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Abstract 24 

The Karakoram fault is an important strike-slip boundary for accommodating 25 

deformation following the India-Asia collision. However, whether the deformation is confined to 26 

the crust or whether it extends into the mantle remains highly debated. Here, we show that the 27 

Karakoram fault is overwhelmingly dominated by crustal degassing related to a 
4
He- and CO2-28 

rich fluid reservoir [e.g., He contents up to ~1.0−1.6 vol.%; 
3
He/

4
He = 0.029 ± 0.016 RA (1σ, n = 29 

50); CO2/N2 up to 3.7−57.8]. Crustal-scale active deformation driven by strike-slip faulting could 30 

mobilize 
4
He and CO2 from the fault zone rocks, which subsequently accumulate in the 31 

hydrothermal system. The Karakoram fault may have limited fluid connections to the mantle, 32 

and if any, the accumulated crustal fluids would efficiently dilute the uprising mantle fluids. In 33 

both cases, crustal deformation is evidently the first-order response to strike-slip faulting. 34 

 35 

Plain Language Summary 36 

Bubbling hot springs are common in fault zones along which Earth’s lithosphere cracks. 37 

Chemical and isotopic compositions of spring gases can offer key information on the subsurface 38 

connectivity of the deep-rooting faults that is not easily visible. To assess whether the 39 

Karakoram fault in western Tibetan Plateau is developing in the crust or extends into deeper 40 

mantle, we studied the origin and transport of spring gases and found that the Karakoram fault is 41 

overwhelmingly dominated by degassing of a crustal fluid reservoir that contains high amounts 42 

of helium (He) and CO2. This could be attributed to He-CO2 mobilization of deforming and 43 

fracturing fault zone rocks at crustal depths, suggesting that the Karakoram fault is primarily 44 

developing in the crust and may have limited fluid connections to the mantle. 45 
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1. Introduction 46 

Continent-continent collision between India and Asia, as documented by the Himalayan-47 

Tibetan orogen, resulted in shortening and extrusion of the lithosphere over vast distances (Ding 48 

et al., 2022). Whether the India-Asia collision is characterized by deformation confined to crustal 49 

depths, or alternatively, reaching the underlying mantle lithosphere, holds the key for unraveling 50 

the dynamics of orogenic plateau growth driven by the forces acting on the colliding continents 51 

(Copley et al., 2011; Royden et al., 2008). Strike-slip faults are likely to penetrate through brittle-52 

ductile transition zone and offset the Moho (Bourne et al., 1998; Sylvester, 1988), thus providing 53 

a window for gaining insights into the collision-driven deformation from mantle to crustal depths. 54 

Therefore, the depth extent of strike-slip faults is a key parameter in modeling outward growth of 55 

the Tibetan Plateau in response to India-Asia collision. 56 

The right-lateral Karakoram fault (KKF) extends >1000 km from the Pamir to western 57 

Himalayas (Figure 1a), serving as an important plate boundary to accommodate shortening and 58 

modulate eastward extrusion of the Tibetan Plateau (Chevalier et al., 2015). The depth extent of 59 

the KKF penetration and deformation is still debated between kinematic models in favor of either 60 

crustal- or lithospheric-scale strike-slip faulting (Leech, 2008; Searle & Phillips, 2007; Van Buer 61 

et al., 2015). As the KKF exhibits geometrical segmentation (inset in Figure 1b) and varies in 62 

kinematics among different fault segments (Robinson et al., 2015), shear deformation may have 63 

heterogeneity along its strike. Such along-strike deformation has been examined for the 64 

geological past by field observations and evidence from metamorphism, magmatism, 65 

geochronology, and slip rate reconstruction (Chevalier, 2019; Searle & Phillips, 2007; Wallis et 66 

al., 2013). However, what remains challenging is that how underlying active deformation could 67 

be constrained by modern observations at the surface. GPS-based geodetic measurements have 68 
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been used to establish strain partitioning patterns and active deformation of the KKF and 69 

adjacent regions (Wright et al., 2004), but surface strain rates may be less informative for 70 

inferring whether the deforming layer extends into the mantle or whether it ends within the crust 71 

