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Abstract

The Middle Miocene is characterized by a long-term increase in the oxygen isotopes of benthic foraminifera (δ18Obenthic).

However, it is unclear to what extent this increase reflects changes in seawater isotopes or deep water temperature. We present

a high-resolution alkenone hydrogen isotope (δ2HC37) record of the middle Miocene from a core taken at the upper slope edge

(about 409 m water depth) of the Porcupine Basin continental margin in the eastern North Atlantic Ocean, Site U1318 of the

Integrated Ocean Drilling Program. The δ2HC37 values vary between -174 to -200Importantly, it does not show a long-term

increase in surface seawater isotopes (δ2HSSW) during the Middle Miocene Climate Transition. Indeed, when δ18Obenthic is

corrected for subsurface temperature, the average bottom seawater oxygen isotopes of 0.9 ±0.2translated into hydrogen isotopes

of bottom seawater using the modern open-ocean waterline, it shows an average value of 5.8 +-1.5the δ2HSSW of 5.2 ±3.1δ2HC37

suggesting relatively small difference between bottom and surface waters. Our results suggest a stable global surface seawater

isotope evolution during the Middle Miocene, coupled with a long-term decrease in bottom water temperature.
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Key Points: 9 

 No change in stable hydrogen isotopes of surface waters during the Middle Miocene 10 

Climate Transition period based on long chain alkenones. 11 

 Bottom seawater isotopes based on corrected oxygen isotopes of benthic foraminifera 12 

also show no long-term change during the MMCT.  13 

 Miocene isotope events are reflected by only small δ
18

O and δ
2
H changes.  14 
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Abstract 15 

The Middle Miocene is characterized by a long-term increase in the oxygen isotopes of benthic 16 

foraminifera (δ
18

Obenthic). However, it is unclear to what extent this increase reflects changes in 17 

seawater isotopes or deep water temperature. We present a high-resolution alkenone hydrogen 18 

isotope (δ
2
HC37) record of the middle Miocene from a core taken at the upper slope edge (about 19 

409 m water depth) of the Porcupine Basin continental margin in the eastern North Atlantic 20 

Ocean, Site U1318 of the Integrated Ocean Drilling Program. The δ
2
HC37 values vary between -21 

174 to -200‰ with an average of -191 ±5‰, similar to modern open-ocean values. Importantly, 22 

it does not show a long-term increase in surface seawater isotopes (δ
2
HSSW) during the Middle 23 

Miocene Climate Transition. Indeed, when δ
18

Obenthic is corrected for subsurface temperature, the 24 

average bottom seawater oxygen isotopes of 0.9 ±0.2‰ also show no significant increase. When 25 

the latter record is translated into hydrogen isotopes of bottom seawater using the modern open-26 

ocean waterline, it shows an average value of 5.8 ±1.5‰ similar to the δ
2
HSSW of 5.2 ±3.1‰ 27 

derived from δ
2
HC37 suggesting relatively small difference between bottom and surface waters. 28 

Our results suggest a stable global surface seawater isotope evolution during the Middle 29 

Miocene, coupled with a long-term decrease in bottom water temperature. 30 

1 Introduction 31 

The Miocene epoch (23.03-5.33 million years; Cohen et al., 2013) is a globally warm period 32 

compared to present day, with CO2 concentrations varying from pre-industrial to two times 33 

higher than at present (Goldner et al., 2014). Most prominent are the Middle Miocene Climate 34 

Optimum (MMCO; 16.9-14.7 Ma) and Middle Miocene Climate Transition (MMCT; 14.7–13.8 35 

Ma) where geological, faunal and floral evidence suggest an Antarctic ice sheet retreat and 36 

expansion, respectively (e.g., Fielding et al., 2011; Hauptvogel & Passchier, 2012; Levy et al., 37 

2016; Passchier et al., 2011; Pierce et al., 2017; Sangiorgi et al., 2018; Warny et al., 2009). These 38 

periods are associated with changes in CO2 concentrations (Badger et al., 2013; Greenop et al., 39 

2014; Kürschner et al., 2008; Sosdian et al., 2018; Super et al., 2018; Zhang et al., 2013) and 40 

characterized by long-term changes in the benthic foraminifera oxygen isotopes (δ
18

Obenthic) 41 

(Cramer et al., 2009; Mudelsee et al., 2014; Zachos et al., 2008). Furthermore, the period is also 42 

characterized by so-called Miocene oxygen isotope excursions events (Mi-events) (Miller et al., 43 

1991), globally observed short-lived (ca. 100 kyrs) changes in δ
18

Obenthic (Cramer et al., 2009; 44 

Mudelsee et al., 2014), likely representing a decrease in deep-water temperature and/or seawater 45 
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isotope changes caused by cryosphere expansion and associated with sea-level variations of tens 46 

of meters (John et al., 2011; Levy et al., 2019; Miller et al., 2020; Shevenell et al., 2004, 2008). 47 

