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Abstract

Earth system models are a powerful tool to simulate the response to hypothetical climate intervention strategies, such as

stratospheric aerosol injection (SAI). Recent simulations of SAI implement tools from control theory, called “controllers”, to

determine the quantity of aerosol to inject into the stratosphere to reach or maintain specified global temperature targets, such

as limiting global warming to 1.5\textdegree C above pre-industrial temperatures. This work explores how internal (unforced)

climate variability can impact controller-determined injection amounts using the Assessing Responses and Impacts of Solar

climate intervention on the Earth system with Stratospheric Aerosol Injection (ARISE-SAI) simulations. Since the ARISE-SAI

controller determines injection amounts by comparing global annual-mean surface temperature to predetermined temperature

targets, internal variability that impacts temperature can impact the total injection amount as well. Using an offline version of

the ARISE-SAI controller and data from CESM2 earth system model simulations, we quantify how internal climate variability

and volcanic eruptions impact injection amounts. While idealized, this approach allows for the investigation of a large variety

of climate states without additional simulations and can be used to attribute controller sensitivities to specific modes of internal

variability.
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Key Points:7

• We quantify how the ARISE-SAI controller responds to different patterns of in-8

ternal variability.9

• The impact from internal variability on the controller-determined injection is de-10

pendent on the background warming.11

• This method provides a straight-forward way to cheaply quantify controller sen-12

sitivity to internal variability.13
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Abstract14

Earth system models are a powerful tool to simulate the response to hypothetical cli-15

mate intervention strategies, such as stratospheric aerosol injection (SAI). Recent sim-16

ulations of SAI implement tools from control theory, called “controllers”, to determine17

the quantity of aerosol to inject into the stratosphere to reach or maintain specified global18

temperature targets, such as limiting global warming to 1.5°C above pre-industrial tem-19

peratures. This work explores how internal (unforced) climate variability can impact controller-20

determined injection amounts using the Assessing Responses and Impacts of Solar cli-21

mate intervention on the Earth system with Stratospheric Aerosol Injection (ARISE-SAI)22

simulations. Since the ARISE-SAI controller determines injection amounts by compar-23

ing global annual-mean surface temperature to predetermined temperature targets, in-24

ternal variability that impacts temperature can impact the total injection amount as well.25

Using an offline version of the ARISE-SAI controller and data from CESM2 earth sys-26

tem model simulations, we quantify how internal climate variability and volcanic erup-27

tions impact injection amounts. While idealized, this approach allows for the investiga-28

tion of a large variety of climate states without additional simulations and can be used29

to attribute controller sensitivities to specific modes of internal variability.30

Plain Language Summary31

Stratospheric aerosol injection (SAI) is a proposed climate intervention strategy32

that injects aerosols into the stratosphere to mitigate some climate change impacts. Sev-33

eral studies that have used climate models to investigate how the atmosphere may re-34

spond to SAI implement “controllers” to determine how much aerosol to inject and where35

in order to achieve certain climate targets. This work explores how changes to the con-36

troller input can impact the amount of aerosol injected by a controller. Here we focus37

on the controller from the Assessing Responses and Impacts of Solar climate interven-38

tion on the Earth system with Stratospheric Aerosol Injection (ARISE-SAI) simulations.39

This specific controller uses the annual-mean surface temperature to determine how much40

aerosol to inject. Therefore, internal variability that impacts temperature can impact41

the total injection amount as well. To quantify how patterns of internal variability im-42

pact how much aerosol is injected, we isolate the ARISE-SAI controller and pass a va-43

riety of temperature patterns into it. While this method ignores some interactions be-44

tween the controller and the climate simulation, it is a quick way to quantify the con-45

troller’s sensitivity to a large variety of temperature patterns without additional simu-46

lations.47

1 Introduction48

Current actions and plans by global nations to reduce greenhouse gas emissions may49

not be enough to keep global warming under 2°C (Liu & Raftery, 2021; Raftery et al.,50

2017). Climate intervention strategies have been proposed as a solution to reduce some51

of the negative consequences associated with climate warming (Crutzen, 2006; Cicerone,52

