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Abstract

Proper Arctic sea-ice forecasting for the melt season is still a major challenge because of the recent lack of reliable pan-Arctic

summer sea-ice thickness (SIT) data. A new summer CryoSat-2 SIT observation data set based on an artificial intelligence

algorithm may alleviate this situation. We assess the impact of this new data set on the initialization of sea-ice forecasts in the

melt seasons of 2015 and 2016 in a coupled sea ice-ocean model with data assimilation. We find that the assimilation of the

summer CryoSat-2 SIT observations can reduce the summer ice-edge forecast error. Further, adding SIT observations to an

established forecast system with sea-ice concentration assimilation leads to more realistic short-term summer ice-edge forecasts

in the Arctic Pacific sector. The long-term Arctic-wide SIT prediction is also improved. In spite of remaining uncertainties,

summer CryoSat-2 SIT observations have the potential to improve Arctic sea-ice forecast on multiple time scales.
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Key Points:11

• Assimilating summer CryoSat-2 sea-ice thickness (SIT) observations makes more12

skillful Arctic ice-edge forecasts on multiple time scales.13

• The long-term SIT forecasts improve with the assimilation of summer CryoSat-14

2 SIT observations.15

• Further refinement is needed for summer CryoSat-2 SIT observations.16
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Abstract17

Proper Arctic sea-ice forecasting for the melt season is still a major challenge because of18

the recent lack of reliable pan-Arctic summer sea-ice thickness (SIT) data. A new summer19

CryoSat-2 SIT observation data set based on an artificial intelligence algorithm may alleviate20

this situation. We assess the impact of this new data set on the initialization of sea-ice21

forecasts in the melt seasons of 2015 and 2016 in a coupled sea ice-ocean model with data22

assimilation. We find that the assimilation of the summer CryoSat-2 SIT observations23

can reduce the summer ice-edge forecast error. Further, adding SIT observations to an24

established forecast system with sea-ice concentration assimilation leads to more realistic25

short-term summer ice-edge forecasts in the Arctic Pacific sector. The long-term Arctic-wide26

SIT prediction is also improved. In spite of remaining uncertainties, summer CryoSat-2 SIT27

observations have the potential to improve Arctic sea-ice forecast on multiple time scales.28

Plain Language Summary29

Arctic sea ice is rapidly declining due to global warming, especially in summer. Accu-30

rate sea-ice forecasting is important to understand the potential influence of these changes31

and devise effective responses. The performance of sea-ice forecasts highly depends on the32

accuracy of the initial sea-ice states. So refining the initial conditions of sea-ice forecasts33

with satellite observations is a common way to reduce forecast errors. However, obtain-34

ing reliable summer pan-Arctic satellite sea-ice thickness (SIT) data is challenging due to35

complex ice-surface conditions in summer. A new artificial-intelligence-based summer SIT36

satellite data product may mitigate this situation. We integrate this data set into a sea-ice37

forecast system to evaluate its impact on forecast accuracy. We find that the new sum-38

mer satellite SIT data can reduce short-term ice-edge location forecast errors and benefit39

long-term SIT forecasts.40

1 Introduction41

Arctic sea ice is declining at unprecedented speed (Rothrock et al., 1999; Comiso et al.,42

2008; Kwok & Rothrock, 2009; Stroeve et al., 2012), which would pose challenges to climatic43

and ecological stakeholders (Landrum & Holland, 2020). The Arctic Passage, opening up44

with the gradually melting summer sea ice, calls for accurate Arctic sea-ice prediction from45

daily to seasonal scales (Jung et al., 2016).46

Accurate initialization of sea-ice state is vital for predicting Arctic sea ice (e.g., Blanchard-47

Wrigglesworth et al., 2011; Guemas et al., 2016; Xie et al., 2016; Dirkson et al., 2017; Bushuk48

et al., 2022). The assimilation of sea-ice concentration (SIC) has improved the short-term49

sea-ice forecasts greatly as documented in the literature, and is now widely used at forecast-50

ing centers (e.g., Hebert et al., 2015; Lemieux et al., 2015). Sea-ice thickness (SIT) persists51

longer, therefore assimilation of SIT raises long-term sea-ice forecast skills even stronger52

(Day, Hawkins, & Tietsche, 2014; Shu et al., 2021; Mu et al., 2022).53

However, the potential impacts of summer SIT observations on sea-ice forecasts are54

not examined comprehensively yet due to a lack of data. An effective retrieval method for55

the remotely sensed SIT from May to September was missing (Laxon et al., 2013; Ricker et56

al., 2014). The complex summer ice-surface conditions restrict the application of classical57

algorithms designed for winter conditions. For instance, melt ponds which occupy a huge58

fraction of the sea-ice surface in the melt seasons (Maykut et al., 1992) complicate the clas-59

sification algorithms (Lee et al., 2018; Tilling et al., 2019) and introduce large uncertainties60

due to increased moisture in the snow (Drinkwater, 1991). On the other hand, in-situ Arctic61

SIT observations are rather scarce and localized. They can hardly be used in basin-scale62

assimilation systems.63
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In a recent study, Dawson et al. (2022) presented the first estimate of pan-Arctic summer64

sea-ice freeboard from radar altimeter by using a 1D convolutional neural network (CNN)65

to distinguish ice leads from melt ponds. Landy et al. (2022) converted summer CryoSat-266

radar freeboard to SIT and applied further corrections. The spring predictability barrier of67

the Arctic sea ice (e.g., Day, Tietsche, & Hawkins, 2014; Bushuk et al., 2017) suggests that68

sea-ice forecast should benefit from the initialization with SIT in the melt season (Bushuk et69

al., 2020). Therefore, it presents an opportunity to explore the extent to which the summer70

SIT observation could improve the real-time forecast skill. Min et al. (2023) demonstrated71

that assimilation of summer SIT corrects the overestimation in the Combined Model and72

Satellite Thickness (CMST; Mu et al., 2018b) product. Y.-F. Zhang et al. (2023) found73

that the assimilation of May to August CryoSat-2 SIT anomalies improves local SIC and74

sea-ice extent (SIE) forecasts in September. However, the influence of assimilating summer75

CryoSat-2 SIT observations on short-term sea-ice forecast in summer and on long-term76

forecast extending beyond September still needs to be investigated further.77

In this study, we focus on the impact of summer SIT observations on the daily and78

seasonal forecast skills of a sea-ice prediction modelling system. In particular, we perform79

a series of short- and long-term ensemble sea-ice forecasts where the sea ice-ocean initial80

state is constrained by the summer CryoSat-2 SIT or where these data are not used. The81

benefits and challenges of using these new SIT data are evaluated and critically discussed82

using independent sea-ice data.83

2 Data and Methods84

2.1 The coupled sea ice-ocean model85

We use a regional coupled sea ice-ocean model driven by atmospheric forecasts to con-86

figure the sea ice-ocean forecast system. The model is based on the Massachusetts Institute87

of Technology general circulation model (MITgcm; Marshall et al., 1997) and covers the88

pan-Arctic region with a horizontal resolution of around 18 km as in Losch et al. (2010).89

The sea-ice model uses a viscous-plastic rheology (Hibler III, 1979; J. Zhang & Hibler III,90

1997) and a so called zero-layer thermodynamic formulation without heat capacity (Semtner,91

1976; Parkinson & Washington, 1979). The readers are referred to Losch et al. (2010) and92

