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ABSTRACT: This paper describes a framework for identifying dominant atmospheric drivers of

ocean variability. The method combines statistics of atmosphere-ocean fluxes with physics from

an ocean general circulation model to derive atmospheric patterns optimized to excite variability

in a specified ocean quantity of interest. We first derive the method as a weighted principal

components analysis and illustrate its capabilities in a toy problem. Next, we apply our analysis to

the problem of interannual upper ocean heat content (HC) variability in the North Atlantic Subpolar

Gyre (SPG) using the adjoint of the MITgcm and atmosphere-ocean fluxes from the ECCOv4-r4

state estimate. An unweighted principal components analysis reveals that North Atlantic heat and

momentum fluxes in ECCOv4-r4 have a range of spatiotemporal patterns. By contrast, dynamics-

weighted principal components analysis collapses the space of these patterns onto a small subset

– principally associated with the North Atlantic Oscillation – that dominates interannual SPG HC

variance. By perturbing the ECCOv4-r4 state estimate, we illustrate the pathways along which

variability propagates from the atmosphere to the ocean in a nonlinear ocean model. This technique

is applicable across a range of problems across Earth System components, including in the absence

of a model adjoint.
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SIGNIFICANCE STATEMENT: While the oceans have absorbed 90% of the excess heat associ-25

ated with human-forced climate change, the change in the ocean’s heat content is not steady, with26

peaks and troughs superimposed upon a general increase. These fluctuations come from chaotic27

changes in the atmosphere and ocean, and can be hard to disentangle. We use this case of ocean heat28

content variability to introduce a new method for determining the patterns of weather and climate29

in the atmosphere that are most effective at generating fluctuations in the ocean. To do this, we30

combine the statistics of recent atmospheric activity with output from a state-of-the-art numerical31

ocean model that reveals physical processes driving changes in ocean quantities including ocean32

heat content. This approach suggests that the atmospheric patterns that stimulate the most energetic33

changes in ocean heat content in the northern North Atlantic are not the most energetic patterns34

present in the atmosphere. We test our findings by preventing these patterns from affecting the35

ocean in our numerical model, and measure a strong reduction in ocean heat content fluctuations.36

1. Introduction37

The ocean’s distributions of momentum, thermal energy, salt, and other quantities evolve across38

a range of length and time scales, reflecting contributions from solar radiation, turbulent fluxes of39

heat and momentum at the air-sea interface, inputs from land and cryosphere, tides, hydrothermal40

heating, and the internal variability of the turbulent ocean. Identifying processes and pathways41

by which the ocean changes through time is important for revealing mechanisms and timescales42

of predictability, fingerprints of anthropogenic changes, and the drivers of ocean variability and43

change in the past and future. For many scales and processes, variability about an ocean mean44

state may be usefully approximated as being driven by a stochastic atmosphere (Hasselmann45

1976; Frankignoul and Hasselmann 1977; Kushnir et al. 2002), with secondary roles for ocean46

turbulence, additional external drivers, and ocean-atmosphere feedbacks on time scales longer47

than those associated with turbulent fluxes. Within these regimes, clarifying dominant pathways48

of atmospheric influence on the ocean has the potential to provide parsimonious descriptions of49

variability in a high-dimensional coupled system.50

A traditional paradigm for exploring dominant drivers of ocean variability is to identify dynam-51

ically important modes of variability in the atmosphere and then to evaluate their impact on the52

ocean. In the North Atlantic, much of the atmospheric variability on seasonal and longer time53
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scales is associated with large-scale patterns in atmospheric circulation (Deser et al. 2010). In54

particular, heat fluxes due to the North Atlantic Oscillation (NAO), the dominant mode of winter-55

time atmospheric variability in the extratropical Northern Hemisphere (Hurrell and Deser 2009),56

yield a characteristic “tripole” pattern with warmth in mid-latitudes and cooler temperatures in the57

subpolar region and between the Equator and 30°N (Cayan 1992a,b; Marshall et al. 2001). The58

NAO has been implicated in a range of ocean and climate variability. Frajka-Williams et al. (2017)59

find that NAO-related surface heat fluxes likely explain a recent cooling in the subpolar North60

Atlantic. Ortega et al. (2017) use an eddy permitting multi-century integration of a coupled model61

to show that 62% of Labrador Sea density variance comes from low-frequency variations of the62

NAO, with freshwater-driven ocean circulation changes having a larger effect at centennial time63

scales. Bersch (2002) and Bersch et al. (2007) find that NAO wind anomalies are important for64

Labrador Sea convection, northward heat transport through the SPG, and SPG structure, and Tesdal65

et al. (2018) attribute recent freshening in the Labrador Sea to a spin-up in the SPG that may be66

associated with NAO and Arctic Oscillation winds. Finally, Böning et al. (2006) and Lozier et al.67

(2008) attribute decadal variations in SPG heat content (HC) and structure to combined influences68

of NAO winds and buoyancy forcing.69

However, there are also several lines of evidence that the NAO is not the only driver of hy-70

drographic change in the SPG. Häkkinen et al. (2011) find that NAO-like patterns of wind stress71

curl changes are not principally responsible for anomalous northward penetration of warm and72

saline subtropical waters; instead, a secondary atmospheric circulation mode, resembling the East73

Atlantic Pattern (EAP), was implicated that modulated NAO and storm track strength and that had74

a larger projection onto SPG variability. Similarly, Barrier et al. (2014) performed forward sensi-75

tivity analyses in a coupled model and found that different patterns of atmospheric variability were76

associated with different time scales of ocean response. Kim et al. (2016) note that Labrador Sea77

convection resumed in the winter of 2008/2009 after a hiatus beginning in the mid-1990s despite78

that year having the same positive sign of NAO as the previous winter, and suggest a possible79

connection to La Niña as an additional source of variability in deep Atlantic water masses.80

While it is natural to evaluate the role of leading atmospheric modes in forcing ocean variability,81

there is no requirement that a pattern derived to maximize the contribution to atmospheric variability82

– for instance, through a regional atmospheric empirical orthogonal function / principal component83
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(EOF-PC; Lorenz (1956)) analysis or by regression of an index of atmospheric variables – will84

be the dominant driver of variability for specified quantities in the ocean. A second, “bottom-up”85

approach poses an inverse question: Given an ocean quantity of interest (hereafter QoI), such as86

the heat content of an ocean volume, what is the hypothetical atmospheric variability that would87

most efficiently excite it? This problem can be addressed using adjoint sensitivity analyses, which88

leverage linearized ocean general circulation model dynamics to determine the origins of changes89

in ocean QoIs. A growing body of literature uses adjoint sensitivities to study ocean hydrography90

and dynamics (Marotzke et al. 1999; Köhl and Stammer 2004; Bugnion et al. 2006a,b; Czeschel91

et al. 2010, 2012; Mazloff 2012; Fukumori et al. 2015; Pillar et al. 2016; Jones et al. 2018; Kostov92

et al. 2019; Stephenson and Sévellec 2021a,b) revealing the adjoint approach as a powerful method93

for determining pathways of change for ocean processes on climate-relevant scales.94

A challenge in interpreting adjoint sensitivities is that their spatiotemporal structure is set by the95

choice of the QoI and by the dynamics of the ocean model, with no information included about the96

dynamics or statistics of the atmosphere except indirectly through their impact on simulated ocean97

circulation. For instance, Stephenson and Sévellec (2021b) use an adjoint approach to show that98