However, our understanding of ice volume estimates and long-term climate change during this 48 

period largely builds on the oxygen isotopes of benthic foraminifera (Miller et al., 2020; 49 

Westerhold et al., 2020) a proxy which reflects not only the isotopic composition but also the 50 

temperature of seawater (e.g., Savin et al., 1975; Shackleton, 1974). Deep ocean temperature can 51 

potentially be constrained by Mg/Ca or carbonate clumped isotopes of foraminiferal shells 52 

(Billups & Schrag, 2003; Elderfield et al., 2012; Hou et al., 2023; Lear et al., 2000; Modestou et 53 

al., 2020; S. Sosdian & Rosenthal, 2009). Modestou et al. (2020) measured Mg/Ca and Δ47 on 54 

the same Miocene foraminifera and observed good agreement between the two temperature 55 

estimates. Their Δ47 temperature change of approximately 2.9 °C recorded over the MMCT 56 

suggests a bottom seawater oxygen isotope (δ
18

OBSW) change of ca. 0.6‰. The Δ47 results from 57 

Hou et al. (2023) show that Middle Miocene bottom water temperature (BWT) dropped by ca. 5 58 

°C in the Southern Ocean during the MMCT and δ
18

OBSW calculations indicate that it was 59 

constant over this time, suggesting ice volume was stable. Furthermore, absolute values were 60 

close to modern seawater isotopes despite the much warmer global climate. This contrasts earlier 61 

estimates of a smaller temperature change during the MMCT and therefore a clear increase in 62 

δ
18

OSW and ice volume (e.g. Billups & Schrag, 2003; Lear et al., 2000, 2015; Shevenell et al., 63 

2008). Thus, it is not entirely clear how the seawater isotopic compositions evolved over the 64 

Middle Miocene due to the different corrections and temperature proxies used to reconstruct 65 

bottom water oxygen isotope records from δ
18

O benthic foraminiferal records. 66 

Another potential proxy for the isotopic composition of seawater is based on the hydrogen 67 

isotopic composition of long chain alkenones (δ
2
HC37), produced by haptophyte algae. Culture 68 

studies show that the hydrogen isotopic fractionation of phototrophic organisms depends on, 69 

amongst others, the hydrogen isotopic composition of growth water and salinity (M’boule et al., 70 

2014; Sachs et al., 2016; Schouten et al., 2006; Weiss et al., 2017; Zhang et al., 2009; Zhang & 71 

Sachs, 2007). Gould et al. (2019), based on open-ocean suspended particulate organic matter 72 

(SPOM), and Mitsunaga et al. (2022), based on core top sediments, show a statistically identical 73 

strong relationship between δ
2
HC37 and the hydrogen isotopic composition of surface water 74 

(δ
2
HSSW). This suggests that in the natural environment, the influence of factors such as 75 

temperature, salinity, species composition (e.g., Chivall et al., 2014; M’boule et al., 2014), as 76 
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well as light and nutrient availability (Sachs et al., 2017; van der Meer et al., 2015) on stable 77 

hydrogen isotope fractionation during biosynthesis might be less important than the hydrogen 78 

isotopic composition of seawater. Hättig et al. (2023) used these calibrations to reconstruct 79 

δ
2
HSSW for the last glacial maximum and found that δ

2
H ratios of alkenones are a reproducible 80 

paleo-proxy for relative changes in seawater hydrogen isotope composition and fit with other 81 

isotope records. Therefore, hydrogen isotopes of alkenones have the potential to produce 82 

hydrogen isotope records of surface seawater, independent of temperature.  83 

Here we present a hydrogen isotope record of the C37:2 alkenone (δ
2
HC37:2) spanning most of the 84 

Middle Miocene from 16.60 Ma till 12.75 Ma from a shelf site (Site U1318, ∼400 m water 85 

depth) in the Porcupine Basin, in the eastern North Atlantic, and compare it to the local benthic 86 

foraminiferal δ
18

O record previously published by Quaijtaal et al. (2018). The latter record 87 

showed the clear impact of the MMCT by a substantial increase in benthic δ
18

O of 1‰ in line 88 

with the global benthic stack (Westerhold et al., 2020). Furthermore, the Porcupine Basin 89 

foraminiferal stable isotope record shows imprints of some Mi-events (Quaijtaal et al., 2018). 90 

We reconstructed the oxygen isotopic composition of bottom waters by correcting the δ
18

Obenthic 91 

record for subsurface temperature using TEX86 and compared this to the hydrogen isotopic 92 

composition of surface seawater reconstructed based on the δ
2
HC37:2 record. Our results shed new 93 

light on the evolution of seawater isotopes in the eastern North Atlantic during the Middle 94 

Miocene. 95 
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2 Materials and Methods 96 

 97 
Figure 1. Map of sea surface salinity data from (Zweng et al., 2018) using a scientific colour 98 

map from Crameri (2023) showing the sediment core location. U1318 core was drilled in the 99 