Nguyen et al. (2011) for more details on the model.93

2.2 Data assimilation and forecast94

The summer data assimilation system is initialized from restart files generated by CMST95

(Mu et al., 2018b) simulation with 11 ensemble members. CMST combines model physics96

with information from remote-sensed SIT and SIC observations. It successfully reproduces97

the spatio-temporal sea-ice variations (Mu et al., 2018b). The summer data assimilation98

and forecast strategy follows Mu et al. (2017) and Mu et al. (2019). A Local Error Subspace99

Transform Kalman Filter (Nerger et al., 2012) coded within the Parallel Data Assimilation100

Framework (Nerger et al., 2005) is used to assimilate the summer SIT and SIC observations101

separately or simultaneously. Then, the summer ensemble forecasts start from the new102

individual analyses and the model is integrated forced by the atmospheric forecasts (cf.103

Section 2.3).104

The CryoSat-2 summer SIT data set is derived from local variations in the CryoSat-2105

radar echo response using a deep learning method (Dawson et al., 2022; Landy et al., 2022).106

This is the first estimate of pan-Arctic summer SIT from satellite observations. However,107

the accuracy of the CryoSat-2 summer SIT still needs to be further improved after the108

correction introduced by Landy et al. (2022), for example over the regions north of the109

Greenland and the Canadian Arctic Archipelago (CAA). The summer SIT is assimilated110

into the system on a daily basis using the observations linearly interpolated between two111

biweekly records. Considering the shortcomings of the summer SIT over thick ice regions,112
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practical experience suggests that the observation uncertainties should be set higher than113

the original values over thick ice regions, while still using the provided errors over thin ice114

regions (Supporting Information). The SIC data used in the assimilation are computed at115

the French Research Institute for Exploitation of the Sea (IFREMER) based on the 85-GHz116

SSM/I and SSM/IS channels (Kaleschke et al., 2001; Spreen et al., 2008; Kern et al., 2010).117

The uncertainty of the SIC observation is set to a constant value of 0.25 following Yang,118

Losa, Losch, Jung, and Nerger (2015) and Yang et al. (2016).119

The short-term ensemble assimilation and forecast experiments are driven by the 174-120

hour atmospheric ensemble forecasts from the United Kingdom Met Office (UKMO) Ensem-121

ble Prediction System (EPS; Bowler et al., 2008). For the long-term prediction, the ensemble122

members are driven by deterministic atmospheric forcing (single member). The hourly Eu-123

ropean Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA-5; Hersbach et al.,124

2020) is used as the atmospheric forcing during the data assimilation, while the atmospheric125

forecasts from the National Center for Environmental Prediction Climate Forecast System126

Version 2 (CFSv2; Saha et al., 2014) are used for the 9-month long-term forecasts.127

2.3 Experiment design128

In order to investigate the potential impact of the CryoSat-2 summer SIT on sea-ice129

forecasts, this study designs both short-term (7 days) and long-term (270 days) forecasts130

(Table. 1). These experiments are conducted over different months. The short-term ex-131

periments in 2015, which cover the melt season, start from the CMST restart files on May132

1, May 31, June 30, July 30, and August 29, respectively. Each forecast experiment lasts133

for 30 days and on each day a 7-day sea-ice forecast is run using the atmospheric forcing134

from the daily UKMO ensemble forecasts. No data assimilation is applied in the con-135

trol run of the short-term forecasts (Short-CTRL). The Short-SIT experiments assimilate136

only the CryoSat-2 summer SIT data, and the Short-SIC experiments assimilate only the137

SSMI/SSMIS SIC data, while both data sets are assimilated in the Short-SICSIT experi-138

ments. For the 2016 experiments, only the start dates are changed to match the available139

restart files from CMST (Table. 1).140

The long-term forecast experiments are designed to diagnose the persistence of the141

assimilated CryoSat-2 summer SIT over the months from the melt season to the freezing142

season. The Long-SIT experiments with SIT assimilation start each summer month from143

CMST restart files and a daily data assimilation step iterating over 15 days is performed144

to mitigate abrupt SIT changes. Over that period, ERA5 atmospheric reanalysis forcing is145

used. Then, the 270-day sea-ice forecasts start from the sea-ice analysis restart files and are146

forced by the CFSv2 operational atmospheric forecasts. No data assimilation is performed147

in the Long-CTRL experiments. The forecast start dates are listed in Table 1.148

2.4 Verification149

Simulation output from the Pan-Arctic Ice-Ocean Modeling and Assimilation System150

(PIOMAS; J. Zhang & Rothrock, 2003) is employed for the comparison with the assimilation151

results. PIOMAS is constrained by SIC and sea surface temperature observations. Its152

modeled SIT has been validated to be comparable to in-situ observations and has been153

widely used in previous studies.154

The integrated ice-edge error (IIEE; Goessling et al., 2016) is used to quantify the skill155

of the short-term ice-edge forecasts. It measures the discrepancy between the forecasted and156

observed SIE. The reference observation used in this study is the NOAA/NSIDC Climate157

Data Record (CDR) of Passive Microwave Sea Ice Concentration Version 4 (Meier et al.,158

2021).159

To validate the skill of the long-term sea-ice forecast, we compute the IIEE and the160

RMSD of SIT against various other products and in-situ observations. The IIEE is com-161
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Table 1. Summary of forecast experiments design. Short: short-term forecast. Long: long-term
forecast.

Experiment Assimilated data Forecast
duration
(days)

Atmospheric
forcing during
assimilation

Atmospheric
forcing during
forecast

Forecast
start date

Short-CTRL / 7 UKMO (11) UKMO (11) Daily fore-
cast start-
ing from
05/01/2015,

Short-SIT CryoSat-2 SIT 7 UKMO (11) UKMO (11) 05/31/2015,
06/30/2015,
07/30/2015,

Short-SIC SSMI/SSMIS
SIC

7 UKMO (11) UKMO (11) 08/29/2015,
04/25/2016,
05/25/2016,

Short-SICSIT SSMI/SSMIS
SIC and
CryoSat-2 SIT

7 UKMO (11) UKMO (11) 06/24/2016,
07/24/2016,
08/23/2016.

Long-CTRL / 270 ERA5 (1) CFSv2 (1) 05/16/2015,
06/15/2015,
07/15/2015,
08/14/2015,
09/13/2015,

Long-SIT CryoSat-2 SIT 270 ERA5 (1) CFSv2 (1) 05/10/2016,
06/09/2016,
07/09/2016,
08/08/2016,
09/07/2016.
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puted using the NOAA/NSIDC SIC CDR data. The RMSDs of SIT are computed with162

respect to the CS2SMOS products (Ricker et al., 2017). The SIT observations derived from163

ULS moorings maintained by the Beaufort Gyre Exploration Program (BGEP) are used164

for the forecast evaluation. The three moorings BGEP-A, BGEP-B, and BGEP-D, which165

provide year-round sea-ice draft observations, are located at (75.0°N, 150.0°W), (78.0°N,166

150.0°W) and (74.0°N, 140.0°W), respectively (Figure S1). The draft is converted to SIT167

by multiplying it by a constant factor of 1.1 as in Nguyen et al. (2011).168

3 Result169

3.1 Short-term ice-edge forecast170

An overview of the SIT states of PIOMAS, CryoSat-2, and the short-term experiment171

assimilation results in 2015 is shown in Figure 1 and in 2016 in Figure S2. In May and172