2006; National Academies of Sciences, Engineering, and Medicine, 2021). Stratospheric53

aerosol injection is one such strategy where global temperature increases could be reduced54

by reflecting a small percentage of incoming solar radiation with sulfate aerosols or other55

substances in the stratosphere. The magnitude and pattern of cooling is determined by56

the amount and location of sulfur dioxide (SO2) injected into the stratosphere which forms57

the sulfate aerosols (Tilmes et al., 2017).58

Several modeling projects have been conducted to understand how the climate sys-59

tem may respond to additional SO2 in the stratosphere (Rasch et al., 2008; Kravitz et60

al., 2013, 2015; Tilmes et al., 2018; Richter et al., 2022). Many of these simulations im-61

plement ”feedback control”, a method from control theory, to maintain the system at62

pre-established targets (MacMartin et al., 2014; Tilmes et al., 2018; Richter et al., 2022).63
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For example, the Assessing Responses and Impacts of Solar climate intervention on the64

Earth system with Stratospheric Aerosol Injection (ARISE-SAI) simulations use a proportional-65

integral control algorithm, also known as a controller, to determine how much SO2 to66

inject into the stratosphere in order to maintain pre-established temperature targets (Richter67

et al., 2022; Kravitz et al., 2017).68

When a controller is implemented in simulations to maintain specified character-69

istics of the climate, the controller and the simulated climate system will impact each70

other. By design, the simulated climate system responds to the amount and location of71

the SO2 injection determined by the controller; however, the controller is also impacted72

by variability in the climate system. A handful of studies have begun to explore how the73

controller and the system impact each other. For example, MacMartin et al. (2014) show74

that the way in which the controller is tuned and the lag between the controller input75

and the response of the system can impact the internal variability of the climate system.76

Diao et al. (2023) use data from the ARISE-SAI simulations to show that ENSO accounts77

for 70% of the year-to-year variability in injection anomalies determined by the controller.78

In this work, we pass temperature maps with different internal variability patterns79

into an offline version of the AIRSE-SAI controller to further explore and quantify how80

internal variability impacts SO2 injection amounts. This controller keeps global mean81

surface temperature near 1.5°C while also maintaining temperature gradients so that at-82

mospheric circulations are minimally impacted. The controller accomplishes this by com-83

paring the global temperature (T0), the north-south temperature gradient (T1) and the84

Equator-to-pole temperature gradient (T2) to predetermined targets of 288.64, 0.8767,85

and -5.89 respectively (MacMartin et al., 2014; Kravitz et al., 2017). Deviations between86

the T0, T1, and T2 values calculated from model output and the individual predeter-87

mined targets are used by the controller to determine how much SO2 to inject at four88

different locations (30°N, 15°N, 15°S, 30°S). Since the controller determines injection amounts89

based on deviations of T0, T1, and T2 from their respective targets, global and regional90

temperature patterns driven by internal climate variability can impact injection amounts.91

2 Methods92

The ARISE-SAI controller sensitivity to internal variability is quantified by cre-93

ating controller inputs, for which the warming pattern and the patterns of internal vari-94

ability are known, and passing them to the controller. The way in which the warming95

patterns and patterns of internal variability are calculated is provided in section 2.1. An96

offline version of the ARISE-SAI controller is used to explore a large range of climate97

states without having to run additional simulations, and details about the changes made98

to the ARISE-SAI controller are in section 2.2.99

2.1 Controller Inputs100

Every controller input map contains one forced component which describes the cli-101

mate warming trend. The forced component, or base state, is defined as the smoothed102

annual-mean ensemble mean near surface temperature using years 2035 to 2070 from the103

10 member ARISE-SAI control simulation (ARISE-SAI-CTRL; (Richter et al., 2022)).104

However, since 10 members are not enough to remove all internal variability (Deser et105

al., 2012), the ensemble mean is smoothed by fitting a 3rd order polynomial to the time106

series at each grid point. The smoothed data that results from fitting the polynomial is107

used as the base states.108

Unforced components, or internal variability patterns, are defined as monthly tem-109

perature anomalies composited based on internal variability events. This work focuses110

on variability associated with the El-Niño Southern Oscillation (ENSO; (Trenberth, 1997))111

phenomenon, the Southern Annular Mode (SAM; (Ho et al., 2012)), the North Atlantic112
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Oscillation (NAO; (Hurrell & Deser, 2010)), and the eruption of Mt. Pinatubo (Holasek113

et al., 1996). These modes of variability are selected because each produces strong tem-114

perature anomalies in different regions of the globe. ENSO influences temperature pre-115

dominantly at low latitudes, the NAO predominantly influences temperature at the high116

latitudes of the Northern Hemisphere, the SAM predominantly influences temperature117

the high latitudes of the Southern Hemisphere, and a Pinatuno-like volcanic eruption118

predominantly influences temperatures globally. Internal variability patterns of inter-119

est are added onto a base state to quantify their impacts on total injection amounts.120

