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Abstract

A Perturbed Parameter Ensemble (PPE) with the Community Atmosphere Model version 6 (CAM6) is used to better understand

the sensitivity of simulated clouds to both aerosol forcing and cloud feedbacks and the interactions between them. Aerosol

forcing through aerosol-cloud interactions is mostly negative (a cooling) due to shortwave radiation, while feedbacks are positive

or negative in different regions due to contrasting longwave and shortwave effects. Both forcing and feedbacks are related to

the mean climate state. Higher magnitude cloud radiative effects generally mean larger net forcing and larger net feedback.

Aerosol forcing is broadly related to the susceptibility of clouds to drop number. Feedbacks are less related to susceptibility,

and in different regions. Aerosol forcing and cloud feedbacks are anti-correlated in the CAM6 PPE such that stronger negative

forcing is associated with stronger positive feedbacks. Even the processes governing forcing and feedback sensitivity in the PPE

are similar. These include the warm rain formation process, ice loss processes and deep convective intensity.
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Abstract15

A Perturbed Parameter Ensemble (PPE) with the Community Atmosphere Model16

version 6 (CAM6) is used to better understand the sensitivity of simulated clouds to both17

aerosol forcing and cloud feedbacks and the interactions between them. Aerosol forcing18

through aerosol-cloud interactions is mostly negative (a cooling) due to shortwave ra-19

diation, while feedbacks are positive or negative in different regions due to contrasting20

longwave and shortwave effects. Both forcing and feedbacks are related to the mean cli-21

mate state. Higher magnitude cloud radiative effects generally mean larger net forcing22

and larger net feedback. Aerosol forcing is broadly related to the susceptibility of clouds23

to drop number. Feedbacks are less related to susceptibility, and in different regions. Aerosol24

forcing and cloud feedbacks are anti-correlated in the CAM6 PPE such that stronger neg-25

ative forcing is associated with stronger positive feedbacks. Even the processes govern-26

ing forcing and feedback sensitivity in the PPE are similar. These include the warm rain27

formation process, ice loss processes and deep convective intensity.28

Plain Language Summary29

A climate model is run many times with modified parameters to see how the pa-30

rameters affect key aspects of climate change. The paper focuses on two aspects of cli-31

mate change. First, the cloud response to aerosol particles tends to create a cooling, which32

partially offsets greenhouse gas warming, but the magnitude of the cooling is not well33

known. It varies a lot in the model when parameters are changed. Second, the paper ex-34

amines the cloud response to surface temperature increases, called cloud feedbacks, which35

are the largest uncertainty in estimating the level of future climate change. Cloud feed-36

backs are also sensitive to parameters. The results show that the cloud feedbacks and37

aerosol forcing changes are similar but opposite in the model: the cooling and warming38

generally increase together. This occurs because they are linked to similar parameters,39

which indicate sensitivity to critical processes, including how rain forms, and how much40

ice is in the atmosphere.41

1 Introduction42

Uncertainties in predicting the evolution of the Earth’s climate arise from complex-43

ity in the response of the system to anthropogenic radiative forcing, and in the actual44

level of radiative forcing. The largest uncertainty in the fast response of the climate sys-45

tem is due to the response of clouds to changes in the environment: cloud feedbacks (Get-46

telman & Sherwood, 2016; S. Sherwood et al., 2020). In addition, the largest uncertainty47

in anthropogenic radiative forcing is the response of clouds to aerosol perturbations (“Sum-48

mary for Policymakers”, 2021), often termed Aerosol-Cloud Interactions (ACI). These49

perturbations are significant but complex (Bellouin et al., 2020). More aerosol particles50

increase cloud drop numbers and lead to brighter clouds (Twomey, 1974) and potentially51

longer-lived or thicker clouds (Albrecht, 1989). To assess these processes globally, com-52

prehensive Earth System Models (ESMs) with atmospheric components that include a53

detailed representation of cloud physics, aerosol physics as well as the interactions be-54

tween them must be used. The scale of these models, typically 100km horizontal, sev-55

eral hundred meter vertical and 10-30 minute time-steps is too coarse to explicitly resove56

key cloud and aerosol processes and therefore introduces very large uncertainties in cloud57

physics representations.58

Much has been written about analyzing model and observational analogs for ACI59

(Bellouin et al., 2020) and cloud feedbacks (S. Sherwood et al., 2020). Many of the pro-60

cesses which control both ACI and cloud feedback responses are the same. For exam-61

ple, extensive decks of bright liquid cloud at the top of the Planetary Boundary Layer62

(PBL) over the darker ocean significantly cool the planet by reflecting solar radiation63
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back to space. These clouds exist due to an inversion that traps moist ocean air near the64

surface. The strength of that inversion has been shown to be important in cloud forma-65

tion and maintenance, and how that inversion changes over time is important for how66

clouds will respond to climate change: how thick they are and their propensity to rain67

(S. C. Sherwood et al., 2014). Similarly, aerosols impact clouds by changing the drop pop-68

ulation (more aerosols implies more cloud drops), and how these clouds evolve may also69

be determined by the inversion at the top of the boundary layer (Ackerman et al., 2004),70

and their propensity to rain.71

Given the importance of cloud processes at the nexus of forcing and feedback, there72

has yet been little work on the interaction between these two effects beyond global means.73

Kiehl (2007) noted that in ESMs there was a relationship across models between the to-74

tal response to climate change and aerosol forcing. This was updated by Forster et al.75

(2013) to show less of an overall relationship. The latest generation of ESMs show no76

relationship (Smith et al., 2020), though Watson-Parris & Smith (2022) find a relation-77

ship between forcing and feedback when constrained on historical surface temperature.78

Gettelman et al. (2016) noted other process level interactions such as an ‘Aerosol Me-79

diated Cloud Feedback’ whereby the mechanism for cloud feedbacks occurs by climate80

change altering aerosol populations. An example noted by Gettelman et al. (2016) is that81

increasing wind speeds over the S. Ocean increase sea spray and cloud drop number, bright-82

ening clouds. This negative cloud feedback is mediated by aerosols. This work will seek83

to examine the relationship between cloud feedbacks and aerosol forcing of clouds in more84

detail by taking advantage of a unique dataset with a modern ESM.85

Here we will look at the interaction between aerosol forcing and cloud feedbacks86

with a large Perturbed Parameter Ensemble (PPE) from the Community Atmosphere87

Model version 6 (CAM6). The CAM6-PPE uses parameter perturbations to sample model88

structural uncertainty, and produce a wide range of climates resulting from very differ-89

ent adjustments to cloud and aerosol processes. Similar PPEs have been used to under-90

stand model parametric uncertainty (Qian et al., 2018), constrain aerosol forcing (Re-91

gayre et al., 2023; Lee et al., 2016) and low cloud feedbacks (H. Zhang et al., 2018). In92

this work, we will use the CAM6-PPE to better understand the interaction between forc-93

ing and feedback with the goal of understanding critical process and how they interact.94

Section 2 describes the data and methods to be used. Section 3 presents detailed95

results of forcing sensitivity, feedback sensitivity and their interactions. Discussion is in96

Section 4 and conclusions are in Section 5.97

2 Methods98

The simulations used for this analysis are from the Community Atmosphere Model99

version 6 (CAM6) PPE. The CAM6-PPE is described in detail by Eidhammer et al. (2024).100

It consists of 263 ensemble members in which latin hypercube sampling is used to mod-101

ify 45 parameters in the microphysics, convection, turbulence and aerosol schemes. Note102

that one of the simulations did not complete, and that two pairs of parameters are var-103

ied together, so effectively 43 parameters are varied. These atmospheric parameters are104

typically the most uncertain in many climate models and contain many variables which105

alter cloud and aerosol processes. Parameter ranges are chosen to be physically plausi-106

ble for each parameter. We also will subset the parameter space based on physically re-107

alistic climates as described below. Simulations are run with an atmosphere-land con-108

figuration for 3 years, for Present Day (PD) climatological boundary conditions, repeat-109

ing climatological averaged Sea Surface Temperatures (SSTs) each year. In addition, two110

other additional sets of 263 simulations are run with the same parameters. In one set,111

SSTs are uniformly increased by 4K to assess the cloud response to warming, following112

Cess et al. (1989), termed SST4K. In the other set of 263 simulations, PD SSTs and the113

–3–



manuscript submitted to JGR: Atmospheres

same boundary conditions are used, except aerosol emissions are set to 1850 ‘Pre-Industrial’114

levels (hereafter PI simulations).115

The principle we will exploit is that different parameters modify different specific116

processes in the cloud physics (e.g., frequency or intensity of deep convection, rain for-117

mation processes, freezing and ice nucleation processes, etc). The changing balance of118

processes alters the climate. First, we will use the PPE to understand if forcing and feed-119

backs depend on the base climate state of those simulations. Then we will use the PPE120

to understand which parameters give rise to variations and sensitivity in forcing and feed-121

backs. Finally we will explore the relationship between aerosol forcing and cloud feed-122

backs. The parameters map to the underlying physical mechanisms. While the param-123

eters in the PPE are model specific, the process representations are very similar to (or124

even the same as) other modern ESMs. Thus the results may have more general appli-125

cation since the relationships we elucidate are well founded in processes, not just in pa-126

rameters.127

As described by Gettelman et al. (2019), the aerosol induced cloud forcing (ACI,128

or just ‘forcing’) is defined as the change in Cloud Radiative Effect (CRE) between sim-129

ulations with Present Day (PD) and Pre-Industrial (PI) aerosol emissions. Typically we130

are concerned with the Shortwave (SW) cloud forcing (SW ACI = ∆SWCRE), but there131

is also Longwave (LW) forcing (LW ACI = ∆LWCRE). Cloud feedbacks are defined as132

the kernel adjusted cloud feedbacks (Soden et al., 2008) using the kernels from Zelinka133

et al. (2012) as applied by Duffy et al (2023). The kernels adjust LW and SW CRE to134

remove effects of changes to the atmospheric temperature and water vapor, and the ef-135

fect of a changing surface albedo.136

To constrain the simulations for fidelity against observations we also compare them137

to observations of radiative fluxes and clouds from the CERES (Clouds and the Earth’s138

Radiant Energy System) satellite Energy Balanced and Filled (EBAF) products (Loeb139

et al., 2018).140

Finally, for analysis of the simulations and sensitivity to parameters (and hence pro-141

cesses), we use Gaussian process emulators (Watson-Parris et al., 2021) trained on the142

PPE ensemble to determine the sensitivity of forcing and feedbacks to each parameter.143

3 Results144

First we illustrate the parametric uncertainty (i.e. the PPE spread) of feedbacks145

and forcing (Section 3.1). Then we examine how aerosol forcing is related to the mean146

state and to different parameters, which are both indicative of specific processes (Sec-147

tion 3.2). Next we will do the same analysis for cloud feedbacks (Section 3.3) and then148

we will explore the interaction between aerosol forcing and cloud feedbacks (Section 3.4)149

3.1 PPE Mean and Spread150

Figure 1 illustrates the global mean change in SW (Figure 1A), LW (Figure 1B)151

net TOA radiation (Figure 1C) and change in total cloud fraction (Figure 1D) for the152

263 PPE members. The forcing in Figure 1A and B is the change in CRE, while the feed-153

backs are the kernel-adjusted feedbacks. The spread estimates the parametric uncertainty154

in forcing and feedback.155

The spread in net ACI forcing is only ∼2Wm−2, because the global mean SW and156

LW are of opposite sign and are strongly anti-correlated, resulting in a fairly narrow range157

in total net TOA change (Figure 1C). The anti-correlation is not as strong for cloud feed-158

backs where the SW and LW components are both positive in most ensemble members.159

Note that the TOA change for feedbacks includes a significant change NOT associated160

with clouds, but rather for the clear sky (due to a warmer surface). There is also far less161
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Figure 1. Histograms of global A) TOA SW change, B) TOA LW change, C) Net TOA

change and D) Cloud Fraction change for Present Day - Pre-Industrial (Aerosol Forcing, Blue)

and SST+4K - Present Day (Feedback response, orange). Forcing is change in TOA Cloud Ra-

diative Effect (CRE) and feedbacks are the kernel adjusted cloud feedbacks as descried in the

text. Solid lines are the mean of the distribution, dotted lines are results with the default CAM6

parameter settings.
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Figure 2. PPE ensemble means of Aerosol Cloud Interactions (Forcing) for the A) SW, B)

LW and C) Total (LW+SW) as well as Cloud Feedbacks for the D) SW, E) LW and F) Total

(LW+SW).

cloud fraction change (Figure 1D), both the mean and PPE spread, for aerosol forcing162

than for cloud feedbacks.163

Figure 2 illustrates the ensemble mean cloud forcing (ACI) as the change in CRE164

between present (PD) and pre-industrial (PI) simulations for the SW (Figure 2A), LW165

(Figure 2B) and Net (Figure 2C). Figure 1A and B indicate that for both forcing and166

feedback, the ensemble mean (solid vertical lines in Figure 1) is similar to the default167

(dotted vertical lines in Figure 1). We have verified that this is qualitatively the case for168

maps as well by mapping the default case individually: the ensemble mean just provides169

better statistics to smooth out noise in the short 3 year simulations. ACI is strongest170

in the SW, concentrated in the N. Hemisphere, with the largest values over oceans down-171

wind of source regions (N. Pacific, N. Atlantic and N. Indian Ocean), and a strong SW172

signal over China. SW is larger than LW, with the largest LW effect near India, due per-173

haps to aerosol effects on tropical ice clouds, which mostly cancel the SW effects. There174

is virtually no aerosol forcing in the S. Hemisphere. SW and LW are of opposite sign in175

most regions, but there is not a 1:1 correlation in the magnitude. Net ACI becomes weakly176

positive over the Arctic ocean due to lack of SW cooling from clouds over a bright ice-177

covered surface.178

Figure 2 also illustrates the ensemble mean cloud feedbacks for the SW (Figure 2D),179

LW (Figure 2E) and total (Figure 2F). As with forcing, the ensemble mean is qualita-180

tively similar to the default case. There are significant positive (and net) SW Cloud Feed-181

backs over tropical continents in convective regions, as well as in the mid-latitude storm182
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tracks in both hemispheres. In the tropical convecting regions, the two mechanisms con-183

trolling cloud feedbacks are the increase in altitude of high clouds and a reduction in anvil184

cloud area (S. Sherwood et al., 2020). The increase in the altitude of high clouds is a pos-185

itive LW cloud feedback (the red area over the tropical west Pacific/Indian ocean). The186

reduction in anvil cloud area should have competing LW positive and SW negative ef-187

fects as illustrated in Figure 2D and Figure 2E. The net cloud feedbacks are positive,188

except over polar regions with frequent sea-ice coverage.189

3.2 Forcing190

We start by focusing on the aerosol forcing, again defining ACI as the change in191