June, CryoSat-2 has similar SIT over the compact ice regions but thinner (by more than173

0.5 m) ice over the first-year ice regions compared to the PIOMAS SIT. This is more evident174

in July, August, and September, while the CryoSat-2 SIT is biased low over the central175

Arctic. Landy et al. (2022) pointed out that the roughness-induced electromagnetic range176

bias on the heavily-deformed ice in the coast regions north of the CAA and Greenland are177

responsible for these underestimates. In general, the SIT patterns of CryoSat-2 observations178

are more similar to the Short-CTRL patterns, which are the extensions of CMST, than to179

the PIOMAS patterns. Short-CTRL SIT patterns have thinner ice in the Beaufort Sea180

than the PIOMAS patterns, capturing an expected SIT distribution. This is not surprising181

since CMST is constructed by assimilating remote-sensed SIT during the freezing season182

until April (Mu et al., 2018b), while PIOMAS does not assimilate any SIT (J. Zhang &183

Rothrock, 2003).184

The area-averaged SIT differences between Short-SIT and Short-CTRL in May to185

September of 2015 are 0.10 m, -0.06 m, -0.37 m, -0.37 m and -0.39 m, respectively. Over-186

all, the area-averaged SIT differences are smallest in May and June, when the assimilation187

of the summer CryoSat-2 observations reduces the SIT in the Amerasian Basin and increases188

it in the Eurasian Basin. In the strong melt months of July, August and September, when189

the uncertainties of the CryoSat-2 SIT are at their maximum, the underestimation of the190

SIT over the multi-year ice regions, i.e., north of the CAA and Greenland, is remarkable.191

The differences can easily exceed -1 m and even reach -1.5 m. SIT is also reduced in most of192

the marginal ice zones, especially in the Beaufort Sea and the Chukchi Sea. CMST tends to193

overestimate late summer SIT in the marginal seas due to unrealistic covariances between194

SIC and SIT when abrupt increases in SIC are triggered by wind convergences (Mu et al.,195

2018b). The assimilation of CryoSat-2 SIT corrects this bias, resulting in a more reasonable196

estimate of SIT in the marginal seas.197

SIT assimilation has an important impact on SIC simulations through the physical198

connection between thickness and concentration (Xie et al., 2016; Mignac et al., 2022).199

Short-term forecast of ice edge, defined as the 15% SIC isoline, can be strongly influenced200

by SIT assimilation. Figure 2 shows the reduction of IIEE in the Pacific sector and Atlantic201

sector (regions shown in Figure S1). IIEE in each forecast experiment is given in Figure S3.202

The observed SIC used as the reference for the IIEE calculation is the NOAA/NSIDC SIC203

CDR. The difference in the ice-edge position between forecasts and observations in 2015 and204

2016 is displayed in Figure S4 and Figure S5.205

The impact of CryoSat-2 SIT assimilation on ice-edge forecasts varies with time and206

region. Compared to Short-CTRL, IIEE in Short-SIT is strongly reduced in most times207

and both sectors (Figure 2). In the Pacific sector, the ice-edge position in the forecasts208

is consistently overestimated in Short-CTRL. Assimilation of the summer SIT reduces the209

SIT of the forecasts near the ice edge, resulting in a better agreement between the ice-edge210

forecasts and the ice-edge observations from the satellite (Figure S4 and Figure S5).211
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Figure 1. SIT (m) in PIOMAS, CryoSat-2, Short-CTRL, Short-SIT, and the difference between
Short-SIT and Short-CTRL 15 days after the start in May to September of 2015. Note that
CryoSat-2 observations are two-week averages while the rest are daily SIT.

In May and June, only a slight improvement in IIEE is observed. However, in July,212

especially in 2015, IIEE increases. This can be attributed to the fact that the melt-pond213

fraction starts to increase in June and reaches its maximum in July (Feng et al., 2022).214

In particular, the melt-pond fraction in the Beaufort Sea peaked in 2015 during the 2000-215

2021 observation period (Xiong & Ren, 2023). The presence of excessive melt-pond fraction216

may lead to more misclassification of ice leads and melt ponds in the CryoSat-2 sea-ice217

freeboard retrieval using the CNN model, which affects the SIT analysis in the Pacific218

sector. Therefore, the underestimated SIT erroneously leads to a large ice-edge error in July219

of the Short-SIT experiments. This warrants further refinement of the artificial intelligence220

algorithm used for summer CryoSat-2 SIT retrieval. In late summer, the assimilation of221

CryoSat-2 SIT observations in Short-SIT leads to more skillful ice-edge forecasts, resulting222

in a statistically significant average reduction in IIEE of about 2.1×105 km2. For example,223

the assimilation of SIT allows the model to predict an ice-free ”cave” inside the Beaufort224

Sea in August 2015, while it is completely covered by sea ice in Short-CTRL (Figure S4).225

Furthermore, the ice-edge forecasts in the Atlantic sector are also improved, especially in226

June (about 0.8×105 km2) and July (more than 0.9×105 km2).227

–7–



manuscript submitted to Geophysical Research Letters

We further investigate the influences of SIC assimilation together with summer SIT228

assimilation on the ice-edge forecasts, considering the more important role of SIC observa-229

tions on summer sea-ice forecasts as documented in the literature (e.g., Posey et al., 2015;230

Yang, Losa, Losch, Liu, et al., 2015). Forecasts from the Short-SICSIT experiments are also231

compared to the Short-SIC experiments, which performs SIC assimilation only.232

In the Pacific sector, the additional SIT assimilation tends to yield more favorable ice-233

edge forecasts compared to Short-SIC (Figure 2). Similar to the IIEE differences between234

Short-SIT and Short-CTRL, the improvement in May and June between Short-SICSIT and235

Short-SIC is relatively small (only 3.0×103 km2 on average). In July, IIEE becomes smaller236

in 2015 but larger in 2016 relative to Short-SIC. In late summer, the analysis of summer237

SIT observations significantly reduces the IIEE, bringing the ice-edge forecasts closer to the238

observations. In the Atlantic Sector, Short-SICSIT does not yield overwhelmingly better239

results than Short-SIC (Figure 2). The introduction of summer CryoSat-2 SIT observations240

gives rise to larger IIEE in May and June, while the IIEE differences are smaller in later241

months. Nevertheless, these mean IIEE differences are still in the range of ±0.5×105 km2,242

which is much smaller than the changes between Short-SIT and Short-CTRL. In the Atlantic243

sector Short-SIC is already close to the observations due to a reasonable CMST SIT estimate244

north of the Svalbard and Novaya Zemlya, so further improvements are rather limited.245

Note that, as shown by the solid lines representing the mean IIEE differences in Figure246

2, the effect of the summer CryoSat-2 SIT assimilation is gradually more evident in most of247

the months in the Short-SICSIT experiments. The improvements of Short-SICSIT relative248

to Short-SIC become larger with increasing lead time, while the deteriorations of IIEE249

become smaller, with the exception of the June 2016 forecasts.250

3.2 Long-term sea-ice forecast251

The Long-SIT experiments with summer CryoSat-2 SIT assimilation provides signif-252

icant benefits for ice-edge and thickness forecasts, as shown in Figure 3. Reductions in253

IIEEs are found in May, June and August in 2015 and in 2016 for the first 30 days (Figure254

3a, b). In July, the CryoSat-2 SIT assimilation is only effective for a few days due to the255

underestimated thickness uncertainties caused by melt ponds. The improvement in ice-edge256

forecast is also pronounced in September, for three weeks in 2015 and two weeks in 2016:257

