrologic events317

To assess the PSDI’s reliability, we analyzed its performance during several well-documented318

extreme hydrologic events between 2002 and 2016. The drought events during 2012 included319

the moderate to exceptional drought over the United state (Boyer et al., 2013; Ault et al.,320

2013), southern Europe (Oikonomou et al., 2020; Spinoni et al., 2015). The drought affected321
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many Middle East regions between 2007 and 2008 (Barlow et al., 2016). Southern Africa322

suffered from a severe to exceptional drought between 2005 and early 2006 (Nicholson,323

2014), while central Argentina and Paraguay were affected by drought throughout 2009324

(Guha-Sapir et al., 2016). Moreover, Australia experienced the worst drought recorded325

since European settlement in the 2000s, called the Millennium drought, with a peak in326

2006 that affected many regions of the south to the east, including agricultural lands of327

the Murray-Darling basin (Van Dijk et al., 2013; Heberger, 2012). Figure 9 illustrates the328

performance of the PSDI over the events mentioned above. For each region, the category329

with the maximum probability and the estimated probability is shown for the selected330

date. Generally, the PSDI shows high performance in characterizing drought in the selected331

drought events (Figure 9). Comparing the SDI with PSDImax reveals that SDI categorizes332

higher drought intensities.333
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4 Conclusions334

For the first time, this study presents a probabilistic approach to characterizing TWS335

drought using time-variable gravity from satellite gravimetry. Our proposed framework336

acknowledges and addresses the inherent uncertainties associated with GRACE data. Our337

approach leverages Monte Carlo simulations to generate realistic realizations, capturing the338

stochastic nature of the TWSA time series. This ensemble reflects the diverse possible sce-339

narios and their associated uncertainties, paving the way for a more insightful understanding340

of drought conditions. We have monitored the results of the proposed PSDI over major river341

basins and compared the result with SDI (deterministic approach). Our spatial analysis un-342

derscores the significance of adopting a probabilistic approach. It becomes evident that343

deterministic methodologies, in certain regions, tend to overestimate the severity of storage-344

based drought, potentially leading to misleading conclusions. While deterministic indices345

may tend to oversimplify drought categorization, PSDI accounts for uncertainty, thereby346

offering a more accurate representation of drought severity, particularly during extreme347

events.348

Furthermore, our study assesses the performance of PSDI during well-documented extreme349

hydrologic events, spanning from the United States to Europe, the Middle East, South-350

ern Africa, South America, and Australia. In each case, PSDI demonstrates its robustness351

in characterizing drought conditions. Comparing the SDI with PSDImax reveals that the352

drought can be categorized with more intensity using SDI with respect to the PSDI. We also353

address the uncertainties associated with different GRACE mascon products, emphasizing354

the importance of selecting the appropriate data source for reliable drought characterization.355

Variations in uncertainty estimates among different centers and processing methods high-356

light the need for caution when utilizing GRACE-derived data for drought analysis. We also357

shed light on the formal errors associated with GRACE data, highlighting the overestima-358

tion and underestimation tendencies of various solutions. This insight serves as a valuable359
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reference for researchers and institutions relying on GRACE data for drought monitoring360

and assessment.361

The findings of this study underscore the importance of a probabilistic approach in charac-362

terizing drought over various regions and during several drought events. The new approach363

provides a more realistic characterization of drought by accounting for the uncertainties364

in the GRACE(-FO) TWSA data in contrast to the common deterministic approach. By365

embracing uncertainty and providing a comprehensive ensemble of drought scenarios, PSDI366

advances the field of drought assessment, offering improved accuracy and insight for decision-367

makers and researchers alike. In an era marked by changing climate patterns and increasing368

water stress, our probabilistic approach represents a significant step toward more effective369

drought management and adaptation strategies.370
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Kreibich, H., Van Loon, A. F., Schröter, K., Ward, P. J., Mazzoleni, M., Sairam, N., . . .473

others (2022). The challenge of unprecedented floods and droughts in risk management.474

Nature, 608 (7921), 80–86. doi: 10.1038/s41586-022-04917-5475

Kvas, A., Behzadpour, S., Ellmer, M., Klinger, B., Strasser, S., Zehentner, N., & Mayer-476
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Abstract15

In the recent past, the Gravity Recovery and Climate Experiment (GRACE) satellite mis-16

sion and its successor GRACE Follow-On (GRACE-FO), have become invaluable tools for17

characterizing drought through measurements of Total Water Storage Anomaly (TWSA).18

However, the existing approaches have often overlooked the uncertainties in TWSA that19

stem from GRACE orbit configuration, background models, and intrinsic data errors. Here20

we introduce a fresh view on this problem which incorporates the uncertainties in the data:21

the Probabilistic Storage-based Drought Index (PSDI). Our method leverages Monte Carlo22

simulations to yield realistic realizations for the stochastic process of the TWSA time se-23

ries. These realizations depict a range of plausible drought scenarios that later on are used24

to characterize drought. This approach provides probability for each drought category in-25

stead of selecting a single final category at each epoch. We have compared PSDI with the26

deterministic approach (SDI) over major global basins. Our results show that the deter-27

ministic approach often leans towards an overestimation of storage-based drought severity.28

Furthermore, we scrutinize the performance of PSDI across diverse hydrologic events, span-29

ning continents from the United States to Europe, the Middle East, Southern Africa, South30

America, and Australia. In each case, PSDI emerges as a reliable indicator for characterizing31

drought conditions, providing a more comprehensive perspective than traditional determin-32

istic indices. In contrast to the common deterministic view, our probabilistic approach33

provides a more realistic characterization of the TWS drought, making it more suited for34

adaptive strategies and realistic risk management.35

Plain Language Summary36

Total Water Storage (TWS) is defined as the sum of water stored as surface water (e.g.,37

lakes and rivers), groundwater, soil moisture, snow, ice, and vegetation biomass. Since its38

launch in 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite mission39

has provided unique TWS change measurements with manifold applications in hydrology,40
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including characterizing drought events. Scientists have been using satellites like GRACE41

and its successor, GRACE-FO, to understand drought by measuring the Total Water Storage42