The climate indices used to composite temperature anomalies associated with ENSO,121

NAO, and SAM events are calculated using, sea surface temperature, and sea level pres-122

sure. Methods used to calculate each climate index are as follows:123

1. ENSO index is defined by the ENSO 3.4 index (Trenberth, 1997) based on the five124

month average sea surface temperature within the 5°N-5°S, 120-170°W region.125

2. The NAO index is defined by the principal component time series of the leading126

empirical orthogonal function of surface pressure anomalies within 20-80°N, 90°W-127

40°E (Hurrell & Deser, 2010).128

3. The SAM index is calculated as the principal component of the leading empiri-129

cal orthogonal function of sea level pressure over the region 20-90°S (Ho et al., 2012).130

Anomalies used in the internal variability composites are calculated by subtract-131

ing the smoothed ensemble mean from each ensemble member and removing the seasonal132

cycle. Monthly temperature anomalies are used instead of annual to increase the amount133

of the data that goes into each composite. To support the robustness of the results, anoma-134

lies from years 2035-2070 from the 100 member CESM2 Large Ensemble historical sim-135

ulation (CESM2-LE; (Rodgers et al., 2021)) are also used.136

Despite ARISE-SAI using a moderate emissions scenario and CESM2-LE utaliz-137

ing a moderate to high emissions scenario, our results are not impacted because the en-138

semble means are removed when calculating anomalies. The temperature anomaly pat-139

tern associated with the Mt. Pinatubo eruption is defined as the average temperature140

anomaly two years following the eruption (June 1991 - June 1993). Using the 100 mem-141

ber CESM2-LE. The climate warming trend is estimated by fitting a line at every grid142

point to the ensemble mean surface temperature anomalies time series 10 years prior to143

the eruption (May 1981 - May 1991). This line is extrapolated to June 1993, two years144

following the eruption, and then subtracted from the ensemble mean. Assuming the in-145

ternal variability is removed by calculating the ensemble mean of 100 members and that146

the linear fit represents a short term continued warming trend, subtracting the linear fit147

from the ensemble mean estimates the temperature anomalies associated with the erup-148

tion of Mt. Pinatubo.149

2.2 Changes to the Controller150

The ARISE-SAI controller is a proportional-integral control algorithm, or PI con-151

troller (Åström & Murray, 2021). With a PI controller, the proportional term accounts152

for the current error between model output and the predetermined targets and the in-153

tegral term accounts for any persistent errors in time. Constants, called gains, are tuned154

to determine how much of each component is needed to maintain the system at the user-155

specified targets (Jarvis & Leedal, 2012; MacMartin et al., 2014; Åström & Murray, 2021).156

The active controller in the ARISE-SAI simulations has a ramp up time of five years,157

which reduces shock to the system, and considers errors from previous years in the cal-158

culation via the integral portion of the controller. For more details about the complete159

ARISE-SAI simulations and its active controller, please refer to Richter et al. (2022) and160

Kravitz et al. (2017) and the sources within. This work utilizes an offline version of the161

ARISE-SAI controller where the gain values are kept the same (i.e. no addition tuning)162
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but the controller is not connected to an active simulation. A couple of additional changes163

are made to the offline ARISE-SAI controller for this work. First, the ramp up period164

is reduced from five years to one year because this work focuses on how internal vari-165

ability impacts the total injection and doesn’t need to worry about shocking the system.166

Second, the offline controller only receives one input at a time, therefore the controller167

does not have errors from previous years to use when calculating an injection amount168

for the current input. These changes ensure that when a temperature pattern is fed through169

the controller, the injection amount is determined by a single temperature pattern and170

not an evolving state.171

3 Results172

In this study, we focus on base states from year 2035 and year 2045 from the ARISE-173