(Royden et al., 2008). 72 

An alternative approach for constraining active deformation at depth is the geochemistry 73 

of hydrothermal fluids (e.g., thermal spring gases and waters), which is sensitive to tectonic and 74 

physical processes in the deep-rooting fault zones (Rosen et al., 2018). In particular, integrating 75 

geochemical data with geophysical observations (Gao et al., 2016) could provide unique insights 76 

into underlying structure and active deformation. Previous studies have identified mantle fluids 77 

in thermal springs and suggested that the depth extent of the KKF could reach lithospheric 78 

mantle (Bai et al., 2023; Hoke et al., 2000; Klemperer et al., 2013). Notably, only two out of 79 

nineteen geothermal fields on and off the KKF show unequivocal mantle fluids (Klemperer et al., 80 

2013): Menshi [referred to as Tirthapuri in Hoke et al. (2000)] on the KKF, and Langjiu [referred 81 

to as Shiquanhe in Hoke et al. (2000)] ~45 km off the KKF to the NE (Figure 1a; see details in 82 

Section 2.2). Zooming out from Menshi and Langjiu, it becomes evident that the KKF is long 83 

and has several segments. From a geochemical point of view, our understanding of hydrothermal 84 

degassing remains limited to constrain segmental characteristics of active deformation beneath 85 

the KKF. 86 

In this study, we focus on the origin and transport of deeply-sourced volatiles (e.g., He 87 

and CO2) released by thermal springs on and off the southern KKF (Figure 1b; northern KKF is 88 

almost inaccessible for political reasons), aiming to provide new insights into active deformation 89 

driven by strike-slip faulting in western Tibetan Plateau. Our new He isotope data indicate that 90 

the KKF is dominated by crustal degassing both on and off its southern segments. A crustal 
4
He- 91 
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and CO2-rich fluid reservoir is identified in the subsurface hydrothermal systems, which could be 92 

attributed to crustal-scale active deformation that liberates large amounts of 
4
He and CO2 from 93 

deforming and fracturing fault zone rocks. We further examined mantle-to-crust fluid 94 

connections of the KKF and the dilution effects of crustal 
4
He-rich fluids based on regional 95 

seismic data. 96 

 97 

2. Materials and Methods 98 

2.1. Sample Distribution and Laboratory Analysis 99 

We adopted geometrical segmentation of the KKF (inset in Figure 1b; Chevalier et al., 100 

2015) to describe sample distribution. Seventeen free gas samples were collected from thermal 101 

springs along the Gar and Menshi-Kailas segments, as well as the Langjiu geothermal field off 102 

the KKF (Figure 1a). Due to the limits by transportation conditions and accessibility factors, we 103 

were unable to collect samples from other fault segments. For example, the K2 segment (i.e., 104 

northern KKF; Figure 1b) and Bangong-Chaxikang segment are barely accessible due to their 105 

closeness to the politically unstable Kashmir and China-India border. Chemical and isotopic 106 

compositions (e.g., 
3
He/

4
He and δ

13
C-CO2) of hydrothermal gases were analyzed as soon as 107 

possible to avoid post-sampling air contamination. Details of field campaign, sampling 108 

procedures, analytical methods, and geochemical data are given in Text S1 and Table S1 of the 109 

Supporting Information S1. 110 

2.2. Helium Isotope Systematics and Data Compilation 111 

Helium isotope ratio [
3
He/

4
He (R) reported relative to RA, where RA = air 

3
He/

4
He = 1.39 112 

× 10
−6

] of modern hydrothermal fluids is a unique tracer for quantifying the mixing between 113 

crustal and mantle fluids that possibly occurs in active fault zones (Caracausi et al., 2022; Sano 114 
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& Fischer, 2013; Umeda & Ninomiya, 2009). The convective upper mantle, i.e., source of mid-115 

ocean ridge basalts (MORB), has an uniform 
3
He/

4
He ratio of 8 ± 1 RA (Graham, 2002), while 116 

that of the sub-continental lithospheric mantle (SCLM) is lower (6.1 ± 2.1 RA; Day et al., 2015). 117 