CRE between PD and PI simulations (either LW, SW or Net=SW+LW). First we at-192

tempt to understand whether ACI is related to properties of the mean state climate. Aerosol193

forcing is a series of processes that might be reflected in correlations between the forc-194

ing and the mean state. Increases in emissions increase aerosols (largely sulfate) which195

increase the Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN), and hence cloud drop196

and ice crystal number. This might affect cloud fraction and/or cloud mass (Ice Water197

Path [IWP] and Liquid Water Path [LWP]). The mean state might make the clouds more198

or less ‘susceptible’ to these changes. For example: higher base state sulfur and higher199

CCN and/or drop number for PI conditions might make a perturbation to sulfur less im-200

portant. Or having more clouds (either larger negative SW CRE or higher cloud frac-201

tion) might result in more ‘marginal’ clouds that could be affected by ACI.202

We focus on the mean state climate of the PI simulations. In the present day, some203

of the correlation between mean state and aerosols is due to anthropogenic aerosol forc-204

ing, and we are interested in the ‘unaffected’ state. We start with correlations of global205

mean state properties with global mean ACI. Figure 3 illustrates that the magnitude of206

globally averaged Net ACI is correlated with several properties of the mean state: To-207

tal Cloud Fraction (Figure 3A), Sulfate (SO4) Burden (Figure 3B), CCN at 0.2% super-208

saturation (Figure 3C) and Cloud Top Drop Number (Nc, Figure 3D). We looked at sev-209

eral PI mean state properties not strongly correlated with global mean forcing: LWP and210

IWP. Column drop number is similar to cloud top drop number (Figure 3D).211

The orange points are the sub-set of simulations whose mean annual value of SW212

CRE is within ±5 Wm−2 of the observed CERES EBAF annual global mean (-45.3 Wm−2).213

This constraint is a gross measure of whether the ‘climate’ in any simulation (specifically214

the cloud climatology) is similar to present day observations. The slopes (orange lines)215

are qualitatively similar (with lower correlation) if we consider only the constrained data216

rather than all the data for most of the variables except cloud coverage. The red dot is217

the ‘default’ parameter set for CAM6.218

Figure 3A indicates that as total mean state cloud fraction increases, net ACI in-219

creases in magnitude (negative). This implies more cloudiness may mean more marginal220

or thin clouds that are more susceptible to changes. As mean PI sulfate burden increases,221

net ACI forcing is reduced (lower magnitude) (Figure 3B) with a similar relationship for222

CCN (Figure 3C). These both indicate that PI environments with higher sulfur and more223

CCN are less sensitive to additional sulfur, a result noted in other models (Carslaw et224

al., 2013). There is also a relationship between cloud top drop number and Net ACI forc-225

ing (Figure 3D) whereby higher PI drop numbers give rise to larger forcing, which seems226

to work in the opposite way to more PI CCN. In general, these correlations using global227

means are quite low. SW ACI only correlations are a little stronger (not shown). The228

CERES constrained simulations have similar correlations to all simulations, with lower229

magnitude (except for total cloud coverage, where constrained simulations have a smaller230

correlation of the opposite sign).231

To understand these relationships better, we can map the correlations at each point232

to determine what regimes are important. Figure 4 illustrates the same relationships as233
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Figure 3. Global correlations between mean state for A) Total Cloud Fraction, B) Total

Column Sulfate, C) CCN at 0.2% supersaturation and D) Cloud top drop number with Pre-

Industrial aerosols (horizontal axis and the Net ACI forcing (PD-PI, vertical axis). Blue points:

all simulations, red line, linear regression. Orange indicates those 87 simulations whose global

mean PD Shortwave Cloud Radiative Effect is within ±5 Wm−2 of the CERES EBAF global an-

nual mean. Orange line is the linear regression of these points. Default CAM6 parameters shown

as the red dot.

Figure 3 using PI mean climate and aerosol net forcing (PD - PI change in SW+LW CRE)234

but now as a map at each point. An expanded set of mean state indicators are illustrated.235

The linear correlation coefficient at each point is plotted, with the stippling indicating236

regions which are NOT significant based on a bootstrap fit. Maps are similar if only the237

simulations constrained by the observed satellite SW CRE climatology are used, but with238

less significance (similar to Figure 3). We have examined the LW and SW components239

separately, and in general net ACI forcing is dominated by the SW as seen in Figure 2.240

The weak global correlations in Figure 3 belie stronger regional correlations, which241

can be of different sign between regions and hence cloud types. In many cases there are242

opposite sign correlations over the Arctic ocean where the SW ACI goes to zero (Fig-243

ure 2A) and the positive LW ACI component dominates (Figure 2C). The opposite sign244

correlation is due to the local ACI being dominated by the LW and changing sign. There245

is a strong positive correlation between the net ACI forcing (net ACI = ∆SWCRE +246

∆LWCRE) and the PI SW Cloud Radiative Effect (SW CRE, Figure 4G) at low lati-247

tudes over the ocean. Stronger negative PI mean state SW CRE in the subtropics is as-248

sociated with stronger negative ACI. Similar patterns of opposite sign (since SW CRE249

is negative) are seen for total cloud coverage (Figure 4A), LWP (Figure 4B), LW CRE250

(Figure 4F), cloud top liquid number (Figure 4I) and column drop number (Figure 4J).251

Column drop number is integrated to the top of the atmosphere. CCN effects (fewer CCN252

in PI result in stronger magnitude ACI) are mostly positive throughout the N. Hemi-253

sphere. (Figure 4E). Stronger positive ACI at high latitudes (dominated by the LW) is254

associated with more ice fraction at high latitudes (Figure 4H).255

Figure 3 indicates that stronger magnitude net ACI is associated with PI climates256

that have radiatively thicker sub-tropical liquid clouds. These ‘radiatively thicker’ clouds257

have larger magnitude cloud radiative effect due to being more extensive, with higher258

drop number and LWP. Stronger net ACI can also be associated with less PI CCN at259

middle and high latitudes and less sulfate over the land regions in mid-latitudes. To some260

extent these effects will offset (higher PI CCN should lead to higher Nc), but the effects261
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Figure 4. Map of linear correlation coefficient at each point between mean state in PI and the

ACI forcing (PD-PI) for different variables. Non-significant points are stippled. Significance is

determined by a bootstrap fit.
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occur in different regions (subtropical clouds, and more mid-latitude for CCN). The sub-262

tropical regions noted are regions where there is very little cloud, so simulations with more263

extensive cloud in these marginal regions, along with less PI CCN (and sulfur) to main-264

tain clouds in mid-latitudes, yield larger net ACI response. The strong opposite sign of265

the high latitude correlations as noted are likely due more to the change in ACI com-266

ponents over the Arctic than changes in the mean state.267

We can also look for which parameters give rise to the largest sensitivity in changes268

between pre-industrial and present day. Parameters affect particular processes, so we can269

use parameter sensitivity as a means to focus on particular processes or sets of processes.270

Since the PPE spans parametric uncertainty, this analysis identifies the sensitivity of pro-271

cesses to parametric uncertainty, and the impact of those processes on forcing and feed-272

back. For example, parameters for auto-conversion and accretion alter the rain forma-273

tion process which is the main sink for cloud water (regulating LWP).274

Following Eidhammer et al. (2024), we examine changes in model state (PD - PI)275

as a function of parameter in Figure 5. The parameter values (y-axis) are normalized276

(scaled by the minimum and maximum parameter values) while the differences in the277

outputs (x-axis) are standardized (scaled by the mean and standard deviation of the out-278

put values) and then regression slopes are calculated for global and regionally averaged279

values. Figure 5 illustrates the slopes for the normalized regression. The normalization280

and standardization helps show which parameters drive PD-PI changes in each output.281

Parameters are listed by parameterization and the regressions are calculated for differ-282

ent latitude bands as well as global. There are many commonalities across regions, with283

the exception being that cold cloud parameters are more important in the tropics and284

mixed phase cloud parameters are important in the Arctic. Given that ACI forcing is285

mostly in the N. Hemisphere, we do not expect any strong relationships over the South-286

ern Ocean.287

Important parameters for ACI changes (PD - PI mean quantities) are concen-288

trated, not surprisingly, in the cloud microphysics and aerosol activation parame-289

terizations since ACI processes trace aerosol changes, effects on cloud drop number290

and cloud microphysical adjustments to drop number perturbations. Total aerosol291

forcing (ACI and direct radiative effects of aerosols) is expressed in the residual292

TOA flux (RESTOM) difference, and the cloud forcing (SW CRE and LW CRE are293

the PD - PI change in these quantites). Important parameters alter both accretion294

(micro mg accre enhan fact) and auto-conversion (micro mg autocon lwp exp and295

micro mg autocon nd exp): the main loss process for cloud liquid water. In the Arc-296

tic, the threshold size of ice crystals for conversion of ice to snow (micro mg dcs) is297

important for ice cloud effects, including changes in ice cloud mass and the changes298

in both LW and SW CRE (LWCF, SWCF). Ice fall speed (micro mg vtrmi factor)299

is also important globally. The scaling of the sub-grid vertical velocity for ice nu-300

cleation (microp aero wsubi scale) is important in the tropics and globally for gov-301

erning the ice number and hence the LW and SW radiation. Note that it does not302

impact the net TOA balance change because of the offsetting SW and LW effects.303

The sub-grid vertical velocity for liquid drop activation (microp aero wsub scale) is304

also important. Liquid drop activation affect CCN formation. In the mid-latitudes,305

including the regions over the ocean where thicker PI clouds increase ACI magni-306

tude, several of the turbulence parameters from CLUBB are important.307

To take this a bit further, we can break down some of the key correlations308

in Figure 5 by correlating parameter values and net ACI forcing at each point.309

As in Figure 4, we estimate significant correlations with a bootstrap fit. We then310

determine the global average mean absolute correlation from only the location of311

significant correlations. Figure 6 illustrates the mean absolute correlation for each312

parameter for 6 different forcing and feedback components (different colors): To-313

tal, LW and SW for ACI and Cloud Feedback. The squares in Figure 6 show the314
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Global                    Arctic                Midlatitudes           Tropics              Southern Ocean
    

Figure 5. Normalized linear regression slope for the difference between PD and PI in 8 differ-

ent model outputs (x axis) against all parameter values (y axis). The global mean results as well

as four different regions are shown; Arctic (|lat|> 60◦), Midlatitudes (30◦<|lat|< 60◦), Tropics

(|lat|< 30◦) and the Southern Ocean (60◦S>lat>30◦S). The parameters are grouped into deep

convection, aerosol, microphysics and turbulence parameters.
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Figure 6. Global mean absolute correlation by parameter for ACI Forcing and Cloud Feed-

backs. LW, SW and Net are different colors as noted in the legend (e.g. net ACI forcing is

green). Parameters with the 10 highest absolute correlations for each component are shown

as colored solid squares. The rest of the parameters are plus signs (+). The horizontal lines show

the 6 parameters which are in the top 10 correlations for both total cloud feedback (brown) and

net forcing (green).

parameters with the 10 highest correlations for each component. We will focus on315

the common important parameters across forcing and feedback (horizontal lines) in316

Section 3.4.317

Focusing on the net ACI Forcing (green in Figure 6), we highlight the param-318

eters with the 10 highest mean absolute correlations (green squares). In general319

the LW (orange) and SW (blue) forcing components also have strong correlations320

with these parameters. Figure 7 illustrates maps of these correlations, ranked as in321

Figure 6 in order of correlation from highest (A) to 10th highest (J).322

Figure 7 reinforces the global and regional correlations in Figure 5, with a323

bit more insight into processes. Several parameters are related to ice, including the324
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Figure 7. Map of linear correlation coefficient at each point between the SW ACI forcing

(PD-PI) and selected model parameters varied in the PPE. Non-significant points are stippled.

Significance is determined by a bootstrap fit.
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sub-grid velocity for ice activation (micro aero wsubi scale: Figure 7A), the ice325

fall speed scaling (micro mg vtrmi scale: Figure 7C) and the ice auto-conversion326

size threshold (micro mg dcs: Figure 7G). The temperature perturbation for deep327

convective triggering (zmconv tiedke add, Figure 7E) likely also plays a role in328

supplying ice to the upper troposphere. Increasing the sub-grid velocity for ice nu-329

cleation will increase ice number (which seems to weaken ACI over land). The ice330

fall speed scaling results in less ice and snow in the atmosphere (associated with331

stronger ACI), while increasing the ice auto-conversion size threshold will increase332

the ice mass, which seems to weaken ACI in mid-latitudes but increase it at high333

latitudes (so more ice will result in stronger ACI at high latitudes, consistent with334

the PI mean state IWP relationship in Figure 4C).335

Liquid cloud processes are also important. The auto-conversion LWP expo-336

nent (micro mg autocon lwp exp: Figure 7B) and accretion enhancement factor337

(micro mg accre enhan fact: Figure 7H) control rain formation and depletion of338

liquid. They have similar patterns and opposite sign. Increasing the LWP exponent339

for auto-conversion results in more sensitivity of cloud water loss to LWP: higher340

auto-conversion sensitivity in the subtropics in results in stronger (more negative)341

ACI, while higher auto-conversion sensitivity in the Arctic results in weaker (less342

negative) ACI. Accretion is also a sink for cloud water, and the enhancement is a343

linear scaling for the loss. In the sub-tropics, more accretion leads to reduced (neg-344

ative) ACI, and would be associated with thinner clouds. The accretion scaling is345

consistent with the sensitivity of ACI to PI mean state sensitivity of clouds in Fig-346

ure 4, while the auto-conversion exponent is more related to the changes in the state347

between PI and PD.348

Two parameters are related to liquid aerosol activation: increasing349

microp aero wsub scale (Figure 7D) is associated with larger negative ACI. Higher350

scaling would increase CCN in PI, but also the sensitivity to changes between PI351

and PD (∆CCN). Given that the correlation with ACI in Figure 7D is opposite to352

the mean state effect of PI CCN in Figure 4E, it would appear that it affects ACI353

more through ∆CCN. Increasing sea salt emission (seasalt emis scale), will in-354

crease CCN in the base state, and has a similar correlation with ACI as PI CCN355