Anomaly (TWSA). However, previous methods didn’t consider uncertainties from satellite43

orbits, models, and data errors. This study offers a novel probabilistic approach for char-44

acterizing drought, Probabilistic Storage-based Drought Index (PSDI), which acknowledges45

the uncertainties in the GRACE TWS change. We use simulations to create different drought46

scenarios, offering probabilities for each category instead of one fixed category. Compar-47

ing PSDI to traditional methods, we found that traditional methods tend to overestimate48

drought severity. We tested PSDI across different regions, and it consistently proved to be a49

reliable way to understand drought conditions, offering a more comprehensive perspective.50

Our probabilistic approach offers a more realistic view of TWS drought, making it suitable51

for adaptive strategies and risk management.52

1 Introduction53

The modern reality of human settlement is the consequence of many historical events, but54

perhaps none influenced human settlements as much as droughts and famine. DNA analysis55

indicates that a series of extreme droughts that occurred 75-135 thousand years ago may56

have been the reason for the first human migration out of Africa (Scholz et al., 2007).57

Following several consequential droughts over the past century (e.g., the 1921 drought in58

Europe, the 1930s Dust Bowl drought in the US, 1928-1930 drought in China, 1980s drought59

and famine in Africa, 2000s Millennium drought in Australia), increasingly more effort has60

focused on understanding, monitoring and predicting droughts and their impacts (Mishra61

& Singh, 2010; Heim Jr, 2002; AghaKouchak et al., 2015; Svoboda et al., 2002; Wilhite et62

al., 2007; Kreibich et al., 2022; AghaKouchak et al., 2021).63

Compared to other hazards witnessed over the past four decades, drought impacts are often64

felt by a much larger number of people worldwide (Wilhite, 2000; FAO, 2021; AghaKouchak65

et al., 2021). Numerous nations have grappled with significant economic losses resulting66
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from drought events. Notably, according to the NOAA’s National Centers for Environmental67

Information (NCEI) report, the United States has experienced 26 significant droughts in the68

past century, amounting to a staggering economic loss of at least $ 249 billion, equivalent69

to nearly $ 10 billion per occurrence. In Europe, the southern and western regions, in70

particular, face an annual drought-related expenditure estimated at up to e 9 billion, which71

could surge to over e 65 billion if climate action is not taken (Naumann et al., 2021). Aside72

from the financial burdens, climate change, and unsustainable water management practices73

have amplified the frequency and severity of drought occurrences worldwide over the past74

two decades. This trend is projected to escalate further in the future (see e.g., Hisdal et al.,75

2001; Coumou & Rahmstorf, 2012; Yu et al., 2014; Donat et al., 2016; Teuling, 2018; Li et76

al., 2021; C. Zhao et al., 2020).77

The negative consequences of drought can be effectively alleviated through the implemen-78

tation of risk management strategies rather than relying on crisis management (Wilhite,79

2000; Zscheischler et al., 2018). Such a proactive response may be achieved by establishing80

reliable drought monitoring systems, including early warning systems and forecasting capa-81

bilities, operating at both national and local levels (Wilhite et al., 2007; AghaKouchak et al.,82

2023). These systems trigger a series of decisions aimed at helping communities navigate the83

challenges posed by drought events (Mishra & Singh, 2011; Sun et al., 2017). To enhance84

drought monitoring efforts and provide valuable guidance to decision-makers, numerous85

drought indices have been developed (Mishra & Singh, 2010). These indices condense the86

intricacies of drought into a single numerical value, effectively characterizing its onset, in-87

tensity, frequency, and duration (Zargar et al., 2011; Wilhite, 2000; Ahmadalipour et al.,88

2017). Such indices offer a comprehensive representation of drought by utilizing single or89

multiple climatic and hydrometeorological variables such as precipitation, streamflow, evap-90

otranspiration, temperature, and snowpack (e.g., Svoboda et al., 2016; Hosseini-Moghari et91

al., 2020).92
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A comprehensive understanding of drought dynamics necessitates the observation of Total93

Water Storage (TWS) including snow, surface water, soil moisture, and groundwater storage94

(M. Zhao et al., 2017; M. J. Tourian et al., 2023). Traditionally, TWS monitoring has95

relied on costly and time-consuming site measurements, providing limited regional and local96

coverage. While hydrological and land surface models partially address this issue, estimating97

TWS in regions lacking in-situ runoff data for calibrating rainfall-runoff models still yields98

high uncertainties (Jiang et al., 2014; S. Yi et al., 2023). Since its launch in 2002, the Gravity99

Recovery And Climate Experiment (GRACE) satellite mission has revolutionized the remote100

measurement of TWS Anomalies (TWSA) at regional to continental scales (Tapley et al.,101

2004; M. J. Tourian et al., 2022). The GRACE mission came to an end on 12 October 2017,102

due to battery failure, after more than 15 years of Earth observation. However, its successor,103

GRACE Follow-On (GRACE-FO), has continued the GRACE legacy since its launch on 22104

May 2018. GRACE(-FO) data have been extensively utilized for manifold applications,105

including monitoring ice sheets and glaciers (e.g., van den Broeke et al., 2009; Gardner et106

al., 2013; Shepherd et al., 2018), tracking anthropogenic groundwater depletion (e.g., Rodell107

et al., 2007, 2009; Famiglietti et al., 2011; Voss et al., 2013; Saemian et al., 2022), forecasting108

flood events (e.g., Reager & Famiglietti, 2009; Gouweleeuw et al., 2018), and quantifying109

and comprehending hydrological processes (e.g., Lorenz et al., 2014; Saemian et al., 2020;110

M. Tourian et al., 2018; Behling et al., 2022), to name but a few.111

GRACE-derived estimates of TWS have been employed in developing indices aimed at112

assessing drought on a regional to global scale. For example, Yirdaw et al. (2008) developed113

the Total Storage Deficit Index (TSDI), utilizing the Palmer Drought Severity Index (PDSI;114

Palmer, 1965) and the Soil Moisture Deficit Index (SMDI; Narasimhan & Srinivasan, 2005),115

to characterize the Canadian Prairie droughts of 2002/2003. Another notable endeavor by116

Thomas et al. (2014) presented a comprehensive framework for drought characterization117

based on GRACE-derived TWSA over regions including the Amazon, Zambezi, Texas, and118

the southeastern United States. Additionally, H. Yi & Wen (2016) devised the GRACE-119

based Hydrological Drought Index (GHDI) to characterize drought in the continental United120
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States from 2003 to 2012, building upon the foundation of the PDSI concept. Among recent121

indicators we can name the Drought Severity Index (DSI) by M. Zhao et al. (2017), the122

