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Abstract

A comprehensive survey and subject-expert interviews conducted among agricultural researchers investigated perceived value

and barriers to the adoption of unoccupied aerial systems (UAS) in agricultural research. The study involved 154 respon-

dents from 21 countries representing various agricultural sectors. The survey identified three key applications considered most

promising for UAS in agriculture: precision agriculture, crop phenotyping/plant breeding, and crop modeling. Over 80% of

respondents rated UAS for phenotyping as valuable, with 47.6% considering them very valuable. Among the participants, 41%

were already using UAS technology in their research, while 49% expressed interest in future adoption. Current users highly

valued UAS for phenotyping, with 63.9% considering them very valuable, compared to 39.4% of potential future users. The

study also explored barriers to UAS adoption. The most commonly reported barriers were the “High cost of instruments/devices

or software” (46.0%) and the “Lack of knowledge or trained personnel to analyze data” (40.9%). These barriers persisted as

top concerns for both current and potential future users. Respondents expressed a desire for detailed step-by-step protocols

for drone data processing pipelines (34.7%) and in-person training for personnel (16.5%) as valuable resources for UAS adop-

tion. The research sheds light on the prevailing perceptions and challenges associated with UAS usage in agricultural research,

emphasizing the potential of UAS in specific applications and identifying crucial barriers to address for wider adoption in the

agricultural sector.
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Core Ideas 16 

1. Agriculture is transitioning from early to mainstream adoption of UAS technology. 17 

2. UAS technology is more valued by active users.  18 

3. The primary barrier to adoption is perceived as the cost of deploying UAS. 19 

4. Effective methods for encouraging adoption include providing detailed protocols and in-20 

person training. 21 

5. Multidisciplinary teams can accelerate UAS adoption. 22 

 23 
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Abstract: 24 

A comprehensive survey and subject-expert interviews conducted among agricultural researchers 25 

investigated perceived value and barriers to the adoption of unoccupied aerial systems (UAS) in 26 

agricultural research.  The study involved 154 respondents from 21 countries representing 27 

various agricultural sectors. The survey identified three key applications considered most 28 

promising for UAS in agriculture: precision agriculture, crop phenotyping/plant breeding, and 29 

crop modeling. Over 80% of respondents rated UAS for phenotyping as valuable, with 47.6% 30 

considering them very valuable. Among the participants, 41% were already using UAS 31 

technology in their research, while 49% expressed interest in future adoption. Current users 32 

highly valued UAS for phenotyping, with 63.9% considering them very valuable, compared to 33 

39.4% of potential future users. The study also explored barriers to UAS adoption. The most 34 

commonly reported barriers were the "High cost of instruments/devices or software" (46.0%) and 35 

the "Lack of knowledge or trained personnel to analyze data" (40.9%). These barriers persisted 36 

as top concerns for both current and potential future users. Respondents expressed a desire for 37 

detailed step-by-step protocols for drone data processing pipelines (34.7%) and in-person 38 

training for personnel (16.5%) as valuable resources for UAS adoption. The research sheds light 39 

on the prevailing perceptions and challenges associated with UAS usage in agricultural research, 40 

emphasizing the potential of UAS in specific applications and identifying crucial barriers to 41 

address for wider adoption in the agricultural sector. 42 

 43 

 44 

 45 

 46 
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Introduction  47 

Unoccupied aerial systems (UAS) fill a unique niche within a rapidly expanding remote sensing 48 

arsenal for agricultural research (Khanal et al., 2020). While satellite constellations provide a 49 

vast and autonomous source of field scale remote sensing data and sensor equipped ground 50 

vehicles monitor features under the plant canopy, UAS offers advantages in terms of very high-51 

resolution spatiotemporal data collection, speed and ease of deployment, and payload flexibility 52 

(Ayankojo, Thorp and Thompson, 2023). These advantages are particularly relevant for the crop 53 