In contrast, the continental crust has accumulated large amounts of radiogenic 
4
He due to U-Th 118 

decay through time, yielding significantly low 
3
He/

4
He ratios such as 0.02 RA (Andrews, 1985). 119 

Variable amounts of atmospheric He could be detected in the sample due to recharge of air-120 

saturated water (ASW) into hydrothermal systems and post-sampling contamination. As such, 121 

the measured 
3
He/

4
He must be corrected assuming that all 

20
Ne in the sample is derived from 122 

ASW (Craig et al., 1978). 123 

A reference X value of ~10, where X = (He/Ne)sample/(He/Ne)air × βNe/βHe, was used to 124 

rule out data showing significant air contamination (Klemperer et al., 2022; Zhang et al., 2021a). 125 

Our He isotope data are in high quality with <1% ASW-derived He (Figure 2). In addition, He 126 

isotope data in literature were compiled and classified into the following groups: On-KKF (K2), 127 

On-KKF (Gar), On-KKF (Menshi-Kailas), Off-KKF, western Lhasa block, and western 128 

Himalayas (Data Set S1 in Supporting Information S1). Among them, six low X-value (mostly 129 

<10) samples from four geothermal fields (i.e., Menshi, Changlung, Duoguoqu, and Xiongbacun) 130 

on the K2 and Menshi-Kailas segments were excluded from discussion. In particular, Changlung 131 

(Klemperer et al., 2013) and Duoguoqu (Bai et al., 2023) were suggested to discharge mantle 132 

fluids but were not considered in this study due to uncertain data quality (Figure 2). To assess 133 

whether unequivocal mantle fluids are releasing at Changlung and Duoguoqu, new He isotope 134 

measurements need to be conducted in future; but this possibility does not impact our discussion 135 

and conclusion. 136 
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Spatially, most samples are distributed on and off the Gar and Menshi-Kailas segments, 137 

and four samples from Klemperer et al. (2013, 2022) are ~40−60 km off the Bangong-Chaxikang 138 

segment (Figure 1). In addition, considering the lack of detailed field work to confirm the 139 

affinity of the Kailas-Thakkhola segment to the KKF (Chevalier, 2019), our newly acquired data, 140 

along with the compiled literature data, would be suitable for constraining hydrothermal 141 

degassing from the southern KKF, including the Bangong-Chaxikang, Gar, and Menshi-Kailas 142 

segments. 143 

 144 

3. Results and Discussion 145 

3.1. Regional 
3
He/

4
He Variability and Possible Temporal Changes 146 

There is a general consensus that any air-corrected 
3
He/

4
He ratio (RC) higher than 0.1 RA 147 

(>1% mantle He inputs assuming 8 RA for the mantle and 0.02 RA for the crust) is considered 148 

unambiguous evidence for mantle degassing (Crossey et al., 2009), i.e., fluid connections to the 149 

mantle. Conversely, those lower than 0.1 RA represent crustal degassing. All our samples (RC = 150 

0.015−0.042 RA; Table S1 in Supporting Information S1) plot in the canonical range of crustal 151 

3
He/

4
He (0.01−0.05 RA; Ballentine et al., 2002) and have <0.5% mantle He inputs (Figure 2). 152 

This resembles crustal degassing in the adjacent western Himalayas and western Lhasa block 153 

(Figure 2). Note that Samples ZGG04, ZGZ08, and ZZB09 (Klemperer et al., 2022) in the 154 

western Lhasa block have 1.1−2.1% mantle He inputs (Figure 3a) but are far away from the KKF 155 