Water Storage Deficit Index (WSDI) by Sinha et al. (2017), and a long-term standardized123

GRACE reconstructed TWSA index (SGRTI) by Zhong et al. (2023).124

The indices mentioned above have the potential for monitoring and assessing the TWS125

drought at regional to global scales. Nevertheless, they adopt a deterministic approach that126

disregards the intrinsic uncertainties associated with characterizing drought using GRACE127

observations. These uncertainties are inherent in the GRACE data due to factors such as its128

orbit configuration, measurement concept, various post-processing approaches of GRACE129

data, and different options for de-aliasing products. Besides, the estimation of GRACE130

uncertainty varies among different GRACE level-2 products, in both magnitude and spatial131

pattern. Most of the centers offer an uncertainty measure (known as formal errors) in132

the form of spherical harmonic coefficients. Figure 1 shows the coefficient-wise ratio of133

average formal errors and empirical errors of the GRACE solution following the approach134

suggested by Kvas et al. (2019). The ideal ratio is set at one, with values below indicating an135

underestimation of empirical errors, whereas values exceeding one signify an overestimation.136

The three official centers (JPL, CSR, and GFZ) together with AIUB, HUST, and SWPU137

exhibit a similar pattern. The SWPU solution demonstrates a pronounced overestimation138

of formal errors, particularly for low d/o (under 30). ITSG and Tongji display comparable139

patterns, although Tongji tends to lean slightly towards a more pessimistic estimation of140

errors. In contrast, COST-G reflects more realistic formal errors in comparison to empirical141

errors but appears overly optimistic for lower d/o values. The distinctive pattern observed142

in the CNES product can be attributed to the regularization applied during the derivation143

of the gravity field from the Level-1 dataset. The disparities in formal error performance144

among GRACE Level-2 products underscore the inherent uncertainty in GRACE data and145

consequently, the necessity for a comprehensive approach that effectively considers GRACE146

uncertainty while characterizing drought.147
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To address this gap in conventional methods, we propose a probabilistic approach that148

considers all possible scenarios and associated impacts. Our approach leverages Monte Carlo149

simulations to obtain realistic realizations of TWSA compatible with GRACE-TWSA and150

its corresponding uncertainties. We then characterize drought based on TWSA using our151

proposed drought index, the Probabilistic Storage-based Drought Index (PSDI). This index152

indicates not only drought but also its corresponding occurrence probability. We compare153

our results with those from the conventional deterministic approaches over the major river154

basins. Moreover, the performance of PSDI in capturing the main hydrological drought155

extremes is examined within the GRACE era. PSDI facilitates more informed and proactive156

responses to water resource challenges and serves as a practical tool for decision-makers and157

water resource managers to assess and manage drought-related risks more realistically.158
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Figure 1. The coefficient-wise ratio of average formal errors and empirical errors of the GRACE

solutions following the approach suggested by Kvas et al. (2019). For the average formal errors,

the mean of the reported variance of the spherical harmonics coefficients is computed for monthly

solutions from January 2005 to December 2010, which is assumed to hold a homogeneous data

quality. To estimate the empirical errors, we compute the standard deviation of the coefficients

after removing the mean, linear trend, and annual and semi-annual signals. The optimal value of

the ratio is one, and values below one indicate an underestimation of the empirical errors, while

values bigger than one show overestimation. We have only included solutions that provide formal

errors.
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2 Data and Method159

2.1 GRACE data160

The GRACE TWSA can be obtained from the two main approaches, namely Spherical161

Harmonics (SHs) and mass concentration blocks (mascons). In the former, one needs to162

apply post-processing steps including noise reduction and signal restoration while the latter163

is already the Level-3 product (gridded TWSA over the globe). These approaches are briefly164

described in section 1 of the supplementary file. In line with the common practice within the165

hydrology community, we have utilized the mascons solutions. The probabilistic approach166

for characterizing storage-based drought index, however, can readily be applied to any level-167

3 products that provide estimations for GRACE TWSA and its corresponding uncertainty.168

Among the mascon products, we have employed the one from Goddard Space Flight Center169

(GSFC), NASA. The GSFC mascon product has been widely used in the geodesy and Earth170

science communities to investigate a range of phenomena, including hydrology, glaciology,171

and solid Earth dynamics, and can be downloaded from https://earth.gsfc.nasa.gov/172

geo/data/grace-mascons. We used the latest version of the dataset available at the time173

of our analysis, which covers the period from August 2002 to November 2022. The dataset174

includes monthly gravity field solutions with a grid size of 0.5 ◦.175

2.2 Methodology176

We propose a probabilistic framework to characterize storage-based drought. The framework177

is illustrated in Figure 2, Figure 3, and Figure 4 using TWSA over the Death Valley basin178

in the US as an example. To characterize drought, we must first define a reference, based on179

which a prolonged relative water deficiency is determined. It is common to consider the long-180

term monthly average, also known as the climatology, as the reference or normal condition181

in a region. Obtaining accurate climatology from short time series can be challenging.182

Calculating the climatology over at least 30 years, preferably 60 years, is standard practice,183

as this time frame allows us to average out the effects of short-term variability, resulting184
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in a more robust estimate of the long-term average conditions (e.g., Hulme, 1992; Jones &185

Hulme, 1996; Svoboda et al., 2012). The GRACE and GRACE-FO missions, with their186

approximately 20-year duration, fall short of providing sufficient data for calculating long-187

term climatology. In this study, we utilized a combination of different models to estimate188

TWSA dating back to 1980. To this end, we incorporated a total of 13 state-of-the-art189

datasets including Global Hydrological Models (GHMs), Land Surface Models (LSMs), and190

atmospheric reanalysis models. To combine models, we employed the Multivariate Linear191

Regression (MLR) method. We compared the results of Multiple Linear Regression (MLR)192

in reconstructing TWSA with GRACE time series (see Supplementary section 2). The MLR193

exhibits a strong capability to capture the features and effectively reconstruct TWSA data194

as far back as 1980. It demonstrated superior performance compared to the ensemble mean195

of the models, as indicated by a substantial improvement in both the correlation coefficient196

(on average from 0.87 to 0.97) and the Kling-Gupta Efficiency (KGE) score (on average from197

0.27 to 0.95) across major river basins. For more details about the datasets and long-term198