North Atlantic heat content variability can originate from winds along narrow bands that stimulate99

Ekman transport and coastal upwelling. Similarly, Jones et al. (2018), following Marotzke et al.100

(1999), decompose sensitivities of Labrador Sea HC into kinematic (constant circulation) and101

dynamic (changing circulation) components and argue that HC changes can emerge advectively102

from upstream source waters as well as via an ocean wave propagation mechanism excited from103

forcing applied in a narrow band of the West African shelf. The narrow regions implicated by these104

studies as optimal ocean drivers, with zonal length scales on the order of hundreds of kilometers,105

reflect the scales of Rossby deformation radii in the ocean and ultimately of ocean model grid106

boxes, in contrast to dominant length scales of wind variability of thousands of kilometers. A107

consequence explored in previous literature both in the context of the El Niño-Southern Oscillation108

(Kleeman and Moore 1997; Moore and Kleeman 1999; Zavala-Garay et al. 2003; Moore et al.109

2006; Kleeman 2008) and the Atlantic circulation (Chhak and Moore 2007; Zanna and Tziperman110

2008; Chhak et al. 2009) is that it is important to consider the projection of atmospheric variability111

onto ocean sensitivities, rather than just the sensitivities themselves, in order to understand drivers112

of ocean QoIs. A corollary is that the leading EOF of atmospheric variability need not be the most113
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important driver for the variability in a particular ocean diagnostic. Similarly, dominant patterns114

(“stochastic optimals”, discussed further below) in ocean sensitivities to hypothetical atmospheric115

conditions might not indicate important avenues by which the atmosphere drives ocean variability,116

but might instead languish as “potential” pathways that are never actually activated.117

This work combines “top-down” approaches informed by atmospheric statistics and “bottom-up”118

approaches shaped by ocean dynamics through adjoint sensitivity analysis. As opposed to classical119

EOF-PC analyses, we develop “empirical–dynamical functions” (EDFs) and “dynamics-weighted120

principal components” (DPCs) that reflect both model dynamics and observed atmospheric statis-121

tics. Our approach parallels model reduction procedures in control engineering, where one seeks122

to reduce the degrees of freedom in a dynamical system (often to minimize computational burden)123

while preserving features in both its “controllability” (i.e., where the system can go) and “observ-124

ability” (any properties are of interest) of the system. Following work by Adamjan et al. (1971),125

Moore (1981) describes an approach for “balanced truncation” that approximates a system in a126

new basis informed by both controllability and observability. (See Antoulas (2005) and Brunton127

and Kutz (2022) for additional introduction; Rowley (2005) shows that balanced truncation can be128

computed efficiently using the singular value decomposition, which is the approach used here.) The129

explicit connection to the present work is that atmospheric EOFs are an estimate of the principal130

directions of controllability in the atmosphere, while stochastic optimals describe the principal131

directions of observability in the case where we “observe” the atmosphere via its impact on the132

ocean. Balanced truncation for model reduction has been applied previously in atmosphere-ocean133

contexts by Farrell and Ioannou (2001), Moore et al. (2022), and Xu et al. (2024). Here, we focus134

on dominant dynamical connections revealed by low-dimensional descriptions of forced ocean135

variability.136

The remainder of this paper is as follows. First, we present a derivation of the EDF–DPC approach137

as an optimization problem. Under limiting conditions, EDFs recover EOFs and stochastic optimals.138

Next, we demonstrate the approach in a simplified stochastic system and show how EDFs bear the139

imprint of both sensitivities and forcing statistics. We then apply the EDF–DPC decomposition140

using the adjoint of the MITgcm for the problem of understanding leading contributions by heat141

fluxes and wind stress to interannual variability in North Atlantic Subpolar Gyre heat content. EDFs142

outperform EOFs for driving variability in the linearized dynamical framework of the adjoint, and143
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the leading EDFs of both heat flux and wind stress are highly correlated with the NAO. To evaluate144

the efficacy of EDFs in a nonlinear model, we then rerun the ECCOv4-r4 ocean state estimate145

with atmospheric fluxes modified to omit EDFs. We find good correspondence between variance146

in the nonlinear MITgcm and what is predicted by linear (adjoint) dynamics, though in the case147

of heat fluxes, the removal of the leading NAO–like EDF pattern leads to a long-term cooling148

trend. Rerunning the ECCOv4-r4 state estimate with additional EDF perturbations illustrates the149

mechanisms by which atmospheric variability adjusts heat content in the North Atlantic.150

2. Theoretical Framework: Dynamically weighted principal components151

a. Adjoint sensitivities and ocean variability152

As noted in Section 1, adjoint representations of ocean models are powerful tools for evaluating153

causes of ocean variability. We begin by introducing these concepts. We denote column vectors154

by bold variables and define the ocean model state vector, x(𝑡), to be the set of prognostic variables155

(temperature, salinity, velocity, etc.) at time 𝑡 at all latitudes, longitudes, and depths. Then the156

evolution of an ocean general circulation model can be written as157

x(𝑡 +Δ𝑡) = 𝐹 [x(𝑡),u(𝑡)] (1)

where 𝐹 is a nonlinear operator and u(𝑡) is a vector of time-varying atmospheric fluxes inclusive of158

all ocean model grid boxes and flux types. Next, we define a scalar, time-varying ocean “quantity159

of interest” QoI(𝑡) as a weighted sum over the model state vector,160

QoI(𝑡) =
∑︁
𝑗

α⊤(𝑡, 𝑡 𝑗 )x(𝑡 𝑗 ), (2)

where the vector α(𝑡, 𝑡 𝑗 ) consists of weights – reflecting, e.g., model grid box volumes and161

areal and temporal extent – defining the appropriate integral, for instance, to yield annually- and162

regionally-averaged heat content.163

The adjoint sensitivity 𝑠(𝜏) is given by164

s(𝜏) = 𝜕QoI(𝑡)
𝜕u(𝑡 − 𝜏) , (3)

7



and is a linearized estimate of how QoI(𝑡) changes in response to small changes in u at a time lead165

𝜏. Here and throughout this paper we make the simplifying stationarity assumption that s(𝜏) is not166

a function of 𝑡. If a finite-amplitude change 𝛿u(𝜏) is made in the fluxes (e.g., an increase in wind167

stress over the Northern Hemisphere), then the change 𝛿QoI(𝑡) is given by (modifying Fukumori168

et al. (2015))169

𝛿QoI(𝑡) ≈
𝑁𝜏∑︁
𝑖=1

s(𝜏𝑖)⊤𝛿u(𝑡 − 𝜏𝑖), (4)

where changes are summed over lags 𝜏1, 𝜏2, . . . 𝜏𝑁𝜏
and we obtain equality when the model response170

to flux adjustments is linear. As described in greater detail in Section 4a, adjoint sensitivities are an171

output of the state estimation machinery underlying the ECCO state estimate, and can be produced172

from the MITgcm via automatic differentiation. They can be similarly computed from other models173

that have adjoint capabilities (the Regional Ocean Modeling System, ROMS, Moore et al. 2004; and174

Tangent and Adjoint Models for the Nucleus for European Modelling of the Ocean, NEMOTAM,175