As freezing begins, the IIEE difference gradually increases.258

With respect to the CS2SMOS SIT product, the predicted Arctic-wide thickness is also259

improved (Figure 3c, d), except for the forecast starting in July 2016, which degrades after260

140 days. The summer CryoSat-2 SIT mitigates the SIT overestimation in the Beaufort Sea261

in Long-CTRL that is initialized from the CMST state (not shown). The improvements262

are most pronounced in October, when the freezing season begins, and decrease exponen-263

tially with time until the forecast system falls into the control of the internal variability.264

This superior skill may even persist throughout the freezing season, similar to the previous265

findings on an optimal winter SIT initialization improving the predictive skill of summer266

sea ice (Blockley & Peterson, 2018). Consistent with the performance of the short-term267

forecasts in section 3.1, the reduction of SIT RMSD in 2015 is more significant than that in268

2016, because relatively small SIT difference between summer CryoSat-2 observations and269

the CMST estimate is observed in 2016.270

We also examine the performance of the long-term SIT forecasts at the BGEP sites271

(Figure S6). In general, significant improvements in the SIT forecasts are found in Long-SIT272

initialized in July, August and September of 2015. The differences between Long-SIT and273

Long-CTRL in 2016 are limited, not exceeding 30 cm most of the time. The forecasts tend274

to overestimate SIT in the early freezing season in the Beaufort Sea. To check if the reason275

is within the biases of long-term atmospheric forecasts, we performed additional forecast276

experiments in 2015 (not shown) with the same configuration as Long-CTRL, except that277

the CFSv2 atmospheric forecast is replaced by the ERA-5 reanalysis for the atmospheric278
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Figure 2. Box plot of the IIEE difference (105km2) between Short-SIT and Short-CTRL (left),
together with that between Short-SICSIT and Short-SIC (right) in the 7-day sea-ice forecasts. The
IIEE in the box plot is calculated after 7 days of assimilation when the summer CryoSat-2 SIT
is fully effective. Blue, red, green, purple and orange boxes indicate different summer months.
Colored boxes indicate IIEE difference between the lower and upper quartiles. Colored outliers
denote values more than 1.5 interquartile range from the top or bottom of the colored box. The
outer edges of the black lines denote the minimum and maximum values that are not outliers.
Solid-colored lines show the mean IIEE difference at each lead time. A positive value indicates an
increase in IIEE, when SIT is assimilated, while a negative value indicates a decrease in the IIEE.
Markers at the bottom of each panel indicate increases (cross) and decreases (circle) in IIEE that
pass the Student’s T-test at the 95% confidence level. Note that negative values indicate better
forecast skills.

forcing. The ERA-5 driven simulations show a similar overestimation of SIT in the Beaufort279

Sea. The anticyclonic wind in the Beaufort Gyre pushes excessively thick ice from the multi-280

year ice region north of the CAA into the Beaufort Sea as in Long-CTRL. This suggests281

that the overestimation is not mainly due to biases in the atmospheric forcing but imperfect282

model parameterizations and initial ice-ocean conditions.283
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Figure 3. The difference of the IIEE (105km2) in 2015 (a) and in 2016 (b), and the difference
of the RMSD of the SIT (m) in 2015 (c) and in 2016 (d) between the Long-SIT and Long-CTRL
forecasts initialized from May to September. The RMSD of the SIT is computed with respect to
the CS2SMOS product available from October to April, hence the staggered time series in (c) and
(d). Note that negative values indicate better forecast skill.

4 Summary284

This study examines the impact of summer CryoSat-2 SIT assimilation on short- and285

long-term sea-ice forecasts in 2015 and in 2016. The ice-edge forecasts with summer CryoSat-286

2 SIT assimilation are dramatically improved when compared to the experiments without287

any data assimilation. When the summer CryoSat-2 SIT data are assimilated together with288

SIC data, the effects on the ice-edge forecast skill are rather dependent on the time when the289

forecast is initialized and are spatially highly variable. In the Pacific sector, the combined290

assimilation of summer SIT and SIC observations leads to more realistic summer ice-edge291

forecasts with a one-week lead time.292

The long-term sea-ice forecasts show significant reductions in both IIEE and RMSD293

of the SIT, except for those initialized in July, when the summer CryoSat-2 SIT has large294

uncertainties. The improvement in ice-edge forecasts can last up to about 30 days, while for295

the SIT forecasts the benefits can last for more than 3 months. This result demonstrates296

that, although the atmospheric forecasts used to drive the model can evolve freely after297

about one month, the SIT initialization in summer remains a primary factor in predicting298

long-term SIT variations.299

However, limitations of the summer CryoSat-2 SIT data product still remain. The deep300

learning algorithm used has a certain degree of uncertainty in classifying ice leads and melt301

ponds, especially when the melt-pond fraction is large. The underestimation in the sum-302

mer CryoSat-2 SIT from July to September in the coastal regions north of the CAA and303

Greenland requires further work on the sea-ice freeboard and thickness retrieval algorithm304

–10–
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or exploration of new correction schemes to improve their reliability and accuracy. Further-305

more, it is still an open question how this product should be used for real-time Arctic sea-ice306

forecasting, since its uncertainty currently does not account for all the algorithm errors, and307

possible representation errors (Janjić et al., 2018) should be considered accurately.308

5 Open Research309

The ensemble mean Arctic sea-ice thickness (SIT) and sea-ice concentration (SIC) fore-310

cast data used in the study can be downloaded at Song et al. (2024). The file size of the311

forecast results with all ensemble members exceeds 50GB and can be made available upon re-312

quest through contact. The CMST SIT estimate is available at Mu et al. (2018a). The sum-313

mer CryoSat-2 SIT observations can be downloaded from Landy and Dawson (2022). The314

SSMI/SSMIS SIC data is avaliable from Kern et al. (2024). The UKMO atmospheric ensem-315

ble forecasts are avaliable in the THORPEX Interactive Grand Global Ensemble (TIGGE;316

Bougeault et al., 2010) archive (https://apps.ecmwf.int/datasets/data/tigge). The317

hourly ERA5 reanalysis is avaliable at Hersbach et al. (2023). The CFSv2 atmospheric fore-318

casts are avaliable at https://www.ncei.noaa.gov/products/weather-climate-models/319

climate-forecast-system. The PIOMAS (J. Zhang & Rothrock, 2003) data is provided320

at https://psc.apl.uw.edu/data. The NOAA/NSIDC SIC CDR data is avaliable at321

Meier et al. (2021). The CS2SMOS data is avaliable at https://www.meereisportal.de.322

Mooring observations from BGEP are downloaded from https://www2.whoi.edu/site/323

beaufortgyre.324
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Key Points:11

• Assimilating summer CryoSat-2 sea-ice thickness (SIT) observations makes more12

skillful Arctic ice-edge forecasts on multiple time scales.13

• The long-term SIT forecasts improve with the assimilation of summer CryoSat-14

2 SIT observations.15

• Further refinement is needed for summer CryoSat-2 SIT observations.16
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Abstract17

Proper Arctic sea-ice forecasting for the melt season is still a major challenge because of18

the recent lack of reliable pan-Arctic summer sea-ice thickness (SIT) data. A new summer19