TWSA, please refer to Supplementary section 2. This extended time frame enables us to199

capture significant climate events and phenomena that influence long-term climate, such as200

the El Niño-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) (Sohn201

et al., 2013; Coelho & Goddard, 2009).202

The climatology, along with its corresponding uncertainty (see Figure 2 (a)), is obtained by:203

TWSA[tm] =
1

N

yN∑
y=y1

TWSA[ty,m] (1)

σ2
TWSA[tm]

=
1

N

√√√√ yN∑
y=y1

σ2
TWSA[ty,m] (2)

where TWSA[tm] represents the TWSA climatology for monthm, y denotes the year and can204

vary from y1 to yN , m corresponds to the month within a year, taking values 1, 2, 3, . . . , 12,205
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and N is the number of years in the long-term dataset. Note that we deliberately retain206

the trend in the time series. We reason that the trend reflects long-term changes in climate,207

such as temperature increases or precipitation pattern alterations, and that it affects the208

frequency and severity of droughts (see Supplementary section 3 for more details). We then209

subtract the climatology from the GRACE TWSA time series to obtain TWS residual (S):210

S[ty,m] = TWSA[ty,m]− TWSA[tm] (3)

σS[ty,m] =
√

σ2
TWSA[ty,m] + σ2

TWSA[tm]
(4)

where negative values of S represent water storage deficits.211

To reduce the effects of short-term fluctuations due to precipitation and other factors, we212

chose to use a 3-month moving average to smooth the TWS residual (see Figure 2 (b)):213

S[t] = f ∗ S[t]unsmoothed (5)

where ∗ denotes the convolution operation, and f is the kernel [1/3, 1/3, 1/3] which is214

convolved with the S[t]unsmoothed time series.215

To address the inherent uncertainty, it becomes essential to employ a stochastic approach216

that incorporates S along with its associated uncertainty. At each epoch, we postulate a217

normal distribution with the mean being the obtained TWS residual S[t] and σ = σS[t].218

Sampling from this distribution in each time step allows us to create realizations of the S219

time series. Several methods exist for sampling from a Gaussian distribution, and one widely220

used technique is the Box-Muller transform (Box & Muller, 1958). This method guarantees221

generating a realization of S, which is independent epoch-wise with no artificial correlations.222

We then use Monte Carlo Simulation (Mooney, 1997; Metropolis & Ulam, 1949) to generate223
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Figure 2. (a) Time series of the long-term TWSA from GRACE and the long-term climatology

(1980–2012) from the hindcasted TWSA together with their uncertainties. At each epoch, we

assume a Gaussian distribution for the uncertainties and the depicted uncertainty corresponds to

the 1-σ level. Here the results are shown for the Death Valley basin in the US.

multiple realizations of S. Figure 3 shows 10 000 realization of TWS residual considering224

the 3-σ uncertainty. The density of the realizations is highest around the mean signal and225

decays following a Gaussian distribution. The colored lines overlaid on the time series depict226

the distribution of outcomes for three specific epochs: July 2004, May 2013, and April 2015.227

To characterize drought within each time epoch, one common approach is to use the per-228

centile rank method and the U.S. Drought Monitor (USDM) criteria. To this end, a set of229

five drought categories is defined (Table 1).230

The quantile values for the S time series can be extracted as the inverse of the Cumulative231

Distribution Function (CDF), also known as the quantile function:232

Q(p) = F−1(p) (6)
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Figure 3. The TWS residual (S) together with its 10 000 realizations, calculated using Monte

Carlo simulation. Here the results are shown for the Death Valley basin in the US. The distribution

of realizations for three epochs, namely July 2004, May 2013, and April 2015 are marked with

colored dots over the time series and are shown in sub-figures.

Table 1. Drought categories and corresponding percentile ranges as defined by the U.S. Drought

Monitor (USDM).

Drought Category Description Percentile Range

D0 Abnormally dry 20–30%
D1 Moderate drought 10–20%
D2 Severe drought 5–10%
D3 Extreme drought 2–5%
D4 Exceptional drought Less than 2%

where Q(p) represents the quantile function and F−1(p) denotes the inverse CDF evaluated233

at probability p. In a conventional deterministic approach, the drought category for each234

epoch is determined based on its quantile value of S. For example in Figure 4 (a), the dark235

solid line represents the quantile function of the S time series. Using such a function one236

can characterize drought for case (1), case (2), and case (3) as D4, D1, and no drought,237

respectively.238

Such an approach overlooks the uncertainty in TWS residual S. However, accounting for239

uncertainty would entail obtaining the quantile function for all realizations of S. These240

functions form a cloud of points rather than a single line as it has been illustrated in Fig-241

ure 4 (a). The quantile functions are shown in grayscale representing the probability Pr(p, S)242

for a given percentile p and TWS residual S. Already at this stage, a glance at Figure 4 (a)243

reveals the complexity introduced by the uncertainty envelope, challenging the conventional244
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approach to assigning a specific class to a particular measurement. It is noteworthy that the245

uncertainty envelope depicted in Figure 4 (a) exhibits a stationarity character, indicating246

general uncertainty in the data regardless of the specific time of measurements. This char-247

acteristic is reflective of the general uncertainty of S, emphasizing the broader statistical248

context rather than being tied to specific instances in time.249

Now, let’s delve into the characterization of drought for one of the measurements illustrated250

in Figure 3. In this context, alongside the consideration of the stationary uncertainty as re-251

flected in the quantile envelope and represented by Pr(p, S), it becomes essential to account252

for the uncertainty associated with the measurement at that specific epoch. This is funda-253

mentally crucial because two GRACE measurements with the same value of S may exhibit254

varying levels of uncertainty. Therefore, we incorporate the probability density function of255

the value St, denoted by f(St), obtained from the mean and uncertainty of that epoch.256

f(St) is shown for the three sample epochs on the top right panel of Figure 4. At each257

epoch, we multiply this probability density function with the entire distribution Pr(p, S),258

as illustrated in Figure 4 (c). Essentially, this multiplication results in a down-weighting of259

probabilities located in the tails of f(St).260

Once Pr(p, S) f(St) is achieved, to obtain PSDI at each epoch and for each drought category261

Di, we can integrate the probabilities both in S and p domains and normalize it with the262

integral over the entire domain:263

PSDI(t,Di) =

∫
S

∫
Di

Pr(p, S)f(St) dp ds∫
S

∫ 1

0

Pr(p, S)f(St) dp ds

(7)

By performing this process for all drought categories and time epochs, we generate a com-264

prehensive probabilistic representation of drought severity over time. For decision-making265

purposes, the highest-probability category can be judiciously chosen as the definitive drought266

classification for a particular month. The flowchart of the proposed probabilistic approach267

is shown in Figure 5.268
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m
]

S
 [
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m
]

Pr(p,S)

Pr(p,S)f(𝑆𝑡)

f(𝑆𝑡)

Figure 4. (a) The quantile functions (inverse of the Cumulative Distribution Function (CDF))

of the S realizations are depicted. The varying shades of gray signify the density of data points,

with darker shades indicating higher density. The drought categories, ranging from D0 to D4,

are delineated within their respective percentile ranges, each denoted by its corresponding color.