(Figure 4E) over the oceans.356

The last two parameters are related to the unified shallow turbulence357

(CLUBB) and act over the sub-tropical oceans. clubb C8 (Figure 7I) is the coeffi-358

cient of the skewness in the vertical velocity while clubb C6thlb (Figure 7J) affects359

the high skewness of the liquid water potential temperature. They tend to act in op-360

posite ways. Increasing clubb C8 tends to increase cloud fraction, so the correlation361

matches the total cloud response in Figure 4A.362

Looking beyond the mean state, we can also try to understand how ACI is363

related to the sensitivity or susceptibility of cloud radiative effects to changes364

in cloud properties. To look at this we examine the susceptibility of cloud ra-365

diative effect (or cloud albedo) to changes in cloud drop number (Nc) defined as366

dln(Albedo)/dln(Nc). We estimate the susceptibility terms at each point with the367

temporal (monthly mean) co-variance of these properties for each ensemble mem-368

ber, and then similar to Figure 4, correlate that with the total ACI (difference in369

LW+SW CRE between PD and PI) in Figure 8A. Because albedo has a strong sea-370

sonal dependence at high latitudes, we limit this analysis to latitudes equatorward of371

60◦.372

There is a consistent negative correlation between susceptibility and forcing373

over the oceans, whereby increasing susceptibility of clouds to drop number is as-374

sociated with stronger negative net ACI over the tropical and sub-tropical oceans.375

A detailed analysis of the parameter sensitivity of susceptibility (not shown) sim-376
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Figure 8. Correlation of susceptibility of cloud albedo to cloud drop number against A)Net

ACI forcing and B) Total Cloud feedback.

ilar to that conducted for Figure 7 for forcing indicates that the susceptibility is377

linked to the auto-conversion (micro mg autocon lwp exp) where more susceptible378

clouds have a higher auto-conversion exponent for LWP (interestingly it is not re-379

lated as much to the Nc exponent in the auto-conversion). In addition, susceptibility380

varies with accretion (micro mg accre enhan fact), where more accretion reduces381

susceptibility (perhaps because of thinner clouds). Finally, susceptibility is also asso-382

ciated with clubb C8, where higher clubb C8 is associated with higher susceptibility.383

H. Guo et al. (2015) noted that increasing clubb C8 increases cloud cover in the sub-384

tropics. These results are consistent with the PI mean state correlations (Figure 4)385

that thicker sub-tropical PI clouds in marginal regions are associated with higher386

(negative) net ACI forcing.387

3.3 Feedback388

A similar analysis is conducted for cloud feedbacks. Cloud feedbacks are as-389

sessed with the difference in cloud radiative effects between the SST+4K and PD390

simulations (modified with radiative kernels to remove non-cloud effects). Because391

global correlations can be misleading with positive and negative signs and cloud392

feedbacks have multiple signs in different regimes (Figure 2), we move straight to393

correlations with the mean present day state and total (LW+SW) cloud feedbacks at394

each point in Figure 9. These figures are with respect to present day values, but the395

correlations are the same whether present day or pre-industrial mean state is used.396

Figure 9 includes all simulations, but is qualitatively consistent with less significance397

if the 88 simulations constrained by CERES cloud radaitive effect are used.398

Regional correlations between cloud feedbacks and mean state cloud coverage399

(Figure 9A) are negative at high latitudes (Arctic and Southern Ocean) and positive400

at low latitudes. The correlations over the Sahara are spurious since there is nearly401

zero cloud and feedbacks are small (Figure 2C). Similar relationships are found with402

LWP (Figure 9B), cloud drop number (Figure 9J) and cloud top number (Figure 9I).403

Base state SW Cloud Radiative Effect (Figure 9G) has an opposite sign correlation404

(because it is negative) with similar pattern. However, over the Southern Ocean,405

more cloud and LWP (more liquid cloud) has a negative correlation with cloud feed-406

backs. IWP (Figure 9C) however has positive correlations over polar oceans. Base407

state ice fraction (Figure 9H) is positively correlated with total cloud feedbacks as408

well at high latitudes, and negatively correlated at low latitudes. All these corre-409

lations indicate that at high latitudes stronger cloud feedbacks are associated with410

less base state cloud, liquid and liquid drop number, as well as more ice. Note that411

as with forcing, the net feedback sign changes at high latitudes, which affects these412

correlations (the same change in mean state has a different sign with different signed413

feedbacks). In low latitudes, the effects are opposite, with stronger feedbacks for414

more and thicker cloud over land and ocean. There are weaker relationships between415

feedbacks and column sulfate (Figure 9D) and CCN (Figure 9E), but in general416
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Figure 9. Map of linear correlation coefficient at each point between mean state in present

day and the total (LW+SW) cloud feedbacks (estimated with SST4K v. PD) for different vari-

ables. Non-significant points are stippled. Significance is determined by a bootstrap fit.
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more sulfate and CCN in the base (non-warmed) state is associated with lower feed-417

backs.418

We investigate these relationships further by diving into processes by looking419

at key parameters. Figure 10 is similar to Figure 5 showing the normalized and420

standardized regressions between parameters and changes in the state SST4K - PD421

across regions. Some of the same parameters are important for cloud feedbacks (the422

last two variables on the right of each column): accretion, auto-conversion and the423

loss process of ice (fall speed and conversion from ice to snow). Note that the S.424

Ocean is not important for forcing since there is little change in aerosols PD-PI, but425

is more important for feedbacks (accretion, ice processes and some deep convection426

parameters are important here). As with the maps in Figure 9, the correlations vary427

by region, muting the global sensitivity (correlation) for many parameters.428

There are several parameters in the deep convective parameterization that are429

important for cloud feedbacks, particularly in the Tropics and to a lesser extent the430

S. Ocean. These parameters govern the triggering of convection (zmconv capelmt431

is the threshold CAPE for firing convection and zmconv tideke add is a buoyancy432

perturbation that will increase the convective potential). Convective rain formation433

over land (zmconv c0 lnd) is also important in the tropics, which is not surprising434

given the larger positive cloud feedbacks there (Figure 2). Convective entrainment435

(zmconv dmpdz) is important in the mid-latitudes and tropics. Deep convection436

acts by changing both the SW and the LW feedback, likely because it changes ice437

cloud radiative effects, while many of the other parameters primarily change the LW438

(for ice microphysical and aerosol processes) or SW (for liquid cloud microphysical439

and aerosol processes).440

Finally for we look at maps of key parameter correlations with feedbacks in441

Figure 11. As with Forcing, we estimate the mean absolute correlation of significant442

points for each parameter, and rank them (Figure 6). The parameters with the 10443

highest correlations with total feedbacks (brown squares in Figure 6) are displayed444

in Figure 11.445

The parameters identified are similar to those for forcing. There are several446

parameters linked to ice processes, including ice fall speed (micro mg vtrmi scale,447

Figure 11A), the sub-grid velocity for ice activation (micro aero wsubi scale: Fig-448

ure 11D) and the ice auto-conversion threshold (micro mg dcs, Figure 11F). Slower449

fall speed and more ice number (higher micro aero wsubi scale) at high latitudes450

are associated with more ice and higher total cloud feedbacks at high latitudes451

(Figure 9C). Ice auto-conversion (micro mg dcs) acts mostly in the tropics and S.452

Hemisphere, again with more base state ice (higher micro mg dcs) associated with453

higher cloud feedback, likely through the LW CRE (Figure 9F).454

As with forcing, parameters linked to rain formation are important for cloud455

feedbacks, the auto-conversion LWP exponent (micro mg autocon lwp exp, Fig-456

ure 11B) and accretion enhancement (micro mg accre enhan fact, Figure 11E)457

have opposite signs. Higher auto conversion (leading to less liquid) is associated458

with smaller cloud feedbacks at high latitudes and larger cloud feedbacks at lower459

latitudes. Accretion has the opposite effect, with more accretion (reducing cloud wa-460

ter) associated with more high latitude cloud feedbacks, and reduced tropical cloud461

feedbacks over land. Both effects are consistent with the overall cloud and LWP462

correlations with feedbacks in Figure 9A and B.463

In addition, there are three deep convective parameters that have regionally464

significant correlations with cloud feedback. In the tropics, deep convection supplies465

ice to the upper troposphere, zmconv tiedke add (Figure 11C) as well as zmconv ke466

(Figure 11I) increase convection over land with similar patterns. zmconv capelmt467
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Figure 10. Normalized linear regression slope for the difference between SST4K and PD in 8

outputs (x axis) against all parameter values (y axis). The global mean results as well as four dif-

ferent regions are shown; Arctic, Midlatitudes, Tropics and the Southern Ocean. The parameters

are grouped into deep convection, aerosol, microphysics and turbulence parameters.
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Figure 11. Map of linear correlation coefficient at each point between the total cloud feed-

backs (SW + LW) estimated from SST4K v. PD and selected model parameters varied in the

PPE. Non-significant points are stippled. Significance is determined by a bootstrap fit.
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(Figure 11G) increases it over ocean. Increasing ice seems to increase cloud feed-468

backs in the tropics (Figure 9C). zmconv capelmt (Figure 11G) also seems to act469

over the Southern Ocean, with offsetting signs in the LW and SW (Figure 10).470

Finally, two turbulence parameters, clubb C2rt (Figure 11H), clubb c1 (Fig-471

ure 11J) have small regional correlations, mostly over the oceans with opposite sign.472

clubb C2rt is related to the dissipation of temperature variance and increasing it473

increases cloud cover and SW CRE (Z. Guo et al., 2015) while clubb c1 is related to474

the dissipation of vertical velocity variance and has the opposite effect (increasing it475

decreases cloud cover and SW CRE). The patterns indicate that these parameters476

may be driving some of the correlation with mean state total cloud cover and LWP477

(Figure 9A and B), in both the tropics and high latitudes.478

3.4 Forcing and Feedback Relationships479

Figure 12 illustrates a global scatter plot of the cloud forcing (defined as above:480

the change in CRE between present day and pre-industrial) against the kernel ad-481

justed cloud feedbacks both in the SW (Figure 12A), LW (Figure 12B) and total482

(LW+SW, Figure 12C). The blue colors and regression line are for all simulations.483

As in Figure 12, the orange points and regression lines are just those simulations484

whose mean annual value of SW CRE is within ±5 Wm−2 of the observed CERES485

EBAF annual global mean (-45.3 Wm−2). The red dot is the ‘default’ parameter set486

for CAM6.487

In the SW, there is a clear relationship between the cloud feedbacks and cloud488

forcing. The relationship is similar whether just a constrained subset of simulations489

is used, or if the full data set is used, and the slope is significantly different that490

zero. In general the SW aerosol cloud forcing is negatively correlated with SW cloud491

feedback: larger positive feedbacks yield larger negative cloud forcing. There is no492

such correlation in the LW, and the slopes are not significantly different than zero,493

and the constrained simulations have a different (but still not significant) sign. The494

correlation of total (LW+SW), cloud forcing and feedback reflects mostly the SW495

correlation, and is actually stronger with constrained simulations.496

As with forcing and feedback, we can decompose the global correlation of Fig-497

ure 12 into each location on the planet, generate a correlation value at each point,498

and determine the significance of the correlation with a bootstrap fit yielding a con-499

fidence interval for the correlation between forcing and feedbacks being significantly500

different than zero (Figure 13) at each point. For the SW (Figure 13A), correlations501

are uniformly negative: stronger negative ACI is correlated with stronger positive502

cloud feedback. This maximizes over N. Hemisphere land and adjacent ocean basins.503

In large parts of the S. Hemisphere, there is very little forcing response, so there504

are small signals. Most of the negative correlation comes from the N. Hemisphere.505

Going back to the regional correlations between mean state SW CRE and ACI506

(Figure 4G) and total cloud feedbacks (Figure 9G), there is an anti-correlation, con-507

sistent with stronger forcing and feedbacks going together (since forcing is negative),508

with opposite signs over the Arctic and the rest of the N. Hemisphere. It is apparent509

over both ocean and land.510

For the LW (Figure 13B), the sign is not monotonic, but there is a negative511

correlation in N. Hemisphere mid-latitudes, and a positive correlation between LW512

feedbacks and LW forcing (which are generally both of the same positive sign) in513

parts of the tropics and the Arctic, but with less significance. The patterns of LW514

forcing and feedbacks (shown in Figure 2) are less correlated than the SW, likely515

since the SW ACI magnitude and processes acting through liquid are stronger than516

for ice. Indeed, if we look at changes in the different climate states between forc-517

ing (PD - PI) and feedback (SST4K - PD), the strongest negative correlations are518
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Figure 12. Scatterplot of A) SW B) LW and C) Total (LW+SW) Aerosol forcing (horizontal

axis) and kernel adjusted cloud feedbacks (vertical axis) from each simulation. Orange indicates

those 88 simulations whose global mean PD Shortwave Cloud Radiative Effect is within ±5

Wm−2 of the CERES EBAF global annual mean. Default CAM6 parameters shown as the red

dot.
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Figure 13. Correlation maps at each point between A) SW, B) LW and C) Total (SW+LW)

Cloud Forcing and Feedback. Regions of less than 95% significance are stippled.
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with N. Hemisphere mid-latitude LWP and column drop number (Figure B1), which519

affect mostly SW radiation. The correlations between net forcing and feedbacks520

(Figure 13C) are lower than the SW, but also negative.521

There is also a positive relationship between cloud albedo susceptibility to522

drop number and cloud feedbacks (Figure 8B). The correlation is the opposite as for523

ACI forcing, which may be another reason for the anti-correlation between forcing524

and feedback. Increased susceptibility (through the processes described above under525

forcing), tends to create larger magnitude negative ACI forcing and positive cloud526

feedbacks.527

Finally, we note that some of the dominant parameters governing Forcing and528

Feedbacks are similar. Using the mean absolute correlations by parameter (Fig-529

ure 6), we determined the most relevant parameters for ACI forcing in Figure 7 and530

cloud feedbacks in Figure 11. Figure 6 illustrates that of the top 10 correlations531

between parameters and forcing and feedback, 6 of them are common (horizontal532

lines). These include 3 parameters for ice: ice fall speed (micro mg vtrmi scale),533

ice nucleation sub-grid velocity (microp aero wsubi scale) and ice to snow conver-534

sion size threshold (micro mg dcs). There are two parameters related to warm rain535

formation, one each for auto-conversion (micro mg autocon lwp exp) and accretion536

(micro mg accre enhan fact). One parameter is related to the triggering of deep537

convection (zmconv tiedke add).538

To illustrate how the co-variation of these parameters affect forcing and feed-539

back, we build a Gaussian process emulator using the global average forcing and540

feedback. Inputs are the normalized parameter values and global net forcing and to-541

tal feedbacks (LW+SW). Figure 14 illustrates how global mean total cloud feedbacks542

and net ACI forcing vary around the default values as these parameters change in-543

dividually based on the emulator. The emulator is not a perfect representation of544

the total 45 dimensional parameter space, and it is built on global values (with at-545

tendant problems of different responses by regime), but it is illustrative of another546

method to understand the interaction of forcing and feedback.547

In this emulator, some parameters affect only either feedbacks (ice conver-548

sion threshold: micro mg dcs) or forcing (ice fall speed: micro mg vtrmi factor),549

and some affect virtually neither in the emulator (deep convective triggering:550

zmconv tiedke add). This might be because the global positive and negative551

correlations cancel. Ice nucleation sub-grid velocity (microp aero wsubi scale),552

which changes ice crystal number is weakly non-linear, while auto-conversion553

(micro mg autocon lwp exp) and accretion (micro mg accre enhan fact) param-554

eters have complex relationships and act differently for feedback, but similarly for555

forcing. Such emulators can be used as a further guide for understanding the slices556

through the parameter space. The opposite effects on feedbacks of auto-conversion557

and accretion are consistent with correlations in Figure 11 for example. For forcing,558

the different magnitudes of negative and positive responses (Figure 7) may make559

emulating the global mean difficult.560

4 Discussion561

We can summarize this analysis with several comments about key processes for562

forcing, feedbacks and their interaction in the CAM6 PPE.563

4.1 Forcing564

Stronger negative ACI forcing is associated with PI climates that have thicker,565

more extensive clouds with higher drop numbers and water path in the subtropics.566
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Figure 14. Sensitivities by parameter using the Gaussian Process emulator. Top common

parameters are shown, varied around the default location (marked with a red star). Color hue

varies from light (0) to dark (1) of the normalized range.