(or animal herd) scouting and agricultural research communities. 54 

 55 

Commercial production of user-friendly hardware platforms and image processing tools have 56 

alleviated many of the technical hurdles that previously limited widespread UAS deployment yet 57 

outright adoption across agricultural research disciplines have lagged behind these technical 58 

achievements. Similarly, on U.S. farms, the use of drone, aircraft, or satellite imagery has not 59 

exceeded ten percent (McFadden, Njuki and Griffin, 2023). Financial constraints, insufficient 60 

technical knowledge, regulatory hurdles, lack of perceived value, and practitioner attitude are a 61 

few factors that may impede the rate at which new technologies are applied in agriculture. 62 

Understanding how the relative influence of these factors relate to UAS and developing a 63 

roadmap to alleviate such obstacles is an important objective toward realizing the impact of this 64 

technology in agriculture. 65 

 66 

In this study, we surveyed an international population of agricultural practitioners, researchers, 67 

and those working in adjacent roles to understand their adoption of UAS. We also conducted 68 

detailed in-person interviews with domain experts who currently utilize UAS technology in their 69 
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research program. We considered respondents demographics and their perceived value of drones 70 

as applied within their program. We examined perceived barriers to adoption and explored 71 

potential resources that could support adoption, including determining characteristics of the 72 

pipelines in use by current UAS users. With these findings, we propose steps to broaden 73 

accessibility to adoption of UAS in agricultural research. 74 

 75 

 76 

Methods 77 

We developed a survey in conjunction with the Montana State University Human Ecology 78 

Learning and Problem Solving (HELPS) Laboratory to examine UAS adoption in agricultural 79 

research. Institutional Review Board approval was obtained under number JL100821-EX. The 80 

survey includes branching sets of questions to target certain populations. One branch was 81 

focused on project directors or team leaders to inquire about team size and budgets. Current UAS 82 

users and those identifying as future UAS users were surveyed for barriers to UAS adoption and 83 

desired resources. Finally, another branch focused on current UAS users to determine pipelines 84 

in place. Common questions to all respondents assessed demographics and perceived value in 85 

using UAS for phenotyping in agricultural research. The anonymous results are available at 86 

https://github.com/Lachowiec-Lab/agDronesSurvey. 87 

 88 

Surveys were distributed through multiple mechanisms to solicit responses. Academic and 89 

professional societies identified as including research using UAS in relation to agriculture, and 90 

society administrators were requested to distribute the survey via listserv. The survey was 91 
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advertised during presentations as society meetings and through web-based workshops. Personal 92 

networks of the authors were also used to distribute the survey.  93 

 94 

A total of 154 surveys were completed or partially completed and analyzed. For calculating 95 

percentages, the denominator was determined based on the question’s completion rate, which 96 

varied across questions. In some cases, multiple options were available and the sum of 97 

percentages will exceed 100%. 98 

 99 

In-person interviews were performed between January 2022 and January 2023. With approval of 100 

all interviewees, transcriptions of the interviews can be found at the following repository: 101 

https://ars-usda.box.com/s/fop052vcb6rnoekqo5djiy4l6pbjoozx  102 

 103 

Statistical analyses and data visualization was completed using R (citation needed). Code is 104 

available at https://github.com/Lachowiec-Lab/agDronesSurvey. 105 

 106 

Results 107 

 108 

Survey respondents’ demographics and perceived value of UAS in agricultural research 109 

Respondents perform their agricultural research across 21 countries, though most respondents 110 

were from the United States (67.4%), with the second most represented countries tied for 5.2% 111 

from Brazil and Canada. Respondents were majority male (69.3%), white (73.6%) and between 112 

the ages of 30-39 (28.9%).  113 

 114 

https://ars-usda.box.com/s/fop052vcb6rnoekqo5djiy4l6pbjoozx
https://github.com/Lachowiec-Lab/agDronesSurvey
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Multiple sectors involved in agricultural phenotyping were well represented. Research 115 

institutions (non-university, non-profit) employed respondents at 28.8% and colleges or 116 

universities (not primarily undergraduate) at 26.7%. Private industry represented 22.6% of 117 

respondents. Other industries represented included government agencies (9.6%), primarily 118 

undergraduate academic institutions (6.2%), and self-employment (4.1%). 119 

 120 

A large diversity of study systems and topic areas were represented; however, certain crop 121 

groups and topics predominated. Allowing for multiple species to be selected, 45.9% of 122 

respondents study cereals, followed by rhizomes, tubers, roots, and bulb crops at 31.5%. 123 