Vidard et al. 2015).176

We estimate total QoI variance 𝜎2
Σ

by assuming a linear response to fluxes and taking the177

expectation over time of squared QoI anomalies, 𝜎2
Σ
=
〈
(𝛿QoI(𝑡))2〉. Substituting Eq. (4), we178

obtain179

𝜎2
Σ =

𝑁𝜏∑︁
𝑖=1

𝑁𝜏∑︁
𝑗=1

s(𝜏𝑖)⊤
〈
𝛿u(𝑡 − 𝜏𝑖)𝛿u⊤(𝑡 − 𝜏𝑗 )

〉
s(𝜏𝑗 ) (5)

=

𝑁𝜏∑︁
𝑖=1

𝑁𝜏∑︁
𝑗=1

s(𝜏𝑖)⊤C𝑖 𝑗s(𝜏𝑗 ) (6)

where C𝑖 𝑗 is the spatial covariance matrix of 𝛿u at time lag 𝜏𝑖−𝜏𝑗 . Covariances of air-sea fluxes can180

have complex structure in space and time, reflecting, e.g., the propagation of properties through181

the ocean and atmosphere. Here we discuss three approximations to make the description of this182

variability more tractable. First, we approximate C𝑖 𝑗 as separable in space and time (Hasselmann183

1993; Chen et al. 2021),184

C𝑖 𝑗 = 𝑑𝑖 𝑗C, (7)

which assumes that covariances of atmospheric fluxes at different lags are the same, up to a lag-185

dependent scaling factor 𝑑2
𝑖 𝑗

. While there are limitations inherent in assuming separability – one186
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cannot, for instance, represent propagating waves – it nonetheless can describe fluxes with non-187

zero correlations in time (i.e., not just white noise) and non-stationary (time-evolving) covariances.188

Equation (6) can then be expressed in terms of a matrix trace as189

𝜎2
Σ = tr (ZC) (8)

where we define190

Z =

𝑁𝜏∑︁
𝑖=1

𝑁𝜏∑︁
𝑗=1

𝑑𝑖 𝑗s(𝜏𝑖)s(𝜏𝑗 )⊤. (9)

and we have followed Kleeman and Moore (1997) by incorporating information about flux non-191

stationarity and temporal covariance in Z via the 𝑑𝑖 𝑗 . This separability assumption underlies the192

dynamics-weighted principal components approach; the following two additional approximations193

can be convenient, but are not required. If a white noise assumption adequately represents space-194

time covariances, reflecting rapid decorrelation times of atmospheric fluxes relative to the ocean195

circulation (Hasselmann 1976; Frankignoul and Hasselmann 1977), then one can set lag flux cor-196

relations to zero by choosing 𝑑𝑖 𝑗 = 𝛿𝑖 𝑗𝑑𝑖 𝑗 where 𝛿𝑖 𝑗 is the Kronecker delta. Note that this form still197

represents changes in the variance of fluxes through time, which can be large over a seasonal cycle.198

Finally, if fluxes are furthermore assumed to be stationary (constant spatial covariance through199

time), then 𝑑𝑖 𝑗 = 𝛿𝑖 𝑗 and Z = SS⊤, where the matrix200

S =
[
s(𝜏1), s(𝜏2), . . . , s(𝜏𝑁𝜏

)
]

(10)

is formed by concatenating sensitivities across 𝑁𝜏 discrete lags. The model stochastic optimals201

(Farrell and Ioannou 1996; Kleeman and Moore 1997) are the left singular vectors of S.202

b. Optimal atmospheric drivers of ocean variability203

Next, our goal is to decompose atmospheric variability into patterns and corresponding time204

series, analogous to EOF–PC analysis. We do this by combining adjoint sensitivities from an205

ocean model and atmospheric fluxes to define a matrix the square of whose diagonal elements sum206

to the QoI variance. The singular vectors of that matrix yield a set of flux patterns ordered by their207
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contributions to ocean variability. Begin by defining a data matrix208

U = (𝑁𝑡 −1)−
1
2
[
u(𝑡0),u(𝑡1), . . . ,u(𝑡𝑁𝑡

)
]

(11)

consisting of vectors u (𝑡𝑖) of fluxes concatenated column-wise across 𝑁𝑡 discrete times. We have209

scaled U so that the zero-lag flux covariance can be estimated as210

C = UU⊤ (12)

and flux PCs and EOFs are the left and right singular vectors of U, respectively. We express our211

decomposition as212

U =

𝑁𝐷𝑃𝐶∑︁
𝑘=1

p𝑘 t⊤𝑘 (13)

where p𝑘 denotes the 𝑘 𝑡ℎ “empirical–dynamical function” (EDF) and t𝑘 the corresponding213

“dynamics-weighted principal component” (DPC) up to an integer 𝑁𝐷𝑃𝐶 . For notational con-214

venience we stipulate that ∥t𝑘 ∥ = 1, where ∥∥ denotes the vector 𝑙2 norm, so that ∥p𝑘 ∥2 is the flux215

variance accounted for by the 𝑘 𝑡ℎ EDF-DPC pair in U. We require that EDFs represent distinct216

processes insofar as their variability is uncorrelated in time within U, meaning that (like PCs) the217

t𝑘 are orthonormal; however, unlike EOFs, the EDFs are not generally orthogonal in space. Right218

multiplying (13) by t𝑘 and using orthonormality, we find that the p𝑘 are given by the projection of219

t𝑘 onto U,220

Ut𝑘 = p𝑘 . (14)

To find the set of EDF–DPC pairs, we solve an optimization problem. We first substitute (13)221

into (8) to obtain222

𝜎2
Σ = tr©­«

𝑁𝐷𝑃𝐶∑︁
𝑖=1

𝑁𝐷𝑃𝐶∑︁
𝑗=1

Zp𝑖t⊤𝑖 t 𝑗p⊤
𝑗

ª®¬ . (15)
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By orthonormality of the t𝑘 and Eq. (14) we find223

𝜎2
Σ =

𝑁𝐷𝑃𝐶∑︁
𝑘=1

tr
(
Zp𝑘p⊤

𝑘

)
(16)

=

𝑁𝐷𝑃𝐶∑︁
𝑘=1

∥Z⊤
2 Ut𝑘 ∥2. (17)

where we have defined a matrix decomposition Z = Z 1
2 Z⊤

2 and used the invariance of trace under224

cyclic permutations. We can now define an optimization problem to find the leading DPC t1 that225

maximizes the contribution to QoI variance 𝜎2
1 = ∥Z⊤

2 Ut1∥2 ,226

t1 = argmax
t

∥Z⊤
2 Ut∥2. (18)

The solution to (18) for ∥t1∥ = 1 is given by the leading right singular vector of the matrix Z⊤
2 U.227

Generalizing beyond the leading DPC, if we define the singular vector decomposition as228

Z
⊤
2 U = L𝚺T⊤ =

𝑁𝐷𝑃𝐶∑︁
𝑘=1

l𝑘𝜎𝑘 t⊤𝑘 , (19)

then the full set of DPCs is given by the columns t𝑘 of T. DPCs are ordered by their con-229

tributions, 𝜎2
𝑘
, to the total QoI variance. The number of meaningful EDF–DPC pairs 𝑁𝐷𝑃𝐶230

is given by the the number of nonzero 𝜎𝑘 , i.e., the rank of the matrix Z⊤
2 U, and obeys231

𝑁𝐷𝑃𝐶 ≤ min
(
rank

(
Z⊤

2

)
, rank (U)