The regions in the sub-tropics that are most sensitive to parameter changes are re-567

gions where there is very little cloud, so simulations with more extensive cloud in568

these marginal regions, along with less PI CCN and sulfur, seem to yield larger net569

ACI. This highlights that the pre-industrial state of clouds is important for ACI, as570

noted by Carslaw et al. (2013) and others.571

Auto-conversion and accretion are critical processes. Auto-conversion and ac-572

cretion parameters that lead to increased cloud thickness in the subtropics increase573

negative ACI (consistent with mean state effects). Increasing activation with in-574

creased sub-grid vertical velocity leads to stronger negative ACI nearly everywhere575

(more response to aerosols, more change in CCN, since lower CCN in PI are as-576

sociated with stronger ACI). Increasing sea salt emission (which increases PI and577

PD CCN similarly) reduces net ACI, because it means more CCN in PI (consistent578

with the interactions with the mean state). Correlations with changes to the auto-579

conversion LWP exponent seem larger than for accretion, but accretion is scaled580

linearly, and the variations on the auto-conversion are larger (there is also a linear581

auto-conversion scaling parameter which does NOT show up as being significant).582

Accretion affects ACI through PI mean state (thicker clouds yield larger magnitude583

ACI), while auto-conversion affects ACI through the sensitivity of PD-PI differences584

in LWP.585

Increasing susceptibility of cloud albedo to drop number increases negative586

ACI forcing, over much broader regions than a single parameter or mean state prop-587

erty. Susceptibility is driven by a slightly different set of parameters, including588

auto-conversion and accretion, but also shallow turbulence parameters that increase589

cloud cover in the sub-tropics, again, in regions where it is generally low.590
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4.2 Feedbacks591

In low latitudes, stronger positive cloud feedbacks are associated with more592

base state cloud, liquid and liquid drop number, as well as more ice over land and593

ocean. More ice (and higher ice fraction) at high latitudes increases cloud feedback,594

while correlations for liquid are the opposite (more liquid is associated with more595

negative cloud feedback). There is a dipole in these effects over the S. Ocean where596

the mean ice fraction crosses about 50%. This is related to the loss processes for597

water (auto-conversion and acccretion) as well as for ice (ice fall speed and ice acti-598

vation), and the deep convective source for ice. It is near the region where feedbacks599

turn from positive to negative. In ice dominated regions feedbacks are negative likely600

due to the ice-albedo feedback, whereby warming melts ice and increases negative601

SW CRE. This has been shown to be important in CAM6 (Gettelman et al., 2019).602

Going strictly by the correlations, it appears that that auto conversion is more603

important (or at least more related to) the base state cloud feedback sensitivity than604

accretion (correlations for accretion are weaker). Raining and non-raining clouds605

may have different effects, with perhaps the non-raining clouds more important606

for feedback. Turbulence parameters also seem to play a role over the sub-tropical607

oceans: they control the base state of clouds and thicker and more extensive clouds608

have more positive cloud feedbacks. More ice yields stronger positive cloud feed-609

backs (mostly through the LW) in both the tropics and high latitudes. Ice micro-610

physics and deep convection parameters are important for regulating ice mass and611

seem to influence feedbacks accordingly.612

4.3 Interactions613

Forcing and feedbacks are anti-correlated throughout the Northern Hemi-614

sphere. Both forcing and feedback relationships to the mean state change sign from615

high latitudes to lower latitudes, and they seem to do so in concert. Part of this is616

simply the reduction in SW effects over high latitude ice covered surfaces. Stronger617

negative forcing and positive feedbacks are associated with thinner clouds (less liq-618

uid, more ice) at high latitudes and thicker clouds at low latitudes. This change619

may occur because of the role of ice process, or the thickness of the clouds in the620

stormtracks.621

Even the important processes seem to be common between aerosol forcing and622

cloud feedbacks. Microphysical controls on ice and ice nucleation, rain formation623

(auto-conversion and accretion) as well as deep convection are important for both624

forcing and feedback, with some shallow turbulence parameters (but different ones)625

important over the oceans. Most of these parameters seem to be consistent with626

sensitivity in the mean state.627

One question arises: given that changing the method for auto-conversion and628

accretion drastically (e.g., Gettelman et al., 2021) did not change ACI or cloud629

feedbacks, how does that mesh with these results? We have not tested changing630

auto-conversion and accretion fundamentally and altering other parameters, but it631

may be that the balance required to maintain the mean state clouds constrains the632

range of ACI and cloud feedbacks. This is consistent with the correlations with the633

mean state of clouds, and would imply an emergent constraint dependent on the634

present day state, but perhaps not a strong constraint.635

5 Conclusions636

This analysis of a large ensemble set of perturbed parameter experiments from637

CAM6 (CAM6-PPE) yields several conclusions. Forcing and feedback are both cor-638
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related with the mean state. Higher magnitude cloud radiative effects generally639

mean larger forcing (negative for the SW, positive for the LW) and larger feedbacks640

(positive SW and LW). Aerosol forcing is broadly related to the susceptibility of641

clouds to drop number, which is impacted by a similar set of parameters, but with a642

different magnitude.643

For aerosol forcing in particular, lower PI CCN and sulfate mass yield higher644

magnitude forcing. Accretion affects the mean state (and the total water mass in645

clouds), while auto-conversion seems to affect the sensitivity of LWP more strongly.646

Thicker low latitude clouds with higher susceptibility are also associated with647

more positive cloud feedbacks. At high latitudes stronger positive cloud feedbacks648

are associated with less base state cloud, liquid and liquid drop number, as well as649

more ice at high latitudes. The shift happens about where ice starts to dominate650

the cloud (50% ice fraction). The fact that many important parameters reflect ice651

processes confirm the importance of ice in CAM6 feedbacks.652

Aerosol forcing and cloud feedbacks are not independent in the CAM6 PPE,653

they are anti-correlated, such that stronger negative forcing is associated with654

stronger positive feedbacks. The fact that both forcing and feedbacks change sign655

in high latitudes of the N. Hemisphere at the same latitude is likely due to the LW656

and SW balance changing over an ice covered surface.657

Even the processes governing forcing and feedback sensitivity in the PPE seem658

to be similar. The warm rain formation process (auto-conversion and accretion), ice659

loss processes (activation, fall speed, auto-conversion to snow) and deep convective660

intensity (which affects ice) are important for both forcing and feedbacks. Using661

these processes, it is possible to build emulators for forcing and feedbacks to try to662

understand the sensitivities.663

This process-based view shows that in a consistent model system there are664

relationships between aerosol forcing and cloud feedbacks. Such relationships may665

be representative across multi-model ensembles as has been seen in the past (Kiehl,666

2007; Forster et al., 2013), but not necessarily given the small sample size (Smith et667

al., 2020).668

This detailed analysis of cloud processes and their interactions with parameters669

to yield forcing and feedback sensitivities has yielded new insights into CAM6. But670

this is only one model of many different climate models, with a unique and complex671

representation of cloud processes. How applicable is this result across a range of672

models? Similar PPE methods should be and are being performed with other mod-673

els. Some aspects of this analysis should have broad applicability. For example, the674

parameterizations used in CAM6 for deep convection (G. J. Zhang & McFarlane,675

1995), cloud microphysics (Gettelman et al., 2015), aerosol activation (Abdul-Razzak676

& Ghan, 2002) and shallow turbulence Golaz et al. (2002) are used in other mod-677

els, so they feature similar or identical parameters. Beyond this, critical process678

treatments like auto-conversion and accretion (Khairoutdinov & Kogan, 2000), are679

described with similar parameters or using identical formulations in many models680

even with different parameterizations (Jing et al., 2019). It would be interesting to681

compare these results to those with other similar climate and weather models to as-682

certain if the behavior of individual processes is consistent, or if the process coupling683

within and between parameterizations induces different sensitivities. Some of the684

results are robust, like the importance of pre-industrial mean state suflate and CCN685

by Carslaw et al. (2013). This work could be repeated on mean state relationships686

using data that is part of the traditional Coupled Model Intercomparison (CMIP)687

archives, but the parameter-level analysis would require dedicated simulations.688

–26–



manuscript submitted to JGR: Atmospheres

Table A1. A description of the parameters that are perturbed and their ranges. Note for zmo-

conv ke units KE = (kg m−2 s−1)0.5 s−1

Physics
Scheme

Parameter Name Description Default Min Max Units

CLUBB clubb C2rt Damping on scalar variances 1.0 0.2 2 -
clubb C6rt Low skewness in C6rt skewness function 4.0 2.0 6 -
clubb C6rtb High skewness in C6rt skewness function 6.0 2.0 8 -
clubb C6thl Low skewness in C6thl skewness function 4.0 2.0 6 -
clubb C6thlb High skewness in C6thl skewness function 6.0 2.0 8 -
clubb C8 Coef. #1 in C8 skewness Equation 4.2 1.0 5 -
clubb beta Set plume widths for theta l and rt 2.4 1.6 2.5 -
clubb c1 Low Skewness in C1 Skw. 1.0 0.4 3 -
clubb c11 Low Skewness in C11 Skw 0.7 0.2 0.8 -
clubb c14 Constant for u’2 and v’2 terms 2.2 0.4 3 -
clubb c K10 Momentum coefficient of Kh zm 0.5 0.2 1.2 -
clubb gamma coef Low Skw.: gamma coef. Skw 0.308 0.25 0.35 -
clubb wpxp L thresh Lscale threshold, damp C6 and C7 60 20 200 m

MG2 micro mg accre enhan fact Accretion enhancing factor 1.0 0.1 10.0 -
micro mg autocon fact auto-conversion factor 0.01 0.005 0.2 -
micro mg autocon lwp exp KK2000 LWP exponent 2.47 2.10 3.30 -
micro mg autocon nd exp KK2000 auto-conversion exponent -1.1 -0.8 -2 -
micro mg berg eff factor Bergeron efficiency factor 1.0 0.1 1.0 -
micro mg dcs auto-conversion size threshold ice-snow 500e-06 50e-06 1000e-06 m
micro mg effi factor Scale effective radius for optics calculation 1.0 0.1 2.0 -
micro mg homog size Homogeneous freezing ice particle size 25e-6 10e-6 200e-6 m
micro mg iaccr factor Scaling ice/snow accretion 1.0 0.2 1.0 -
micro mg max nicons Maximum allowed ice number concentration 100e6 1e5 10,000e6 # kg−1

micro mg vtrmi factor Ice fall speed scaling 1.0 0.2 5.0 m s−1

Aerosol microp aero npccn scale Scale activated liquid number 1 0.33 3 -
microp aero wsub min Min subgrid velocity for liq activation 0.2 0 0.5 m s−1

microp aero wsub scale Subgrid velocity for liquid activation scaling 1 0.1 5 -
microp aero wsubi min Min subgrid velocity for ice activation 0.001 0 0.2 m s−1

microp aero wsubi scale Subgrid velocity for ice activation scaling 1 0.1 5 -
dust emis fact Dust emission scaling factor 0.7 0.1 1.0 -
seasalt emis scale Seasalt emission scaling factor 1.0 0.5 2.5 -
sol factb interstitial Below cloud scavenging of interstitial modal aerosols 0.1 0.1 1 -
sol factic interstitial In-cloud scavenging of interstitial modal aerosols 0.4 0.1 1 -

ZM cldfrc dp1 Parameter for deep convection cloud fraction 0.1 0.05 0.25 -
cldfrc dp2 Parameter for deep convection cloud fraction 500 100 1,000 -
zmconv c0 lnd Convective auto-conversion over land 0.0075 0.002 0.1 m−1

zmconv c0 ocn Convective auto-conversion over ocean 0.03 0.02 0.1 m−1

zmconv capelmt Triggering threshold for ZM convection 70 35 350 J kg−1

zmconv dmpdz Entrainment parameter -1.0e-3 -2.0e-3 -2.0e-4 m−1

zmconv ke Convective evaporation efficiency 5.0e-6 1.0e-6 1.0e-5 KE
zmconv ke lnd Convective evaporation efficiency over land 1.0e-5 1.0e-6 1.0e-5 KE
zmconv momcd Efficiency of pressure term in ZM downdraft CMT 0.7 0 1 -
mconv momcu Efficiency of pressure term in ZM updraft CMT 0.7 0 1 -
zmconv num cin Allowed number of negative buoyancy crossings 1 1 5 -
zmconv tiedke add Convective parcel temperature perturbation 0.5 0 2 K

It is also clear that better constraining the warm rain process and ice processes689

in the atmosphere are critical for narrowing the uncertainty in climate forcing and690

feedbacks.691

Appendix A Parameters692

Table A1, based on Eidhammer et al. (2024), describes the parameters used in693

the PPE by physical parameterization, with formal name, description, default value,694

minimum, maximum and units.695
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Figure B1. Map of linear correlation coefficient at each point between differences in variables

due to forcing (PD-PI) and feedbacks (SST+4K - PD) for different variables. Non-significant

points are stippled. Significance is determined by a bootstrap fit.
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Appendix B Supplementary Figures696