Livestock and animal systems were also studied, but at much lower levels (1.5 and 6.6% of 124 

respondents, respectively). Over half (51.4%) identified agronomy as their primary area of 125 

research followed by breeding (41.1%) and statistics (17.8%). Approximately one third (33.8%) 126 

study pathogens. Interview respondents identified the applications of UAS as precision 127 

agriculture (75%), crop phenotyping / plant breeding (60%), and crop modeling (60%). 128 

 129 

We examined the perceived value of UAS for phenotyping across both users and non-users. 130 

More than four out of five rated UAS valuable (82.1%), almost half of these (47.6%) rated UAS 131 

as very valuable. Four percent rated UAS as minimally valuable, and all respondents found some 132 

value in UAS for phenotyping. Respondents also provided information about their use of UAS, 133 

and the perceived value of UAS varied across groups (Fig. 1). More than nine out of ten 134 

respondents use (41%) or are interested in using (49%) UAS while 9% are not interested. Among 135 

those actively using UAS, 63.9 percent found UAS very valuable, nearly 25% higher than those 136 

reporting interest in using UAS in the future (39.4%). 137 
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 138 

 139 

Fig. 1. Perceived value of UAS for phenotyping in agricultural research stratified by UAS users and 140 

those identifying as future users. 141 

 142 

 143 

Barriers to and resources for UAS adoption 144 

The use of UAS has gained popularity in agricultural research (Aslan et al., 2022), with 41% of 145 

respondents currently employing UAS technology. However, "High cost of instruments/devices 146 

or software" (46.0%) and "Lack of knowledge or trained personnel to analyze data" (40.9%) 147 

ranked in the first and second position for reported barriers. We analyzed the data excluding 148 

responses from the United States and found similar barriers. We also found that both current and 149 

potential future users identified the same primary obstacles. Our qualitative interviews identified 150 
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these same barriers to entry with the lack of knowledge or trained personnel to collect or analyze 151 

data considered to be a larger bottleneck to adoption than equipment and software costs. 152 

 153 

Despite the consistency in the barriers reported, we found differences in the barriers that were 154 

less frequently faced by current and potential future users. The “Lack of validated and publicly 155 

available protocols”, was the third ranked barrier for current users, but was only ninth of thirteen 156 

ranked for potential future UAS users (Fig. 2a).  157 

 158 

The other major shift in ranked barriers was the “General lack of personnel to add more 159 

research” which shifted from fifth position for potential future UAS users to tenth position for 160 

current UAS users (Fig. 2a). We did not detect a difference in team size for future UAS users 161 

compared to current users, with both groups showing a similar distribution of team size (Fig. 2b, 162 

Χ2 = 1.8279 p = 0.609). Similarly, the distribution of funds was similar between future and 163 

current UAS users (Fig. 2c, Χ2 = 5.7734, p = 0.3289).  164 

 165 

In addition to the barriers listed in the survey as options, barriers listed by respondents included 166 

uncertainty of applicability of data, lack of data management solutions including metadata 167 

standards, lack of progress in color science, slow speeds of equipment, and competition with 168 

increasing satellite resolution.  169 

 170 



8 

 

 171 

 172 

Fig. 2. Barriers to UAS adoption and group resources. a) The rankings of barriers to adoption of UAS 173 

for phenotyping in agriculture are given for current users and future users. b) The team size and c) 174 

funding available for future and current users is shown. 175 

 176 
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We also surveyed the actual and expected resource needs of current and future users. The most 177 

needed resource was “Detailed step-by-step protocols for all stages of the drone processing 178 

pipeline” (34.7%) followed by “In-person training for personnel” (16.5%). Both US and non-US 179 

researchers agreed that detailed protocols are most important. Respondents identified additional 180 

needs including service providers for flights, outsourced data analysis, and database tools. 181 

 182 

Both current and future users primarily learned about UAS from colleague(s) or protocols 183 

developed and shared within teams or institutions (47.2%). However, outside the United States, 184 

the mode of information shifted to primarily protocols developed and shared within teams or 185 

institutions followed by publicly available protocols and YouTube/Vimeo. This was also 186 

reflected in the suggestions from domain expert interviews. A majority of our expert panel 187 

recommended partnering with subject matter experts in adjacent fields to establish work teams. 188 