Porcupine Basin which is at the Northeast Atlantic shelf. 100 

2.1 Geographic Setting 101 

The Integrated Ocean Drilling Program (IODP) drilling site U1318 is located at coordinates 102 

51°26.16’N, 11°33.0’W, with a water depth of 409 meters (Expedition 307 Scientists, 2006). The 103 

paleolatitude during the Middle Miocene (~ 15 Ma) was ~47°N (Van Hinsbergen et al., 2015) at 104 

a similar water depth as today (Ryan et al., 2009), situated on the upper slope edge of the 105 

continental margin within the Porcupine Seabight (Figure 1). The seabight represents a failed rift 106 

system that originated during the Middle to Late Jurassic period when the North Atlantic Ocean 107 

was being formed. During the Middle Miocene epoch (16-11.7 million years; Cohen et al., 108 

2013), the British Isles were still connected to continental Europe, with no connection to the 109 

North Sea (Gibbard & Lewin, 2003). The Porcupine Basin is filled with approximately 12 110 

kilometers of sedimentary deposits ranging from the Late Paleozoic era to the Quaternary period 111 

(Ryan et al., 2009). These sediments primarily originate from the Irish and Celtic shelves (Rice 112 

et al., 1991). Present-day surface water temperatures (SST) at Site U1318 show a seasonal 113 

variation, ranging from ca. 10 °C during winter to around 16 °C during summer (Locarnini et al., 114 

2018). However, at a depth of 409 meters, the water temperature remains constant throughout the 115 
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year at approximately 11°C  (Locarnini et al., 2018; Sangiorgi et al., 2018). The core location 116 

and Porcupine bank is under the influence of the Continental Slope Current (CSC). The CSC 117 

transports Eastern North Atlantic Water via the North Atlantic Current (NAC) to the Norwegian 118 

Sea (Raddatz et al., 2011). The present-day annual mean salinity of the surface layer (0-50 m) at 119 

the core location area is 34.9-35.5 psu (Zweng et al., 2018). 120 

2.2 Age model 121 

To target the Middle Miocene, samples were collected from Site U1318 Hole B (cores 10H-14H 122 

and 17X-27X) and Hole C (cores 7H and 8X-10X, Expedition 307 Scientists, 2006) between 123 

92.4 and 247.5 meters composite depth (mcd). The age model for this depth interval is based on 124 

integrated bio-, isotope- and magnetostratigraphy, as presented in Quaijtaal et al. (2018). Two 125 

hundred forty-five (245) samples were previously analysed for 𝑈37
𝐾′

 and TEX86 proxies 126 

(Sangiorgi et al., 2021) from which 145 samples had sufficient material for stable oxygen and 127 

carbon isotopes analysis of the benthic foraminifera Uvigerina sp. and Cibicidoides pachyderma 128 

(Quaijtaal et al., 2018). The Middle Miocene samples consist mainly of greenish-grey clay with 129 

total organic carbon content ranging between 0.27–0.70% (Sangiorgi et al., 2021). The samples 130 

between 92.4 and 247.5 mcd cover the age interval 12.75–16.60 Ma with an average time 131 

resolution of 25 kyrs for stable carbon and oxygen isotope analysis and 17 kyrs for organic 132 

geochemistry. To increase the resolution of the organic geochemistry and hydrogen isotope 133 

record we extracted 25 additional samples between 98.05 mbsf and 230.42 mbsf following the 134 

extraction and fractionation procedures of Sangiorgi et al. (2021). The average time resolution 135 

for the extended organic geochemistry record is 14 kyrs and 31 kyrs for the hydrogen isotope 136 

record. 137 

2.3 Long-chain alkenones and GDGT analysis 138 

Alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) were extracted and analysed as 139 

previously described by Sangiorgi et al.(2021). Furthermore, we re-analysed all GDGT fractions 140 

with improved analytical methodology (Hopmans et al., 2016) using an ultra-high performance 141 

liquid chromatography/ mass spectrometry (UHPLC/ MS) on an Agilent 1260 Infinity HPLC 142 

230 coupled to Agilent 6130 MSD using two silica BEH HILIC columns (2.1 mm × 150 mm, 1.7 143 

µm 232 thickness) connected in series and maintained at 25 °C. A solvent gradient of hexane/ 144 

isopropanol (9:1, v/v) (solvent A) and hexane (solvent B) was used starting with 18% of solvent 145 
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A and 82% of solvent B at a constant flow rate of 0.2 ml/ min. The GDGTs were eluted 146 

isocratically for 25 min and thereafter solvent A increased in a linear gradient to 30% in 25 min 147 

and to 100% of solvent A in the following 30 min. GDGTs were detected in Selective Ion 148 

Monitoring (SIM) mode for protonated GDGT molecules [M+H]
+
. The TEX86 index was 149 

calculated after Schouten et al. (2007) and the calibration against the average subsurface 150 

temperature between 0-200 m (subT) is from Kim et al. (2012) (Equation 1, 2). 151 