Appendix C Open Research697

Model output used is described by Eidhammer et al. (2024), and is available698

the Climate Data Gateway at NCAR (https://doi.org/10.26024/bzne-yf09)699

Analysis code used in this work is available on zenodo at700

https://zenodo.org/doi/10.5281/zenodo.10553073701
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Abstract15

A Perturbed Parameter Ensemble (PPE) with the Community Atmosphere Model16

version 6 (CAM6) is used to better understand the sensitivity of simulated clouds to both17

aerosol forcing and cloud feedbacks and the interactions between them. Aerosol forcing18

through aerosol-cloud interactions is mostly negative (a cooling) due to shortwave ra-19

diation, while feedbacks are positive or negative in different regions due to contrasting20

longwave and shortwave effects. Both forcing and feedbacks are related to the mean cli-21

mate state. Higher magnitude cloud radiative effects generally mean larger net forcing22

and larger net feedback. Aerosol forcing is broadly related to the susceptibility of clouds23

to drop number. Feedbacks are less related to susceptibility, and in different regions. Aerosol24

forcing and cloud feedbacks are anti-correlated in the CAM6 PPE such that stronger neg-25

ative forcing is associated with stronger positive feedbacks. Even the processes govern-26

ing forcing and feedback sensitivity in the PPE are similar. These include the warm rain27

formation process, ice loss processes and deep convective intensity.28

Plain Language Summary29

A climate model is run many times with modified parameters to see how the pa-30

rameters affect key aspects of climate change. The paper focuses on two aspects of cli-31

mate change. First, the cloud response to aerosol particles tends to create a cooling, which32

partially offsets greenhouse gas warming, but the magnitude of the cooling is not well33

known. It varies a lot in the model when parameters are changed. Second, the paper ex-34

amines the cloud response to surface temperature increases, called cloud feedbacks, which35

are the largest uncertainty in estimating the level of future climate change. Cloud feed-36

backs are also sensitive to parameters. The results show that the cloud feedbacks and37

aerosol forcing changes are similar but opposite in the model: the cooling and warming38

generally increase together. This occurs because they are linked to similar parameters,39

which indicate sensitivity to critical processes, including how rain forms, and how much40

ice is in the atmosphere.41

1 Introduction42

Uncertainties in predicting the evolution of the Earth’s climate arise from complex-43

ity in the response of the system to anthropogenic radiative forcing, and in the actual44

level of radiative forcing. The largest uncertainty in the fast response of the climate sys-45

tem is due to the response of clouds to changes in the environment: cloud feedbacks (Get-46

telman & Sherwood, 2016; S. Sherwood et al., 2020). In addition, the largest uncertainty47

in anthropogenic radiative forcing is the response of clouds to aerosol perturbations (“Sum-48

mary for Policymakers”, 2021), often termed Aerosol-Cloud Interactions (ACI). These49

perturbations are significant but complex (Bellouin et al., 2020). More aerosol particles50

increase cloud drop numbers and lead to brighter clouds (Twomey, 1974) and potentially51

longer-lived or thicker clouds (Albrecht, 1989). To assess these processes globally, com-52

prehensive Earth System Models (ESMs) with atmospheric components that include a53

detailed representation of cloud physics, aerosol physics as well as the interactions be-54

tween them must be used. The scale of these models, typically 100km horizontal, sev-55

eral hundred meter vertical and 10-30 minute time-steps is too coarse to explicitly resove56

key cloud and aerosol processes and therefore introduces very large uncertainties in cloud57

physics representations.58

Much has been written about analyzing model and observational analogs for ACI59

(Bellouin et al., 2020) and cloud feedbacks (S. Sherwood et al., 2020). Many of the pro-60

cesses which control both ACI and cloud feedback responses are the same. For exam-61

ple, extensive decks of bright liquid cloud at the top of the Planetary Boundary Layer62

(PBL) over the darker ocean significantly cool the planet by reflecting solar radiation63
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back to space. These clouds exist due to an inversion that traps moist ocean air near the64

surface. The strength of that inversion has been shown to be important in cloud forma-65

tion and maintenance, and how that inversion changes over time is important for how66

clouds will respond to climate change: how thick they are and their propensity to rain67

(S. C. Sherwood et al., 2014). Similarly, aerosols impact clouds by changing the drop pop-68

ulation (more aerosols implies more cloud drops), and how these clouds evolve may also69

be determined by the inversion at the top of the boundary layer (Ackerman et al., 2004),70

and their propensity to rain.71

Given the importance of cloud processes at the nexus of forcing and feedback, there72

has yet been little work on the interaction between these two effects beyond global means.73

Kiehl (2007) noted that in ESMs there was a relationship across models between the to-74

tal response to climate change and aerosol forcing. This was updated by Forster et al.75

(2013) to show less of an overall relationship. The latest generation of ESMs show no76

relationship (Smith et al., 2020), though Watson-Parris & Smith (2022) find a relation-77

ship between forcing and feedback when constrained on historical surface temperature.78

Gettelman et al. (2016) noted other process level interactions such as an ‘Aerosol Me-79

diated Cloud Feedback’ whereby the mechanism for cloud feedbacks occurs by climate80

change altering aerosol populations. An example noted by Gettelman et al. (2016) is that81

increasing wind speeds over the S. Ocean increase sea spray and cloud drop number, bright-82

ening clouds. This negative cloud feedback is mediated by aerosols. This work will seek83

to examine the relationship between cloud feedbacks and aerosol forcing of clouds in more84

detail by taking advantage of a unique dataset with a modern ESM.85

Here we will look at the interaction between aerosol forcing and cloud feedbacks86

with a large Perturbed Parameter Ensemble (PPE) from the Community Atmosphere87

Model version 6 (CAM6). The CAM6-PPE uses parameter perturbations to sample model88

structural uncertainty, and produce a wide range of climates resulting from very differ-89

ent adjustments to cloud and aerosol processes. Similar PPEs have been used to under-90

stand model parametric uncertainty (Qian et al., 2018), constrain aerosol forcing (Re-91

gayre et al., 2023; Lee et al., 2016) and low cloud feedbacks (H. Zhang et al., 2018). In92

this work, we will use the CAM6-PPE to better understand the interaction between forc-93

ing and feedback with the goal of understanding critical process and how they interact.94

Section 2 describes the data and methods to be used. Section 3 presents detailed95

results of forcing sensitivity, feedback sensitivity and their interactions. Discussion is in96

Section 4 and conclusions are in Section 5.97

2 Methods98

The simulations used for this analysis are from the Community Atmosphere Model99

version 6 (CAM6) PPE. The CAM6-PPE is described in detail by Eidhammer et al. (2024).100

It consists of 263 ensemble members in which latin hypercube sampling is used to mod-101

ify 45 parameters in the microphysics, convection, turbulence and aerosol schemes. Note102

that one of the simulations did not complete, and that two pairs of parameters are var-103

ied together, so effectively 43 parameters are varied. These atmospheric parameters are104

typically the most uncertain in many climate models and contain many variables which105

alter cloud and aerosol processes. Parameter ranges are chosen to be physically plausi-106

ble for each parameter. We also will subset the parameter space based on physically re-107

alistic climates as described below. Simulations are run with an atmosphere-land con-108

figuration for 3 years, for Present Day (PD) climatological boundary conditions, repeat-109

ing climatological averaged Sea Surface Temperatures (SSTs) each year. In addition, two110

other additional sets of 263 simulations are run with the same parameters. In one set,111

SSTs are uniformly increased by 4K to assess the cloud response to warming, following112

Cess et al. (1989), termed SST4K. In the other set of 263 simulations, PD SSTs and the113
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same boundary conditions are used, except aerosol emissions are set to 1850 ‘Pre-Industrial’114

levels (hereafter PI simulations).115

The principle we will exploit is that different parameters modify different specific116

processes in the cloud physics (e.g., frequency or intensity of deep convection, rain for-117

mation processes, freezing and ice nucleation processes, etc). The changing balance of118

processes alters the climate. First, we will use the PPE to understand if forcing and feed-119

backs depend on the base climate state of those simulations. Then we will use the PPE120

to understand which parameters give rise to variations and sensitivity in forcing and feed-121

backs. Finally we will explore the relationship between aerosol forcing and cloud feed-122

backs. The parameters map to the underlying physical mechanisms. While the param-123

eters in the PPE are model specific, the process representations are very similar to (or124

even the same as) other modern ESMs. Thus the results may have more general appli-125

cation since the relationships we elucidate are well founded in processes, not just in pa-126

rameters.127

As described by Gettelman et al. (2019), the aerosol induced cloud forcing (ACI,128

or just ‘forcing’) is defined as the change in Cloud Radiative Effect (CRE) between sim-129

ulations with Present Day (PD) and Pre-Industrial (PI) aerosol emissions. Typically we130

are concerned with the Shortwave (SW) cloud forcing (SW ACI = ∆SWCRE), but there131

is also Longwave (LW) forcing (LW ACI = ∆LWCRE). Cloud feedbacks are defined as132

the kernel adjusted cloud feedbacks (Soden et al., 2008) using the kernels from Zelinka133

et al. (2012) as applied by Duffy et al (2023). The kernels adjust LW and SW CRE to134

remove effects of changes to the atmospheric temperature and water vapor, and the ef-135

fect of a changing surface albedo.136

To constrain the simulations for fidelity against observations we also compare them137

to observations of radiative fluxes and clouds from the CERES (Clouds and the Earth’s138

Radiant Energy System) satellite Energy Balanced and Filled (EBAF) products (Loeb139

et al., 2018).140

Finally, for analysis of the simulations and sensitivity to parameters (and hence pro-141

cesses), we use Gaussian process emulators (Watson-Parris et al., 2021) trained on the142

PPE ensemble to determine the sensitivity of forcing and feedbacks to each parameter.143

3 Results144

First we illustrate the parametric uncertainty (i.e. the PPE spread) of feedbacks145

and forcing (Section 3.1). Then we examine how aerosol forcing is related to the mean146

state and to different parameters, which are both indicative of specific processes (Sec-147

tion 3.2). Next we will do the same analysis for cloud feedbacks (Section 3.3) and then148

we will explore the interaction between aerosol forcing and cloud feedbacks (Section 3.4)149

3.1 PPE Mean and Spread150

Figure 1 illustrates the global mean change in SW (Figure 1A), LW (Figure 1B)151

net TOA radiation (Figure 1C) and change in total cloud fraction (Figure 1D) for the152

263 PPE members. The forcing in Figure 1A and B is the change in CRE, while the feed-153

backs are the kernel-adjusted feedbacks. The spread estimates the parametric uncertainty154

in forcing and feedback.155

The spread in net ACI forcing is only ∼2Wm−2, because the global mean SW and156

LW are of opposite sign and are strongly anti-correlated, resulting in a fairly narrow range157

in total net TOA change (Figure 1C). The anti-correlation is not as strong for cloud feed-158

backs where the SW and LW components are both positive in most ensemble members.159

Note that the TOA change for feedbacks includes a significant change NOT associated160

with clouds, but rather for the clear sky (due to a warmer surface). There is also far less161
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Figure 1. Histograms of global A) TOA SW change, B) TOA LW change, C) Net TOA

change and D) Cloud Fraction change for Present Day - Pre-Industrial (Aerosol Forcing, Blue)

and SST+4K - Present Day (Feedback response, orange). Forcing is change in TOA Cloud Ra-

diative Effect (CRE) and feedbacks are the kernel adjusted cloud feedbacks as descried in the

text. Solid lines are the mean of the distribution, dotted lines are results with the default CAM6

parameter settings.
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Figure 2. PPE ensemble means of Aerosol Cloud Interactions (Forcing) for the A) SW, B)

LW and C) Total (LW+SW) as well as Cloud Feedbacks for the D) SW, E) LW and F) Total

(LW+SW).

cloud fraction change (Figure 1D), both the mean and PPE spread, for aerosol forcing162

than for cloud feedbacks.163

Figure 2 illustrates the ensemble mean cloud forcing (ACI) as the change in CRE164

between present (PD) and pre-industrial (PI) simulations for the SW (Figure 2A), LW165

(Figure 2B) and Net (Figure 2C). Figure 1A and B indicate that for both forcing and166

feedback, the ensemble mean (solid vertical lines in Figure 1) is similar to the default167

(dotted vertical lines in Figure 1). We have verified that this is qualitatively the case for168

maps as well by mapping the default case individually: the ensemble mean just provides169

better statistics to smooth out noise in the short 3 year simulations. ACI is strongest170

in the SW, concentrated in the N. Hemisphere, with the largest values over oceans down-171

wind of source regions (N. Pacific, N. Atlantic and N. Indian Ocean), and a strong SW172

signal over China. SW is larger than LW, with the largest LW effect near India, due per-173

haps to aerosol effects on tropical ice clouds, which mostly cancel the SW effects. There174

is virtually no aerosol forcing in the S. Hemisphere. SW and LW are of opposite sign in175

most regions, but there is not a 1:1 correlation in the magnitude. Net ACI becomes weakly176

positive over the Arctic ocean due to lack of SW cooling from clouds over a bright ice-177

covered surface.178

Figure 2 also illustrates the ensemble mean cloud feedbacks for the SW (Figure 2D),179

LW (Figure 2E) and total (Figure 2F). As with forcing, the ensemble mean is qualita-180

tively similar to the default case. There are significant positive (and net) SW Cloud Feed-181

backs over tropical continents in convective regions, as well as in the mid-latitude storm182
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tracks in both hemispheres. In the tropical convecting regions, the two mechanisms con-183

trolling cloud feedbacks are the increase in altitude of high clouds and a reduction in anvil184

cloud area (S. Sherwood et al., 2020). The increase in the altitude of high clouds is a pos-185

itive LW cloud feedback (the red area over the tropical west Pacific/Indian ocean). The186

reduction in anvil cloud area should have competing LW positive and SW negative ef-187

fects as illustrated in Figure 2D and Figure 2E. The net cloud feedbacks are positive,188

except over polar regions with frequent sea-ice coverage.189

3.2 Forcing190

We start by focusing on the aerosol forcing, again defining ACI as the change in191