Colored dots illustrate the positions of the three cases from Figure 3 on the quantile functions

plot. These cases are further elaborated in a magnified view, accompanied by the corresponding

probability distribution derived from S and its associated uncertainty. (b) Similarly, as in (a), this

visualization portrays the quantile functions plot, but encompasses the complete range of quantile

values. (c) The density of the counted points after integrating the probability distribution stemming

from the S and its corresponding uncertainty. It’s important to note that the presented results are

centered on the Death Valley basin within the United States.
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TWSA (models)

Computing long-term monthly mean

(climatology) (eq. 1 & eq. 2)

Obtaining long-term TWSA using MLR

(Supplementary Sec. 2)

Obstaining TWS residuals (𝑆) 

(eq. 3, eq. 4 & eq. 5; Fig 2)

TWSA (GRACE)

Obtaining quantile function for all of the 

realizations of 𝑆 (Fig 4a & Fig 4b)

probability density function 𝑓 𝑆𝑡
(Fig 4 top-right)

Calculating 𝑃𝑟 𝑝, 𝑆 𝑓(𝑆𝑡) (Fig 4c)

Obtaining PSDI for each drought category

(eq. 7)
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using Monte Carlo Simulation (Fig 3)

Figure 5. Flowchart of the proposed PSDI framework.

3 Results and Discussion269

3.1 PSDI vs SDI270

The PSDI approach offers a more nuanced understanding of drought conditions compared to271

the SDI approach. This is because PSDI captures the uncertainty associated with drought272

severity, while the SDI approach may oversimplify the classification of drought conditions.273

Although the SDI categorization is often the most probable category according to the PSDI,274

the neighboring categories may also have significant probabilities. This tendency becomes275

more pronounced as the intensity of the drought increases. This can be attributed to the276
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lower slope of the CDF curve over more severe droughts and the wider range of quantile277

values.278

To delve deeper into the analysis, we have quantified the disparities between drought cat-279

egorizations as defined by SDI and PSDImax—the category of drought with the highest280

probability in PSDI—across the world’s major river basins, with the exclusion of Greenland281

and Antarctica. The findings, illustrated in Figure 6 (a), shed light on the prevalence of282

these discrepancies throughout the study period spanning from 2003 to 2016. The ratio283

exhibits a range of variations, hovering near zero for basins such as Lake Balkhash in south-284

eastern Kazakhstan or Po in Italy to a significant value of 30% over Highland of Ethiopia285

and Somalia in Africa or Sao Francisco in Brazil. In general, the risk of mischaracterizing286

storage-based drought through the deterministic approach is notably high (exceeding 10%287

in Figure 6 (a)) across Africa (excluding the northern region), Eastern Europe, Mongolia,288

Russia, and within the river basins of Nelson river, St. Lawrence, and Colorado (Argentina).289

In instances where discrepancies arise between SDI and PSDImax, a predominant tendency290

is for SDI to overestimate the drought category. This is evident when comparing Figure 6291

(b) and Figure 6 (c).292

To investigate further, Figure 7 provides a visual comparison between two approaches for293

characterizing drought: probabilistic (PSDI) and deterministic (SDI), over several selected294

basins. The distribution of the basins is shown in the top panel of the Figure 7. For each295

basin, the drought categories, ranging from the status of no drought to exceptional drought296

(D4), are displayed in columns. The probability assigned to each category at every time297

step is depicted using gray scale. The deterministic perspective is illustrated with red boxes,298

allowing for a direct comparison of the two approaches.299

The Danube and Ganges basins exhibited no disparity between SDI and PSDImax from300

2015 to 2016. In contrast, the Mississippi basin displayed the most substantial mismatch301

between SDI and PSDImax. It’s noteworthy that these mismatches were confined to adjacent302

categories. Specifically, when considering mismatches spanning more than one category, only303
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Figure 6. (a) Basin-wise distribution of the discrepancies between SDI and PSDImax. The

values represent the percentage of epochs where PSDImax differs from SDI by at least two drought

categories. (b) the percentage of epochs with a discrepancy of more than one category higher in SDI

compared to PSDImax. (b) the percentage of epochs with a discrepancy of more than one category

lower in SDI compared to PSDImax. Greenland and Antarctica are excluded from the maps.

four basins had such occurrences: one month in Amazonas and Nile, two months in Niger,304

and five months in Murray Darling. Across all basins, when a discrepancy arose between305

SDI and PSDImax, the SDI category consistently indicated a higher severity of drought.306
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Amazonas
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Figure 7. Top: The global distribution of the selected basins. Bottom: The SDI (red boxes)

together with PSDI (gray scale probability range) for selected basins. The basins are shown in two

groups considering the period with more frequency of drought, the first row between 2015–2016

and the second row between 2006–2007. The “-” represents “no drought” or “normal state” of the

water storage.
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We have investigated further the sensitivity of different categories of drought to incorpo-307

rating uncertainties into drought characterization. Figure 8 (a) visualizes the percentage308

of epochs where PSDImax differs from SDI by at least two drought categories. The results309

suggest that such discrepancies can diverge significantly in the categorization of drought con-310

ditions, especially in the D1, D2, and D3 categories, especially in D2. We have also compared311

the ratio of the mismatch period with respect to different climate categories (Figure 8 (b)).312

For more detailed information about the categories and the method of classification, please313

see section 4 in the supplementary file. Although the mismatch range can vary from arid to314

humid climate, the average value of the mismatch is the same over different climate regions,315

with a slightly higher value for the Dry sub-humid regions (Dry sH).316

(a) (b)

Figure 8. (a) A barplot illustrates the percentage of epochs where PSDImax diverges from SDI

by at least two drought categories. (b) Boxplot of the mismatch between the PSDImax and SDI over

different climate categories, namely, arid to hyper-arid (A to hA), semi-arid (SA), dry sub-humid

(Dry sH), and humid (H). It is noteworthy that to count the number of months, we have considered

those with more than one category difference between the PSDImax and SDI.