  𝑇𝐸𝑋86
𝐻 = log (𝑇𝐸𝑋86 ) (1) 

  𝑠𝑢𝑏𝑇𝐻 = 54.7 ∗  𝑇𝐸𝑋86
𝐻  + 30.7     (2) 

The alkenones of the ketone fractions of the 25 additional samples taken in the study were 152 

measured using an Agilent 6890N gas chromatograph coupled to a flame ionization detector 153 

(GC-FID), equipped with a CP Sil-5 fused silica capillary column (50 m × 0.32 mm, 0.12 µm 154 

thickness), to determine the quality of the fraction for further isotope analysis and to calculate 155 

the 𝑈37
𝐾′

 values (Equation 3) according to (Prahl & Wakeham, 1987). The 𝑈37
𝐾′

-based SSTs were 156 

calculated with the global core-top calibration of (Müller et al., 1998) (Equation 4). 157 

  𝑈37
𝐾′

=
[𝐶37:2 ]

[𝐶37:2 ]+ [𝐶37:3]
 (3) 

  𝑆𝑆𝑇 =
  𝑈37

𝐾′
−0.044

0.033
 

(4) 

Hydrogen isotope ratios of alkenones of 124 fractions (99 from the original sample set of 158 

Sangiorgi et al, 2021 and 25 additional samples) were measured in duplicate using a gas 159 

chromatograph coupled to a Thermo Delta V isotope ratio mass spectrometer via high-160 

temperature conversion reactor (Isolink I) and Conflo IV. The GC was equipped with an RTX–161 

200 60 m column according to Weiss et al. (2019). We report the δ
2
H ratio of alkenone C37:2 162 

determined by manual peak integration. C37:2 appears as the main alkenone peak, while C37:3 and 163 

C38 alkenone peaks are in lower relative abundance and most of the time below minimal intensity 164 

for the isotope ratio integration. Daily, before running samples, the H3
+
 factor was measured and 165 

the day to day variability was never more than 0.5 ppm/nA, and the performance and stability of 166 

the machine was monitored by measuring an n-alkane standard, Mix B (supplied by A. 167 

Schimmelmann, Indiana University). Samples were only run when the average difference and 168 

standard deviation between online and certified values was less than 5‰. To monitor the system 169 

performance squalene and C30 n-alkane were co-injected with each sample with measured values 170 
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ranging from -161 ±11‰ and -74 ±6‰. The offline predetermined values are -170 ±4‰ for 171 

squalene and -79 ±5‰ for C30 n-alkane. 172 

2.4 Calculation of seawater isotopes 173 

For the calculation of δ
2
HSSW from the hydrogen isotopic composition of C37:2 we applied the 174 

open–ocean relationship based on surface ocean suspended particulate organic material (SPOM) 175 

by Gould et al. (2019): 176 

 𝛿 𝐻2
𝐶37 = 1.48 (±0.4) ×  𝛿 𝐻2

𝑆𝑊 − 199 (±3) <=>  𝛿 𝐻2
𝑆𝑆𝑊 =

𝛿 𝐻2
𝐶37 +199

1.48
  

(5) 

We reconstructed the oxygen isotopic composition of the bottom seawater (δ
18

OBSW) from the 177 

benthic foraminifera δ
18

O data set published in Quaijtaal et al. (2018) which consists of δ
18

O 178 

values of Cibicidoides pachyderma and δ
18

O values of Uvigerina sp converted to C. 179 

pachyderma. For the temperature correction we used the updated and extended records of 180 

𝑈37
𝐾′

 and TEX
H

86 (Supplement 1). We calculated the δ
18

OBSW with the relationship described by 181 

Lynch-Stieglitz et al. (1999) as arranged by Cramer et al. (2011) (Equation 6, 7). We report 182 

δ
18

OBSW values in VSMOW with the accepted conversion value of 0.27‰ (VPDB to VSMOW) 183 

(6, 7) (Cramer et al., 2011). 184 

 t = 16.1 − 4.76 ∗ (𝛿 𝑂18
𝐹𝑜𝑟𝑎𝑚 − (𝛿 𝑂18

𝐵𝑆𝑊 − 0.27))   (Cramer et al., 2011)           (6) 

Rearranged to δ
18

OBSW:  185 

 
𝛿 𝑂18

𝐵𝑆𝑊 =
−16.1+4.76×𝛿 𝑂18

𝐹𝑜𝑟𝑎𝑚+𝑡

4.76
+ 0.27  

(7) 

The modern open-ocean relationship between oxygen and hydrogen isotopes is described by 186 

Hättig et al. (2023) as the modern open-ocean waterline (MOOWL) and is based on the data sets 187 

of Gould et al. (2019); Rohling (2007); Srivastava et al. (2010); Weiss et al. (2019) and the 188 

Water isotope Database (2022) managed by Dr. G. Bowen (University of Utah): 189 

 𝛿 𝐻2
𝑠𝑤 = 6.58 ×  𝛿 𝑂18

𝑠𝑤 − 0.12    (8) 
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3 Results and discussion 190 