CRE between PD and PI simulations (either LW, SW or Net=SW+LW). First we at-192

tempt to understand whether ACI is related to properties of the mean state climate. Aerosol193

forcing is a series of processes that might be reflected in correlations between the forc-194

ing and the mean state. Increases in emissions increase aerosols (largely sulfate) which195

increase the Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN), and hence cloud drop196

and ice crystal number. This might affect cloud fraction and/or cloud mass (Ice Water197

Path [IWP] and Liquid Water Path [LWP]). The mean state might make the clouds more198

or less ‘susceptible’ to these changes. For example: higher base state sulfur and higher199

CCN and/or drop number for PI conditions might make a perturbation to sulfur less im-200

portant. Or having more clouds (either larger negative SW CRE or higher cloud frac-201

tion) might result in more ‘marginal’ clouds that could be affected by ACI.202

We focus on the mean state climate of the PI simulations. In the present day, some203

of the correlation between mean state and aerosols is due to anthropogenic aerosol forc-204

ing, and we are interested in the ‘unaffected’ state. We start with correlations of global205

mean state properties with global mean ACI. Figure 3 illustrates that the magnitude of206

globally averaged Net ACI is correlated with several properties of the mean state: To-207

tal Cloud Fraction (Figure 3A), Sulfate (SO4) Burden (Figure 3B), CCN at 0.2% super-208

saturation (Figure 3C) and Cloud Top Drop Number (Nc, Figure 3D). We looked at sev-209

eral PI mean state properties not strongly correlated with global mean forcing: LWP and210

IWP. Column drop number is similar to cloud top drop number (Figure 3D).211

The orange points are the sub-set of simulations whose mean annual value of SW212

CRE is within ±5 Wm−2 of the observed CERES EBAF annual global mean (-45.3 Wm−2).213

This constraint is a gross measure of whether the ‘climate’ in any simulation (specifically214

the cloud climatology) is similar to present day observations. The slopes (orange lines)215

are qualitatively similar (with lower correlation) if we consider only the constrained data216

rather than all the data for most of the variables except cloud coverage. The red dot is217

the ‘default’ parameter set for CAM6.218

Figure 3A indicates that as total mean state cloud fraction increases, net ACI in-219

creases in magnitude (negative). This implies more cloudiness may mean more marginal220

or thin clouds that are more susceptible to changes. As mean PI sulfate burden increases,221

net ACI forcing is reduced (lower magnitude) (Figure 3B) with a similar relationship for222

CCN (Figure 3C). These both indicate that PI environments with higher sulfur and more223

CCN are less sensitive to additional sulfur, a result noted in other models (Carslaw et224

al., 2013). There is also a relationship between cloud top drop number and Net ACI forc-225

ing (Figure 3D) whereby higher PI drop numbers give rise to larger forcing, which seems226

to work in the opposite way to more PI CCN. In general, these correlations using global227

means are quite low. SW ACI only correlations are a little stronger (not shown). The228

CERES constrained simulations have similar correlations to all simulations, with lower229

magnitude (except for total cloud coverage, where constrained simulations have a smaller230

correlation of the opposite sign).231

To understand these relationships better, we can map the correlations at each point232

to determine what regimes are important. Figure 4 illustrates the same relationships as233
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Figure 3. Global correlations between mean state for A) Total Cloud Fraction, B) Total

Column Sulfate, C) CCN at 0.2% supersaturation and D) Cloud top drop number with Pre-

Industrial aerosols (horizontal axis and the Net ACI forcing (PD-PI, vertical axis). Blue points:

all simulations, red line, linear regression. Orange indicates those 87 simulations whose global

mean PD Shortwave Cloud Radiative Effect is within ±5 Wm−2 of the CERES EBAF global an-

nual mean. Orange line is the linear regression of these points. Default CAM6 parameters shown

as the red dot.

Figure 3 using PI mean climate and aerosol net forcing (PD - PI change in SW+LW CRE)234

but now as a map at each point. An expanded set of mean state indicators are illustrated.235

The linear correlation coefficient at each point is plotted, with the stippling indicating236

regions which are NOT significant based on a bootstrap fit. Maps are similar if only the237

simulations constrained by the observed satellite SW CRE climatology are used, but with238

less significance (similar to Figure 3). We have examined the LW and SW components239

separately, and in general net ACI forcing is dominated by the SW as seen in Figure 2.240

The weak global correlations in Figure 3 belie stronger regional correlations, which241

can be of different sign between regions and hence cloud types. In many cases there are242

opposite sign correlations over the Arctic ocean where the SW ACI goes to zero (Fig-243

ure 2A) and the positive LW ACI component dominates (Figure 2C). The opposite sign244

correlation is due to the local ACI being dominated by the LW and changing sign. There245

is a strong positive correlation between the net ACI forcing (net ACI = ∆SWCRE +246

∆LWCRE) and the PI SW Cloud Radiative Effect (SW CRE, Figure 4G) at low lati-247

tudes over the ocean. Stronger negative PI mean state SW CRE in the subtropics is as-248

sociated with stronger negative ACI. Similar patterns of opposite sign (since SW CRE249

is negative) are seen for total cloud coverage (Figure 4A), LWP (Figure 4B), LW CRE250

(Figure 4F), cloud top liquid number (Figure 4I) and column drop number (Figure 4J).251

Column drop number is integrated to the top of the atmosphere. CCN effects (fewer CCN252

in PI result in stronger magnitude ACI) are mostly positive throughout the N. Hemi-253

sphere. (Figure 4E). Stronger positive ACI at high latitudes (dominated by the LW) is254

associated with more ice fraction at high latitudes (Figure 4H).255

Figure 3 indicates that stronger magnitude net ACI is associated with PI climates256

that have radiatively thicker sub-tropical liquid clouds. These ‘radiatively thicker’ clouds257

have larger magnitude cloud radiative effect due to being more extensive, with higher258

drop number and LWP. Stronger net ACI can also be associated with less PI CCN at259

middle and high latitudes and less sulfate over the land regions in mid-latitudes. To some260

extent these effects will offset (higher PI CCN should lead to higher Nc), but the effects261
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Figure 4. Map of linear correlation coefficient at each point between mean state in PI and the

ACI forcing (PD-PI) for different variables. Non-significant points are stippled. Significance is

determined by a bootstrap fit.
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occur in different regions (subtropical clouds, and more mid-latitude for CCN). The sub-262

tropical regions noted are regions where there is very little cloud, so simulations with more263

extensive cloud in these marginal regions, along with less PI CCN (and sulfur) to main-264

tain clouds in mid-latitudes, yield larger net ACI response. The strong opposite sign of265

the high latitude correlations as noted are likely due more to the change in ACI com-266

ponents over the Arctic than changes in the mean state.267

We can also look for which parameters give rise to the largest sensitivity in changes268

between pre-industrial and present day. Parameters affect particular processes, so we can269

use parameter sensitivity as a means to focus on particular processes or sets of processes.270

Since the PPE spans parametric uncertainty, this analysis identifies the sensitivity of pro-271

cesses to parametric uncertainty, and the impact of those processes on forcing and feed-272

back. For example, parameters for auto-conversion and accretion alter the rain forma-273

tion process which is the main sink for cloud water (regulating LWP).274

Following Eidhammer et al. (2024), we examine changes in model state (PD - PI)275

as a function of parameter in Figure 5. The parameter values (y-axis) are normalized276

(scaled by the minimum and maximum parameter values) while the differences in the277

outputs (x-axis) are standardized (scaled by the mean and standard deviation of the out-278

put values) and then regression slopes are calculated for global and regionally averaged279

values. Figure 5 illustrates the slopes for the normalized regression. The normalization280

and standardization helps show which parameters drive PD-PI changes in each output.281

Parameters are listed by parameterization and the regressions are calculated for differ-282

ent latitude bands as well as global. There are many commonalities across regions, with283

the exception being that cold cloud parameters are more important in the tropics and284

mixed phase cloud parameters are important in the Arctic. Given that ACI forcing is285

mostly in the N. Hemisphere, we do not expect any strong relationships over the South-286

ern Ocean.287

Important parameters for ACI changes (PD - PI mean quantities) are concen-288

trated, not surprisingly, in the cloud microphysics and aerosol activation parame-289

terizations since ACI processes trace aerosol changes, effects on cloud drop number290

and cloud microphysical adjustments to drop number perturbations. Total aerosol291

forcing (ACI and direct radiative effects of aerosols) is expressed in the residual292

TOA flux (RESTOM) difference, and the cloud forcing (SW CRE and LW CRE are293

the PD - PI change in these quantites). Important parameters alter both accretion294

(micro mg accre enhan fact) and auto-conversion (micro mg autocon lwp exp and295

micro mg autocon nd exp): the main loss process for cloud liquid water. In the Arc-296

tic, the threshold size of ice crystals for conversion of ice to snow (micro mg dcs) is297

important for ice cloud effects, including changes in ice cloud mass and the changes298

in both LW and SW CRE (LWCF, SWCF). Ice fall speed (micro mg vtrmi factor)299

is also important globally. The scaling of the sub-grid vertical velocity for ice nu-300

cleation (microp aero wsubi scale) is important in the tropics and globally for gov-301

erning the ice number and hence the LW and SW radiation. Note that it does not302

impact the net TOA balance change because of the offsetting SW and LW effects.303

The sub-grid vertical velocity for liquid drop activation (microp aero wsub scale) is304

also important. Liquid drop activation affect CCN formation. In the mid-latitudes,305

including the regions over the ocean where thicker PI clouds increase ACI magni-306

tude, several of the turbulence parameters from CLUBB are important.307

To take this a bit further, we can break down some of the key correlations308

in Figure 5 by correlating parameter values and net ACI forcing at each point.309

As in Figure 4, we estimate significant correlations with a bootstrap fit. We then310

determine the global average mean absolute correlation from only the location of311

significant correlations. Figure 6 illustrates the mean absolute correlation for each312

parameter for 6 different forcing and feedback components (different colors): To-313

tal, LW and SW for ACI and Cloud Feedback. The squares in Figure 6 show the314
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Figure 5. Normalized linear regression slope for the difference between PD and PI in 8 differ-

ent model outputs (x axis) against all parameter values (y axis). The global mean results as well

as four different regions are shown; Arctic (|lat|> 60◦), Midlatitudes (30◦<|lat|< 60◦), Tropics

(|lat|< 30◦) and the Southern Ocean (60◦S>lat>30◦S). The parameters are grouped into deep

convection, aerosol, microphysics and turbulence parameters.
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Figure 6. Global mean absolute correlation by parameter for ACI Forcing and Cloud Feed-

backs. LW, SW and Net are different colors as noted in the legend (e.g. net ACI forcing is

green). Parameters with the 10 highest absolute correlations for each component are shown

as colored solid squares. The rest of the parameters are plus signs (+). The horizontal lines show

the 6 parameters which are in the top 10 correlations for both total cloud feedback (brown) and

net forcing (green).

parameters with the 10 highest correlations for each component. We will focus on315

the common important parameters across forcing and feedback (horizontal lines) in316

Section 3.4.317

Focusing on the net ACI Forcing (green in Figure 6), we highlight the param-318

eters with the 10 highest mean absolute correlations (green squares). In general319

the LW (orange) and SW (blue) forcing components also have strong correlations320

with these parameters. Figure 7 illustrates maps of these correlations, ranked as in321

Figure 6 in order of correlation from highest (A) to 10th highest (J).322

Figure 7 reinforces the global and regional correlations in Figure 5, with a323

bit more insight into processes. Several parameters are related to ice, including the324
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Figure 7. Map of linear correlation coefficient at each point between the SW ACI forcing

(PD-PI) and selected model parameters varied in the PPE. Non-significant points are stippled.

Significance is determined by a bootstrap fit.
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sub-grid velocity for ice activation (micro aero wsubi scale: Figure 7A), the ice325

fall speed scaling (micro mg vtrmi scale: Figure 7C) and the ice auto-conversion326

size threshold (micro mg dcs: Figure 7G). The temperature perturbation for deep327

convective triggering (zmconv tiedke add, Figure 7E) likely also plays a role in328

supplying ice to the upper troposphere. Increasing the sub-grid velocity for ice nu-329

cleation will increase ice number (which seems to weaken ACI over land). The ice330

fall speed scaling results in less ice and snow in the atmosphere (associated with331

stronger ACI), while increasing the ice auto-conversion size threshold will increase332

the ice mass, which seems to weaken ACI in mid-latitudes but increase it at high333

latitudes (so more ice will result in stronger ACI at high latitudes, consistent with334

the PI mean state IWP relationship in Figure 4C).335

Liquid cloud processes are also important. The auto-conversion LWP expo-336

nent (micro mg autocon lwp exp: Figure 7B) and accretion enhancement factor337

(micro mg accre enhan fact: Figure 7H) control rain formation and depletion of338

liquid. They have similar patterns and opposite sign. Increasing the LWP exponent339

for auto-conversion results in more sensitivity of cloud water loss to LWP: higher340

auto-conversion sensitivity in the subtropics in results in stronger (more negative)341

ACI, while higher auto-conversion sensitivity in the Arctic results in weaker (less342

negative) ACI. Accretion is also a sink for cloud water, and the enhancement is a343

linear scaling for the loss. In the sub-tropics, more accretion leads to reduced (neg-344

ative) ACI, and would be associated with thinner clouds. The accretion scaling is345

consistent with the sensitivity of ACI to PI mean state sensitivity of clouds in Fig-346

ure 4, while the auto-conversion exponent is more related to the changes in the state347

between PI and PD.348

Two parameters are related to liquid aerosol activation: increasing349

microp aero wsub scale (Figure 7D) is associated with larger negative ACI. Higher350

scaling would increase CCN in PI, but also the sensitivity to changes between PI351

and PD (∆CCN). Given that the correlation with ACI in Figure 7D is opposite to352

the mean state effect of PI CCN in Figure 4E, it would appear that it affects ACI353

more through ∆CCN. Increasing sea salt emission (seasalt emis scale), will in-354

crease CCN in the base state, and has a similar correlation with ACI as PI CCN355

(Figure 4E) over the oceans.356

The last two parameters are related to the unified shallow turbulence357

(CLUBB) and act over the sub-tropical oceans. clubb C8 (Figure 7I) is the coeffi-358

cient of the skewness in the vertical velocity while clubb C6thlb (Figure 7J) affects359

the high skewness of the liquid water potential temperature. They tend to act in op-360

posite ways. Increasing clubb C8 tends to increase cloud fraction, so the correlation361

matches the total cloud response in Figure 4A.362

Looking beyond the mean state, we can also try to understand how ACI is363

related to the sensitivity or susceptibility of cloud radiative effects to changes364

in cloud properties. To look at this we examine the susceptibility of cloud ra-365

diative effect (or cloud albedo) to changes in cloud drop number (Nc) defined as366

dln(Albedo)/dln(Nc). We estimate the susceptibility terms at each point with the367

temporal (monthly mean) co-variance of these properties for each ensemble mem-368

ber, and then similar to Figure 4, correlate that with the total ACI (difference in369