)
.232

EDFs recover familiar results in limiting cases. First, the case where C is proportional to the233

identity matrix corresponds to fluxes that are Gaussian white noise in space. If the fluxes are also234

stationary Gaussian white noise in time, then EDFs are equivalent to the stochastic optimals of235

the model. Similarly, if Z is proportional to the identity matrix, then the model is insensitive to236

spatial patterns in fluxes, and the EDFs are equivalent to the flux EOFs. At the opposite limit of237

spatial degrees of freedom, when fluxes are proportional to a single spatial pattern at all times, the238

(single) EDF is simply that pattern. When adjoint sensitivities are proportional to a single spatial239

pattern s1 at all lags, then t1 = U⊤s1/
(
s⊤1 Cs1

)
and the single EDF is proportional to the product of240

the spatial covariance with s1, p1 = Cs1
(
s⊤1 Cs1

)
.241
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Finally, we can construct “impact maps” indicating where QoI variance originates in space for242

each EDF. As noted by Stephenson and Sévellec (2021b), the map of total variance contributed by243

fluxes is given by244

vΣ = diag (ZC) (20)

where diag(A) denotes the vector lying along the diagonal of a matrix A. Substituting Eq. (19),245

we obtain246

vΣ =

𝑁𝐷𝑃𝐶∑︁
𝑘=1

diag
(
Z

1
2 l𝑘𝜎𝑘 t⊤𝑘 U⊤

)
(21)

from which we can write the map of variance contributions for the 𝑘 𝑡ℎ EDF-DPC pair as247

v𝑘 = 𝜎𝑘

(
Z

1
2 l𝑘

)
⊙ p𝑘 , (22)

where ⊙ denotes the element-wise product. As we will show in Section 4, impact maps are are248

useful for diagnosing dominant pathways of variance to the QoI.249

3. Demonstration in a simple stochastic system250

Before applying the EDF method in the context of a full ocean GCM, we illustrate it in an255

idealized one-dimensional configuration (Figure 1). In this setup, we generate realizations of256

random fluxes that are correlated in space (mimicking large-scale atmospheric variability) and257

stationary Gaussian white noise in time (consistent with Hasselmann (1976)). Three realizations258

of this stochastic process are shown in Figure 1a. The leading EOFs computed from 10,000259

realizations of these fluxes (Figure 1b) have length scales comparable to the extent of the domain and260

are approximately symmetric about its midpoint. Next, we generate sensitivities of a hypothetical261

QoI to fluxes at 10 lags as scaled delta functions in the leftmost third of the domain (Figure 1c) with262

randomly chosen scalings. These sensitivities mimic properties of adjoint sensitivities computed263

in ocean models, which often have shorter length scales than those in the atmospheric variability264

and are concentrated within a subset of the spatial domain, as described in Section 1. In the case265

shown where sensitivities across different lags have nonzero values at distinct spatial locations,266
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Fig. 1. Setup for EDF–DPC analysis in a simple stochastic system. a) Stochastic forcing in a synthetic one-

dimensional system is generated by smoothing Gaussian white noise in space. b) Leading EOFs of this forcing

have large spatial scales and are approximately symmetric in space. c) Adjoint sensitivities s(𝜏) are randomly

generated with different values across ten time lags.

251

252

253

254

the stochastic optimals (computed as the left singular vectors of S, not shown) are simply delta267

functions at those locations, ordered by their magnitudes.268

To compute DPCs, we construct U from Eq. (11) using 10,000 realizations of stochastic forcing274

and S from Eq. (10), concatenating across the ten lags. In the stationary white noise case, Z = SS⊤
275

(Section 2a) and we can use Z 1
2 = S. Then computing singular vectors of S⊤U (Eq. (19)) and276

EDFs (Eq. (14)) yields ten EDF-DPC pairs with nonzero contributions summing to the total QoI277

variance. In contrast to the leading EOFs, leading EDF patterns (Figure 2a-c) are asymmetric in278

space, reflecting the preference imparted by the adjoint sensitivities for the left side of the domain.279

While the EDF patterns are not orthogonal in space, the corresponding DPC time series (not280

shown) are orthonormal white noise.281

Each EDF–DPC pair’s contribution to QoI variance is given by the corresponding squared284

singular value of S⊤U (Figure 3a, circles). For comparison, the QoI variance contribution from285

the 𝑖𝑡ℎ EOF e𝑖 is given by286 (
𝜎EOF
𝑖

)2
= ∥𝜆𝑖S⊤e𝑖∥2 (23)
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Fig. 2. a-c) The leading three EDFs (spatial patterns) computed in a simple 1-D example. “Reduced” EDFs

(rEDF𝑘 , green lines) show the subset of each EDF that contributes to QoI variability; other nonzero EDF

values arise from spatial forcing covariances. d-f) Impact maps (Equation 22) illustrating contributions to QoI

variance across space (black lines) for each EDF. For comparison, these are overlaid on the distribution of adjoint

sensitivities across lags (gray lines, also shown in Figure 1c).

269

270

271

272

273

Fig. 3. Comparison of contributions from EDF-DPC and EOF-PC pairs to a) QoI variance and b) total forcing

variance in a simple 1-D example.

282

283
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where 𝜆2
𝑖

is the contribution of the 𝑖𝑡ℎ EOF to the total flux variance. As expected, leading287

DPCs account for a greater fraction of QoI variance than do leading EOFs, with a more rapid288

convergence of cumulative variance explained (compare circles and X’s in Figure 3a). We can289

perform the equivalent comparison for contributions to the total flux variance by comparing the 𝜆2
𝑖

290

to ∥p𝑘 ∥2, where the latter describes how much of the variance in U is explained by the 𝑘 𝑡ℎ EDF–291

DPC pair, revealing that EOFs maximize contributions to total flux variability more effectively292

than DPCs (Figure 3b). Thus, EDF-DPC pairs can have an outsize impact on variability in the QoI293

relative to their contribution to flux variability.294

Impact maps (black lines, Figure 2 d-f) are computed using Eq. (22) and indicate the amount of295

QoI variance contributed by each EDF as a function of space, which is determined by a combination296

of local sensitivity and EDF amplitudes. By ranking the impact map and selecting locations with297

leading impacts, we can define a “reduced” EDF (rEDF), plotted in green in Figure 2 (a-c). As we298

discuss in the next section, the rEDF is useful for clarifying the dominant mechanisms by which299

the EDF impacts QoI variance. In this simplified case, all of the QoI variance is explained by the300

subset of locations with nonzero sensitivities. At other locations, EDFs are nonzero because of301

spatial correlations in the fluxes, and have no impact on the QoI.302

4. Leading atmospheric drivers of interannual Subpolar Gyre heat content variability303

Next, we examine the EDFs of upper-ocean heat content in the North Atlantic Subpolar Gyre304

(SPG). This region was chosen for its dynamical importance for AMOC strength across models305

(Yeager et al. 2021; Oldenburg et al. 2021) including the MITgcm (Kostov et al. 2022) as well as for306

being a place where ocean dynamics are thought to play an important role in sea surface temperature307

variability (Buckley et al. 2014, 2015; Wills et al. 2019). This work follows previous studies using308

the adjoint for investigations of drivers of SPG variability (Jones et al. 2018; Stephenson and309

Sévellec 2021b).310

a. Model setup314

The MITgcm (Marshall et al. 1997; Adcroft et al. 2004) simulates ocean circulation under315

hydrostatic and Boussinesq assumptions. Here we use the nominal 1 degree configuration with 50316

vertical levels used for the ECCO version 4, release 4 (ECCOv4-r4) state estimate (Wunsch and317
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Fig. 4. Definition of the region of interest used for adjoint sensitivities. The black outline demarcates the

North Atlantic Subpolar Gyre region, chosen as the largest negative closed contour of time mean dynamic height

in the ECCOv4-r4 state estimate (-70 cm) following Foukal and Lozier (2017).