3.1 Temperature records 191 

The reanalysis of GDGT fractions of IODP core U1318B using updated methodology (Hopmans 192 

et al., 2016)  resulted in slightly shifted TEX
H

86 values by on average -0.01 compared to those 193 

published by Sangiorgi et al. (2021), with some values changing by up to 0.06 due to the better 194 

separation of GDGTs, especially the GDGT-2 peak (Supplement Fig. S1b). In contrast to 195 

Sangiorgi et al. (2021), we converted the TEX
H

86 values to subsurface temperature (subT; the 196 

average of 0–200 m temperatures as defined by Kim et al. 2012) values as we aim to ultimately 197 

use the temperature estimates to correct the δ
18

Obenthic values (see below). The subT record varies 198 

between 13 °C and 21 °C (Fig. 2) and shows the same cooling trends described by Sangiorgi et 199 

al. (2021) for the SST inferred from TEX
H

86. The recalculated BIT index is below 0.3 in all 200 

samples, in good agreement with Sangiorgi et al. (2021), suggesting no bias on TEX86 values by 201 

continental organic matter input (Supplement Fig. S1b). The GDGT-2/ GDGT-3 ratio (Taylor et 202 

al., 2013) is relatively constant between 1.7 to 3.2 and implies no remarkable changes in the 203 

production depth of GDGTs (Kim et al., 2015; Taylor et al., 2013) as expected in this relatively 204 

shallow water location of ca. 409 m depth. The extended 𝑈37
𝐾′

-based SST record is on average 4–205 

8 °C higher than the subT estimated from TEX
H

86 with temperatures varying between 25.8–28.9 206 

°C (Fig. 2) and a cooling of ca. 3 °C between 14.6–12.7 Ma. Thus the 𝑈37
𝐾′

 reflects a similar 207 

temperature trend as TEX
H

86 but with a relatively smaller amplitude, which is surprising as 208 

bottom water temperatures typically vary to a smaller degree then surface water temperatures. 209 

This difference is likely due to the 𝑈37
𝐾′

 reaching its maximum value of 1 (cf Sangiorgi et al., 210 

2021) and thus this proxy is unable to record the substantially warmer SST of >29 °C which may 211 

have been present during the first part of the Middle Miocene record. 212 

3.2 Evolution of oxygen isotopes of bottom water 213 

The oxygen isotope ratio of benthic Cibicidoides pachyderma as published by Quaijtaal et al. 214 

(2018) follows the trend of the global benthic stack (Westerhold et al., 2020, CENOGRID). 215 

During the MMCO between 16.6 Ma and 14.59 Ma, the δ
18

Obenthic signal varies between -0.35‰ 216 

and 0.58‰ with an average value of 0.12 ±0.23‰. During the MMCT from 14.59 Ma to 12.75 217 

Ma, values increase as high as 1.43‰. This ca. 1‰ increase is similar to what is observed in the 218 

global δ
18

Obenthic stack record and has until recently been associated with ice volume increase 219 
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(Billups & Schrag, 2002; Haq et al., 1987; Rohling et al., 2022). Recent studies, however, 220 

suggest a strong bottom water cooling explaining most of the increase in δ
18

Obenthic, and therefore 221 

little to no ice volume build up (Hou et al., 2023; Leutert et al., 2021; Meckler et al., 2022; 222 

Modestou et al., 2020). 223 

Several Mi-events were tentatively identified based on positive oxygen isotope excursions linked 224 

to magnetostratigraphy and palynology changes (Quaijtaal et al., 2014, 2018; Sangiorgi et al., 225 

2021). In particular Mi-events 2, 2a and 3 are likely reflected in the local δ
18

Obenthic with positive 226 

excursions of ca. 0.8‰. The Mi-2a event (ca. 14.8 Ma) is linked to an eustatic sea level fall of 227 

ca. 30 m and a cooling of ca. 0.7 ⁰C in deep waters (John et al., 2011; Miller et al., 2020) and the 228 

Mi-3 event (13.8 Ma) is associated with cooling in the deep ocean of 1.2 ⁰C and ca. 50 m eustatic 229 

sea level fall (De Vleeschouwer et al., 2017; Miller et al., 2020) and a pCO2 decline from ca. 600 230 

ppm to 400-500 ppm (Sosdian & Lear, 2020). The global Mi-4 (Steinthorsdottir et al., 2021) is 231 

less pronounced in our local record with a small increase of ca. 0.3‰. 232 

To reconstruct δ
18

OBSW from benthic foraminifera we need to reconstruct bottom water 233 

temperatures (e.g., Hou et al., 2023; Lear et al., 2015; Modestou et al., 2020). Unfortunately, we 234 

were not able to do this using benthic foraminifera. However, the core location is at a rather 235 

shallow water depth of ca. 409 m with present day relatively small temperature differences 236 

between bottom waters and subsurface (0–200 m) waters of 1–5 °C (Locarnini et al., 2018; 237 