CryoSat-2 SIT observation data set based on an artificial intelligence algorithm may alleviate20

this situation. We assess the impact of this new data set on the initialization of sea-ice21

forecasts in the melt seasons of 2015 and 2016 in a coupled sea ice-ocean model with data22

assimilation. We find that the assimilation of the summer CryoSat-2 SIT observations23

can reduce the summer ice-edge forecast error. Further, adding SIT observations to an24

established forecast system with sea-ice concentration assimilation leads to more realistic25

short-term summer ice-edge forecasts in the Arctic Pacific sector. The long-term Arctic-wide26

SIT prediction is also improved. In spite of remaining uncertainties, summer CryoSat-2 SIT27

observations have the potential to improve Arctic sea-ice forecast on multiple time scales.28

Plain Language Summary29

Arctic sea ice is rapidly declining due to global warming, especially in summer. Accu-30

rate sea-ice forecasting is important to understand the potential influence of these changes31

and devise effective responses. The performance of sea-ice forecasts highly depends on the32

accuracy of the initial sea-ice states. So refining the initial conditions of sea-ice forecasts33

with satellite observations is a common way to reduce forecast errors. However, obtain-34

ing reliable summer pan-Arctic satellite sea-ice thickness (SIT) data is challenging due to35

complex ice-surface conditions in summer. A new artificial-intelligence-based summer SIT36

satellite data product may mitigate this situation. We integrate this data set into a sea-ice37

forecast system to evaluate its impact on forecast accuracy. We find that the new sum-38

mer satellite SIT data can reduce short-term ice-edge location forecast errors and benefit39

long-term SIT forecasts.40

1 Introduction41

Arctic sea ice is declining at unprecedented speed (Rothrock et al., 1999; Comiso et al.,42

2008; Kwok & Rothrock, 2009; Stroeve et al., 2012), which would pose challenges to climatic43

and ecological stakeholders (Landrum & Holland, 2020). The Arctic Passage, opening up44

with the gradually melting summer sea ice, calls for accurate Arctic sea-ice prediction from45

daily to seasonal scales (Jung et al., 2016).46

Accurate initialization of sea-ice state is vital for predicting Arctic sea ice (e.g., Blanchard-47

Wrigglesworth et al., 2011; Guemas et al., 2016; Xie et al., 2016; Dirkson et al., 2017; Bushuk48

et al., 2022). The assimilation of sea-ice concentration (SIC) has improved the short-term49

sea-ice forecasts greatly as documented in the literature, and is now widely used at forecast-50

ing centers (e.g., Hebert et al., 2015; Lemieux et al., 2015). Sea-ice thickness (SIT) persists51

longer, therefore assimilation of SIT raises long-term sea-ice forecast skills even stronger52

(Day, Hawkins, & Tietsche, 2014; Shu et al., 2021; Mu et al., 2022).53

However, the potential impacts of summer SIT observations on sea-ice forecasts are54

not examined comprehensively yet due to a lack of data. An effective retrieval method for55

the remotely sensed SIT from May to September was missing (Laxon et al., 2013; Ricker et56

al., 2014). The complex summer ice-surface conditions restrict the application of classical57

algorithms designed for winter conditions. For instance, melt ponds which occupy a huge58

fraction of the sea-ice surface in the melt seasons (Maykut et al., 1992) complicate the clas-59

sification algorithms (Lee et al., 2018; Tilling et al., 2019) and introduce large uncertainties60

due to increased moisture in the snow (Drinkwater, 1991). On the other hand, in-situ Arctic61

SIT observations are rather scarce and localized. They can hardly be used in basin-scale62

assimilation systems.63
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In a recent study, Dawson et al. (2022) presented the first estimate of pan-Arctic summer64

sea-ice freeboard from radar altimeter by using a 1D convolutional neural network (CNN)65

to distinguish ice leads from melt ponds. Landy et al. (2022) converted summer CryoSat-266

radar freeboard to SIT and applied further corrections. The spring predictability barrier of67

the Arctic sea ice (e.g., Day, Tietsche, & Hawkins, 2014; Bushuk et al., 2017) suggests that68

sea-ice forecast should benefit from the initialization with SIT in the melt season (Bushuk et69

al., 2020). Therefore, it presents an opportunity to explore the extent to which the summer70

SIT observation could improve the real-time forecast skill. Min et al. (2023) demonstrated71

that assimilation of summer SIT corrects the overestimation in the Combined Model and72

Satellite Thickness (CMST; Mu et al., 2018b) product. Y.-F. Zhang et al. (2023) found73

that the assimilation of May to August CryoSat-2 SIT anomalies improves local SIC and74

sea-ice extent (SIE) forecasts in September. However, the influence of assimilating summer75

CryoSat-2 SIT observations on short-term sea-ice forecast in summer and on long-term76

forecast extending beyond September still needs to be investigated further.77

In this study, we focus on the impact of summer SIT observations on the daily and78

seasonal forecast skills of a sea-ice prediction modelling system. In particular, we perform79

a series of short- and long-term ensemble sea-ice forecasts where the sea ice-ocean initial80

state is constrained by the summer CryoSat-2 SIT or where these data are not used. The81

benefits and challenges of using these new SIT data are evaluated and critically discussed82

using independent sea-ice data.83

2 Data and Methods84

2.1 The coupled sea ice-ocean model85

We use a regional coupled sea ice-ocean model driven by atmospheric forecasts to con-86

figure the sea ice-ocean forecast system. The model is based on the Massachusetts Institute87

of Technology general circulation model (MITgcm; Marshall et al., 1997) and covers the88

pan-Arctic region with a horizontal resolution of around 18 km as in Losch et al. (2010).89

The sea-ice model uses a viscous-plastic rheology (Hibler III, 1979; J. Zhang & Hibler III,90

1997) and a so called zero-layer thermodynamic formulation without heat capacity (Semtner,91

1976; Parkinson & Washington, 1979). The readers are referred to Losch et al. (2010) and92

Nguyen et al. (2011) for more details on the model.93

2.2 Data assimilation and forecast94

The summer data assimilation system is initialized from restart files generated by CMST95

(Mu et al., 2018b) simulation with 11 ensemble members. CMST combines model physics96

with information from remote-sensed SIT and SIC observations. It successfully reproduces97

the spatio-temporal sea-ice variations (Mu et al., 2018b). The summer data assimilation98

and forecast strategy follows Mu et al. (2017) and Mu et al. (2019). A Local Error Subspace99

Transform Kalman Filter (Nerger et al., 2012) coded within the Parallel Data Assimilation100

Framework (Nerger et al., 2005) is used to assimilate the summer SIT and SIC observations101

separately or simultaneously. Then, the summer ensemble forecasts start from the new102

individual analyses and the model is integrated forced by the atmospheric forecasts (cf.103

Section 2.3).104

The CryoSat-2 summer SIT data set is derived from local variations in the CryoSat-2105

radar echo response using a deep learning method (Dawson et al., 2022; Landy et al., 2022).106

This is the first estimate of pan-Arctic summer SIT from satellite observations. However,107

the accuracy of the CryoSat-2 summer SIT still needs to be further improved after the108

correction introduced by Landy et al. (2022), for example over the regions north of the109

Greenland and the Canadian Arctic Archipelago (CAA). The summer SIT is assimilated110

into the system on a daily basis using the observations linearly interpolated between two111

biweekly records. Considering the shortcomings of the summer SIT over thick ice regions,112
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practical experience suggests that the observation uncertainties should be set higher than113

the original values over thick ice regions, while still using the provided errors over thin ice114

regions (Supporting Information). The SIC data used in the assimilation are computed at115

the French Research Institute for Exploitation of the Sea (IFREMER) based on the 85-GHz116