311

312

313

Heimbach 2007; Forget et al. 2015b; Fukumori et al. 2018) with two sets of initial and boundary318

conditions: one to construct the flux data matrix U, and the other to construct adjoint sensitivities.319

We construct U per Equation (11) from fluxes derived for ECCOv4-r4, which assimilates a range320

of observations to produce a dynamically consistent history of recent ocean variability spanning321

1992 to 2017. We construct U separately for ECCOv4-r4 heat fluxes and wind stress at 6 hourly322

resolution, concatenating zonal and meridional wind stress into a single matrix. The statistics of323

ECCOv4-r4 air-sea fluxes include effects from adjustments of the forcing, initial conditions and324

mixing parameterizations made to create a product that fits ocean observations; we make no effort325

to separate this contribution and neglect any possible erroneous impact to large-scale patterns of326

flux covariance.327

The second set of initial and boundary conditions are used to construct the ocean state about328

which the adjoint is computed. Here we use the initial conditions and forcing of Wolfe et al. (2017),329

who spun up the MITgcm for 5400 years under CORE Normal Year Forcing (Large and Yeager330

2004). Using an annually repeating forcing set for the adjoint ensures that ocean dynamics are not331

subject to forced interannual variability, such that any variability diagnosed with our method can332
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be attributed to historical fluctuations in U over the ECCOv4-r4 period. Following Foukal and333

Lozier (2017), we define the SPG as the area enclosed by the largest negative closed contour (-70334

cm) of dynamic height anomaly in the climatology of the ECCOv4-r4 state estimate (Figure 4).335

Note that this approach yields an SPG definition with a reduced footprint in the eastern part of the336

basin relative to Foukal and Lozier (2017) (cf. their Figure 3a). We compute the model adjoint337

using TAF (Transformation of Algorithms in Fortran; Giering and Kaminski 1998) and compute338

sensitivities of annual mean heat content (HC) above 700m in the SPG to heat fluxes (HF) and339

zonal and meridional wind stress (WS) in an Atlantic domain from 35° S to 80° N at lags from 0340

hours to 40 years.341

b. Atmospheric fluxes and sensitivities in the ECCOv4-r4 state estimate and the MITgcm348

Heat flux and wind stress variability in ECCOv4-r4 is summarized by EOF–PC analysis (Figures349

5 and 6). In all cases, because we are focused on interannual variability in SPG HC, we compute350

fluxes as anomalies about a seasonal cycle estimated from the ECCOv4-r4 climatology. The351

spectrum of squared singular values in the EOF–PC analyses of HF and WS both show a gradual352

convergence to the total power (the sum of squared singular values; Figures 5g and 6g), indicating353

that fluxes are composed of a diversity of patterns of roughly equal importance. Leading EOFs of354

HF (Figure 5 a-c) extend across the North Atlantic, with centers of action reflecting gyre structure355

and the path of the Gulf Stream. By contrast, leading EOFs of WS (Figure 6 a-c) are centered356

primarily over the SPG, with only small-amplitude correlated structures in the rest of the domain.357

Principal components for both HF and WS (Figures 5 and 6, d-f) have variability across a range358

of timescales, as demonstrated by the low frequency variability of running means computed over359

annual and 5-year intervals. While we have subtracted the climatological seasonal cycle, the 6-360

hourly product shows a strong annual cycle in the variance of WS and particularly HF, consistent361

with a North Atlantic that is stormier and more variable in winter.362

Leading stochastic optimals (SOs) and their corresponding lag time series illustrate potential368

pathways for surface fluxes to change SPG HC in the MITgcm (Figures 7 and 8). We compute369

SOs and accompanying lag time series as left and right singular vectors of S, which is constructed370

by concatenating snapshots of sensitivities at lag increments of five days spanning 0 to 40 years371

(Equation (10)). The leading SOs capture large fractions of the spatiotemporal variability in372
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Fig. 5. EOFs (leading spatial patterns; a-c) and PCs (corresponding time series, d-f, shown at 6-hourly

resolution and with annual and 5-year moving averages applied), for heat flux anomalies about annual climatology

in the ECCOv4-r4 state estimate. Spatial patterns are reported in normalized units. While the estimated seasonal

cycle has been removed from heat fluxes, there is a prominent seasonal cycle in the amplitude of variability in

all three principal components. g) Variance accounted for by EOF-PC pairs converges gradually to the total

variance.

342

343

344

345

346

347

adjoint sensitivities across lags, with the leading SO accounting for roughly 70% and 50% of373

the structure in the HF and WS cases, respectively (Figures 7g and 8g). HF perturbations that374

are mostly restricted to the SPG (Figure 7a) lead to HC anomalies that persist for several years,375

with a strong dependence on the season when the perturbation is applied (Figure 7d). In contrast,376
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Fig. 6. Same as Figure 5 but for wind stress.

HF perturbations with anomalies extending along the model Gulf Stream (Figure 7c) persist over377

decadal timescales, again with strong seasonal dependence (Figure 7f). The leading HF SO (Figure378

7a) strongly resembles the regional QoI definition in the SPG (cf. 4) and reflects local heating, with379

modest additional contributions from heat fluxes upstream in the Gulf Stream. The leading WS380

SO (Figure 8a) is a combination of local effects within the SPG and coastal upwelling mechanisms381

described by Jones et al. (2018) and Stephenson and Sévellec (2021b), whereby anomalies in HC382

propagate as Kelvin waves counterclockwise around the North Atlantic towards the Labrador Sea.383

While both HF and WS sensitivities have a seasonal dependence, it is stronger for HF, with NH384

wintertime fluxes having up to an order of magnitude greater impact in subsequent years than385
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Fig. 7. Stochastic optimals (a-c) and corresponding lag time series (d-f) illustrating the hypothetical most

efficient patterns of heat fluxes for driving SPG HC variability. Dotted lines at the zero-lag mark denote the

beginning of the one-year period over which SPG HC is averaged to compute the QoI. Cumulative power (g)

indicates that roughly 90% of the structure of adjoint sensitivities is accounted for by the leading three SO-lag

pairs.