Sangiorgi et al., 2021). Therefore, we corrected δ
18

Obenthic with the subT derived from TEX
H

86. 238 

The obtained δ
18

OBSW varies between 0.6 and 1.4‰, a similar range as reconstructed by Hou et 239 

al. (2023) for the Middle Miocene at the Southern Hemisphere deep-ocean Site 1168. 240 

Interestingly, our reconstructed bottom water oxygen isotope record shows no decreasing trend 241 

between 14.5 Ma and 13.5 Ma and only a minor decrease of ca. 0.2‰ after 13.5 Ma (Figure 2; 242 

see Supplement 1 for further discussion). This suggests no major change in seawater isotope 243 

compositions after 14.6 Ma at least for this core location in the eastern North Atlantic, in 244 

agreement with the suggestion of Sangiorgi et al. (2021) that benthic oxygen isotopes of U1318 245 

are mainly controlled by temperature at this core location.  246 

Regarding the short-term Mi-events, during Mi-2 and Mi-2a the reconstructed δ
18

OBSW shows a 247 

sharp excursion of 0.3‰ while Mi-3 and Mi-4 show a stepwise increase of 0.2 ̶ 0.3‰. However, 248 

it is difficult to distinguish those events from the large variability in the record which can be up 249 

to 0.5‰. 250 
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3.3 Evolution of hydrogen isotopes of surface water  251 

The δ
2
HC37:2 values of the Middle Miocene sediment record at Site U1318 ranges between -252 

200‰ and -172‰ (Fig. 2c). In contrast to the δ
18

Obenthic and subT record (Fig. 2d), the δ
2
HC37:2 253 

record shows no substantial increase between 14.6 Ma and 12.75 Ma. Between 15.5 Ma and 15.2 254 

Ma δ
2
HC37:2 decreases parallel to the δ

18
Obenthic record from -190‰ to -195‰, followed by a 255 

sharp increase to -186‰. But, during the global cooling step and Mi-3 event δ
2
HC37:2 increases 256 

first continuously from -200‰ at 14.1 Ma to -187‰ at 13.7 Ma, then decreases sharp to -195‰ 257 

and continues to vary. Due to the large variability we were not able to rigorously identify the Mi-258 

events in the δ
2
HC37:2 record. 259 

The δ
2
HC37:2 alkenone record was subsequently converted into a δ

2
HSSW record using the 260 

calibration of Gould et al. (2019) (Equation 5). This assumes that the alkenones are mainly 261 

derived from open–ocean haptophyte species. However, little is known about haptophyte species 262 

during the Miocene. The main producer may have been Reticulofenestra (Perch-Nielsen, 1985; 263 

Samtleben, 1980), ancestor of the present day open–ocean species Emiliania huxleyi (Gibbs et 264 

al., 2013). We observed a typical open-ocean alkenone distribution with a dominant abundance 265 

of the C37:2 next to C38 suggesting that open-ocean haptophytes (Type III; Kleijne, 1993) are the 266 

dominant alkenone producers at the time.  267 

Conversion of the δ
2
HC37:2 alkenone values resulted in δ

2
HSSW values ranging between -1 and 268 

+17‰. The average δ
2
HSSW for this record is 5.2 ±3.1‰, which is similar to the nearest (ca. 313 269 

km distance from the core site) modern measured δ
2
H value of surface seawater, +2.1‰ (Gould, 270 

2019). Similar to the δ
2
HC37:2 record there is no decrease in δ

2
HSSW after 14.8 Ma, in contrast to 271 

the δ
18

Obenthic and subT records. During the Mi-events, δ
2
HSSW seemingly increased by 2 ̶ 6‰, 272 

but these events cannot be clearly distinguished due to the large overall variability, similar to the 273 

reconstructed δ
18

OBSW. Thus, reconstructed δ
2
HSSW and δ

18
OBSW records both show a lack of any 274 

substantial decline in isotopes ratios between 14.6 and 12.75 Ma, although δ
18

OBSW does show a 275 

small increase after 13.5 Ma. These two independent records thus suggest that this period, the 276 

Miocene Climate Transition (MMCT; 14.7–13.8 Ma) was not associated with a substantial 277 

change in isotopic composition of seawater in the eastern North Atlantic.  278 



manuscript submitted to Paleoceanography and Paleoclimatology  

 

 279 

Figure 2. Middle Miocene multiproxy temperature and seawater isotope record, Site U1318. 280 

Globally recognized Miocene cooling events (Mi-events; Miller et al., 1991, Steinthorsdottir et 281 

al., 2021) are marked with blue bars and were identified by Quaijtaal et al. (2014) based on a 282 

sharp increase in δ
18

Obenthic in combination with palynology and magnetostratigraphy. (a) Global 283 

stack δ
18

O of benthic foraminifera (CENOGRID, Westerhold et al., 2020); (b) local oxygen 284 

isotope data of Cibicidoides pachyderma (C.p.) (Quaijtaal et al., 2018); (c) δ
2
H of long-chain 285 

alkenones C37:2 (this study); (d) revised subsurface temperature (subT) based on TEX
H