Multiple respondents also expressed that they developed the information and data needed 189 

themselves. 190 

 191 

Landscape of collecting and processing UAS imagery-based data 192 

To understand the landscape of current UAS use, we next explored data resolution and current 193 

pipelines among current users. Users perform flights (50.0%) weekly, followed by 43.1% 194 

performing flights 2-6 times a year. Spatial resolution tended to be at the centimeter scale 195 

(57.7%), followed by the meter scale (51.1%). 196 

 197 

We also found commonalities in the choice of hardware and imaging. A clear majority of drones 198 

used are multirotor (93.1%). Similar numbers of users have red-green-blue (88.5%) and 199 
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multispectral sensors (80.3%) followed by thermal (45.9%). Ground control points are the most 200 

frequently used tool for georeferencing at this time (75.0%).  201 

 202 

Software for flight planning and data processing have many options available. Pix4Dcapture 203 

(47.3%) and DJI Flight Planner (45.5%) were the most popular flight planning software. 204 

Pix4DMapper was the most common tool for post processing (60.0%) followed by Agisoft 205 

Metashape 3D (34.5%). Multiple users (9.1%) reported processing images using Plot Phenix 206 

which was a write-in option on the survey. 207 

 208 

We explored how users are storing data collected using UAS. Most use institutional servers 209 

(58.3%), and hard drives (45.0%) (respondents could select more than one storage type). Most 210 

(69.0%) respondents would like to improve their current data storage protocol. And most (nearly 211 

sixty percent) would like to publicly share UAS imagery and / or derived data. 212 

 213 

Discussion 214 

Rogers (E.M. Rogers, 1995) conceptualized the process of innovation adoption as a bell-curve, 215 

where the x-axis represents time from early adoption to late adoption and the y represents the 216 

population of technology adopters. In this context, our survey suggests that the use of UAS in 217 

agriculture is in the early majority phase—it has been widely adopted with 41%  of respondents 218 

in our survey—with a large population ready to begin adoption. Although our survey was not a 219 

completely random sample of potential users, our surveys align with a clear trend that the field 220 

phenomics research community is transitioning from the early adoption to mainstream adoption 221 
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of UAS for agricultural research, what Moore (Moore, 2006) referred to as "crossing the chasm" 222 

of Roger's technology adoption curve. 223 

 224 

Results from this survey portray the perceived value of UAS technology is greater among active 225 

users than non-users (Fig. 1). This result suggests that active users have found applications where 226 

UAS technology reliably adds value within their enterprise (Moore, 2006). In-depth interviews 227 

with active UAS users identified: precision agriculture, plant breeding, and crop modeling as 228 

three of the most promising applications of UAS technology. The proportion of respondents 229 

which self-identify both as an active UAS user and working within these disciplines is congruent 230 

with this conclusion. 231 

 232 

The cost of deploying UAS within a research program is perceived to be the greatest barrier to 233 

entry. Surprisingly, there were no major financial or personnel resource differences between 234 

groups that had adopted UAS and those that had not. Equipment and software costs was the most 235 

commonly perceived bottleneck to adoption among non-users, whereas current users reported 236 

lack of personnel to analyze data as the most frequently encountered bottleneck. The largest 237 

difference between these groups was the lack of personnel to collect data, suggesting that current 238 

adopters have been able to hire or train certified UAS pilots. A breakdown estimate of hardware 239 

and software costs (Table 1) suggests that deploying UAS program may fit within the budget 240 

constraints of greater than 50% of the respondents, particularly if the hardware resources can 241 

serve more than a single research group simultaneously. Data collection is cost- and time-242 

effective, with minimal training required; in contrast, downstream analysis requires substantial 243 

time of individuals with training in computer programming, data science, and statistics. We 244 
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approximate that at minimum, 0.5 full time equivalent effort of a graduate student, post-doctoral 245 

scientist, or computationally inclined research associate will be required to set up the 246 

computational workflow to extract numerical data from drone images. 247 

 248 

Table 1. Approximate costs of initial UAS deployment in the United States in 2023 (excluding 249 

personnel) 250 

 251 

Component 

Minimum entry 

cost Premium options 

FAA Part 107 exam training course (per 

pilot) Optional $300  

FAA Part 107 Unmanned Aircraft General - 

Small (UAG) Exam (per pilot) $150  $150  

Drone (light-to-medium duty)     