363

364

365

366

367

summertime fluxes. This seasonal dependence is consistent with a contrast between a strong,386

shallow model pycnocline in the summer relative to deeper winter mixed layers that allow greater387

penetration of thermal anomalies (Stommel 1979; MacGilchrist et al. 2021).388
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Fig. 8. Same as Figure 7, but for wind stress.

c. Dominant atmospheric drivers of Subpolar Gyre heat content variability389

The EOFs (Figures 5 a-c and 6 a-c) and SOs (Figures 7 a-c and 8 a-c) for SPG HC illustrate396

the dichotomy discussed in Section 1: EOFs are generally large scale and agnostic of the ocean397

QoI, while SOs specifically reflect SPG properties defined by the QoI, with shorter length scales.398

Next we compute EDF–DPC pairs to reconcile these perspectives. The typical autocorrelation399

structure of flux principal components is roughly 1.5 days (not shown), substantially shorter than400

the interannual time scales of interest, so we compute Z following (9), consistent with a white401
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Fig. 9. Pairs of empirical-dynamical functions (a-c) and corresponding dynamics-weighted principal com-

ponents (d-f) illustrate the statistically most efficient subset of heat fluxes in the ECCOv4-r4 state estimate for

driving SPG HC variability in the MITgcm. Both EDFs and DPCs are plotted in normalized units; red DPC

curves indicate moving averages of 1 and 5 years. Panel g) compares QoI variance accounted for by leading

EDF-DPC (black) and EOF-PC (red) pairs; the leading EDF–DPC pair is expected to account for roughly 90%

of the interannual variability in SPG HC caused by HF roughly double that explained by the leading EOF.

390

391

392

393

394

395

noise assumption. We estimate seasonal nonstationarity in variance amplitudes (to specify the 𝑑𝑖402

in (9)) following Stephenson and Sévellec (2021a) (not shown).403

The leading EDF–DPC pairs of HF and WS account for a high fraction of the SPG HC variability404

driven by those fluxes (black lines in Figures 9g and 10g; note that the total power reported in405
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Fig. 10. Same as Figure 9 but for wind stress.

these figures is the total power contributed individually by HF and WS to the QoI). As expected,406

contributions to QoI variance from leading EDFs are larger than for EOFs (green and red lines407

in Figures 9g and 10g; cf. simple model results in Figure 3a). The leading HF EDF (Figure408

9a) consists primarily of a single center of action centered on the SPG with secondary zonal409

bands to the south, distinct from the leading EOF (Figure 5a), which has a stronger heat flux410

minimum over the model Gulf Stream. By contrast, the leading EDF of wind stress (Figure 10a)411

qualitatively resembles the leading WS EOF (Figure 6a). Similar to PCs, DPCs (Figures 9 d-f and412

10 d-f) are approximately white noise in time, with a typical maximum autocorrelation timescale413

of approximately 1.5 days. The seasonal cycle of variance is less pronounced in HF DPCs than in414
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PCs (cf. Figure 5d and 9d), possibly owing to separability assumptions made in the derivation of415

DPCs.416

EDF–DPC pairs for HF (Figure 9 a-c) and WS (Figure 10 a-c) reflect a combination of influences417

from model SOs and atmospheric flux statistics. The EDF patterns in both wind stress and heat418

flux strongly resemble the corresponding NAO flux patterns obtained by regressing the leading419

PC of SLP in ECCOv4-r4 onto the ECCOv4-r4 HF and WS fields (94% agreement measured by420

pattern correlation for both HF and WS, not shown); the NAO tripole pattern (Cayan 1992a) is421

evident in Figure 9a. While connections between EDFs, EOFs, and SOs can be complex, for heat422

fluxes we are near one of the limit cases discussed in Section 2b whereby adjoint sensitivities can423

be represented by a single stochastic optimal (specifically, note that the variance accounted for by424

the leading SO in Figure 7g is a high fraction of the total). As such, the dominant EDF closely425

resembles the pattern generated when one multiplies the leading stochastic optimal (Figure 7a) by426

the spatial covariance of ECCOv4-r4 heat fluxes (not shown).427

d. Evaluating EDF–DPC patterns in the ECCOv4-r4 state estimate428

Next, we assess how well dominant spatial patterns derived under linearized ocean physics (from437

the adjoint sensitivities) perform in a nonlinear ocean model constrained to fit data. The ECCO438

state estimate is derived using a 4DVAR smoother to improve fits to observations over 1992-2017439

(Wunsch and Heimbach 2007; Forget et al. 2015a; Fukumori et al. 2017), and the final product is440

a forward simulation of the MITgcm under adjusted initial conditions, atmospheric conditions (or441

fluxes), and ocean mixing parameters. We use the flux-forced version of ECCOv4-r4, which permits442

partitioning drivers of ocean variability into respective contributions without cross terms that can443

arise, e.g., between winds and surface air temperature when computing bulk fluxes (Fukumori et al.444

2021).445

As an initial comparison, we convolve adjoint sensitivities with HF and WS from ECCOv4-r4446

(Kostov et al. 2021) and find qualitative agreement with annual mean SPG HC in the ECCOv4-r4447

state estimate (Figure 11a, duplicated in Figure 12a), suggesting that a linearized system forced448

by HF and WS can skillfully describe historical variability in the nonlinear state estimate. Next,449

we subtract EDF–DPC pairs from ECCOv4-r4 fluxes and use these reduced fluxes to re-compute450

linear reconstructions and re-run the ECCOv4-r4 state estimate. Using Equation (13), we define a451
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Fig. 11. Consequences of cumulatively removing HF EDF–DPC pairs from the ECCOv4-r4 state estimate.

Lines show the evolution of SPG HC over the years of the ECCOv4-r4 reconstruction under full fluxes (a) and after

removing the first 1 (b), 2 (c), and 3 (d) HF EDF–DPC pairs. Black and gray lines indicate anomalies computed

in the (nonlinear) MITgcm before (dotted lines) and after (solid lines) subtracting a linear trend attributed to a

nonlinear response to removing HF EDF-DPC pairs. Blue lines indicate anomalies reconstructed linearly by

convolving fluxes with adjoint sensitivities.

429

430

431

432

433

434

set of reduced fluxes by cumulatively removing the 𝑔 leading EDF-DPC pairs,452

U′
𝑔 = U−

𝑔∑︁
𝑘=1

p𝑘 t⊤𝑘 . (24)
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Fig. 12. Same as Figure 11 but for wind stress. Panel a) is the same as Figure 11a and is presented again for

comparison.

435

436

Removing the leading EDF-DPC pair of HF induces a downward trend in the evolution of SPG453

HC in the MITgcm (Figure 11b, dotted lines). The absence of this trend in the corresponding454

linear reconstruction (Figure 11b, blue lines) suggests that it is a nonlinear response of the model455

to the removal of NAO-like variability, potentially indicating a transition to a different time mean456

state. Such a drift could arise because the flux-forced configuration of the MITgcm does not adjust457

heat fluxes with changing upper-ocean temperature. Lohmann et al. (2009) also found a nonlinear458
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response of the circulation to the NAO using modified forcing experiments. While we do not459

investigate its origins further, if we treat the drift as being a superimposed linear trend and subtract460

it from the HC response (Figure 11b, solid gray and black lines), we find that subtraction of the461

first HF EDF–DPC pair results in a 90% reduction in total interannual SPG HC variability in the462

nonlinear model compared to a roughly 60% reduction in the linear reconstruction. Differences in463

the effectiveness of the leading EDF-DPC pair in driving variability between linear and nonlinear464

reconstructions could arise from the trend subtraction and/or additional nonlinearities. The 60%465

variance reduction in the linear case is also less than the expected reduction of roughly 90% given466

by 𝜎2
1 (far left value of left line, Figure 9g); however, some variation about 𝜎2

1 is expected for467

variance reductions over finite time intervals such as the ECCOv4-r4 period. Our summary is468

that removing the leading EDF-DPC pair results in a strong reduction in SPG HC variance in the469

MITgcm, as also seen in the linearized system, but with an additional trend due to a nonlinear470