86 index 286 

calculated with Kim et al. (2012) (this study); (e) surface temperature (SST) based on U
K’

37 287 

index (Sangiorgi et al., 2021). The age model is presented in Quaijtaal et al., (2018).  288 

 289 
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 290 
Figure 3. Seawater isotope reconstruction. (a) Bottom seawater isotopes are reconstructed with 291 

oxygen isotopes of foraminifera: δ
18

OBSW is calculated with Cramer et al., (2011) and subT from 292 

the same sediment depth signal. δ
18

OBSW was translated with the modern open-ocean waterline 293 

(MOOWL) to δ
2
HBSW. (b) The surface seawater isotope reconstruction is based on hydrogen 294 

isotope analysis of C37:2 alkenones, δ
2
HSSW is calculated with the SPOM calibration from Gould 295 

et al. (2019) and translated to δ
18

OSSW with the MOOWL (Equation 8). Global Miocene cooling 296 

events (Mi-events; Miller et al., 1991, Steinthorsdottir et al., 2021) are marked with blue bars and 297 

are identified by Quaitaal et al. (2014) based on a sharp increase in δ
18

Obenthic in combination 298 

with palynology and magnetostratigraphy. 299 

4 Implications 300 

Our results, based on a novel approach not requiring any temperature correction, clearly show 301 

that the MMCT was not associated with a strong change in seawater isotopes, but mainly 302 

reflecting a substantial cooling of 4–5 °C in the eastern North Atlantic Ocean. The question 303 

arises whether this phenomenon is unique for this location or whether it is a global phenomenon. 304 

Interestingly, our results agree with recent studies based on clumped isotope data of benthic 305 

foraminifera which suggest higher than previously estimated bottom water temperatures during 306 

the MCO and indicate strong bottom water cooling during the MMCT (Hou et al., 2023; Leutert 307 

et al., 2021; Meckler et al., 2022; Modestou et al., 2020). Their inferred cooling of ca. 5 °C could 308 
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in principle completely explain the global Middle Miocene δ
18

Obenthic evolution and implies a 309 

stable ice volume and thus little to no ice volume buildup (Hou et al., 2023). Our results confirm 310 

Middle Miocene stable seawater isotopes suggesting no ice volume buildup. This contrasts 311 

geological observations of ice sheet advances during those time periods (e.g., Fielding et al., 312 

2011; Hauptvogel & Passchier, 2012; Levy et al., 2016; Passchier et al., 2011). However, as 313 

suggested by Hou et al. (2023) the progressive Neogene Southern Ocean ice volume could be 314 

explained by a progressively lowering Antarctic ice sheet height while the ice expands seawards 315 

during the Middle Miocene. The total global ice volume might have been stable but the volume 316 

to area ratio might have changed (Hou et al., 2023). This million year MMCT cooling caused by 317 

the decrease in pCO2 (Pagani et al., 1999; Super et al., 2018) may thus have led to similar global 318 

ice volumes coupled with deep ocean cooling. 319 

Translation of our average reconstructed hydrogen isotopes of surface seawater (δ
2
HSSW = 5.2 320 

±3.1‰) to δ
18

OSSW using the MOOWL suggests values of ca. 0.8 ±0.5‰, similar to that in 321 

δ
18

OBSW = 0.9 ±0.2‰ based on foraminifera. This suggest relatively small differences between 322 

bottom and surface seawater isotopes. Furthermore, similar to Hou et al. (2023) the reconstructed 323 

surface and bottom seawater isotopes fall in the range of the modern open-ocean seawater 324 

isotope composition (δ
18

O = -0.5 and 1.5‰, δ
2
H = 0-10‰, Le Grande et al., 2006; Rohling et al., 325 

2007; Haettig et al., 2023). This may imply similar ice volumes in the MMCT as those of 326 

modern day (Rohling et al., 2022; Hou et al., 2023). 327 

During the Middle Miocene there were several short-lived (ca. 100 kyr) δ
18

Obenthic increases 328 

thought to be associated with bottom water temperature decreases of 0.7–1.2°C and attendant 329 

sea-level falls of 20-50 m: Mi-2 (16 Ma), Mi-2a (14.8 Ma), Mi-3 (13.8 Ma), and Mi-4 (13.1 Ma) 330 

(Holbourn et al., 2013; Miller et al., 2020). However, both our reconstructed δ
18