SSM/I and SSM/IS channels (Kaleschke et al., 2001; Spreen et al., 2008; Kern et al., 2010).117

The uncertainty of the SIC observation is set to a constant value of 0.25 following Yang,118

Losa, Losch, Jung, and Nerger (2015) and Yang et al. (2016).119

The short-term ensemble assimilation and forecast experiments are driven by the 174-120

hour atmospheric ensemble forecasts from the United Kingdom Met Office (UKMO) Ensem-121

ble Prediction System (EPS; Bowler et al., 2008). For the long-term prediction, the ensemble122

members are driven by deterministic atmospheric forcing (single member). The hourly Eu-123

ropean Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA-5; Hersbach et al.,124

2020) is used as the atmospheric forcing during the data assimilation, while the atmospheric125

forecasts from the National Center for Environmental Prediction Climate Forecast System126

Version 2 (CFSv2; Saha et al., 2014) are used for the 9-month long-term forecasts.127

2.3 Experiment design128

In order to investigate the potential impact of the CryoSat-2 summer SIT on sea-ice129

forecasts, this study designs both short-term (7 days) and long-term (270 days) forecasts130

(Table. 1). These experiments are conducted over different months. The short-term ex-131

periments in 2015, which cover the melt season, start from the CMST restart files on May132

1, May 31, June 30, July 30, and August 29, respectively. Each forecast experiment lasts133

for 30 days and on each day a 7-day sea-ice forecast is run using the atmospheric forcing134

from the daily UKMO ensemble forecasts. No data assimilation is applied in the con-135

trol run of the short-term forecasts (Short-CTRL). The Short-SIT experiments assimilate136

only the CryoSat-2 summer SIT data, and the Short-SIC experiments assimilate only the137

SSMI/SSMIS SIC data, while both data sets are assimilated in the Short-SICSIT experi-138

ments. For the 2016 experiments, only the start dates are changed to match the available139

restart files from CMST (Table. 1).140

The long-term forecast experiments are designed to diagnose the persistence of the141

assimilated CryoSat-2 summer SIT over the months from the melt season to the freezing142

season. The Long-SIT experiments with SIT assimilation start each summer month from143

CMST restart files and a daily data assimilation step iterating over 15 days is performed144

to mitigate abrupt SIT changes. Over that period, ERA5 atmospheric reanalysis forcing is145

used. Then, the 270-day sea-ice forecasts start from the sea-ice analysis restart files and are146

forced by the CFSv2 operational atmospheric forecasts. No data assimilation is performed147

in the Long-CTRL experiments. The forecast start dates are listed in Table 1.148

2.4 Verification149

Simulation output from the Pan-Arctic Ice-Ocean Modeling and Assimilation System150

(PIOMAS; J. Zhang & Rothrock, 2003) is employed for the comparison with the assimilation151

results. PIOMAS is constrained by SIC and sea surface temperature observations. Its152

modeled SIT has been validated to be comparable to in-situ observations and has been153

widely used in previous studies.154

The integrated ice-edge error (IIEE; Goessling et al., 2016) is used to quantify the skill155

of the short-term ice-edge forecasts. It measures the discrepancy between the forecasted and156

observed SIE. The reference observation used in this study is the NOAA/NSIDC Climate157

Data Record (CDR) of Passive Microwave Sea Ice Concentration Version 4 (Meier et al.,158

2021).159

To validate the skill of the long-term sea-ice forecast, we compute the IIEE and the160

RMSD of SIT against various other products and in-situ observations. The IIEE is com-161
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Table 1. Summary of forecast experiments design. Short: short-term forecast. Long: long-term
forecast.

Experiment Assimilated data Forecast
duration
(days)

Atmospheric
forcing during
assimilation

Atmospheric
forcing during
forecast

Forecast
start date

Short-CTRL / 7 UKMO (11) UKMO (11) Daily fore-
cast start-
ing from
05/01/2015,

Short-SIT CryoSat-2 SIT 7 UKMO (11) UKMO (11) 05/31/2015,
06/30/2015,
07/30/2015,

Short-SIC SSMI/SSMIS
SIC

7 UKMO (11) UKMO (11) 08/29/2015,
04/25/2016,
05/25/2016,

Short-SICSIT SSMI/SSMIS
SIC and
CryoSat-2 SIT

7 UKMO (11) UKMO (11) 06/24/2016,
07/24/2016,
08/23/2016.

Long-CTRL / 270 ERA5 (1) CFSv2 (1) 05/16/2015,
06/15/2015,
07/15/2015,
08/14/2015,
09/13/2015,

Long-SIT CryoSat-2 SIT 270 ERA5 (1) CFSv2 (1) 05/10/2016,
06/09/2016,
07/09/2016,
08/08/2016,
09/07/2016.
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puted using the NOAA/NSIDC SIC CDR data. The RMSDs of SIT are computed with162

respect to the CS2SMOS products (Ricker et al., 2017). The SIT observations derived from163

ULS moorings maintained by the Beaufort Gyre Exploration Program (BGEP) are used164

for the forecast evaluation. The three moorings BGEP-A, BGEP-B, and BGEP-D, which165

provide year-round sea-ice draft observations, are located at (75.0°N, 150.0°W), (78.0°N,166

150.0°W) and (74.0°N, 140.0°W), respectively (Figure S1). The draft is converted to SIT167

by multiplying it by a constant factor of 1.1 as in Nguyen et al. (2011).168

3 Result169

3.1 Short-term ice-edge forecast170

An overview of the SIT states of PIOMAS, CryoSat-2, and the short-term experiment171

assimilation results in 2015 is shown in Figure 1 and in 2016 in Figure S2. In May and172

June, CryoSat-2 has similar SIT over the compact ice regions but thinner (by more than173

0.5 m) ice over the first-year ice regions compared to the PIOMAS SIT. This is more evident174

in July, August, and September, while the CryoSat-2 SIT is biased low over the central175

Arctic. Landy et al. (2022) pointed out that the roughness-induced electromagnetic range176

bias on the heavily-deformed ice in the coast regions north of the CAA and Greenland are177

responsible for these underestimates. In general, the SIT patterns of CryoSat-2 observations178

are more similar to the Short-CTRL patterns, which are the extensions of CMST, than to179

the PIOMAS patterns. Short-CTRL SIT patterns have thinner ice in the Beaufort Sea180

than the PIOMAS patterns, capturing an expected SIT distribution. This is not surprising181

since CMST is constructed by assimilating remote-sensed SIT during the freezing season182

until April (Mu et al., 2018b), while PIOMAS does not assimilate any SIT (J. Zhang &183

Rothrock, 2003).184

The area-averaged SIT differences between Short-SIT and Short-CTRL in May to185

September of 2015 are 0.10 m, -0.06 m, -0.37 m, -0.37 m and -0.39 m, respectively. Over-186

all, the area-averaged SIT differences are smallest in May and June, when the assimilation187

of the summer CryoSat-2 observations reduces the SIT in the Amerasian Basin and increases188

it in the Eurasian Basin. In the strong melt months of July, August and September, when189

the uncertainties of the CryoSat-2 SIT are at their maximum, the underestimation of the190

SIT over the multi-year ice regions, i.e., north of the CAA and Greenland, is remarkable.191