HF response. Additional removal of the second EDF–DPC pair (Figure 11c) leads to a modest471

additional reduction in QoI variance. While removal of the third pair (Figure 11d) continues to472

reduce variance in the linear reconstruction, there is roughly a quadrupling of variance in the473

nonlinear model relative to the case when only two EDF-DPC pairs are removed, suggesting474

additional nonlinear responses.475

For WS (Figure 12), removal of the leading EDF–DPC pair in the nonlinear model simulations476

also shows qualitative agreement in variance reduction (roughly 40%) with linear reconstructions477

(roughly 60%), and estimated 𝜎2
1 (roughly 70%). (Note that the variance contributions attributed478

to WS and HF when they are removed individually can sum to more than the total variance when479

there are covariances between those fluxes in time.) Unlike for HF, we do not observe a trend480

or an increase in variance in the nonlinear model when subtracting one of the leading EDF–DPC481

pairs. Similar to HF, we conclude that for this quantity of interest, the dominant mechanisms482

identified under linear assumptions to derive EDF–DPC pairs for WS are effective in the context483

of a nonlinear ocean GCM.484

e. Mechanisms leading to Subpolar Gyre heat content variability485

In order to evaluate the mechanisms by which leading EDFs influence the QoI, we make another494

modification to fluxes in ECCOv4-r4. Rather than removing EDF–DPC pairs, we now add an495
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Fig. 13. Forward heat flux perturbation experiments in the MITgcm. Positive heat fluxes correspond to ocean

warming. The impact map (a) illustrates the spatial distribution of HF contributions to SPG HC variability under

linearized dynamics. Ranking model gridpoints by their impacts allows us to pick a subset of locations within

the leading EDF (c) to constitute the leading reduced EDF (rEDF, d), eliminating features (e) that are correlated

across atmospheric fluxes but have a small impact on the QoI. Panel (b) shows a high degree of similarity in SPG

HC anomaly evolution when perturbed by the leading EDF and leading rEDF. Panels (f,i,l) and (g,j,m) show the

evolution of upper ocean heat content anomalies in ECCOv4-r4 after initial 24-hour heat flux perturbations by

EDF and rEDF on January 1992; (h,k,n) plot the difference between the two.
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initial 24-hour perturbation of fluxes on January 1, 1992 with the spatial pattern of the leading496
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Fig. 14. Same as Figure 13 but for wind stress.

EDF and re-run the state estimate. Anomalies relative to the unperturbed ECCOv4-r4 show how497

EDF flux perturbations affect the ocean state across space and time.498

Not all of the ocean’s responses to EDF perturbations necessarily lead to QoI variance (unlike499

for SOs). This point is illustrated in the simple stochastic system in Section 3, in which EDFs have500

nonzero values at locations that do not drive QoI variability (specifically, values at locations where501

sensitivities are zero in the top panels in Figure 2) because fluxes at these locations are correlated502

with fluxes at other locations that do drive QoI variance. As such, when illustrating pathways of503

ocean variability, it is helpful to focus on ocean adjustments that cause QoI variance rather than504

those resulting merely from fluxes correlated with a QoI driver. By ranking surface grid boxes most505

29



important for QoI variability using impact maps (Equation (22); Figures 13a and 14a), we define506

rEDF (reduced EDF) patterns (Figures 13d and 14d) with smaller spatial extents that nevertheless507

account for 99% of QoI variability. Reduced EDFs are more restricted to the SPG than full EDFs,508

indicating that contributions within the SPG dominate HC variability there; more distant features509

in the HF EDF are associated with the tripolar correlation fingerprint of NAO in the North Atlantic510

(Cayan 1992b,a).511

Evolving North Atlantic upper-ocean HC anomalies (integrated over the top 700m) in response to512

leading EDF and rEDF perturbations illustrate the dominant pathways of fluxes en route to SPG HC513

variability. As intended, impacts on SPG HC from EDFs and rEDFs are virtually indistinguishable514

in time (Figures 13b and 14b), but differences between anomalous HC (panels h, k, and n) reveal515

large-scale evolving patterns in the EDF response, particularly in the subtropical gyre, that do not516

contribute to SPG HC variance. As such, we focus on upper-ocean heat content anomalies in517

response to the rEDF (panels g, j, and m).518

HC changes due to the HF rEDF perturbation are primarily confined to the SPG over a three519

year period (Figures 13g, 13j, and 13m), with modest transport into the Labrador Sea and along520

the tail of the Grand Banks in the Northwest Atlantic. The result (Figure 13, red line) is a warm521

anomaly in the SPG that decays over several years with small seasonal variations, overshoots to522

a smaller cooling anomaly, and then decays back to zero. By contrast (Figure 14, red line), SPG523

HC in response to the WS rEDF perturbation gradually increases, peaking roughly a year after the524

perturbation, and then (similar to the HF response) decays, overshoots, and decays back to zero.525

Accompanying this response is cooling northeast and south of the SPG, as well as a rapid initial526

decrease and gradual recovery in the circulation strength of the SPG (not shown). We note that527

the WS perturbation acts to oppose time mean patterns of wind stress and wind stress curl over the528

SPG. These results are consistent with studies attributing 1990s subpolar warming to wind stress529

changes (Bersch 2002; Lozier et al. 2008; Sarafanov et al. 2008; Häkkinen et al. 2013) and with530

reductions in the northward penetration of warm subtropical waters under reduced subpolar wind531

stress curl (Häkkinen et al. 2011; Piecuch et al. 2017) that invoke changes in ocean circulation. We532

speculate that overshoot behavior in both HF and WS responses results from changes to the density533

structure and circulation of the SPG and surrounding waters that persist after the dissipation of534

SPG-averaged HC anomalies, analogous to mechanisms proposed by Desbruyères et al. (2021).535
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5. Discussion and conclusions536

This paper combines constraints from ocean model physics and atmospheric statistics to derive537

the dominant atmospheric patterns and ocean pathways responsible for driving ocean variability.538

Leading EDF-DPC pairs maximize ocean variability under assumptions of linear ocean physics and539

space-time separability of atmosphere-ocean fluxes. These pairs are computed via a dynamics-540

weighted principal components analysis and recover stochastic optimals and traditional EOFs541

under limiting conditions; they can thus be seen as a hybrid of “what the ocean wants” to drive542

variability and “what the ocean gets” from the atmosphere. As expected, these patterns outperform543

the leading EOFs of atmospheric fluxes for driving ocean variability, even as they account for a544

smaller fraction of the total flux variance. Applying this approach to the problem of upper-ocean545

heat content variability in the North Atlantic subpolar gyre, we find that leading EDFs of heat546

and momentum fluxes (Figures 9 and 10) closely resemble the North Atlantic Oscillation. By re-547

running the ECCOv4-r4 state estimate, we show that removing leading EDF-DPC pairs is highly548

effective at reducing SPG HC variability, though a trend in HC response may point to limitations549

of the linear sensitivity assumption in a flux-forced model. Changes due to heat flux perturbations550

are consistent with a primarily local, passive ocean response to stochastic variability in the gyre551

interior, while a delay in the onset of warming due to wind stress fluxes accompanied by nonlocal552

effects suggests an intermediate role for ocean gyre dynamics.553

As noted in Section 1, the NAO has long been established as a source of subpolar gyre heat554

content variability through both heat fluxes and wind stress (Böning et al. 2006; Lozier et al.555