(~150−300 km; Figure 1a). We do not expect any fluid connections between the KKF and these 156 

distant thermal springs; and indeed, Klemperer et al. (2022) attributed the ~1−2% mantle He 157 

inputs to the release of primordial 
3
He from asthenospheric mantle wedge. 158 
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New He isotope data show that geothermal fields on the Gar and Menshi-Kailas 159 

segments, as well as the Langjiu geothermal field off the KKF, are characterized by degassing of 160 

crustal fluids (Figure 2 and Figure 3a). As mentioned in the Introduction, previous studies (Hoke 161 

et al., 2000; Klemperer et al., 2013, 2022; Zhao et al., 2002) identified mantle He degassing at 162 

Menshi and Langjiu (Figure 1). Notably, those samples with mantle He inputs (3.5−28% at 163 

Menshi and 2.1−3.1% at Langjiu) were collected in the 1990s, while the post-2015 samples [i.e., 164 

2021 and 2022 at Menshi and Langjiu (this study); 2017 at Menshi and Langjiu (S. Klemperer, 165 

personal communication); 2015 and 2019 at Langjiu (Sun et al., 2023)] collectively provide 166 

unambiguous evidence for crustal degassing (Figure S1 in Supporting Information S1). Such 167 

contrasting results from the same geothermal fields, although not strictly the same sample 168 

locality, are intriguing and could be attributed to complex subsurface fluid pathways that are able 169 

to cause vastly different dilutions of mantle volatiles by crustal fluids. For example, complex 170 

gas-water-rock interaction (e.g., subsurface calcite precipitation; Chiodini et al., 2015) could 171 

influence the connectivity and permeability of fluid pathways across short length-scales, and on 172 

time-scales of only a few years one conduit may become calcified and another conduit may open. 173 

This could increase the residence time of mantle fluids in the crust and thus lead to high 174 

possibility of crustal He contamination. Further information on the origin of hydrothermal fluids 175 

could contribute to our understanding of the controlling factors for He degassing from the KKF. 176 

3.2. Identification of A Crustal 
4
He-Rich Fluid Reservoir 177 

Hydrothermal gases from the KKF are enriched in either CO2 or N2, or both of them 178 

(Table S1 in Supporting Information S1). These major gases, together with water, serve as the 179 

carrier for He migration through the crust (Hong et al., 2010; O'Nions & Oxburgh, 1988). When 180 

arriving at the surface, the thermal spring gases are expected to contain variable amounts of 181 
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major and trace gases due to their solubility (S) difference in water (Barry et al., 2013). We find 182 

that He contents vary significantly from several parts per million by volume (ppmv) to as high as 183 

~1.0−1.6 vol.% (Table S1 and Data Set S1 in Supporting Information S1). About half of the 184 

geothermal fields (9 out of 17) on and off the KKF have average He content higher than 185 

economic threshold value (~1000 ppmv; Chen et al., 2023) for He resource exploration. Unlike 186 

the 1990s Menshi and Langjiu samples (Hoke et al., 2000; Klemperer et al., 2013), new 187 

observations in this century show that the KKF is overwhelmingly dominated by crustal 188 

degassing [
3
He/

4
He = 0.029 ± 0.016 RA (1σ, n = 50)]. Taken together, it is reasonable to infer 189 

that there is a crustal 
4
He-rich fluid reservoir in the hydrothermal systems beneath the KKF 190 

(Figure 3a). 191 

Spatially, the crustal He degassing is generally focused in a ~30-km-wide zone along the 192 

KKF, with He contents decreasing toward more distant regions in the NE and SW, respectively 193 

(Figure S2 in Supporting Information S1), suggesting that the KKF is a primary conduit for the 194 

uprising and degassing of crustal 
4
He-rich fluids. Temporally, except for the 1990s Menshi and 195 