3.2 Performance of the PSDI during extreme hydrologic events317

To assess the PSDI’s reliability, we analyzed its performance during several well-documented318

extreme hydrologic events between 2002 and 2016. The drought events during 2012 included319

the moderate to exceptional drought over the United state (Boyer et al., 2013; Ault et al.,320

2013), southern Europe (Oikonomou et al., 2020; Spinoni et al., 2015). The drought affected321
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many Middle East regions between 2007 and 2008 (Barlow et al., 2016). Southern Africa322

suffered from a severe to exceptional drought between 2005 and early 2006 (Nicholson,323

2014), while central Argentina and Paraguay were affected by drought throughout 2009324

(Guha-Sapir et al., 2016). Moreover, Australia experienced the worst drought recorded325

since European settlement in the 2000s, called the Millennium drought, with a peak in326

2006 that affected many regions of the south to the east, including agricultural lands of327

the Murray-Darling basin (Van Dijk et al., 2013; Heberger, 2012). Figure 9 illustrates the328

performance of the PSDI over the events mentioned above. For each region, the category329

with the maximum probability and the estimated probability is shown for the selected330

date. Generally, the PSDI shows high performance in characterizing drought in the selected331

drought events (Figure 9). Comparing the SDI with PSDImax reveals that SDI categorizes332

higher drought intensities.333
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Figure 9. Comparing SDI with PSDI during some reported drought events.
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4 Conclusions334

For the first time, this study presents a probabilistic approach to characterizing TWS335

drought using time-variable gravity from satellite gravimetry. Our proposed framework336

acknowledges and addresses the inherent uncertainties associated with GRACE data. Our337

approach leverages Monte Carlo simulations to generate realistic realizations, capturing the338

stochastic nature of the TWSA time series. This ensemble reflects the diverse possible sce-339

narios and their associated uncertainties, paving the way for a more insightful understanding340

of drought conditions. We have monitored the results of the proposed PSDI over major river341

basins and compared the result with SDI (deterministic approach). Our spatial analysis un-342

derscores the significance of adopting a probabilistic approach. It becomes evident that343

deterministic methodologies, in certain regions, tend to overestimate the severity of storage-344

based drought, potentially leading to misleading conclusions. While deterministic indices345

may tend to oversimplify drought categorization, PSDI accounts for uncertainty, thereby346

offering a more accurate representation of drought severity, particularly during extreme347

events.348

Furthermore, our study assesses the performance of PSDI during well-documented extreme349

hydrologic events, spanning from the United States to Europe, the Middle East, South-350

ern Africa, South America, and Australia. In each case, PSDI demonstrates its robustness351

in characterizing drought conditions. Comparing the SDI with PSDImax reveals that the352

drought can be categorized with more intensity using SDI with respect to the PSDI. We also353

address the uncertainties associated with different GRACE mascon products, emphasizing354

the importance of selecting the appropriate data source for reliable drought characterization.355

Variations in uncertainty estimates among different centers and processing methods high-356

light the need for caution when utilizing GRACE-derived data for drought analysis. We also357

shed light on the formal errors associated with GRACE data, highlighting the overestima-358

tion and underestimation tendencies of various solutions. This insight serves as a valuable359
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reference for researchers and institutions relying on GRACE data for drought monitoring360

and assessment.361

The findings of this study underscore the importance of a probabilistic approach in charac-362

terizing drought over various regions and during several drought events. The new approach363

provides a more realistic characterization of drought by accounting for the uncertainties364

in the GRACE(-FO) TWSA data in contrast to the common deterministic approach. By365

embracing uncertainty and providing a comprehensive ensemble of drought scenarios, PSDI366

advances the field of drought assessment, offering improved accuracy and insight for decision-367

makers and researchers alike. In an era marked by changing climate patterns and increasing368

water stress, our probabilistic approach represents a significant step toward more effective369

drought management and adaptation strategies.370
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1 TWSA from GRACE observations

Two main approaches have been developed to process GRACE range-rate observations.

In the first approach, the Earth’s gravity field is parameterized using the global Spher-

ical Harmonics (SHs) basis functions (see Wahr et al. (1998) for details). Within the

past couple of years, an alternative approach for processing GRACE level 1 (L1) has20

been proposed which considers parameterizing with regional mass concentration functions

(mascons) (Watkins et al., 2015a; Scanlon et al., 2016). In this study, we have used the

latest version (version 2) of the Goddard Space Flight Center (GSFC) which can be ac-

cessed via https://earth.gsfc.nasa.gov/geo/data/grace-mascons. We have compared

the uncertainty estimation from GSFC with the Jet Propulsion Laboratory (JPL) mas-25
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con solutions. The latest version (Release 6.1 Version 03) of the JPL mascon solutions

used in the comparison can be obtained from https://podaac.jpl.nasa.gov/dataset/

TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06.1_V3. Moreover, we have compared the error

estimation in the level-2 products, also known as formal errors, in Figure 1. Table S1 and

Table S2 list all the mascons and level-2 products of GRACE and GRACE-FO used in this30

study, respectively.

Table S1. List of centers which provide Level-3 TWSA from GRACE and GRACE-FO.