2008; Lohmann et al. 2009; Häkkinen et al. 2011; Zhang and Yan 2017), and our reprisal of its556

importance may come as no surprise. Nevertheless, we argue that “rediscovering” the NAO serves557

as a nontrivial proof of concept for the EDF–DPC approach. Just as the center of action of leading558

EDFs was pulled to the left side of the domain in the simplified 1-D example (Figure 2), we expect559

that the NAO-like EDF arises from a QoI that coincides geographically with the center of action560

of the NAO, as well as one that is highly sensitive to wintertime variability. The latter constraint is561

consistent with the definition of the NAO as the leading mode of atmospheric wintertime variability562

(Hurrell and Deser 2009). At the same time, we caution that leading modes of sea level pressure are563

not generally expected to be associated with leading flux EDFs for arbitrary QoIs and regions. It is564

also instructive to contrast the leading WS EDF (Figure 10a) with the leading WS stochastic optimal565
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(Figure 8a). The absence of prominent structures along the western coast of Africa suggests that566

while the Kelvin wave mechanism discussed by Jones et al. (2018) and Stephenson and Sévellec567

(2021b) is a potential pathway for generating SPG HC variability, it is not a dominant mechanism568

in practice under recent atmospheric variability.569

The EDF-DPC approach can be extended or improved in several ways. We solved for HF570

and WS EDFs separately and independently found strong correlations with the NAO; however,571

future approaches could solve for multivariate EDFs across flux types. In addition, using ocean-572

atmosphere fluxes as boundary conditions may introduce inconsistencies and drifts in perturbed573

ECCOv4-r4 simulations due to missing turbulent flux feedbacks. An alternative could be instead to574

compute EDFs for atmospheric variables (air temperature, winds, humidity, etc.), with the caveat575

that there may be additional covariance relationships among these variables that need to be taken576

into account. We have made the approximation that the sensitivity is stationary in time, meaning577

that it depends only on the time lag 𝜏 between the QoI and fluxes; while this appears adequate578

for our purpose, including information about time variations in sensitivities could yield additional579

information. In this initial implementation, we defined our upper-ocean volume using a uniform580

depth of 700 m; however, additional insights into the variability of SPG and other water masses581

might be gained by targeting spatially varying winter mixed layer depths (Buckley et al. 2014,582

2015) and/or a QoI defined in isopycnal coordinates. Assuming a fixed 700 m depth also neglects583

time variations in the depth of SPG mixed layer depth, including across seasons. We hypothesize584

that defining a QoI based on a density class would further strengthen the preference for atmospheric585

patterns that dominate in winter time, with a qualitatively similar dominant role for the NAO.586

By fusing information from atmospheric statistics and ocean model physics, the EDF–DPC587

approach inherits potential sources of error from both that we have not attempted to quantify588

here. Inferring atmospheric statistics from a finite number of samples is a well-studied problem589

in climate variability and data assimilation (Houtekamer et al. 1998); it may be reasonable to590

investigate a “rule of thumb” following North et al. (1982) to establish independence criteria for591

EDFs, or to compute leading EDF–PC pairs in a subset of the time period with available flux data592

and assess their performance over different intervals. Low-resolution ocean models also have a593

well-documented host of shortcomings that are inherited through the adjoint sensitivities. The594

lack of coupling and feedbacks is a limitation of the linearized, forced-ocean perspective: if an595

32



atmospheric perturbation changes the ocean state in a way that in turn changes how the ocean596

responds to future perturbations, then these effects will not be captured by linear sensitivities. The597

importance of feedbacks might be evaluated, for instance, by applying EDF-like perturbations in a598

coupled model.599

While we have focused on an application for North Atlantic physical oceanography, the EDF–600

DPC approach is generalizable to a range of applications. Within the framework of forced ocean601

variability, we expect EDFs to be useful for any QoI whose variability is driven by atmospheric602

fluxes. Other applications where explicitly recognizing the important role of atmospheric covari-603

ances in determining leading drivers of ocean variability include ocean observing system design.604

For instance, Loose et al. (2020) use adjoint sensitivities as a basis for guiding optimal observa-605

tions of North Atlantic quantities via a “proxy potential.” The work presented here shows that606

atmospheric conditions most likely to excite ocean stochastic optimals tend to have a large spatial607

footprint, suggesting that proxy potential might benefit from correlations due to large-scale patterns608

of variability. Finally, we note that a model adjoint is not required to implement an EDF-DPC609

approach: while computational costs can be greater, ocean QoI sensitivities can also be estimated610

via forward perturbation or “Green’s function” approaches (e.g., Menemenlis et al. 2005).611
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Stephenson, D., and F. Sévellec, 2021b: Dynamical attribution of north atlantic interdecadal830

predictability to oceanic and atmospheric turbulence under diagnosed and optimal stochastic831

forcing. Journal of Climate, 34 (22), 9153–9179.832

Stommel, H., 1979: {D}etermination of water mass properties of water pumped down from the833

{E}kman layer to the geostrophic flow below. Proceedings of the National Academy of Sciences,834

76 (7), 3051–3055.835

Tesdal, J.-E., R. P. Abernathey, J. I. Goes, A. L. Gordon, and T. W. N. Haine, 2018: Salinity836

Trends within the Upper Layers of the Subpolar North Atlantic. Journal of Climate, 31 (7),837

2675–2698, https://doi.org/10.1175/JCLI-D-17-0532.1, URL http://journals.ametsoc.org/doi/838

10.1175/JCLI-D-17-0532.1.839

Vidard, A., P.-A. Bouttier, and F. Vigilant, 2015: Nemotam: tangent and adjoint models for the840

ocean modelling platform nemo. Geoscientific Model Development, 8 (4), 1245–1257.841

Wills, R. C., K. C. Armour, D. S. Battisti, and D. L. Hartmann, 2019: Ocean–atmosphere842

dynamical coupling fundamental to the atlantic multidecadal oscillation. Journal of Climate,843

32 (1), 251–272.844

41



Wolfe, C. L., P. Cessi, and B. D. Cornuelle, 2017: An intrinsic mode of interannual variability in845

the indian ocean. Journal of Physical Oceanography, 47 (3), 701–719.846

Wunsch, C., and P. Heimbach, 2007: {P}ractical global oceanic state estimation. Physica D:847

Nonlinear Phenomena, 230 (1), 197–208, https://doi.org/10.1016/j.physd.2006.09.040.848

Xu, T., M. Newman, M. A. Alexander, and A. Capotondi, 2024: A forecast test for reducing849

dynamical dimensionality of model emulators. Journal of Advances in Modeling Earth Systems,850

16 (1).851

Yeager, S., and Coauthors, 2021: An outsized role for the labrador sea in the multidecadal variability852

of the atlantic overturning circulation. Science Advances, 7 (41), eabh3592.853

Zanna, L., and E. Tziperman, 2008: Optimal surface excitation of the thermohaline circulation.854

Journal of Physical Oceanography, 38 (8), 1820–1830.855

Zavala-Garay, J., A. Moore, C. Perez, and R. Kleeman, 2003: The response of a coupled model of856

enso to observed estimates of stochastic forcing. Journal of Climate, 16 (17), 2827–2842.857

Zhang, W., and X.-H. Yan, 2017: The subpolar north atlantic ocean heat content variability and its858

decomposition. Scientific Reports, 7 (1), 1–8.859

42