SAI-CTRL. This replicates when SAI starts in the ARISE-SAI simulations and when SAI174

starts in the delayed intervention simulations (MacMartin et al., 2022). The delayed start175

simulations reduce temperature to the same ARISE-SAI targets and are designed to in-176

form the impacts associated with delaying a decisions about SAI for 10 years. The to-177

tal injection when only the base states are passed into the controller quantifies the to-178

tal injection in response to the climate warming signal. For the base states of 2035 and179

2045, the injections are 0.43 Tg/year and 1.44 Tg/year, respectively. Patterns of inter-180

nal variability are then added onto these base states to create new controller inputs that,181

when passed into the controller, quantify the impact of internal variability on the total182

injection amounts.183

Consider the three patterns shown in Scenario (a) in Figure 1: the base state from184

2035, the temperature anomaly pattern associated with an ENSO index between 1.0 and185

1.2, and the temperature anomaly pattern associated with NAO index between -1.2 and186

-1.0. When these three patterns are added together and then passed into the controller,187

the controller injects 0.71 Tg/year of SO2 into the stratosphere. Adding the same inter-188

nal variability patterns onto the base state 2045 (Scenario 2), the total injection increases189

to 1.56 Tg/year. The patterns of internal variability shown in Figure 1 are responsible190

for increasing the total injection by 0.28 Tg/year in 2035 and by 0.12 Tg/year in 2045.191

These increases are similar in magnitude, but in relation to the base injection, the im-192

pact from internal variability decreases from 2035 to 2045 by a factor of eight: 65.1% com-193

pared to 8.3%. This shows that while identical internal variability patterns added to 2035194

and 2045 will always cause the T0, T1, and T2 values to deviate from their individual195

target values by the same amount, the amount of SO2 injected in response to internal196

variability in 2035 is not equal to the amount of SO2 injected in response to the same197

internal variability in 2045.198

Since the impacts from internal variability on the controller-determined total in-199

jection depends on the base state, the ENSO, NAO, and SAM impacts on the total in-200

jection amounts are quantified as percent change using the 2035 and 2045 base states201

in Figure 2 (Figure 2 but for total change is in Supporting Information S1). Warm ENSO202

events increase the amount of SO2 injected and cold ENSO events decrease the amount203

SO2 injected (Figure 2a). This is not surprising considering that positive ENSO events204

are shown to increase the global average temperature, while negative events do the op-205

posite (Angell, 1990). The stronger the ENSO event, the greater the impact on the to-206

tal injection, although, the impact of ENSO anomalies on the controller decreases sub-207

stantially from year 2035 to year 2045. This is because as the climate warming signal208

increases, the ENSO internal variability pattern is a smaller percentage of the input and209

so it plays a smaller role in the total injection amount.210

The NAO has a smaller impact on the total injection in 2035 when compared to211

ENSO and its impact switches signs from 2035 to 2045. The SAM also has a smaller im-212

pact on the total injection then ENSO but its impact doesn’t change from 2035 to 2045.213
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Figure 1. Schematic showing patterns that make up two different controller inputs. The base

injection is the amount injected given only the base state while the new injection is the injection

amount when all components are summed. Percent change shows how much internal variability

changes the total injection as a function of the base state.
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Figure 2. Percent change in total SO2 injection as a function of (a) ENSO, (b) NAO, and

(c) SAM events. Solid lines use data from ARISE-SAI-CTRL and dashed lines use data from

CESM2-LE. Green lines use year 2035 base state and orange lines use year 2045 base state. Black

dashed line marks zero percent change.
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Figure 3. Percent change in total SO2 injection as a function of two internal variability in-

dices using composites from the CESM2-LE. Top row uses the year 2035 base state and bottom

row uses the year 2045 base state. Black line in each panel separates positive percent change (red

shading) from negative percent change (blue shading).