LW+SW CRE between PD and PI) in Figure 8A. Because albedo has a strong sea-370

sonal dependence at high latitudes, we limit this analysis to latitudes equatorward of371

60◦.372

There is a consistent negative correlation between susceptibility and forcing373

over the oceans, whereby increasing susceptibility of clouds to drop number is as-374

sociated with stronger negative net ACI over the tropical and sub-tropical oceans.375

A detailed analysis of the parameter sensitivity of susceptibility (not shown) sim-376
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Figure 8. Correlation of susceptibility of cloud albedo to cloud drop number against A)Net

ACI forcing and B) Total Cloud feedback.

ilar to that conducted for Figure 7 for forcing indicates that the susceptibility is377

linked to the auto-conversion (micro mg autocon lwp exp) where more susceptible378

clouds have a higher auto-conversion exponent for LWP (interestingly it is not re-379

lated as much to the Nc exponent in the auto-conversion). In addition, susceptibility380

varies with accretion (micro mg accre enhan fact), where more accretion reduces381

susceptibility (perhaps because of thinner clouds). Finally, susceptibility is also asso-382

ciated with clubb C8, where higher clubb C8 is associated with higher susceptibility.383

H. Guo et al. (2015) noted that increasing clubb C8 increases cloud cover in the sub-384

tropics. These results are consistent with the PI mean state correlations (Figure 4)385

that thicker sub-tropical PI clouds in marginal regions are associated with higher386

(negative) net ACI forcing.387

3.3 Feedback388

A similar analysis is conducted for cloud feedbacks. Cloud feedbacks are as-389

sessed with the difference in cloud radiative effects between the SST+4K and PD390

simulations (modified with radiative kernels to remove non-cloud effects). Because391

global correlations can be misleading with positive and negative signs and cloud392

feedbacks have multiple signs in different regimes (Figure 2), we move straight to393

correlations with the mean present day state and total (LW+SW) cloud feedbacks at394

each point in Figure 9. These figures are with respect to present day values, but the395

correlations are the same whether present day or pre-industrial mean state is used.396

Figure 9 includes all simulations, but is qualitatively consistent with less significance397

if the 88 simulations constrained by CERES cloud radaitive effect are used.398

Regional correlations between cloud feedbacks and mean state cloud coverage399

(Figure 9A) are negative at high latitudes (Arctic and Southern Ocean) and positive400

at low latitudes. The correlations over the Sahara are spurious since there is nearly401

zero cloud and feedbacks are small (Figure 2C). Similar relationships are found with402

LWP (Figure 9B), cloud drop number (Figure 9J) and cloud top number (Figure 9I).403

Base state SW Cloud Radiative Effect (Figure 9G) has an opposite sign correlation404

(because it is negative) with similar pattern. However, over the Southern Ocean,405

more cloud and LWP (more liquid cloud) has a negative correlation with cloud feed-406

backs. IWP (Figure 9C) however has positive correlations over polar oceans. Base407

state ice fraction (Figure 9H) is positively correlated with total cloud feedbacks as408

well at high latitudes, and negatively correlated at low latitudes. All these corre-409

lations indicate that at high latitudes stronger cloud feedbacks are associated with410

less base state cloud, liquid and liquid drop number, as well as more ice. Note that411

as with forcing, the net feedback sign changes at high latitudes, which affects these412

correlations (the same change in mean state has a different sign with different signed413

feedbacks). In low latitudes, the effects are opposite, with stronger feedbacks for414

more and thicker cloud over land and ocean. There are weaker relationships between415

feedbacks and column sulfate (Figure 9D) and CCN (Figure 9E), but in general416
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Figure 9. Map of linear correlation coefficient at each point between mean state in present

day and the total (LW+SW) cloud feedbacks (estimated with SST4K v. PD) for different vari-

ables. Non-significant points are stippled. Significance is determined by a bootstrap fit.
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more sulfate and CCN in the base (non-warmed) state is associated with lower feed-417

backs.418

We investigate these relationships further by diving into processes by looking419

at key parameters. Figure 10 is similar to Figure 5 showing the normalized and420

standardized regressions between parameters and changes in the state SST4K - PD421

across regions. Some of the same parameters are important for cloud feedbacks (the422

last two variables on the right of each column): accretion, auto-conversion and the423

loss process of ice (fall speed and conversion from ice to snow). Note that the S.424

Ocean is not important for forcing since there is little change in aerosols PD-PI, but425

is more important for feedbacks (accretion, ice processes and some deep convection426

parameters are important here). As with the maps in Figure 9, the correlations vary427

by region, muting the global sensitivity (correlation) for many parameters.428

There are several parameters in the deep convective parameterization that are429

important for cloud feedbacks, particularly in the Tropics and to a lesser extent the430

S. Ocean. These parameters govern the triggering of convection (zmconv capelmt431

is the threshold CAPE for firing convection and zmconv tideke add is a buoyancy432

perturbation that will increase the convective potential). Convective rain formation433

over land (zmconv c0 lnd) is also important in the tropics, which is not surprising434

given the larger positive cloud feedbacks there (Figure 2). Convective entrainment435

(zmconv dmpdz) is important in the mid-latitudes and tropics. Deep convection436

acts by changing both the SW and the LW feedback, likely because it changes ice437

cloud radiative effects, while many of the other parameters primarily change the LW438

(for ice microphysical and aerosol processes) or SW (for liquid cloud microphysical439

and aerosol processes).440

Finally for we look at maps of key parameter correlations with feedbacks in441

Figure 11. As with Forcing, we estimate the mean absolute correlation of significant442

points for each parameter, and rank them (Figure 6). The parameters with the 10443

highest correlations with total feedbacks (brown squares in Figure 6) are displayed444

in Figure 11.445

The parameters identified are similar to those for forcing. There are several446

parameters linked to ice processes, including ice fall speed (micro mg vtrmi scale,447

Figure 11A), the sub-grid velocity for ice activation (micro aero wsubi scale: Fig-448

ure 11D) and the ice auto-conversion threshold (micro mg dcs, Figure 11F). Slower449

fall speed and more ice number (higher micro aero wsubi scale) at high latitudes450

are associated with more ice and higher total cloud feedbacks at high latitudes451

(Figure 9C). Ice auto-conversion (micro mg dcs) acts mostly in the tropics and S.452

Hemisphere, again with more base state ice (higher micro mg dcs) associated with453

higher cloud feedback, likely through the LW CRE (Figure 9F).454

As with forcing, parameters linked to rain formation are important for cloud455

feedbacks, the auto-conversion LWP exponent (micro mg autocon lwp exp, Fig-456

ure 11B) and accretion enhancement (micro mg accre enhan fact, Figure 11E)457

have opposite signs. Higher auto conversion (leading to less liquid) is associated458

with smaller cloud feedbacks at high latitudes and larger cloud feedbacks at lower459

latitudes. Accretion has the opposite effect, with more accretion (reducing cloud wa-460

ter) associated with more high latitude cloud feedbacks, and reduced tropical cloud461

feedbacks over land. Both effects are consistent with the overall cloud and LWP462

correlations with feedbacks in Figure 9A and B.463

In addition, there are three deep convective parameters that have regionally464

significant correlations with cloud feedback. In the tropics, deep convection supplies465

ice to the upper troposphere, zmconv tiedke add (Figure 11C) as well as zmconv ke466

(Figure 11I) increase convection over land with similar patterns. zmconv capelmt467
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Figure 10. Normalized linear regression slope for the difference between SST4K and PD in 8

outputs (x axis) against all parameter values (y axis). The global mean results as well as four dif-

ferent regions are shown; Arctic, Midlatitudes, Tropics and the Southern Ocean. The parameters

are grouped into deep convection, aerosol, microphysics and turbulence parameters.
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Figure 11. Map of linear correlation coefficient at each point between the total cloud feed-

backs (SW + LW) estimated from SST4K v. PD and selected model parameters varied in the

PPE. Non-significant points are stippled. Significance is determined by a bootstrap fit.
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(Figure 11G) increases it over ocean. Increasing ice seems to increase cloud feed-468

backs in the tropics (Figure 9C). zmconv capelmt (Figure 11G) also seems to act469

over the Southern Ocean, with offsetting signs in the LW and SW (Figure 10).470

Finally, two turbulence parameters, clubb C2rt (Figure 11H), clubb c1 (Fig-471

ure 11J) have small regional correlations, mostly over the oceans with opposite sign.472

clubb C2rt is related to the dissipation of temperature variance and increasing it473

increases cloud cover and SW CRE (Z. Guo et al., 2015) while clubb c1 is related to474

the dissipation of vertical velocity variance and has the opposite effect (increasing it475

decreases cloud cover and SW CRE). The patterns indicate that these parameters476

may be driving some of the correlation with mean state total cloud cover and LWP477

(Figure 9A and B), in both the tropics and high latitudes.478

3.4 Forcing and Feedback Relationships479

Figure 12 illustrates a global scatter plot of the cloud forcing (defined as above:480

the change in CRE between present day and pre-industrial) against the kernel ad-481

justed cloud feedbacks both in the SW (Figure 12A), LW (Figure 12B) and total482

(LW+SW, Figure 12C). The blue colors and regression line are for all simulations.483

As in Figure 12, the orange points and regression lines are just those simulations484

whose mean annual value of SW CRE is within ±5 Wm−2 of the observed CERES485

EBAF annual global mean (-45.3 Wm−2). The red dot is the ‘default’ parameter set486

for CAM6.487

In the SW, there is a clear relationship between the cloud feedbacks and cloud488

forcing. The relationship is similar whether just a constrained subset of simulations489

is used, or if the full data set is used, and the slope is significantly different that490

zero. In general the SW aerosol cloud forcing is negatively correlated with SW cloud491

feedback: larger positive feedbacks yield larger negative cloud forcing. There is no492

such correlation in the LW, and the slopes are not significantly different than zero,493

and the constrained simulations have a different (but still not significant) sign. The494

correlation of total (LW+SW), cloud forcing and feedback reflects mostly the SW495

correlation, and is actually stronger with constrained simulations.496

As with forcing and feedback, we can decompose the global correlation of Fig-497

ure 12 into each location on the planet, generate a correlation value at each point,498

and determine the significance of the correlation with a bootstrap fit yielding a con-499

fidence interval for the correlation between forcing and feedbacks being significantly500

different than zero (Figure 13) at each point. For the SW (Figure 13A), correlations501

are uniformly negative: stronger negative ACI is correlated with stronger positive502

cloud feedback. This maximizes over N. Hemisphere land and adjacent ocean basins.503

In large parts of the S. Hemisphere, there is very little forcing response, so there504

are small signals. Most of the negative correlation comes from the N. Hemisphere.505

Going back to the regional correlations between mean state SW CRE and ACI506

(Figure 4G) and total cloud feedbacks (Figure 9G), there is an anti-correlation, con-507

sistent with stronger forcing and feedbacks going together (since forcing is negative),508

with opposite signs over the Arctic and the rest of the N. Hemisphere. It is apparent509

over both ocean and land.510

For the LW (Figure 13B), the sign is not monotonic, but there is a negative511

correlation in N. Hemisphere mid-latitudes, and a positive correlation between LW512

feedbacks and LW forcing (which are generally both of the same positive sign) in513

parts of the tropics and the Arctic, but with less significance. The patterns of LW514

forcing and feedbacks (shown in Figure 2) are less correlated than the SW, likely515

since the SW ACI magnitude and processes acting through liquid are stronger than516

for ice. Indeed, if we look at changes in the different climate states between forc-517

ing (PD - PI) and feedback (SST4K - PD), the strongest negative correlations are518
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Figure 12. Scatterplot of A) SW B) LW and C) Total (LW+SW) Aerosol forcing (horizontal

axis) and kernel adjusted cloud feedbacks (vertical axis) from each simulation. Orange indicates

those 88 simulations whose global mean PD Shortwave Cloud Radiative Effect is within ±5

Wm−2 of the CERES EBAF global annual mean. Default CAM6 parameters shown as the red

dot.
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Figure 13. Correlation maps at each point between A) SW, B) LW and C) Total (SW+LW)

Cloud Forcing and Feedback. Regions of less than 95% significance are stippled.
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with N. Hemisphere mid-latitude LWP and column drop number (Figure B1), which519

affect mostly SW radiation. The correlations between net forcing and feedbacks520

(Figure 13C) are lower than the SW, but also negative.521

There is also a positive relationship between cloud albedo susceptibility to522

drop number and cloud feedbacks (Figure 8B). The correlation is the opposite as for523

ACI forcing, which may be another reason for the anti-correlation between forcing524

and feedback. Increased susceptibility (through the processes described above under525

forcing), tends to create larger magnitude negative ACI forcing and positive cloud526

feedbacks.527

Finally, we note that some of the dominant parameters governing Forcing and528

Feedbacks are similar. Using the mean absolute correlations by parameter (Fig-529

ure 6), we determined the most relevant parameters for ACI forcing in Figure 7 and530

cloud feedbacks in Figure 11. Figure 6 illustrates that of the top 10 correlations531

between parameters and forcing and feedback, 6 of them are common (horizontal532

lines). These include 3 parameters for ice: ice fall speed (micro mg vtrmi scale),533

ice nucleation sub-grid velocity (microp aero wsubi scale) and ice to snow conver-534

sion size threshold (micro mg dcs). There are two parameters related to warm rain535

formation, one each for auto-conversion (micro mg autocon lwp exp) and accretion536

(micro mg accre enhan fact). One parameter is related to the triggering of deep537

convection (zmconv tiedke add).538

To illustrate how the co-variation of these parameters affect forcing and feed-539

back, we build a Gaussian process emulator using the global average forcing and540

feedback. Inputs are the normalized parameter values and global net forcing and to-541

tal feedbacks (LW+SW). Figure 14 illustrates how global mean total cloud feedbacks542

and net ACI forcing vary around the default values as these parameters change in-543

dividually based on the emulator. The emulator is not a perfect representation of544

the total 45 dimensional parameter space, and it is built on global values (with at-545

tendant problems of different responses by regime), but it is illustrative of another546

method to understand the interaction of forcing and feedback.547

In this emulator, some parameters affect only either feedbacks (ice conver-548

sion threshold: micro mg dcs) or forcing (ice fall speed: micro mg vtrmi factor),549

and some affect virtually neither in the emulator (deep convective triggering:550

zmconv tiedke add). This might be because the global positive and negative551

correlations cancel. Ice nucleation sub-grid velocity (microp aero wsubi scale),552

which changes ice crystal number is weakly non-linear, while auto-conversion553

(micro mg autocon lwp exp) and accretion (micro mg accre enhan fact) param-554

eters have complex relationships and act differently for feedback, but similarly for555

forcing. Such emulators can be used as a further guide for understanding the slices556

through the parameter space. The opposite effects on feedbacks of auto-conversion557

and accretion are consistent with correlations in Figure 11 for example. For forcing,558

the different magnitudes of negative and positive responses (Figure 7) may make559

emulating the global mean difficult.560

4 Discussion561

We can summarize this analysis with several comments about key processes for562

forcing, feedbacks and their interaction in the CAM6 PPE.563

4.1 Forcing564

Stronger negative ACI forcing is associated with PI climates that have thicker,565

more extensive clouds with higher drop numbers and water path in the subtropics.566
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Figure 14. Sensitivities by parameter using the Gaussian Process emulator. Top common

parameters are shown, varied around the default location (marked with a red star). Color hue

varies from light (0) to dark (1) of the normalized range.