Product Sensor(s) Source/Reference

GSFC v02 mascons GRACE/GRACE-FO Loomis et al. (2019)

JPL RL06.1 v03 L3 mascons GRACE/GRACE-FO Landerer et al. (2020); D. Wiese et al. (2018);

Watkins et al. (2015b); D. N. Wiese et al. (2016)

The mascons products, like the one used in this study, estimate the uncertainty in the TWSA

estimation, either in the form of spherical harmonics or global grids. Despite the same level-

1 product, the errors in the mascons approaches vary among different centers, as they would

use different processing approaches and background models. Figure S1 illustrates a spatio-35

temporal comparison comparison between two widely used mascons datasets, namely, JPL

RL06-v02 and GSFC RL06-v02. the Figure S1 (a) shows the mean TWSA uncertainty

from the above products from April 2002 to November 2022. The highest values belong to

Greenland, the Amazonas, the Indian sub-continent, and the northwest of Canada. The

Figure S1 (b) compares the time series of the global land averaged TWSA uncertainty from40

April 2002 to November 2022. The time series shows a sharp pick in 2015, followed by a

positive trend related to the battery failure (Save, 2016; Mayer-Gürr et al., 2018; Bandikova

et al., 2019). The two mascon solutions exhibit consistent uncertainty estimates (σ = 2.5 cm)

throughout the GRACE observation period, except for the initial year (April 2002 to June

2003). The elevated uncertainties in JPL solutions from April 2002 to June 2003, as well45

as at the last year of the GRACE-FO mission, stem from the application of a Kalman

filter in the solution methodology, facilitating the temporal connection of adjacent months

(D. Wiese et al., 2016). Notably, during the GRACE-FO mission, GSFC’s uncertainty values

are significantly higher (σ = 3.2 cm for GSFC compared to σ = 1.8 cm for JPL).
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Table S2. List of GRACE(-FO) Level-2 solutions.

Center Product Sensor(s) Time span

Solutions that include GRACE and GRACE-FO

CSR CSR RL06 GRACE 200204–201706

CSR RL06 GRACE-FO 201806–present

GFZ GFZ RL06 GRACE 200204–201706

CSR RL06 (GFO) GRACE-FO 201806–present

JPL JPL RL06 GRACE 200204–201706

CSR RL06 (GFO) GRACE-FO 201806–present

ITSG ITSG-Grace2018 GRACE 200204–201706

ITSG-Grace_op GRACE-FO 201806–present

LUH LUH-Grace2018 GRACE 200301–201603

LUH-GRACE-FO-2020 GRACE-FO 201806–present

COST-G∗∗ Grace GRACE 200204–201706

Grace-FO GRACE-FO 201806–present

AIUB AIUB-RL02 GRACE 200302–201403

AIUB-GRACE-FO_op GRACE-FO 201806–present

CNES CNES_GRGS_RL05 GRACE & GRACE-FO 200209–present

Solutions that include only GRACE

Tongji Tongji-Grace2018 GRACE 200204–201608

HUST HUST-Grace2020 GRACE 200301–201607

IGG IGG-RL01 GRACE 200204–201607

SWJTU SWJTU-GRACE-RL01 GRACE 200303–201110

SWPU SWPU-GRACE2021 GRACE 200204–201705

WHU WHU RL01 GRACE 200204–201607

XISM&SSTC GRACE01 GRACE 200204-201603

2 Long-term TWSA dataset50

In this study, we have used a combination of various models to estimate TWSA for the pre-

GRACE era, back to 1980. Models, from a simple box model to a recent sophisticated deep

learning model, have been designed to enhance our understanding and acuity of the Earth’s

water system that occurs as an exchange between the terrestrial biosphere and atmosphere.

In general, three different groups of models have been developed, namely Land Surface Mod-55
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Figure S1. Top: Global distribution of the averaged TWSA uncertainty spanning from April

2002 to November 2022. Bottom: Time series of the global averaged TWSA uncertainty. The data

is obtained from two distinct mascon datasets: JPL RL06-v02 and GSFC RL06-v02.

els (LSMs), Global Hydrological Models (GHMs), and global atmospheric reanalysis models.

In this study, we have employed in total of 13 state-of-the-art datasets of Global Hydro-

logical Models (GHMs), Land Surface Models (LSMs), and atmospheric reanalysis models

(Table S3). Nine multi-decadal global water resources datasets were obtained from the

eartH2Observe Water Cycle Integrator (WCI; ftp://wci.earth2observe.eu (last access:60

31 May 2021)), including PCR-GLOBWB, SURFEX-TRIP, HBV-SIMREG, HTESSEL-

CaMa, JULES, LISFLOOD, ORCHIDEE, SWBM, and W3RA. The output of these datasets

is available at 0.5 ◦ spatial resolution over the period 1979–2012. Besides datasets from

eartH2Observe, we have included the Community Land Model Version 5 (CLM5) with

two standard forcing datasets, namely the Global Soil Wetness Project forcing data set65

(GSWP3) and CRUNCEP (the combination of the Climate Research Unit (CRU) and

the National Centers for Environmental Prediction (NCEP)). The CLM5 datasets are at

0.5 ◦ spatial resolution covering the period 1901–2014 (for more detail about the CLM5

model, please see Lawrence et al. (2019)). The CLM5 products are accessible via Earth
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System Grid (ESG) (Oleson et al., 2019). We have also included the latest version of70

the WaterGAP Global Hydrology Model (WaterGAP v2.2d) (Müller Schmied et al., 2021),

covering the period 1901–2016 and at 0.5 ◦ spatial resolution. The outputs of the Water-

Gap v2.d are available at (https://doi.pangaea.de/10.1594/PANGAEA.918447). Finally,

we have included the fifth generation ECMWF atmospheric reanalysis of the global cli-

mate (ERA5) at 0.25 ◦ spatial resolution which provides data from 1979 to the present.75

The data is downloaded from the Copernicus Climate Change Service (C3S) at ECMWF

(https://cds.climate.copernicus.eu)(last access: 30 May 2021). TWSA from models

carries a higher spatial resolution and therefore values with higher frequency. To set the

same spectral content in models compared to GRACE TWSA, we have transferred the

model outputs into the spectral domain and truncated the SHs to the maximum degree and80

order 96. Finally, we recovered the TWSA fields from the truncated SHs.

Table S3. Summary of global models used in this study. GHM: Global Hydrological Model;

LSM: Land Surface Model; ReA: Reanalysis Model.