     Open market  $500  $6,000  

     U.S. government compliant  $3,000  $15,000  

Drone (medium-to-heavy duty)     

     Open market  Optional $15,000  

     U.S. government compliant  Optional $35,000  

Extra batteries (per battery) Optional $700  

Landing Pad Optional $50  

Sensor     

     RGB 

Often integrated 

with drone $7,000  
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     Multispectral Optional $8,000  

     Multispectral and thermal Optional $16,000  

Real-Time Kinematic correction     

     Survey kit $3,000  $10,000  

     On-board integration Optional $1,000  

Ground Control Point Panels (5) $75  $4,000  

Remote ID module 

Integrated with 

some drones $350  

External hard drive (5 TB) $150  $150  

Computer  

Public computing 

resources $5,000  

Imagery processing software (yearly 

subscription) 

$0 (Open-source 

options)  $3,500  

ABC Fire extinguisher $100  $100  

 252 

 253 

 254 

Survey respondents indicated that informational resources; particularly detailed step-by-step 255 

protocols and in-person training were the most effective methods to encourage adoption. 256 

Generally, most respondents preferred to learn new techniques directly from their colleagues and 257 

from protocols developed and shared within their research group or institution. Indeed this 258 

approach is gaining traction as evidenced by several recently published protocols (Kefauver, 259 

Araus and Buchaillot, 2019; Matias et al., 2022; Bhandari et al., 2023). 260 

 261 
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Regulatory burden is another factor which is perceived to restrict drone utilization. In the United 262 

States, practitioners using a UAS that weigh between 255 grams and 25 kilograms for business 263 

purposes must obtain a Federal Aviation Administration Part 107 license by taking a certification 264 

test. This was identified as a bottleneck in both our survey and interviews with domain experts 265 

but can be alleviated through enrolling pilots in workshop style training courses designed to 266 

provide the knowledge required to pass the licensing exam. Hardware restrictions implemented 267 

under U.S. Executive Order 13981 and as part of Section 848 of the FY20 National Defense 268 

Authorization Act are somewhat controversial in the agricultural research community. Federal 269 

researchers in the United States are unable to purchase UAS instruments on the open market 270 

using federal funds and instead must purchase drones approved by the Department of 271 

Defense/Defense Innovation Unit’s Blue UAS certification program. In the short term, this 272 

restriction increases acquisition cost (Table 1) and greatly reduces the number options available. 273 

Additional regulations mandated under the U.S. Geospatial Data Act of 2018 promise to enhance 274 

the availability and quality of data collected using federal resources, but compliance will require 275 

the development and implementation of data quality standards, standardized metadata 276 

annotation, and computing platforms to realize the goals of this legislation.  277 

 278 

Based upon this survey and input from the domain experts interviewed we propose that UAS 279 

adoption can be accelerated through the formation of multi-disciplinary work teams that leverage 280 

the individual strengths of agronomists, geneticists, remote-sensing engineers, and statisticians. 281 

This approach will certainly help address knowledge gaps encountered between groups and 282 

enable dissemination of protocols, skills, and metadata through channels desired by our survey 283 

respondents. Cooperative projects that support field data collection, computing, and storage/data 284 
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management resources may help further reduce the costs of deployment. Although UAS 285 

technology has been demonstrated to make useful contributions in precision agriculture (Shi et 286 

al., 2016; Thorp et al., 2018, 2022; Sinha et al., 2022), plant breeding  (Crain et al., 2018; Sun et 287 

al., 2019; Rodene et al., 2022; Adak et al., 2023; Herr et al., 2023), and crop modeling (Zhou et 288 

al., 2016; Chu et al., 2017; Pugh et al., 2018; Anderson et al., 2019; Chandel et al., 2022), 289 

additional reports outlining utility will certainly enhance the value of UAS data to broader 290 

audiences and shape the attitude of agricultural practitioners. Afterall, perhaps the most exciting 291 

and valuable applications will be the ones we have not yet discovered. 292 
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