Similar SAM and NAO impacts exist in both the ARISE-SAI-CTRL and CESM2-LE214

data and are therefore likely not a result of noise in the composites, but an impact of215

the internal variability itself. In Figure 2, the base state pattern is the only difference216

between the green and orange lines in each panel, further demonstrating how the same217

internal variability pattern can have a different impact depending on the background state.218

Taking our analysis one step further, Figure 3 shows how injection amount changes219

as a function of the combination of two climate indices with the top row depicting the220

base state from year 2035 and the bottom row year 2045. Given that the controller re-221

sponds similarly whether anomalies are calculated from ARISE-SAI-CTRL or CESM2-222

LE data, Figure 3 shows results only using CESM2-LE anomalies. Results using ARISE-223

SAI-CTRL are in Supporting Information S2.224

Adding two internal variability patterns onto a base state can increase or decrease225

the total injection more than the individual internal variability patterns (Fig. 3). When226

using the 2035 base state, the largest impacts typically occur when the internal variabil-227

ity events are the strongest, as shown by the largest magnitudes of percent change found228

in the corners of the top row panels in Figure 3. For a base state year of 2045 (bottom229

row), we find that the largest magnitude changes no longer necessarily occur when the230

internal variability events are strongest. For instance, when the NAO is positive, the strongest231

impact to the total injection occurs when the ENSO index is near one rather than two232

(Fig. 3d). When looking at the T0, T1, and T2 errors for the individual temperature233

patterns in Figure 3 (not shown), the sign of the T1 error relative to the T1 target (.8767)234
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Figure 4. Mt. Pinatubo’s impact on the total injection where (a) are the temperature anoma-

lies associated with the Mt. Pinatubo eruption (volcano component of controller input). The

new injection is the total SO2 injected given the base state and the volcano component. Per-

cent change shows as a function of the base state, how much the Mt. Pinatubo eruption changes

the total injection. Panels (b), (c), and (d) are similar to Figure 2 but also include the volcano

component in the controller input.

changes sign from negative in 2035 to positive in 2045 while the sign of T0 and T2 er-235

rors stay the same. The T1 value describes the north-south temperature gradient where236

a positive T1 value means the Northern Hemisphere is warmer than the Southern Hemi-237

sphere and so the sign change in T1 errors is likely in response to the uneven hemispheric238

warming that occurs in response to climate change.239

We now explore the controller sensitivity to a volcanic eruption represented by the240

temperature anomaly pattern associated with the 1991 Mt. Pinatubo eruption (Figure241

4a). Introducing the volcanic eruption temperature pattern to the 2035 and 2045 base242

states decreases the amount of SO2 the ARISE-SAI controller injects. When the volcanic243

pattern is added to the 2035 base state alone, the controller injects nothing and when244

added to the 2045 base state, the injection decreases by about 40%. The Mt. Pinatubo245

eruption injected approximately 10 Tg of SO2 into the stratosphere (Wilson et al., 1993;246

Bluth et al., 1992) and previous work estimates that it cooled the Earth’s surface by 0.5°C247

(Parker et al., 1996). Therefore, a volcanic eruption the size of the Mt Pinatubo erup-248

tion would reduce the errors in T0 and thus decrease the total injection determined by249

the controller. In 2035, the global cooling is response to a Pinatubo-like eruption is enough250

to negate all experienced global-mean warming (at least from the controller’s perspec-251

tive), removing the need to inject any SO2. The amount of SO2 naturally injected by252

Mt Pinatubo is not enough to combat the amount of warming experienced in 2045.253

Including an internal variability pattern in addition to the Mt. Pinatubo eruption254

pattern allows for the quantification of how much a Pinatubo-like eruption in combina-255

tion with internal variability impacts the controller-determined SO2 injection (Figure 4b,256

c, and d). In 2035, when a Pinatubu-like eruption removes the need to inject SO2, only257

an ENSO event stronger than 0.5 forces the controller to inject. Warming associated with258
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a positive ENSO greater than 0.5 is enough to cause the ARISE-SAI controller to inject259

despite the volcanic eruption. In 2045, a Pinatubo-like eruption decreases the total in-260

jection by about 40% as shown by the orange lines in panels Figure 4b, c, and d. Based261

on results in Figure 4b, c, and d, a volcanic eruption decreases the in injection amount262

by 0.43 Tg/year in 2045 and by 0.58 Tg/year in 2045.263

4 Discussion264

By design, controllers respond to variability of a system and therefore work well265

in systems with uncertainty. However, a controller’s ability to respond and impact in-266

ternal variability can result in complicated feedbacks where the controller can amplify267