Langjiu samples, mantle fluid inputs to the hydrothermal systems were not observed throughout 196 

the KKF (Figure 3a). One possibility is that the uprising mantle fluids, if any, could be entirely 197 

contaminated by the crustal 
4
He-rich fluid reservoir as mentioned above. The impulsive nature of 198 

crustal He degassing has been highlighted for tectonically active regions (Caracausi et al., 2022), 199 

which is particularly affected by earthquake events or cycles (Buttitta et al., 2020). We compiled 200 

54 earthquakes (M = 3.2–5.6, average hypocentral depth = ~32 km, time interval = 1990–2022) 201 

that occurred on the KKF and in adjacent areas ±50 km off the KKF (Data Set S2 in Supporting 202 

Information S1). A prominent peak in earthquake frequency between 2002 and 2004 is observed, 203 

and those occurred since 2000 forms an earthquake cluster in the Menshi-Kailas segment (Figure 204 
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S3 in Supporting Information S1). Although the KKF may be seismically less active (e.g., 205 

number of recorded earthquakes is small; Chevalier, 2019) than many other strike-slip faults 206 

such as the Xianshuihe fault (Liu et al., 2023), the increased earthquakes and their clustering in 207 

the Menshi-Kailas segment could result in enhanced release of crustal He (Buttitta et al., 2020; 208 

Caracausi et al., 2022) and complex changes in subsurface structural conditions (e.g., the closure 209 

and opening of fluid conduits), which may have made it difficult to detect mantle He inputs in 210 

the post-2015 samples at Menshi and Langjiu. 211 

Many continental strike-slip faults worldwide, such as the San Andreas fault (Kennedy et 212 

al., 1997; Kulongoski et al., 2013), the North Anatolia fault (de Leeuw et al., 2010; Güleç et al., 213 

2002), and the Xianshuihe fault (Liu et al., 2023; Zhang et al., 2021b), are characterized by 214 

mantle 
3
He degassing in long time series and thus plausible fluid connections to the mantle. In 215 

this respect, the available data from the KKF are insufficient to assess mantle-to-crust fluid 216 

connections and the possible impulsive nature of crustal degassing, which requires continuous 217 

3
He/

4
He monitoring of thermal springs and further integration with seismic data analysis and 218 

geophysical detections of the underlying structures. 219 

3.3. Carbon Origins and Secondary Hydrothermal Processes 220 

Because CO2 is a major carrier for He and mantle fluids are negligible in the He 221 

inventory, carbon origins in hydrothermal systems are expected to be controlled by 222 

decarbonation of crustal materials (rather than the mantle), including the reduced and oxidized 223 

carbon species (Figure 3b; e.g., organic matter and carbonate rocks). Following separation from 224 

the original reservoir, the transport of CO2-rich fluids to the surface is always accompanied by 225 

secondary processes such as solubility-controlled gas-water-rock interaction, calcite precipitation, 226 
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and fluid addition from other sources (Buttitta et al., 2023; Randazzo et al., 2022; Ray et al., 227 

2009; Van Soest et al., 1998). 228 

The positive correlation between CO2/N2 and CO2/
4
He ratios indicates that N2-rich gases 229 

(roughly differing from the CO2-rich gases by CO2/N2 <2−3; Figure S4a in Supporting 230 

Information S1) tend to have lower CO2/
4
He ratios. Particularly, average He content (5961 ppmv) 231 

of the N2-rich gases is ~10 times that of the CO2-rich gases (523 ppmv; Figure S4b in Supporting 232 

Information S1). The preferential dissolution of CO2 in groundwater could enrich the exsolved 233 

gases with high amounts of less soluble species such as N2 and noble gases (Rizzo et al., 2019). 234 

Such selective gas dissolution in groundwater is plausible to explain the CO2/
4
He decrease in the 235 

He- and N2-rich gases (Figure 3c). Moreover, the sequestration of dissolved inorganic carbon as 236 

carbonate minerals (e.g., calcite) could also lower CO2/
4
He ratios of residual gas and fluid phases 237 