The regions in the sub-tropics that are most sensitive to parameter changes are re-567

gions where there is very little cloud, so simulations with more extensive cloud in568

these marginal regions, along with less PI CCN and sulfur, seem to yield larger net569

ACI. This highlights that the pre-industrial state of clouds is important for ACI, as570

noted by Carslaw et al. (2013) and others.571

Auto-conversion and accretion are critical processes. Auto-conversion and ac-572

cretion parameters that lead to increased cloud thickness in the subtropics increase573

negative ACI (consistent with mean state effects). Increasing activation with in-574

creased sub-grid vertical velocity leads to stronger negative ACI nearly everywhere575

(more response to aerosols, more change in CCN, since lower CCN in PI are as-576

sociated with stronger ACI). Increasing sea salt emission (which increases PI and577

PD CCN similarly) reduces net ACI, because it means more CCN in PI (consistent578

with the interactions with the mean state). Correlations with changes to the auto-579

conversion LWP exponent seem larger than for accretion, but accretion is scaled580

linearly, and the variations on the auto-conversion are larger (there is also a linear581

auto-conversion scaling parameter which does NOT show up as being significant).582

Accretion affects ACI through PI mean state (thicker clouds yield larger magnitude583

ACI), while auto-conversion affects ACI through the sensitivity of PD-PI differences584

in LWP.585

Increasing susceptibility of cloud albedo to drop number increases negative586

ACI forcing, over much broader regions than a single parameter or mean state prop-587

erty. Susceptibility is driven by a slightly different set of parameters, including588

auto-conversion and accretion, but also shallow turbulence parameters that increase589

cloud cover in the sub-tropics, again, in regions where it is generally low.590
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4.2 Feedbacks591

In low latitudes, stronger positive cloud feedbacks are associated with more592

base state cloud, liquid and liquid drop number, as well as more ice over land and593

ocean. More ice (and higher ice fraction) at high latitudes increases cloud feedback,594

while correlations for liquid are the opposite (more liquid is associated with more595

negative cloud feedback). There is a dipole in these effects over the S. Ocean where596

the mean ice fraction crosses about 50%. This is related to the loss processes for597

water (auto-conversion and acccretion) as well as for ice (ice fall speed and ice acti-598

vation), and the deep convective source for ice. It is near the region where feedbacks599

turn from positive to negative. In ice dominated regions feedbacks are negative likely600

due to the ice-albedo feedback, whereby warming melts ice and increases negative601

SW CRE. This has been shown to be important in CAM6 (Gettelman et al., 2019).602

Going strictly by the correlations, it appears that that auto conversion is more603

important (or at least more related to) the base state cloud feedback sensitivity than604

accretion (correlations for accretion are weaker). Raining and non-raining clouds605

may have different effects, with perhaps the non-raining clouds more important606

for feedback. Turbulence parameters also seem to play a role over the sub-tropical607

oceans: they control the base state of clouds and thicker and more extensive clouds608

have more positive cloud feedbacks. More ice yields stronger positive cloud feed-609

backs (mostly through the LW) in both the tropics and high latitudes. Ice micro-610

physics and deep convection parameters are important for regulating ice mass and611

seem to influence feedbacks accordingly.612

4.3 Interactions613

Forcing and feedbacks are anti-correlated throughout the Northern Hemi-614

sphere. Both forcing and feedback relationships to the mean state change sign from615

high latitudes to lower latitudes, and they seem to do so in concert. Part of this is616

simply the reduction in SW effects over high latitude ice covered surfaces. Stronger617

negative forcing and positive feedbacks are associated with thinner clouds (less liq-618

uid, more ice) at high latitudes and thicker clouds at low latitudes. This change619

may occur because of the role of ice process, or the thickness of the clouds in the620

stormtracks.621

Even the important processes seem to be common between aerosol forcing and622

cloud feedbacks. Microphysical controls on ice and ice nucleation, rain formation623

(auto-conversion and accretion) as well as deep convection are important for both624

forcing and feedback, with some shallow turbulence parameters (but different ones)625

important over the oceans. Most of these parameters seem to be consistent with626

sensitivity in the mean state.627

One question arises: given that changing the method for auto-conversion and628

accretion drastically (e.g., Gettelman et al., 2021) did not change ACI or cloud629

feedbacks, how does that mesh with these results? We have not tested changing630

auto-conversion and accretion fundamentally and altering other parameters, but it631

may be that the balance required to maintain the mean state clouds constrains the632

range of ACI and cloud feedbacks. This is consistent with the correlations with the633

mean state of clouds, and would imply an emergent constraint dependent on the634

present day state, but perhaps not a strong constraint.635

5 Conclusions636

This analysis of a large ensemble set of perturbed parameter experiments from637

CAM6 (CAM6-PPE) yields several conclusions. Forcing and feedback are both cor-638
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related with the mean state. Higher magnitude cloud radiative effects generally639

mean larger forcing (negative for the SW, positive for the LW) and larger feedbacks640

(positive SW and LW). Aerosol forcing is broadly related to the susceptibility of641

clouds to drop number, which is impacted by a similar set of parameters, but with a642

different magnitude.643

For aerosol forcing in particular, lower PI CCN and sulfate mass yield higher644

magnitude forcing. Accretion affects the mean state (and the total water mass in645

clouds), while auto-conversion seems to affect the sensitivity of LWP more strongly.646

Thicker low latitude clouds with higher susceptibility are also associated with647

more positive cloud feedbacks. At high latitudes stronger positive cloud feedbacks648

are associated with less base state cloud, liquid and liquid drop number, as well as649

more ice at high latitudes. The shift happens about where ice starts to dominate650

the cloud (50% ice fraction). The fact that many important parameters reflect ice651

processes confirm the importance of ice in CAM6 feedbacks.652

Aerosol forcing and cloud feedbacks are not independent in the CAM6 PPE,653

they are anti-correlated, such that stronger negative forcing is associated with654

stronger positive feedbacks. The fact that both forcing and feedbacks change sign655

in high latitudes of the N. Hemisphere at the same latitude is likely due to the LW656

and SW balance changing over an ice covered surface.657

Even the processes governing forcing and feedback sensitivity in the PPE seem658

to be similar. The warm rain formation process (auto-conversion and accretion), ice659

loss processes (activation, fall speed, auto-conversion to snow) and deep convective660

intensity (which affects ice) are important for both forcing and feedbacks. Using661

these processes, it is possible to build emulators for forcing and feedbacks to try to662

understand the sensitivities.663

This process-based view shows that in a consistent model system there are664

relationships between aerosol forcing and cloud feedbacks. Such relationships may665

be representative across multi-model ensembles as has been seen in the past (Kiehl,666

2007; Forster et al., 2013), but not necessarily given the small sample size (Smith et667

al., 2020).668

This detailed analysis of cloud processes and their interactions with parameters669

to yield forcing and feedback sensitivities has yielded new insights into CAM6. But670

this is only one model of many different climate models, with a unique and complex671

representation of cloud processes. How applicable is this result across a range of672

models? Similar PPE methods should be and are being performed with other mod-673

els. Some aspects of this analysis should have broad applicability. For example, the674

parameterizations used in CAM6 for deep convection (G. J. Zhang & McFarlane,675

1995), cloud microphysics (Gettelman et al., 2015), aerosol activation (Abdul-Razzak676

& Ghan, 2002) and shallow turbulence Golaz et al. (2002) are used in other mod-677

els, so they feature similar or identical parameters. Beyond this, critical process678

treatments like auto-conversion and accretion (Khairoutdinov & Kogan, 2000), are679

described with similar parameters or using identical formulations in many models680

even with different parameterizations (Jing et al., 2019). It would be interesting to681

compare these results to those with other similar climate and weather models to as-682

certain if the behavior of individual processes is consistent, or if the process coupling683

within and between parameterizations induces different sensitivities. Some of the684

results are robust, like the importance of pre-industrial mean state suflate and CCN685

by Carslaw et al. (2013). This work could be repeated on mean state relationships686

using data that is part of the traditional Coupled Model Intercomparison (CMIP)687

archives, but the parameter-level analysis would require dedicated simulations.688
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Table A1. A description of the parameters that are perturbed and their ranges. Note for zmo-

conv ke units KE = (kg m−2 s−1)0.5 s−1

Physics
Scheme

Parameter Name Description Default Min Max Units

CLUBB clubb C2rt Damping on scalar variances 1.0 0.2 2 -
clubb C6rt Low skewness in C6rt skewness function 4.0 2.0 6 -
clubb C6rtb High skewness in C6rt skewness function 6.0 2.0 8 -
clubb C6thl Low skewness in C6thl skewness function 4.0 2.0 6 -
clubb C6thlb High skewness in C6thl skewness function 6.0 2.0 8 -
clubb C8 Coef. #1 in C8 skewness Equation 4.2 1.0 5 -
clubb beta Set plume widths for theta l and rt 2.4 1.6 2.5 -
clubb c1 Low Skewness in C1 Skw. 1.0 0.4 3 -
clubb c11 Low Skewness in C11 Skw 0.7 0.2 0.8 -
clubb c14 Constant for u’2 and v’2 terms 2.2 0.4 3 -
clubb c K10 Momentum coefficient of Kh zm 0.5 0.2 1.2 -
clubb gamma coef Low Skw.: gamma coef. Skw 0.308 0.25 0.35 -
clubb wpxp L thresh Lscale threshold, damp C6 and C7 60 20 200 m

MG2 micro mg accre enhan fact Accretion enhancing factor 1.0 0.1 10.0 -
micro mg autocon fact auto-conversion factor 0.01 0.005 0.2 -
micro mg autocon lwp exp KK2000 LWP exponent 2.47 2.10 3.30 -
micro mg autocon nd exp KK2000 auto-conversion exponent -1.1 -0.8 -2 -
micro mg berg eff factor Bergeron efficiency factor 1.0 0.1 1.0 -
micro mg dcs auto-conversion size threshold ice-snow 500e-06 50e-06 1000e-06 m
micro mg effi factor Scale effective radius for optics calculation 1.0 0.1 2.0 -
micro mg homog size Homogeneous freezing ice particle size 25e-6 10e-6 200e-6 m
micro mg iaccr factor Scaling ice/snow accretion 1.0 0.2 1.0 -
micro mg max nicons Maximum allowed ice number concentration 100e6 1e5 10,000e6 # kg−1

micro mg vtrmi factor Ice fall speed scaling 1.0 0.2 5.0 m s−1

Aerosol microp aero npccn scale Scale activated liquid number 1 0.33 3 -
microp aero wsub min Min subgrid velocity for liq activation 0.2 0 0.5 m s−1

microp aero wsub scale Subgrid velocity for liquid activation scaling 1 0.1 5 -
microp aero wsubi min Min subgrid velocity for ice activation 0.001 0 0.2 m s−1

microp aero wsubi scale Subgrid velocity for ice activation scaling 1 0.1 5 -
dust emis fact Dust emission scaling factor 0.7 0.1 1.0 -
seasalt emis scale Seasalt emission scaling factor 1.0 0.5 2.5 -
sol factb interstitial Below cloud scavenging of interstitial modal aerosols 0.1 0.1 1 -
sol factic interstitial In-cloud scavenging of interstitial modal aerosols 0.4 0.1 1 -

ZM cldfrc dp1 Parameter for deep convection cloud fraction 0.1 0.05 0.25 -
cldfrc dp2 Parameter for deep convection cloud fraction 500 100 1,000 -
zmconv c0 lnd Convective auto-conversion over land 0.0075 0.002 0.1 m−1

zmconv c0 ocn Convective auto-conversion over ocean 0.03 0.02 0.1 m−1

zmconv capelmt Triggering threshold for ZM convection 70 35 350 J kg−1

zmconv dmpdz Entrainment parameter -1.0e-3 -2.0e-3 -2.0e-4 m−1

zmconv ke Convective evaporation efficiency 5.0e-6 1.0e-6 1.0e-5 KE
zmconv ke lnd Convective evaporation efficiency over land 1.0e-5 1.0e-6 1.0e-5 KE
zmconv momcd Efficiency of pressure term in ZM downdraft CMT 0.7 0 1 -
mconv momcu Efficiency of pressure term in ZM updraft CMT 0.7 0 1 -
zmconv num cin Allowed number of negative buoyancy crossings 1 1 5 -
zmconv tiedke add Convective parcel temperature perturbation 0.5 0 2 K

It is also clear that better constraining the warm rain process and ice processes689

in the atmosphere are critical for narrowing the uncertainty in climate forcing and690

feedbacks.691

Appendix A Parameters692

Table A1, based on Eidhammer et al. (2024), describes the parameters used in693

the PPE by physical parameterization, with formal name, description, default value,694

minimum, maximum and units.695
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Figure B1. Map of linear correlation coefficient at each point between differences in variables

due to forcing (PD-PI) and feedbacks (SST+4K - PD) for different variables. Non-significant

points are stippled. Significance is determined by a bootstrap fit.
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Appendix B Supplementary Figures696

Appendix C Open Research697

Model output used is described by Eidhammer et al. (2024), and is available698

the Climate Data Gateway at NCAR (https://doi.org/10.26024/bzne-yf09)699

Analysis code used in this work is available on zenodo at700

https://zenodo.org/doi/10.5281/zenodo.10553073701
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