or attenuate the frequency of internal variability, a feature explored thoroughly in MacMartin268

et al. (2014). These features of a controller are considered and balanced during the tun-269

ing phase of a controller. While this may present a challenge toawrds implementing a270

control algorithm in reality, Kravitz et al. (2014) showed that a control algorithm de-271

signed in one model could be used to meet the targets in a different model, demonstrat-272

ing the controller’s ability to generalize to different systems. The results in this work show273

a way to quantify a controller’s sensitivities to a variety of temperature patterns post274

tuning, including to those outside of the system the control algorithm was tuned to. While275

the method produces some climate states that may have statistically low chances of oc-276

curring or that may never occur, it allows for quick and cheap quantification of inter-277

nal variability’s impact on the total injection determined by the controller. Results in278

this work are confined to the 2035 and 2045 base states calculated from the ARISE-SAI279

control simulations (i.e. temperature patterns are from the system the controller was tuned280

for). Given that this work shows that the internal variability’s impact on the total in-281

jection depends on the background warming, using a different emissions scenario or model282

for the base state may result in different quantified sensitivities.283

Once sensitivities are quantified, one can consider whether the magnitude in which284

different internal variability patterns impact the total injection is acceptable. For exam-285

ple, consider the ARISE-SAI controller’s response to a Pinatubo-like eruption. It is straight-286

forward that the controller injects less when there are naturally occurring aerosols cool-287

ing the planet. However, in regards to patterns of internal variability, is it acceptable that288

more SO2 is injected when the atmospheric-ocean system is in an El Niño phase rather289

than a La Niña phase? Or should there be focus on ways to ensure that the majority290

of the SO2 injection is in response to climate warming signal alone? Doing so would re-291

quire the ability to separate the forced and unforced response in our current atmosphere292

or predict the future forced or unforced response with considerable accuracy. Given that293

knowing or predicting the forced or unforced response with high accuracy is an ongo-294

ing area of research (Dai et al., 2015; Mariotti et al., 2018; Xu & Darve, 2022), imple-295

menting current methods to determine the unforced and forced responses would intro-296

duce further uncertainty into the feedback system.297

5 Conclusions298

This work quantifies the ARISE-SAI controller sensitivity to internal variability299

and demonstrates a method that allows for a quick and effective quantification of con-300

troller sensitivity post tuning. The ARISE-SAI controller’s response to patterns of in-301

ternal variability associated with ENSO, NAO and SAM as well as a Pinatubo-like erup-302

tion are quantified as these patterns cover Northern Hemisphere, Southern Hemisphere,303

and global temperature impacts. Focus is placed on quantifying these patterns of inter-304

nal variability in relation to years 2035 and 2045, which correspond to the deployment305

year in ARISE-SAI and the deployment year in delayed start, respectively (MacMartin306

et al., 2022). Using these two base state years, we show that internal variability’s im-307

pact on the total injection is dependent on the background warming it is occurring un-308
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der. Using this method to explore and quantify sensitivities of a tuned controller pro-309

vides the opportunity to explore controller responses to a system it is not tuned for, fa-310

cilitates sensitivity comparisons between scenarios and earth system models, and may311

promote discussion about the extent to which an SAI-controller response to variability312

internal to the climate system.313
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Introduction This document contains the supporting information for the manuscript

entitled Quantifying the Impact of Internal Variability on the CESM2 Control Algorithm

for Stratospheric Aerosol Injection. Figure S1 shows the ENSO, NAO, and SAM driven

portion of the injection as a function of index. Figure S2 shows the percent change in

total SO2 injection as a function of two internal variability indices but using composites

from the ARISE control simulation rather than the CESM Large Ensemble.
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Figure S1. The portion of the SO2 injection (Tg/year) in response to (a) ENSO, (b) NAO,

and (c) SAM using the base state years 2035 (green line) and 2045 (orange line). Solid lines use

data from ARISE-SAI-CTRL and dashed lines use data from CESM2-LE.
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Figure S2. Percent change in total SO2 injection as a function of two internal variability

indices but using composites from ARISE-SAI-CTRL. Top row uses the year 2035 base state and

bottom row uses the year 2045 base state. Black line in each panel separates positive percent

change (red shading) from negative percent change (blue shading).
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