OBSW and δ
2
HSSW 331 

values do not consistently show these excursions mainly due to the large overall variability in 332 

our records. For our δ
2
HSSW record, this variability may be caused by the analytical uncertainty 333 

of compound-specific hydrogen isotope analysis, e.g. the analytical reproducibility is ca. 5‰ 334 

based on replicate analysis for standards. Furthermore, variable fractionation factors between 335 

alkenones and water for different species (e.g., Schouten et al., 2006; M’Boule et al., 2014; van 336 

der Meer et al., 2015; Wolhowe et al., 2015) may lead to incorrect estimates of δ
2
HSSW while the 337 

calibration error between δ
2
HC37 and δ

2
HSSW is also relatively large (root-mean-square error of 338 

5.8‰ for the calibration of Gould et al., 2019), hinting at factors other than δ
2
HSSW impacting 339 
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δ
2
HC37 such as light intensity and nutrient availability (e.g., van der Meer et al., 2015; Sachs et 340 

al., 2017; Weiss et al., 2017; Wolfshorndl et al., 2019; Wolhowe et al., 2015). Our reconstructed 341 

δ
18

OBSW may be impacted by incorrect estimations of subsurface water TEX
H

86 estimates. 342 

Furthermore, the δ
18

Obenthic record may be influenced by diagenetic alteration (e.g., Corfield et 343 

al., 1990, Pearson et al., 2001, 2007, Sexton et al., 2006, 2008) and bioturbation (e.g., Hülse et 344 

al., 2022). Quaijtaal et al. (2018) did observe minor secondary crystals on the shell walls which 345 

might have influenced the isotopic values.  346 

Clearly it would be beneficial to generate hydrogen isotope records from different sites, 347 

including equatorial and Southern Ocean sites, to reconstruct the global surface seawater isotope 348 

distribution and evolution and potentially disentangle which isotope events (Mi-events) were 349 

caused by cooling or a combination of cooling and seawater isotope change. Nevertheless, our 350 

results have shown potential for δ
2
HC37 records in the Cenozoic to provide seawater isotope 351 

records which are independent from temperature. 352 

5 Conclusions 353 

We presented a high-resolution Middle Miocene hydrogen isotope record of alkenones from a 354 

shelf site (U1318) in the Porcupine basin, in eastern North Atlantic. Our record reflects no long-355 

term changes in surface seawater isotopes during the MMCT. Calculated bottom seawater 356 

isotopes based on benthic oxygen isotopes and subsurface TEX
H

86 temperature correction also 357 

indicate no long-term change during this period. This suggests fairly stable seawater isotopes 358 

during the MMCT for both bottom and surface waters at this shallow (409 m) site, suggesting no 359 

or a very limited ice volume effect on seawater isotopes and indicating that the Miocene Climate 360 

Transition was mainly a time of cooling. More independent seawater isotope records of the 361 

Atlantic and Pacific Ocean covering the MMCT are needed to confirm if this was a global 362 

phenomenon.  363 
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 691 

 692 

Figure captions 693 

 694 

Figure 1. Map of sea surface salinity data from (Zweng et al., 2018) using a scientific colour 695 

map from Crameri (2023) showing the sediment core location. U1318 core was drilled in the 696 

Porcupine Basin which is at the Northeast Atlantic shelf. 697 

 698 

Figure 2. Middle Miocene multiproxy temperature and seawater isotope record, Site U1318. 699 

Globally recognized Miocene cooling events (Mi-events; Miller et al., 1991, Steinthorsdottir et 700 

al., 2021) are marked with blue bars and were identified by Quaijtaal et al. (2014) based on a 701 

sharp increase in δ
18

Obenthic in combination with palynology and magnetostratigraphy. (a) Global 702 

stack δ
18

O of benthic foraminifera (CENOGRID, Westerhold et al., 2020); (b) local oxygen 703 

isotope data of Cibicidoides pachyderma (C.p.) (Quaijtaal et al., 2018); (c) δ
2
H of long-chain 704 

alkenones C37:2 (this study); (d) revised subsurface temperature (subT) based on TEX
H

86 index 705 

calculated with Kim et al. (2012) (this study); (e) surface temperature (SST) based on U
K’

37 706 

index (Sangiorgi et al., 2021). The age model is presented in Quaijtaal et al., (2018).  707 

 708 

Figure 3. Seawater isotope reconstruction. (a) Bottom seawater isotopes are reconstructed with 709 

oxygen isotopes of foraminifera: δ
18

OBSW is calculated with Cramer et al., (2011) and subT from 710 

the same sediment depth signal. δ
18

OBSW was translated with the modern open-ocean waterline 711 

(MOOWL) to δ
2
HBSW. (b) The surface seawater isotope reconstruction is based on hydrogen 712 

isotope analysis of C37:2 alkenones, δ
2
HSSW is calculated with the SPOM calibration from Gould 713 

et al. (2019) and translated to δ
18

OSSW with the MOOWL (Equation 8). Global Miocene cooling 714 

events (Mi-events; Miller et al., 1991, Steinthorsdottir et al., 2021) are marked with blue bars and 715 

are identified by Quaitaal et al. (2014) based on a sharp increase in δ
18

Obenthic in combination 716 

with palynology and magnetostratigraphy. 717 

 718 