(Barry et al., 2020; Ray et al., 2009), which simultaneously leads to δ
13

C variations depending on 238 

temperature and pH of the spring water (Gilfillan et al., 2009; Hilton et al., 1998). Modeling 239 

results show that calcite precipitation probably occurred at temperatures of ~90−170 
o
C (Figure 240 

3d), or within an expected pH of 6−8 (Gilfillan et al., 2009). Assuming a geothermal gradient of 241 

30 
o
C km

−1
 for the western Tibet, carbonate minerals may start to precipitate at ~5−6 km depth, 242 

consistent with groundwater circulation of the KKF (Wang et al., 2022). The possibility of 243 

calcite precipitation is supported by travertine surrounding spring mouths and calcite veins in 244 

exhumed fault rocks (Wallis et al., 2013). In contrast, the increasing CO2/
4
He with decreasing He 245 

may result from hydrothermal degassing (Figure 3c), which preferentially retains CO2 over He in 246 

the residual fluid phase (i.e., SHe ≪ SCO2 in aqueous fluids; Barry et al., 2014). Furthermore, CO2 247 

addition into the uprising hydrothermal fluids is also likely because a mixture of crustal reduced 248 
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and oxidized carbon could provide CO2-rich fluids for mixing with those derived from the crustal 249 

4
He-rich fluid reservoir (Figure 3d). 250 

3.4. He-CO2 Mobilization Related to Crustal-Scale Active Deformation 251 

Continental strike-slip faults are important conduits for the outgassing of deeply-sourced 252 

volatiles such as He and CO2 (Kim et al., 2020; Kulongoski et al., 2013; Xu et al., 2022; Zhang 253 

et al., 2021b). A crustal 
4
He- and CO2-rich fluid reservoir is proposed to sustain the prevailing 254 

crustal degassing through the KKF (Figure 4). The formation of such 
4
He- and CO2-rich fluid 255 

reservoir depends on (i) liberation of He and CO2 from variable sources by physical and 256 

chemical processes, and (ii) their accumulation in the fluid reservoir as dissolved and gaseous 257 

phases (Ballentine et al., 2002). Considering geological and structural features of the KKF, we 258 

suggest that the mechanism that could mobilize He and CO2 from crustal rocks is closely related 259 

to active deformation driven by the Karakoram strike-slip faulting (Figure 4). 260 

Strike-slip faults could offset the brittle upper crust and yield at depth to broadly 261 

distributed shearing beneath the brittle-ductile transition zone (Figure 4). For the shear zone 262 

rocks, dilatancy-related microscale fracturation could enhance the release of crustal 
4
He into pore 263 

fluids (Caracausi et al., 2022). Moreover, deformation-enhanced fault permeability could 264 

facilitate fluid infiltration into the carbon-bearing rocks, which thus increases the efficiency of 265 

metamorphic decarbonation reactions (Stewart et al., 2019). Therefore, the deforming and 266 

fracturing rocks in the ductile shear zone could release large amounts of crustal He and CO2, 267 

which subsequently migrate through the highly fractured fault zones into the hydrothermal 268 

system and accumulate over time to form a 
4
He- and CO2-rich fluid reservoir. At shallower 269 

depths, water-rock interaction and mixing with shallow fluids (e.g., meteoric water infiltrating 270 

sediments; Buttitta et al., 2023) could also contribute to the He-CO2 inventory (Figure 4). 271 
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Overall, our model based on geochemical evidence agrees well with geological and geophysical 272 

studies that suggest crustal-level localization and thus crustal-scale deformation of the KKF 273 

(Craig et al., 2012; Gao et al., 2016; Searle & Phillips, 2007; Van Buer et al., 2015; Wang & 274 

Klemperer, 2021). 275 

 276 

4. Conclusions 277 

This study presents an attempt to locate the penetration depth and active deformation of 278 

continental strike-slip faults based on chemical and isotopic compositions of hydrothermal gases. 279 