The differences can easily exceed -1 m and even reach -1.5 m. SIT is also reduced in most of192

the marginal ice zones, especially in the Beaufort Sea and the Chukchi Sea. CMST tends to193

overestimate late summer SIT in the marginal seas due to unrealistic covariances between194

SIC and SIT when abrupt increases in SIC are triggered by wind convergences (Mu et al.,195

2018b). The assimilation of CryoSat-2 SIT corrects this bias, resulting in a more reasonable196

estimate of SIT in the marginal seas.197

SIT assimilation has an important impact on SIC simulations through the physical198

connection between thickness and concentration (Xie et al., 2016; Mignac et al., 2022).199

Short-term forecast of ice edge, defined as the 15% SIC isoline, can be strongly influenced200

by SIT assimilation. Figure 2 shows the reduction of IIEE in the Pacific sector and Atlantic201

sector (regions shown in Figure S1). IIEE in each forecast experiment is given in Figure S3.202

The observed SIC used as the reference for the IIEE calculation is the NOAA/NSIDC SIC203

CDR. The difference in the ice-edge position between forecasts and observations in 2015 and204

2016 is displayed in Figure S4 and Figure S5.205

The impact of CryoSat-2 SIT assimilation on ice-edge forecasts varies with time and206

region. Compared to Short-CTRL, IIEE in Short-SIT is strongly reduced in most times207

and both sectors (Figure 2). In the Pacific sector, the ice-edge position in the forecasts208

is consistently overestimated in Short-CTRL. Assimilation of the summer SIT reduces the209

SIT of the forecasts near the ice edge, resulting in a better agreement between the ice-edge210

forecasts and the ice-edge observations from the satellite (Figure S4 and Figure S5).211
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Figure 1. SIT (m) in PIOMAS, CryoSat-2, Short-CTRL, Short-SIT, and the difference between
Short-SIT and Short-CTRL 15 days after the start in May to September of 2015. Note that
CryoSat-2 observations are two-week averages while the rest are daily SIT.

In May and June, only a slight improvement in IIEE is observed. However, in July,212

especially in 2015, IIEE increases. This can be attributed to the fact that the melt-pond213

fraction starts to increase in June and reaches its maximum in July (Feng et al., 2022).214

In particular, the melt-pond fraction in the Beaufort Sea peaked in 2015 during the 2000-215

2021 observation period (Xiong & Ren, 2023). The presence of excessive melt-pond fraction216

may lead to more misclassification of ice leads and melt ponds in the CryoSat-2 sea-ice217

freeboard retrieval using the CNN model, which affects the SIT analysis in the Pacific218

sector. Therefore, the underestimated SIT erroneously leads to a large ice-edge error in July219

of the Short-SIT experiments. This warrants further refinement of the artificial intelligence220

algorithm used for summer CryoSat-2 SIT retrieval. In late summer, the assimilation of221

CryoSat-2 SIT observations in Short-SIT leads to more skillful ice-edge forecasts, resulting222

in a statistically significant average reduction in IIEE of about 2.1×105 km2. For example,223

the assimilation of SIT allows the model to predict an ice-free ”cave” inside the Beaufort224

Sea in August 2015, while it is completely covered by sea ice in Short-CTRL (Figure S4).225

Furthermore, the ice-edge forecasts in the Atlantic sector are also improved, especially in226

June (about 0.8×105 km2) and July (more than 0.9×105 km2).227
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We further investigate the influences of SIC assimilation together with summer SIT228

assimilation on the ice-edge forecasts, considering the more important role of SIC observa-229

tions on summer sea-ice forecasts as documented in the literature (e.g., Posey et al., 2015;230

Yang, Losa, Losch, Liu, et al., 2015). Forecasts from the Short-SICSIT experiments are also231

compared to the Short-SIC experiments, which performs SIC assimilation only.232

In the Pacific sector, the additional SIT assimilation tends to yield more favorable ice-233

edge forecasts compared to Short-SIC (Figure 2). Similar to the IIEE differences between234

Short-SIT and Short-CTRL, the improvement in May and June between Short-SICSIT and235

Short-SIC is relatively small (only 3.0×103 km2 on average). In July, IIEE becomes smaller236

in 2015 but larger in 2016 relative to Short-SIC. In late summer, the analysis of summer237

SIT observations significantly reduces the IIEE, bringing the ice-edge forecasts closer to the238

observations. In the Atlantic Sector, Short-SICSIT does not yield overwhelmingly better239

results than Short-SIC (Figure 2). The introduction of summer CryoSat-2 SIT observations240

gives rise to larger IIEE in May and June, while the IIEE differences are smaller in later241

months. Nevertheless, these mean IIEE differences are still in the range of ±0.5×105 km2,242

which is much smaller than the changes between Short-SIT and Short-CTRL. In the Atlantic243

sector Short-SIC is already close to the observations due to a reasonable CMST SIT estimate244

north of the Svalbard and Novaya Zemlya, so further improvements are rather limited.245

Note that, as shown by the solid lines representing the mean IIEE differences in Figure246

2, the effect of the summer CryoSat-2 SIT assimilation is gradually more evident in most of247

the months in the Short-SICSIT experiments. The improvements of Short-SICSIT relative248

to Short-SIC become larger with increasing lead time, while the deteriorations of IIEE249

become smaller, with the exception of the June 2016 forecasts.250

3.2 Long-term sea-ice forecast251

The Long-SIT experiments with summer CryoSat-2 SIT assimilation provides signif-252

icant benefits for ice-edge and thickness forecasts, as shown in Figure 3. Reductions in253

IIEEs are found in May, June and August in 2015 and in 2016 for the first 30 days (Figure254

3a, b). In July, the CryoSat-2 SIT assimilation is only effective for a few days due to the255

underestimated thickness uncertainties caused by melt ponds. The improvement in ice-edge256

forecast is also pronounced in September, for three weeks in 2015 and two weeks in 2016:257

As freezing begins, the IIEE difference gradually increases.258

With respect to the CS2SMOS SIT product, the predicted Arctic-wide thickness is also259

improved (Figure 3c, d), except for the forecast starting in July 2016, which degrades after260

140 days. The summer CryoSat-2 SIT mitigates the SIT overestimation in the Beaufort Sea261

in Long-CTRL that is initialized from the CMST state (not shown). The improvements262

are most pronounced in October, when the freezing season begins, and decrease exponen-263

tially with time until the forecast system falls into the control of the internal variability.264

This superior skill may even persist throughout the freezing season, similar to the previous265

findings on an optimal winter SIT initialization improving the predictive skill of summer266

sea ice (Blockley & Peterson, 2018). Consistent with the performance of the short-term267

forecasts in section 3.1, the reduction of SIT RMSD in 2015 is more significant than that in268

2016, because relatively small SIT difference between summer CryoSat-2 observations and269

the CMST estimate is observed in 2016.270

We also examine the performance of the long-term SIT forecasts at the BGEP sites271

(Figure S6). In general, significant improvements in the SIT forecasts are found in Long-SIT272

initialized in July, August and September of 2015. The differences between Long-SIT and273