Model Time Period Data Provider Reference

G
H

M

WGHM 1901–2016 Goethe University Frankfurt Müller Schmied et al. (2021)

PCRGLOB-WB 1979–2012 Utrecht University (UU) Wada et al. (2014)

Sutanudjaja et al. (2018)

HBV-SIMREG 1979–2012 Joint Research Centre (JRC) Lindström et al. (1997)

LISFLOOD 1979–2012 Joint Research Centre (JRC) Van Der Knijff et al. (2010)

W3RA 1979–2012 CSIRO∗∗ Van Dijk (2010)

SWBM 1979–2012 Simple Water Balance Model Koster & Mahanama (2012)

Orth & Seneviratne (2013)

LS
M

CLM5 1940–2014 The Earth System Grid (ESG) at NCAR Lawrence et al. (2019)

HTESSEL 1979–2012 ECMWF Balsamo et al. (2015)

JULES 1979–2012 Centre for Ecology and Hydrology (CEH) Best et al. (2011)

Clark et al. (2011)

ORCHIDEE 1979–2012 French National Centre for Scientific Research Polcher et al. (2011)

SURFEX-TRIP 1979–2012 Meteo France Decharme et al. (2013)

R
eA ERA5 1979–2016 ECMWF∗ Hersbach et al. (2020)

* ECMWF: European Centre for Medium-Range Weather Forecasts

** CSIRO: Commonwealth Scientific and Industrial Research Organisation
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2.1 Multivariate Linear Regression

To combine models, we have used the Multivariate Linear Regression (MLR) method. MLR

is a statistical method used for estimating the parameters of a linear regression model with

multiple independent variables. MLR has several advantages, including its ability to handle85

multiple independent variables and to model complex relationships between variables. It

also provides estimates of the coefficients and their standard errors, which can be used to test

hypotheses and construct confidence intervals. However, MLR assumes that the errors are

normally distributed and have constant variance, which may not always be true in practice.

Additionally, it can be sensitive to outliers and multicollinearity among the independent90

variables. The basic idea behind MLR is to find the coefficients that minimize the sum

of squared errors between the predicted and actual values of the dependent variable. The

formula for MLR is as follows:

y = Xβ + ϵ (1)

Here y is the vector of dependent variable values, X is the matrix of independent variable

values, β is the vector of coefficients to be estimated, and ϵ is the vector of errors, which95

are assumed to be normally distributed with mean zero and constant variance.

2.2 Compare with GRACE

To evaluate the performance of the long-term TWSA dataset from the MLR method (TWSAMLR),

we have compared the results with GRACE estimation within the GRACE era (April 2002

to December 2012).100
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Figure S2. Global distribution of the correlation coefficient (r), Mean Bias Error (MBE), and

Kling-Gupta Efficiency (KGE) values for major river basins (excluding Greenland and Antarctica)

obtained from the comparison between the reconstructed TWSA from ensemble mean and Multi-

variate Linear Regression (MLR) and GRACE during 2003–2012.

3 Handling trends

Several studies have suggested that before investigating drought indices using the GRACE

TWSA time series, detrending is necessary (e.g., Liu et al., 2020; Khorrami & Gunduz, 2021).

Liu et al. (2020), for instance, have demonstrated that without detrending TWSA time series

drought severity can be overestimated over some basins in China after 2013. While the soil105

moisture data suggests that the drought ceased in September 2014, their GRACE indices

(GRACE-DSI) show a continuous drought condition. In contrast to the aforementioned

studies, we deliberately retain the trend in the time series. We reason that the trend
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reflects long-term changes in climate, such as temperature increases or precipitation pattern

alterations, which can affect the frequency and severity of droughts. Eliminating the trend110

would essentially omit these long-term changes from the analysis, providing an incomplete

understanding of the hydrological system.

To demonstrate the impact of detrending, we calculated the TWSA time series in two real

cases using the SSA approach with a 24-month window to remove the trend in the data.

The two cases, the Tigris basin in the Middle East with a negative trend and the Niger115

basin in Africa with a positive trend are presented in Figure S3 and Figure S4, respectively.

In each case, we compared the results from two scenarios: one without detrending, denoted

by the solid line in (c) and (d) and labeled as (a), and one with detrending, shown as the

dashed line in (c) and (e) and labeled as (b).

The Tigris basin experienced a prolonged period of water loss, particularly after 2007, which120

is apparent in the red area in Figure S3(d). Detrending the data resulted in higher values for

the climatology compared to the non-detrended data, as shown in Figure S3(c), and caused

oscillations between wet and dry years, as seen in Figure S3(e). On the other hand, the Niger

basin exhibited a positive trend mainly after 2010, resulting in wetter years in the basin, as

depicted in Figure S4(d). Although detrending did not significantly alter the climatology,125

as illustrated in Figure S4(c), it did reveal dry years after 2010, which is inconsistent with

actual conditions.
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Figure S3. This figure presents a comprehensive analysis of TWSA for the Tigris River basin

in the Middle East, using data from GRACE satellite mission. (a) shows the time series of TWSA

from GRACE, along with its inter-annual variations which are extracted using the Singular Spec-

trum Analysis (SSA) approach with a 24-month window. (b) displays the TWSA after removing

the inter-annual variations, highlighting the long-term trends. (c) illustrates the climatology of

TWSA, which represents the long-term monthly mean. The solid and dashed lines represent the

climatology obtained from (a) and (b), respectively. (d) and (e) show the TWSA residuals, obtained

by subtracting the corresponding climatology from panels (a) and (b), respectively. These residual

plots reveal the short-term fluctuations in TWSA that are not captured by the climatology.

4 Major river basins

In this study, we have presented and analyzed the results of the global major river basins.

The border of the basins follows the HydroSHEDS database (https://www.hydrosheds130

.org/). Moreover, the climate of the basins is determined using the Aridity Index (AI),

which is the ratio of total annual precipitation to potential evapotranspiration. To compute

the aridity index, we have employed the latest version of the European Center for Medium-

Range Weather Forecasts (ECMWF) Reanalysis (ERA), namely ERA5 (Hersbach et al.,

2020). Based on AI, the climate of the basins can be categorized into humid (AI > 0.65),135

sub-humid (AI ≤ 0.65, and AI > 0.5), semi-arid (AI ≤ 0.5 and > 0.2), arid (AI ≤ 0.2 and >

0.05), and hyperarid (AI ≤ 0.05). This study grouped arid and hyper-arid into one group,
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Figure S4. Same as Figure S3 but for Niger river basin in West Africa, flowing through 10

countries: Guinea, Mali, Niger, Benin, Burkina Faso, Cote d’Ivoire, Ghana, Togo, Cameroon, and

Nigeria.

Arid-hyper Arid (Figure S5). Based on AI criteria, 60 % of the river basins are categorized

as humid, ∼ 10 % as sub-humid, 22 d% as semiarid, and ∼ 8 % as arid to hyper-arid).
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Figure S5. Global distribution of the major river basins together with their corresponding

climate category. Besides, a pie chart illustrates the worldwide share of each category in terms of

area.
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