Our main finding is the crustal 
4
He- and CO2-rich fluid reservoir in the subsurface hydrothermal 280 

system, which sustains the prevailing crustal degassing from the southern KKF. The failure of 281 

the post-2015 measurements in identifying mantle fluids at Menshi and Langjiu may result from 282 

(i) complex subsurface fluid conduits that could be changed by hydrothermal processes (e.g., 283 

calcite precipitation) and regional seismicity, and (ii) the earthquake cluster in the Menshi-Kailas 284 

segment since 2000. Specifically, the former increases the possibility of mantle fluids being 285 

diluted by the crustal 
4
He- and CO2-rich fluids, while the latter enhances the liberation of crustal

 
286 

4
He and CO2 from deforming and fracturing fault zone rocks. Although more data are required to 287 

evaluate the mantle-to-crust fluid connections and possible impulsive nature of crustal degassing, 288 

crustal-scale active deformation is evidently a fundamental response to strike-slip faulting of the 289 

southern KKF. Our results provide new geochemical evidence for the penetration depth and 290 

active deformation of the KKF, which would be enlightening for interpreting active formation 291 

driven by continental strike-slip faults in global orogenic belts. 292 

 293 
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 508 

Figure Caption 509 

 510 

Figure 1. (a) Map showing geo-tectonic framework and sample locality. Bold italic letters M and 511 

L refer to Menshi and Langjiu, respectively. (b) Enlarged map of the southern Karakoram fault. 512 

Insert of fault segmentation is after Chevalier et al. (2015). The compiled earthquake events 513 

(Data Set S2 in Supporting Information S1) are from USGS Earthquake Catalog. 514 

 515 

Figure 2. Plot of 
3
He/

4
He (RM/RA) versus X value. Filled and open symbols represent data in this 516 

study and literature, respectively. Air-saturated water (ASW; 
3
He/

4
He = 0.985 RA, 

4
He/

20
Ne = 517 
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0.26) is from Klemperer et al. (2022). Mantle end-member refers to a combination of depleted 518 

MORB-sourced mantle (8 ± 1 RA; Graham, 2002) and SCLM (6.1 ± 2.1 RA; Day et al., 2015). 519 

Crust-mantle mixtures with variable mantle proportions, calculated from mixing between 520 

MORB-type mantle (8 RA) and crust (0.02 RA), are shown for comparison. 
4
He/

20
Ne ratio of 521 

crust, mantle, and crust-mantle mixtures is assumed to be 3500. Changlung (CL) and Duoguoqu 522 

(DGQ) are shown for comparison with the 1990s Menshi and Langjiu samples. The horizontal 523 

scale bar represents proportions of ASW-derived He in uncorrected 
3
He/

4
He values. 524 

 525 

 526 

Figure 3. Plots of He-CO2 systematics. (a) 
3
He/

4
He (RC/RA) versus 1/He. (b) 

3
He/

4
He (RC/RA) 527 

versus δ
13

C-CO2 (‰). (c) CO2/
4
He versus 1/He. (d) CO2/

4
He versus δ

13
C-CO2 (‰). Data source 528 

and symbols are as in Figure 2. The initially exsolved gases from crustal fluid reservoir are 529 

defined according to geochemical tendency of samples. Reference values of end-member 530 

parameters are given in Table S2 in Supporting Information S1. Note that in some cases the 531 

δ
13

C-CO2 value of mantle fluids could be comparable with that of the mixture between crustal 532 

reduced and oxidized carbon; however, crustal 
4
He-rich fluids are expected to have lower 533 

CO2/
4
He than mantle fluids due to excessed 

4
He relative to CO2. Model of calcite precipitation 534 

(CP) is after Barry et al. (2020). 535 

 536 

Figure 4. Cartoon showing crustal-scale active deformation and related hydrothermal degassing. 537 

Groundwater circulation depth is after Wang et al. (2022) and the brittle-ductile transition zone is 538 

assumed to be at ~30 km depth for western Tibet. 539 
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