Long-CTRL in 2016 are limited, not exceeding 30 cm most of the time. The forecasts tend274

to overestimate SIT in the early freezing season in the Beaufort Sea. To check if the reason275

is within the biases of long-term atmospheric forecasts, we performed additional forecast276

experiments in 2015 (not shown) with the same configuration as Long-CTRL, except that277

the CFSv2 atmospheric forecast is replaced by the ERA-5 reanalysis for the atmospheric278
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Figure 2. Box plot of the IIEE difference (105km2) between Short-SIT and Short-CTRL (left),
together with that between Short-SICSIT and Short-SIC (right) in the 7-day sea-ice forecasts. The
IIEE in the box plot is calculated after 7 days of assimilation when the summer CryoSat-2 SIT
is fully effective. Blue, red, green, purple and orange boxes indicate different summer months.
Colored boxes indicate IIEE difference between the lower and upper quartiles. Colored outliers
denote values more than 1.5 interquartile range from the top or bottom of the colored box. The
outer edges of the black lines denote the minimum and maximum values that are not outliers.
Solid-colored lines show the mean IIEE difference at each lead time. A positive value indicates an
increase in IIEE, when SIT is assimilated, while a negative value indicates a decrease in the IIEE.
Markers at the bottom of each panel indicate increases (cross) and decreases (circle) in IIEE that
pass the Student’s T-test at the 95% confidence level. Note that negative values indicate better
forecast skills.

forcing. The ERA-5 driven simulations show a similar overestimation of SIT in the Beaufort279

Sea. The anticyclonic wind in the Beaufort Gyre pushes excessively thick ice from the multi-280

year ice region north of the CAA into the Beaufort Sea as in Long-CTRL. This suggests281

that the overestimation is not mainly due to biases in the atmospheric forcing but imperfect282

model parameterizations and initial ice-ocean conditions.283
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Figure 3. The difference of the IIEE (105km2) in 2015 (a) and in 2016 (b), and the difference
of the RMSD of the SIT (m) in 2015 (c) and in 2016 (d) between the Long-SIT and Long-CTRL
forecasts initialized from May to September. The RMSD of the SIT is computed with respect to
the CS2SMOS product available from October to April, hence the staggered time series in (c) and
(d). Note that negative values indicate better forecast skill.

4 Summary284

This study examines the impact of summer CryoSat-2 SIT assimilation on short- and285

long-term sea-ice forecasts in 2015 and in 2016. The ice-edge forecasts with summer CryoSat-286

2 SIT assimilation are dramatically improved when compared to the experiments without287

any data assimilation. When the summer CryoSat-2 SIT data are assimilated together with288

SIC data, the effects on the ice-edge forecast skill are rather dependent on the time when the289

forecast is initialized and are spatially highly variable. In the Pacific sector, the combined290

assimilation of summer SIT and SIC observations leads to more realistic summer ice-edge291

forecasts with a one-week lead time.292

The long-term sea-ice forecasts show significant reductions in both IIEE and RMSD293

of the SIT, except for those initialized in July, when the summer CryoSat-2 SIT has large294

uncertainties. The improvement in ice-edge forecasts can last up to about 30 days, while for295

the SIT forecasts the benefits can last for more than 3 months. This result demonstrates296

that, although the atmospheric forecasts used to drive the model can evolve freely after297

about one month, the SIT initialization in summer remains a primary factor in predicting298

long-term SIT variations.299

However, limitations of the summer CryoSat-2 SIT data product still remain. The deep300

learning algorithm used has a certain degree of uncertainty in classifying ice leads and melt301

ponds, especially when the melt-pond fraction is large. The underestimation in the sum-302

mer CryoSat-2 SIT from July to September in the coastal regions north of the CAA and303

Greenland requires further work on the sea-ice freeboard and thickness retrieval algorithm304
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or exploration of new correction schemes to improve their reliability and accuracy. Further-305

more, it is still an open question how this product should be used for real-time Arctic sea-ice306

forecasting, since its uncertainty currently does not account for all the algorithm errors, and307

possible representation errors (Janjić et al., 2018) should be considered accurately.308

5 Open Research309

The ensemble mean Arctic sea-ice thickness (SIT) and sea-ice concentration (SIC) fore-310

cast data used in the study can be downloaded at Song et al. (2024). The file size of the311

forecast results with all ensemble members exceeds 50GB and can be made available upon re-312

quest through contact. The CMST SIT estimate is available at Mu et al. (2018a). The sum-313

mer CryoSat-2 SIT observations can be downloaded from Landy and Dawson (2022). The314

SSMI/SSMIS SIC data is avaliable from Kern et al. (2024). The UKMO atmospheric ensem-315

ble forecasts are avaliable in the THORPEX Interactive Grand Global Ensemble (TIGGE;316

Bougeault et al., 2010) archive (https://apps.ecmwf.int/datasets/data/tigge). The317

hourly ERA5 reanalysis is avaliable at Hersbach et al. (2023). The CFSv2 atmospheric fore-318

casts are avaliable at https://www.ncei.noaa.gov/products/weather-climate-models/319

climate-forecast-system. The PIOMAS (J. Zhang & Rothrock, 2003) data is provided320

at https://psc.apl.uw.edu/data. The NOAA/NSIDC SIC CDR data is avaliable at321

Meier et al. (2021). The CS2SMOS data is avaliable at https://www.meereisportal.de.322

Mooring observations from BGEP are downloaded from https://www2.whoi.edu/site/323

beaufortgyre.324
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The observation uncertainty used in the assimilation and forecast system includes mea-

surement errors and representation errors (Janjić et al., 2018). Considering the under-

estimation of the CryoSat-2 (CS2) summer SIT observations, in our study, the total

uncertainty (σ) is determined by taking into account both the observational errors (σCS2)

provided in the CS2 SIT dataset and the corrected errors (σcorr) estimated based on the

spatial distribution of the CMST SIT, as σ = max(σCS2, σcorr). We take a piecewise form

for σcorr, which is a function of the SIT of a reference product. It is set to 0.5 m when

CMST SIT values are between 2.5 and 3.0 m, and 1.0 m when CMST SIT is greater than

4.0 m. A linear interpolation between 0.5 and 1.0 m is utilized for the CMST SIT between

3.0-4.0 m. Note that this correction is most important when the CS2 SIT uncertainty

peaks annually, specifically in the range of 0.4-0.8 m in multi-year ice regions from July

to August.
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Figure S1. Study area of ice-edge forecasts and the location of BGEP moorings. This figure

is plotted with Ocean Data View (Schlitzer, 2023).
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Figure S2. Same as Figure 1, but in 2016
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Figure S3. Box plot of IIEE. The forecasted IIEE is calculated after 7 days of assimilation,

when the summer CryoSat-2 SIT takes full effect. Blue, red, green, and purple boxes refer

to IIEE in Short-CTRL, Short-SIT, Short-SIC, and Short-SICSIT, respectively. Colored boxes

indicate IIEE between the lower and upper quartiles. Colored outliers denote values more than

1.5 interquartile range away from the top or bottom of the box. The outer edges of the black

lines denote the minimum and maximum of the values that are not outliers. Solid lines show the

mean IIEE in each month and region.
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Figure S4. The 7-day lead time ice-edge forecasts from the 18th day after the initialization

in May to September in 2015. Red lines indicate the NSIDC observed ice edge. The color scale

shows the sea-ice probability computed from the 11 ensemble members.
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Figure S5. Same as Figure S4, but in 2016
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Figure S6. Long-term SIT forecasts at the sites of BGEP-A, BGEP-B, and BGEP-D. Black

lines show the 7-day average SIT from the BGEP ULS, red lines indicate the SIT from Long-SIT,

while blue lines show the SIT from Long-CTRL.
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